IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 長江存儲科技有限責任公司の特許一覧

特許7247355屈曲裏側ワード線を有する3次元メモリデバイスを形成するための方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-17
(45)【発行日】2023-03-28
(54)【発明の名称】屈曲裏側ワード線を有する3次元メモリデバイスを形成するための方法
(51)【国際特許分類】
   H10B 43/27 20230101AFI20230320BHJP
   H10B 41/27 20230101ALI20230320BHJP
   H01L 21/336 20060101ALI20230320BHJP
   H01L 29/788 20060101ALI20230320BHJP
   H01L 29/792 20060101ALI20230320BHJP
【FI】
H10B43/27
H10B41/27
H01L29/78 371
【請求項の数】 20
(21)【出願番号】P 2021545898
(86)(22)【出願日】2019-04-30
(65)【公表番号】
(43)【公表日】2022-03-23
(86)【国際出願番号】 CN2019085211
(87)【国際公開番号】W WO2020220269
(87)【国際公開日】2020-11-05
【審査請求日】2021-08-05
(73)【特許権者】
【識別番号】519237948
【氏名又は名称】長江存儲科技有限責任公司
【氏名又は名称原語表記】Yangtze Memory Technologies Co.,Ltd.
【住所又は居所原語表記】No.88 Weilai 3rd Road,East Lake High-tech Development Zone,Wuhan,Hubei,China
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】リ・ホン・シャオ
【審査官】加藤 俊哉
(56)【参考文献】
【文献】中国特許出願公開第109690774(CN,A)
【文献】特開2011-049561(JP,A)
【文献】米国特許出願公開第2019/0043836(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H10B 43/27
H10B 41/27
H01L 21/336
(57)【特許請求の範囲】
【請求項1】
基板の少なくとも1つの端にノッチを形成するステップと、
前記基板より上にあり、かつ前記基板の前記少なくとも1つの端を越えて側方に延びる半導体層を形成して前記ノッチを覆うステップと、
前記半導体層の表側および前記少なくとも1つの端に沿って、ならびに前記半導体層の裏面、前記ノッチの側面および下面に沿って複数の交互積層された導電層および誘電体層を形成するステップと、
前記基板の一部分を除去して、前記半導体層より下で前記交互積層された導電層および誘電体層を露出させるステップと
を含む、3次元(3D)メモリデバイスを形成するための方法。
【請求項2】
前記ノッチを形成するステップが、前記基板の両端にそれぞれ2つのノッチを形成することを含む、請求項1に記載の方法。
【請求項3】
前記ノッチの深さが、前記導電層および前記誘電体層の合成厚の2倍より大きい、請求項1に記載の方法。
【請求項4】
前記半導体層を形成するステップが、
前記ノッチをノッチ犠牲層で充填することと、
前記基板および前記ノッチ犠牲層より上に前記半導体層を堆積することと、
前記ノッチにおける前記ノッチ犠牲層を除去することとを含む、請求項1に記載の方法。
【請求項5】
前記半導体層の厚さが1μm以下である、請求項1に記載の方法。
【請求項6】
前記半導体層がポリシリコンを含む、請求項1に記載の方法。
【請求項7】
前記複数の交互積層された導電層および誘電体層を形成するステップが、原子層堆積(ALD)を使用して前記複数の導電層および誘電体層を交互に堆積することを含む、請求項1に記載の方法。
【請求項8】
前記導電層の各々がドープポリシリコンを含み、前記誘電体層の各々が酸化シリコンを含む、請求項7に記載の方法。
【請求項9】
前記複数の交互積層された導電層および誘電体層を形成するステップが、
ALDを使用して複数の犠牲層および前記誘電体層を交互に堆積することと、
前記犠牲層を前記導電層と置き換えることとを含む、請求項1に記載の方法。
【請求項10】
前記犠牲層の各々が窒化シリコンを含み、前記誘電体層の各々が酸化シリコンを含み、前記導電層の各々が金属を含む、請求項9に記載の方法。
【請求項11】
前記基板の前記一部分を除去するステップが、
前記交互積層された導電層および誘電体層の上方にエッチストップ層を堆積することと、
前記エッチストップ層によって停止されるまで前記基板を薄化することとを含む、請求項1に記載の方法。
【請求項12】
前記エッチストップ層がポリシリコンを含む、請求項11に記載の方法。
【請求項13】
前記ノッチの前記下面および前記側面の一部分が除去されるように前記基板の前記一部分が除去される、請求項1に記載の方法。
【請求項14】
基板の少なくとも1つの端にノッチを形成するステップと、
前記基板より上にあり、かつ前記基板の前記少なくとも1つの端を越えて側方に延びる半導体層を形成して前記ノッチを覆うステップと、
前記半導体層の表側および前記少なくとも1つの端に沿って、ならびに前記半導体層の裏面、前記ノッチの側面および下面に沿って複数の犠牲層および誘電体層を交互に堆積するステップと、
前記基板の一部分を除去して、前記半導体層より下で前記交互積層された犠牲層および誘電体層を露出させるステップと、
前記犠牲層を複数の導電層と置き換えるステップと
を含む、3次元(3D)メモリデバイスを形成するための方法。
【請求項15】
前記複数の犠牲層および誘電体層が、原子層堆積(ALD)を使用して交互に堆積される、請求項14に記載の方法。
【請求項16】
前記犠牲層の各々が窒化シリコンを含み、前記誘電体層の各々が酸化シリコンを含み、前記導電層の各々が金属を含む、請求項14に記載の方法。
【請求項17】
前記基板の前記一部分を除去するステップが、
前記交互積層された犠牲層および誘電体層の上方にエッチストップ層を堆積することと、
前記エッチストップ層によって停止されるまで前記基板を薄化することとを含む、請求項14に記載の方法。
【請求項18】
基板の少なくとも1つの端にノッチを形成するステップと、
前記基板より上にあり、かつ前記基板の前記少なくとも1つの端を越えて側方に延びる半導体層を形成して前記ノッチを覆うステップと、
前記半導体層の表側および前記少なくとも1つの端に沿って、ならびに前記半導体層の裏面、前記ノッチの側面および下面に沿って複数の導電層および誘電体層を交互に堆積するステップと、
前記基板の一部分を除去して、前記半導体層より下で前記交互積層された導電層および誘電体層を露出させるステップと
を含む、3次元(3D)メモリデバイスを形成するための方法。
【請求項19】
前記複数の導電層および誘電体層が、原子層堆積(ALD)を使用して交互に堆積される、請求項18に記載の方法。
【請求項20】
前記導電層の各々がドープポリシリコンを含み、前記誘電体層の各々が酸化シリコンを含む、請求項18に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、3次元(3D)メモリデバイスおよびその製造方法に関する。
【背景技術】
【0002】
平面メモリセルは、プロセス技術、回路設計、プログラミングアルゴリズムおよび製造プロセスを改善することによって、より小さなサイズにスケーリングされる。しかしながら、メモリセルのフィーチャサイズが下限に近づくにつれて、プレーナプロセスおよび製造技術が困難かつ高コストになる。結果として、平面メモリセルのための記録密度が上限に近づく。
【0003】
3Dメモリアーキテクチャが、平面メモリセルにおける密度限界に対処できる。3Dメモリアーキテクチャは、メモリアレイならびにメモリアレイへのおよびメモリアレイからの信号を制御するための周辺デバイスを含む。
【発明の概要】
【課題を解決するための手段】
【0004】
屈曲裏側ワード線を有する3Dメモリデバイスを形成するための方法の実施形態が本明細書に開示される。
【0005】
1つの例では、3Dメモリデバイスを形成するための方法が開示される。基板の少なくとも1つの端にノッチが形成される。基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。半導体層の表側および少なくとも1つの端に沿って、ならびにノッチの上面、側面および下面に沿って複数の交互積層された導電層および誘電体層が形成される。基板の一部分が除去されて、半導体層より下で交互積層された導電層および誘電体層を露出させる。
【0006】
別の例では、3Dメモリデバイスを形成するための方法が開示される。基板の少なくとも1つの端にノッチが形成される。基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。半導体層の表側および少なくとも1つの端に沿って、ならびにノッチの上面、側面および下面に沿って複数の犠牲層および誘電体層が交互に堆積される。基板の一部分が除去されて、半導体層より下で交互積層された犠牲層および誘電体層を露出させる。犠牲層が複数の導電層と置き換えられる。
【0007】
更に別の例では、3Dメモリデバイスを形成するための方法が開示される。基板の少なくとも1つの端にノッチが形成される。基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。半導体層の表側および少なくとも1つの端に沿って、ならびにノッチの上面、側面および下面に沿って複数の導電層および誘電体層が交互に堆積される。基板の一部分が除去されて、半導体層より下で交互積層された導電層および誘電体層を露出させる。
【0008】
添付図面は、本明細書に援用され、かつ本明細書の一部を形成するものであり、本開示の実施形態を例示し、説明すると共に、更に本開示の原理を説明し、当業者が本開示を作製および使用することを可能にする役目をする。
【図面の簡単な説明】
【0009】
図1A】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスの横断面を例示する図である。
図1B】一部の実施形態による、屈曲裏側ワード線を有する別の例証的な3Dメモリデバイスの横断面を例示する図である。
図2A】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図2B】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図2C】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図2D】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図2E】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図2F】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図2G】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する図である。
図3】一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための方法のフローチャートを例示する図である。
【発明を実施するための形態】
【0010】
本開示の実施形態が添付図面を参照しつつ記載されることになる。
【0011】
具体的な構成および配置が述べられるが、これが単に例示目的でなされることが理解されるべきである。当業者は、本開示の趣旨および範囲から逸脱することなく他の構成および配置を使用できることを認識するであろう。本開示が各種の他の応用にも利用できることが当業者にとって明らかであろう。
【0012】
「1つの実施形態」、「一実施形態」、「一実施形態例」、「一部の実施形態」等への本明細書における言及は、記載される実施形態が特定の特徴、構造または特性を含み得るが、全ての実施形態が必ずしも特定の特徴、構造または特性を含み得るわけではないことを示すことが留意される。その上、そのような句が必ずしも同じ実施形態を指すわけではない。更に、特定の特徴、構造または特性が一実施形態に関連して記載されるとき、明示的に記載されるか否かを問わず、他の実施形態に関連してそのような特徴、構造または特性を遂行することは当業者の知識内であろう。
【0013】
一般に、術語は、少なくとも部分的に文脈での使用法から理解されてよい。例えば、本明細書で使用される用語「1つまたは複数」は、少なくとも部分的に文脈に応じて、単数の意味で任意の特徴、構造もしくは特性を記載するために使用され得る、または複数の意味で特徴、構造もしくは特性の組合せを記載するために使用され得る。同様に、「或る(a)」、「或る(an)」または「その(the)」などの用語は、また、少なくとも部分的に文脈に応じて、単数の使用法を伝えるまたは複数の使用法を伝えると理解されてよい。加えて、用語「に基づいて(based on)」は、必ずしも排他的な一組の要因を伝えると意図されるわけではないと理解されてよく、代わりに、また、少なくとも部分的に文脈に応じて、必ずしも明示的に記載されるわけではない追加の要因の存在を許容し得る。
【0014】
本開示における「の上に(on)」、「より上に(above)」および「の上方に(over)」の意味が、「の上に」が何か「の直接上に(directly on)」を意味するだけでなく中間の特徴または層を介在させて何か「の上に」の意味も含むように、かつ「より上に」または「の上方に」が何か「より上に」または「の上方に」の意味を意味するだけでなく、中間の特徴または層を介在させず何か「より上に」または「の上方に」(すなわち、何かの直接上に)あるという意味も含むことができるように、最も広い形で解釈されるべきであることが容易に理解されるべきである。
【0015】
更に、図に例示される1つの要素または特徴の別の要素もしくは特徴との関係を記載するために、説明を容易にするよう、「の下方に(beneath)」、「より下に(below)」、「下の(lower)」、「より上に(above)」、「上の(upper)」等といった空間的相対語が本明細書で使用され得る。空間的相対語は、図に描かれる向きに加えて使用または動作中のデバイスの種々の向きを包含すると意図される。装置は別の向きにされ(90度または他の向きに回転され)てよく、本明細書で使用される空間的相対記述語はそれに応じて同じく解釈されてよい。
【0016】
本明細書で使用される場合、用語「基板」は、以降の材料層が加えられる材料を指す。基板自体をパターン化できる。基板の上部に加えられる材料はパターン化できる、またはパターン化されないままであることができる。更には、基板は、シリコン、ゲルマニウム、ヒ化ガリウム、リン化インジウム等といった多様な半導体材料を含むことができる。代替的に、基板は、ガラス、プラスチックまたはサファイアウエハなどの非導電性材料から作製できる。
【0017】
本明細書で使用される場合、用語「層」は、厚さを持つ領域を含む材料部分を指す。層は、下もしくは上にある構造の全体の上方に延びることができる、または下もしくは上にある構造の範囲より小さな範囲を有してよい。更に、層は、均質または不均質連続構造の、同連続構造の厚さより小さな厚さを有する領域であることができる。例えば、層は、連続構造の上面と下面との間の任意の一対の水平面間に、または同上下面に位置することができる。層は、側方に、垂直に、および/またはテーパ面に沿って延びることができる。基板は、層であることができ、その中に1つもしくは複数の層を含むことができ、かつ/またはその上に、それより上におよび/もしくはそれより下に1つもしくは複数の層を有することができる。層は多層を含むことができる。例えば、配線層が、1つまたは複数の導体およびコンタクト層(接続線および/またはビアコンタクトが形成される)ならびに1つまたは複数の誘電体層を含むことができる。
【0018】
本明細書で使用される場合、用語「名目の/名目上」は、製品またはプロセスの設計段階の間に設定される、部品またはプロセス動作に対する特性またはパラメータの所望または目標の値であって、所望の値より上および/または下の値域と共に設定される値に関する。値域は、製作プロセスの僅かな変動または公差によることができる。本明細書で使用される場合、用語「約」は、対象の半導体デバイスと関連した特定のテクノロジーノードに基づいて変動し得る所与の量の値を示す。特定のテクノロジーノードに基づいて、用語「約」は、例えば値の10~30%(例えば値の±10%、±20%または±30%)以内で変動する所与の量の値を示すことができる。
【0019】
本明細書で使用される場合、用語「3Dメモリデバイス」は、側方に向けた基板の上にメモリセルトランジスタの垂直に向けたストリング(本明細書においてNANDメモリストリングなどの「メモリストリング」と称される)を持ち、メモリストリングが基板に関して垂直方向に延びるような、半導体デバイスを指す。本明細書で使用される場合、用語「垂直の/垂直に」は基板の側方面に名目上垂直を意味する。
【0020】
一部の3Dメモリデバイス(例えば、3D NANDメモリデバイス)では、コンタクトが各ワード線に達し個別に電気的に接続して、メモリセルプログラム、消去および読出シーケンスを動作させるには、階段構造が必要とされる。周辺回路がメモリセルアレイの周りに、下にまたは上方にあり、かつ周辺コンタクトによって電気的に接続される。3Dメモリデバイスがより低コストおよび高セル密度のためにスケーリングするので、コストを削減し、かつセル密度を増加させる自然なやり方は、メモリスタックに一層多くの層を加えることである。しかしながら、層を加えることは、ワード線にアクセスするために使用される階段構造のサイズも増加させて、チップの上のメモリセルのためのコアアレイ面積を減少させる。その上、メモリスタックの表側に形成されるより多くのワード線コンタクトが配線経路(例えば、ワード線ファンアウト)の複雑さを増加させる。
【0021】
本開示に従う様々な実施形態が、屈曲裏側ワード線を有する3Dメモリデバイスを提供する。本明細書に開示されるメモリスタック構造は、デバイス基板の両側に向かう配線経路(例えば、ワード線ファンアウト)を可能にし、それによって経路柔軟性を増加させ、配線密度を減少させ、コアアレイのためのチップ面積を節約し、かつプロセスウィンドウを拡大する。一部の実施形態において、デバイス基板の両側のメモリスタックを通してメモリセル(例えば、3D NANDメモリストリング)が形成されて、メモリセル密度も増加させる。その上、ワード線コンタクトが、専用のコンタクト形成プロセスなしで全体としてワード線と共に形成できて、コストを削減し、かつワード線コンタクトとワード線との間のより低い界面抵抗によるより良好な電気的性能を達成する。
【0022】
図1Aは、本開示の一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイス100の横断面を例示する。3Dメモリデバイス100は基板102を含むことができ、これはシリコン(例えば、単結晶シリコン)、シリコンゲルマニウム(SiGe)、ヒ化ガリウム(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)または任意の他の適切な材料を含むことができる。一部の実施形態において、基板102は薄化基板であり、これは研削、ウェット/ドライエッチング、化学機械研磨(CMP)、またはその任意の組合せによって正常厚から薄化されている。一部の実施形態において、基板102は、その上に形成されるいかなる半導体デバイスも含まないキャリアウエハ(別名サポートウエハ)であり、これは、例えばガラスまたは石英を含んでよい。
【0023】
3Dメモリデバイス100は、基板102より上にあり、かつその少なくとも1つの端118/120を越えて側方に延びる半導体層104を含むことができる。図1Aに図示されるように、半導体層104は、基板102の両端118および120を越えて側方に延びる。3Dメモリデバイス100における構成要素の空間関係を更に例示するために図1Aにxおよびy軸が加えられることが留意される。基板102は、x方向(横方向または幅方向)に側方に延びる2つの側方面(例えば、上面および下面)を含む。本明細書で使用される場合、1つの構成要素(例えば、層またはデバイス)が半導体デバイス(例えば、3Dメモリデバイス100)の別の構成要素(例えば、層またはデバイス)「の上に」、「より上に」または「より下に」あるかどうかは、半導体デバイスの基板(例えば、基板102)がy方向(垂直方向または厚さ方向)に半導体デバイスの最低平面に位置付けられるときにy方向に基板に対して判定される。空間関係を記載するための同じ観念が本開示の全体を通して適用される。
【0024】
半導体層104は、シリコン(例えば、ポリシリコン、アモルファスシリコン、単結晶シリコン)、シリコンゲルマニウム(SiGe)、ヒ化ガリウム(GaAs)、ゲルマニウム(Ge)または任意の他の適切な半導体材料を含むことができる。一部の実施形態において、半導体層104はポリシリコンを含む。半導体層104の一部または全部が、一部の実施形態によれば、所望のドーピングレベルで任意の適切なドーパントによってドープされる。例えば、半導体層104はドープポリシリコン層でよい。一部の実施形態において、半導体層104の厚さは、1μmなど、約1μm以下である。一部の実施形態において、半導体層104の厚さは、10nmと1μmとの間(例えば、10nm、20nm、30nm、40nm、50nm、60nm、70nm、80nm、90nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1μm、これらの値のいずれかによる下端によって制限される任意の範囲、またはこれらの値のいずれか2つによって規定される任意の範囲)など、約10nmと約1μmとの間である。一部の実施形態において、基板102を越えて延びる半導体層104の距離(すなわち、半導体層104の端114または116と基板102のそれぞれの端118または120との間の距離)は、5μmと10μmとの間(例えば、5μm、6μm、7μm、8μm、9μm、10μm、これらの値のいずれかによる下端によって制限される任意の範囲、またはこれらの値のいずれか2つによって規定される任意の範囲)など、約5μmと約10μmとの間である。
【0025】
半導体層104は、3Dメモリデバイス100のソース(例えば、アレイ共通ソース(ACS))としての他に、詳細に下記するように両側屈曲ワード線を形成するための支持構造として働くことができる。半導体層104は、したがって本明細書において3Dメモリデバイス100の「ソースプレート」104とも称することができる。
【0026】
一部の実施形態において、3Dメモリデバイス100は、基板102と半導体層104との間に設けられるパッド層106を更に含む。パッド層106は酸化シリコンを含むことができる。一部の実施形態において、パッド層106は、多重酸化シリコン層、または酸化シリコン層、酸窒化シリコン層および/もしくは高誘電率(高k)誘電体層付きの酸化シリコン層などの、多重誘電体層を含む複合誘電体層である。
【0027】
3Dメモリデバイス100は、メモリスタック108も含むことができる。メモリスタック108は、メモリストリング(例えば、NANDメモリストリング130および140)が形成される積み重ね記憶構造であることができる。一部の実施形態において、メモリスタック108は、複数の垂直に積み重ねられた交互積層された導電層110および誘電体層112を含む。一部の実施形態において、3Dメモリデバイス100は、3Dメモリデバイス100のNANDメモリストリング130および140ならびに導電層110の交点にメモリセルが提供されるNANDフラッシュメモリデバイスである。メモリスタック108における導電層110および誘電体層112の対の数(例えば、32、64、96または128)が、3Dメモリデバイス100におけるメモリセルの数を設定できる。
【0028】
導電層110は各々同じ厚さを有するまたは異なる厚さを有することができる。同様に、誘電体層112は各々同じ厚さを有するまたは異なる厚さを有することができる。導電層110は、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、多結晶シリコン(ポリシリコン)、ドープシリコン、シリサイドまたはその任意の組合せを含むがこれに限定されない導電材料を含むことができる。1つの例では、各導電層110は、タングステンなどの金属を含む。別の例では、各導電層110はドープポリシリコンを含む。誘電体層112は、酸化シリコン、窒化シリコン、酸窒化シリコンまたはその任意の組合せを含むがこれに限定されない誘電体材料を含むことができる。1つの例では、各誘電体層112は酸化シリコンを含む。
【0029】
図1Aに図示されるように、メモリスタック108の交互積層された導電層110および誘電体層112は、一部の実施形態によれば、半導体層(ソースプレート)104の表側より上にあり、かつ半導体層(ソースプレート)104の裏側より下に延びる。本明細書で言及される半導体層(ソースプレート)104の表側が、半導体層(ソースプレート)104の2つの主側(2つの端114および116間に延びる)のうち、y方向に基板102から離れて遠い方である一方で、本明細書で言及される半導体層(ソースプレート)104の裏側は、半導体層(ソースプレート)104の2つの主側(2つの端114および116間に延びる)のうち、y方向に基板102に近い方である。各導電層110および誘電体層112は、半導体層(ソースプレート)104の表側において半導体層(ソースプレート)104の少なくとも1つの端114/116を越えて側方に延びることができる。図1Aに図示されるように、一部の実施形態において、各導電層110および誘電体層112は、半導体層(ソースプレート)104の表側において半導体層(ソースプレート)104の両端114および116を越えて側方に延びることができる。すなわち、各導電層110および誘電体層112の寸法は、一部の実施形態によれば、x方向に半導体層(ソースプレート)104の寸法より大きく、これもx方向に基板102の寸法より大きい。メモリスタック108は、したがってx方向に半導体層(ソースプレート)104の表側全体の上方に、かつそれを越えて延びることができる。
【0030】
一部の実施形態において、メモリスタック108の交互積層された導電層110および誘電体層112は、半導体層(ソースプレート)104の少なくとも1つの端114/116に沿って垂直に延びる。図1Aに図示されるように、メモリスタック108の交互積層された導電層110および誘電体層112は、半導体層(ソースプレート)104の両端114および116に沿って垂直に延びることができる。一部の実施形態において、メモリスタック108の交互積層された導電層110および誘電体層112は、半導体層(ソースプレート)104の裏側より下に更に延びる。すなわち、基板102ならびにメモリスタック108の交互積層された導電層110および誘電体層112の一部は、一部の実施形態によれば、半導体層(ソースプレート)104の裏側より下に設けられる。一部の実施形態において、メモリスタック108の交互積層された導電層110および誘電体層112の一部がx方向に基板102の左右側に設けられる。換言すれば、メモリスタック108は、一部の実施形態によれば、x方向に半導体層(ソースプレート)104の裏側の全部でなく、その一部の上方に延びる。
【0031】
図1Aに図示されるように、各導電層110および誘電体層112は、半導体層(ソースプレート)104の表側より上の第1の側方部分122、半導体層(ソースプレート)104の裏側より下の第2の側方部分124、ならびに第1および第2の側方部分122および124を接続する垂直部分126を含む側面視で連続屈曲形状を有することができる。一部の実施形態において、各導電層110または誘電体層112の第1の側方部分122は、x方向にそれぞれ各導電層110または誘電体層112の第2の側方部分124より長い。一部の実施形態において、各導電層110または誘電体層112の垂直部分126は、y方向に半導体層(ソースプレート)104の厚さより長い。各導電層110の第1および第2の側方部分122および124ならびに垂直部分126は、半導体層(ソースプレート)104の表側と裏側との間に延びる屈曲ワード線を形成(例えば、屈曲ワード線として機能)できる。3Dメモリデバイス100の各屈曲ワード線は、例えばその第1の側方部分122によって、半導体層(ソースプレート)104の表側において半導体層(ソースプレート)104の両端114および116を越えて側方に延びることができる。各屈曲ワード線は、例えばその垂直部分126によって、半導体層(ソースプレート)104の少なくとも1つの端114/116に沿って垂直に延びることができる。図1Aに図示されるように、一部の実施形態において、各屈曲ワード線は、半導体層(ソースプレート)104の両端114および116に沿って垂直に延びる。表側にだけ設けられた直線ワード線を有する一部の既存の3Dメモリデバイスと異なり、3Dメモリデバイス100は、表側と裏側との間に延びる屈曲ワード線を含む。
【0032】
3Dメモリデバイス100の各導電層110は、金属またはドープポリシリコンを含むがこれに限定されない同じ導電材料で作製される連続層であることができる。屈曲ワード線の他に、各導電層110は、一部の実施形態によれば、屈曲ワード線に接続され、かつ半導体層(ソースプレート)104の裏側より下で垂直に延びるワード線コンタクト128を更に含む。図1Aに図示されるように、導電層110は、更に半導体層(ソースプレート)104の裏側より下で垂直に延びて、複数のワード線コンタクト128を形成(例えば、ワード線コンタクト128として機能)できる。各ワード線コンタクト128は、ワード線ファンアウトのために3Dメモリデバイス100の裏側において垂直に(例えば、y方向に)延びる。別々のワード線およびワード線コンタクトを有する一部の既存の3Dメモリデバイスと異なり、3Dメモリデバイス100は導電層110を含み、その各々が同じ導電材料で作製される連続層であり、ワード線としてもワード線コンタクトとしても機能する。
【0033】
図1Aに図示されるように、3Dメモリデバイス100は、各々が交互積層された導電層110および誘電体層112を通して垂直に延びる複数のNANDメモリストリング130および140を含むことができる。各NANDメモリストリング130または140は、一部の実施形態によれば、半導体層(ソースプレート)104と接触している。NANDメモリストリング130および140は、半導体層(ソースプレート)104の表側より上に(本明細書において表NANDメモリストリング130と称される)および半導体層(ソースプレート)104の裏側より下に(本明細書において裏NANDメモリストリング140と称される)設けることができる。各表NANDメモリストリング130は、半導体材料(例えば、半導体チャネル132を形成する)および誘電体材料(例えば、メモリ膜134を形成する)で充填されるチャネルホールを含むことができる。一部の実施形態において、半導体チャネル132は、アモルファスシリコン、ポリシリコンまたは単結晶シリコンなどのシリコンを含む。一部の実施形態において、メモリ膜134は、トンネリング層、記憶層(「電荷トラップ/記憶層」としても知られている)およびブロッキング層を含む複合層である。各表NANDメモリストリング130は円筒形状(例えば、柱形状)を有することができる。半導体チャネル132、メモリ膜134のトンネリング層、記憶層およびブロッキング層は、一部の実施形態によれば、この順に柱の中心から外面に向けて径方向に配置される。トンネリング層は酸化シリコン、酸窒化シリコンまたはその任意の組合せを含むことができる。記憶層は窒化シリコン、酸窒化シリコン、シリコンまたはその任意の組合せを含むことができる。ブロッキング層は酸化シリコン、酸窒化シリコン、高k誘電体またはその任意の組合せを含むことができる。
【0034】
一部の実施形態において、各表NANDメモリストリング130は、チャネルホールの下方部分に(例えば、下端に)半導体プラグ136を更に含む。半導体プラグ136は、ポリシリコンなどの半導体材料を含むことができる。半導体プラグ136は、半導体層(ソースプレート)104と接触している、かつ表NANDメモリストリング130のソース選択ゲートによって制御されるチャネルとして機能することができる。一部の実施形態において、各表NANDメモリストリング130は、チャネルホールの上方部分に(例えば、上端に)チャネルプラグ138を更に含む。一部の実施形態において、チャネルプラグ138は表NANDメモリストリング130のドレインとして機能することができる。
【0035】
表NANDメモリストリングを有するだけの一部の既存の3Dメモリデバイスと異なり、3Dメモリデバイス100は、屈曲ワード線が半導体層(ソースプレート)104の裏側より下に延びることができるので、半導体層(ソースプレート)104の裏側より下に設けられる裏NANDメモリストリング140も含むことができる。表NANDメモリストリング130と同様に、各裏NANDメモリストリング140は、半導体チャネル142およびメモリ膜144を含む。各裏NANDメモリストリング140は円筒形状(例えば、柱形状)を有することができる。半導体チャネル142、メモリ膜144のトンネリング層、記憶層およびブロッキング層は、一部の実施形態によれば、この順に柱の中心から外面に向けて径方向に配置される。
【0036】
一部の実施形態において、各裏NANDメモリストリング140は、チャネルホールの上方部分に(例えば、上端に)半導体プラグ146を更に含む。半導体プラグ146は、ポリシリコンなどの半導体材料を含むことができる。半導体プラグ146は、半導体層(ソースプレート)104と接触している、かつ裏NANDメモリストリング140のソース選択ゲートによって制御されるチャネルとして機能することができる。一部の実施形態において、各裏NANDメモリストリング140は、チャネルホールの下方部分に(例えば、下端に)チャネルプラグ148を更に含む。一部の実施形態において、チャネルプラグ148は裏NANDメモリストリング140のドレインとして機能することができる。
【0037】
一部の実施形態において、3Dメモリデバイス100はモノリシック3Dメモリデバイスの一部であり、モノリシック3Dメモリデバイスの構成要素(例えば、メモリセルおよび周辺デバイス)は単一の基板(例えば、基板102)の上に形成される。3Dメモリデバイス100の動作を容易にするために使用される任意の適切なデジタル、アナログおよび/または混合信号周辺回路などの周辺デバイス(図示せず)を、メモリスタック108より上に形成できる。一部の実施形態において、3Dメモリデバイス100は非モノリシック3Dメモリデバイスの一部であり、その構成要素は異なる基板の上に別々に形成され、次いで対面方式、一方向方式または背面方式で接合される。周辺デバイス(図示せず)は、基板102と異なる別の基板の上に形成できる。接合型非モノリシック3Dメモリデバイスの一部として、基板102は薄化基板(接合型非モノリシック3Dメモリデバイスの基板でない)であることができ、非モノリシック3Dメモリデバイスのバックエンド(BEOL)配線を薄化基板102の裏側に形成できる。それでもやはり、3Dメモリデバイス100が周辺デバイス(図示せず)より上にあるか下にあるかを問わず、3Dメモリデバイス100はモノリシックまたは非モノリシック3Dメモリデバイスの一部であることができる。参照を容易にするために、図1Aは、基板102がy方向に半導体層(ソースプレート)104より下に位置付けられる3Dメモリデバイス100の状態を描く。図1Aには図示されないが、3Dメモリデバイス100の追加の構成要素を、ゲート線スリット/ソースコンタクト、ダミーチャネル、局所配線、配線層(例えば、BEOL配線)等を含むがこれらに限定されず、3Dメモリデバイス100の一部として形成できることも理解される。
【0038】
図1Bは、一部の実施形態による、屈曲裏側ワード線を有する別の例証的な3Dメモリデバイス101の横断面を例示する。屈曲ワード線が半導体層(ソースプレート)104の両端114および116に沿って形成された図1Aと異なり、図1Bにおける3Dメモリデバイス101は、半導体層(ソースプレート)104の1つの端114に沿って形成される屈曲ワード線を含む。3Dメモリデバイス101の残りの構成要素は、図1Aにおける3Dメモリデバイス100におけるそれらの対応物と実質的に同様であり、したがって本明細書に詳細に繰り返されることはない。
【0039】
図1Bに図示されるように、基板103より上の半導体層(ソースプレート)104は、一部の実施形態によれば、基板103の1つの端118を越えて側方に延びる。半導体層(ソースプレート)104の1つの端116は基板103の別の端120と整列できる。結果として、各導電層110および誘電体層112は、一部の実施形態によれば、半導体層(ソースプレート)104の表側において半導体層(ソースプレート)104の別の端116でなく、1つの端114を越えて側方に延びる。交互積層された導電層110および誘電体層112は、半導体層(ソースプレート)104の別の端116でなく、1つの端114に沿って垂直に延びることができる。それに応じて、屈曲ワード線(導電層110の第1および第2の側方部分122および124ならびに垂直部分126を含む)は、一部の実施形態によれば、半導体層(ソースプレート)104の表側において半導体層(ソースプレート)104の別の端116でなく、1つの端114を越えて側方に延びる。屈曲ワード線は、半導体層(ソースプレート)104の別の端116でなく、1つの端114に沿って垂直に延びることができる。屈曲ワード線の他に、各導電層110は、一部の実施形態によれば、屈曲ワード線に接続され、かつ半導体層(ソースプレート)104の裏側より下で垂直に延びる複数のワード線コンタクト128を更に含む。
【0040】
図2A図2Gは、一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための製造プロセスを例示する。図3は、一部の実施形態による、屈曲裏側ワード線を有する例証的な3Dメモリデバイスを形成するための方法のフローチャートである。図2A図2Gおよび図3に描かれる3Dメモリデバイスの例は、図1Aに描かれる3Dメモリデバイス100を含む。図2A図2Gおよび図3は共に説明されることになる。方法300に示される動作が網羅的でないこと、および例示された動作のいずれかの前、後または間に他の動作も行うことができることが理解される。更に、動作の一部が同時に、または図3に示されるのとは異なる順に行われてよい。
【0041】
図3を参照すると、方法300は動作302から始まり、基板の少なくとも1つの端にノッチが形成される。一部の実施形態において、基板の両端にそれぞれ2つのノッチが形成される。ノッチの深さは、導電層および誘電体層の合成厚の2倍より大きくなることができる。
【0042】
図2Aに例示されるように、基板202の上にパッド層204が形成される。基板202はシリコン基板またはキャリアウエハであることができる。パッド層204は、テトラエチルオルトシリケート(TEOS)シリコンオキサイドなどの酸化シリコン、または窒化シリコン、酸窒化シリコンもしくはその任意の組合せを含むがこれに限定されない任意の他の誘電体材料を含むことができる。パッド層204は、インサイチュ水蒸気発生(ISSG)、化学蒸着(CVD)、物理蒸着(PVD)、原子層堆積(ALD)、スピンコーティングまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスによって形成できる。パッド層204の上にスピンコーティングによってフォトレジスト層(図示せず)を形成できる。フォトレジスト層は、任意の適切な種類のポジ型またはネガ型フォトレジストであることができる。一部の実施形態において、パッド層204とフォトレジスト層との間にハードマスク層(例えば、アモルファスカーボン膜)、下層反射防止コーティング(BARC)膜および/または誘電体反射防止コーティング(DARC)膜が形成される。
【0043】
フォトレジスト層は、フォトリソグラフィおよび現像によってパターン化され、ウェットエッチおよび/またはドライエッチによってパッド層204および基板202の露出部分をエッチングするためにエッチマスクとして使用できる。任意の適切なエッチング液(例えば、ウェットエッチおよび/またはドライエッチの)を使用して露出部分におけるパッド層204の全厚さおよび基板202の或る厚さを除去し、例えば図1Aに図示されるような3Dメモリデバイス100を形成するために、基板202の両端にそれぞれ2つのノッチ206および208(例えば、ディープトレンチアイソレーション(DTI))を形成できる。各ノッチ206または208のx方向の幅は、パターン化されたフォトレジスト層によって制御できる。一部の実施形態において、例えば図1Bに図示されるような3Dメモリデバイス101を形成するために、基板202の1つの端に1つのノッチ206または208だけが形成され得るように、フォトレジスト層をノッチ206および208の1つを覆ってパターン化できることが理解される。説明を容易にするために、図2A図2Gは、基板202の両端にそれぞれ2つのノッチ206および208を伴う製造プロセスを例示する。基板202の1つの端に1つのノッチだけを伴う図1Bに図示されるような3Dメモリデバイス101を製造するために同じプロセスを使用できる。
【0044】
各ノッチ206または208のy方向の深さは名目上同じであることができる。深さ(例えば、基板202のエッチング厚)はエッチ速度および/またはエッチ時間によって制御できる。一部の実施形態において、各ノッチ206または208の深さは、メモリスタックに形成されることになる導電層および誘電体層の合成厚の2倍より大きい。例えば、導電層および誘電体層の合成厚が5μmであれば、各ノッチ206または208の深さは10μmより大きくてよい。一部の実施形態において、反応性イオンエッチング(RIE)などの、基板202に対する任意の適切な異方性エッチングプロセスによって可能な限り直線の各ノッチ206または208の側壁プロファイルを有することが望ましい。ノッチ206および208を形成した後に、パッド層204より上の1つまたは複数の残存層(例えば、フォトレジスト層)が1つまたは複数のエッチングプロセスによって除去されて、図2Aに図示されるように、パッド層204を露出させることができる。
【0045】
方法300は、図3に例示されるように、動作304に進み、基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。一部の実施形態において、半導体層を形成するために、ノッチがノッチ犠牲層で充填され、基板およびノッチ犠牲層より上に半導体層が堆積され、ノッチにおけるノッチ犠牲層が除去される。
【0046】
図2Bに例示されるように、各ノッチ206または208(図2Aに図示される)はノッチ犠牲層210で充填される。ノッチ犠牲層210は、基板202の材料に対して高エッチング(ウェットまたはドライエッチング)選択比を有する任意の材料を含むことができる。例えば、基板202はシリコン基板でよく、ノッチ犠牲層210は、酸化シリコン、カーボン、ポリマーまたはフォトレジストを含んでよい。一部の実施形態において、ノッチ犠牲層210は、CVD、PVD、ALD、電気めっき、無電極めっき、スピンコーティングまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスに続いて、ノッチ206または208の外側の余剰ノッチ犠牲層210を除去する、CMPなどの平坦化プロセスによって形成される。結果として、ノッチ犠牲層210は、図2Bに図示されるように、ノッチ206および208にだけ形成され、かつノッチ犠牲層210の上面がパッド層204の上面と同じ高さであるように各ノッチ206または208を充填できる。
【0047】
図2Cに例示されるように、半導体層214が基板202より上に形成され、かつ基板202の両端を越えて側方に延びていてノッチ206および208を覆う。半導体層214は、一部の実施形態によれば、ポリシリコンを含む。一部の実施形態において、半導体層214は、CVD、PVD、ALD、電気めっき、無電極めっきまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスによってパッド層204およびノッチ犠牲層210(図2Bに図示される)の上に堆積される。ノッチ206および208におけるノッチ犠牲層210は、次いでノッチ犠牲層210の材料に応じて、例えばウェットエッチング、ドライエッチング、ポリマー灰化、フォトレジスト剥離等によって除去できる。一部の実施形態において、半導体層214の両端における一部が除去されて下のノッチ犠牲層210を露出させ、その結果エッチング液をノッチ犠牲層210に適用できる。半導体層214の除去される一部は、上に形成される別のエッチマスク、例えば別のフォトレジスト層によってパターン化できる。結果として、ノッチ206および208は、図2Cに図示されるように再開放できる。一部の実施形態によれば、各ノッチ206または208の上面が半導体層214によって形成され、各ノッチ206または208の下面および側面が基板202によって形成される。一部の実施形態において、半導体層214は、イオン注入および/または熱拡散を使用して所望のドーピングレベルで任意の適切なドーパントによってドープされる。
【0048】
方法300は、図3に例示されるように、動作306に進み、半導体層の表側および少なくとも1つの端に沿ってならびにノッチの上面、側面および下面に沿って複数の交互積層された導電層および誘電体層が形成される。一部の実施形態において、複数の導電層および誘電体層は、例えばALDを使用して交互に堆積される。一部の実施形態において、導電層の各々がドープポリシリコンを含み、誘電体層の各々が酸化シリコンを含む。
【0049】
図2Dに例示されるように、半導体層214の表側および両端に沿ってならびに各ノッチ206または208(図2Cに図示される)の上面、側面および下面に沿って複数の導電層218および誘電体層220が形成される。各導電層218は金属またはドープポリシリコンを含むことができ、各誘電体層220は酸化シリコン、窒化シリコンおよび/または酸窒化シリコンを含むことができる。一部の実施形態において、各導電層218はドープポリシリコンを含み、各誘電体層220は酸化シリコンを含む。導電層218および誘電体層220は、CVD、PVD、ALD、電気めっき、無電極めっきまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスによって交互に堆積できる。各導電層218および各誘電体層220の厚さを制御するために堆積速度および/または堆積時間を制御できる。一部の実施形態において、各対の導電層218および誘電体層220の合成厚は名目上同じである。上記したように、各対の導電層218および誘電体層220の合成厚は、一部の実施形態による、図2Dに例示されるように、少なくとも一対の導電層218および誘電体層220がノッチ206および208に形成できるように各ノッチ206または208の深さの1/2より小さい。
【0050】
一部の実施形態において、導電層218および誘電体層220は、ALDを使用して交互に堆積される。ALDは、表面を交互のガス種(前駆体)に曝す気相化学プロセスの逐次使用に基づく薄膜堆積技術である。ALDは、膜の正確な厚さおよび組成の他に原子レベルで可能な均一膜面の制御を伴う非常に薄いコンフォーマルな膜を生産するために使用できる。厚さおよび表面均一性が十分に制御された導電層218および誘電体層220は、半導体層214の表側および両端に沿っての他に各ノッチ206または208の上面、側面および下面に沿ってALDを使用して堆積できる。すなわち、ALDを使用して、半導体層214および基板202のプロファイルに従って、連続層のスタックをコンフォーマルに堆積できる。一部の実施形態において、各ノッチ206または208の一部が導電層218および誘電体層220によって充填されず、ノッチ206および208にそれぞれ凹部222および224を残す。
【0051】
方法300は、図3に例示されるように、動作308に進み、基板の一部分が除去されて、半導体層より下で交互積層された導電層および誘電体層を露出させる。一部の実施形態において、基板の一部分を除去するために、交互積層された導電層および誘電体層の上方にエッチストップ層が堆積され、エッチストップ層によって停止されるまで基板が薄化される。エッチストップ層はポリシリコンを含むことができる。一部の実施形態において、ノッチの下面および側面の一部分が除去されるように基板の一部分は除去される。
【0052】
図2Eに例示されるように、交互積層された導電層218および誘電体層220の上方にエッチストップ層226が堆積される。一部の実施形態において、エッチストップ層226はポリシリコンを含む。エッチストップ層226は、CVD、PVD、ALD、電気めっき、無電極めっきまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスによって堆積できる。一部の実施形態において、エッチストップ層226は、エッチストップ層226がコンフォーマルに塗布されて凹部222および224(図2Dに図示される)も充填できるように、ALDを使用して堆積できる。
【0053】
図2Fに例示されるように、基板202の一部分が除去されて、半導体層214より下で交互積層された導電層218(例えば、ワード線コンタクト228として機能する)および誘電体層220を露出させる。基板202は、エッチストップ層226によって停止されるまで薄化できる。一部の実施形態において、基板202は、CMP、ドライエッチングおよび/またはウェットエッチングによって薄化され、エッチストップ層226は、CMPエッチストップ層および/またはウェットエッチングのためのハードマスクとして働く。一部の実施形態において、基板202の一部分は、ノッチ206または208の下面および側面の一部分が除去されるように除去される。薄化の程度はエッチストップ層226によって制御できる。例えば、エッチストップ層226より下の基板202の一部ならびにエッチストップ層226より下の交互積層された導電層218および誘電体層220の一部が除去されて、ワード線コンタクト228(すなわち、半導体層214の裏側より下で垂直に延びる導電層218の一部)を露出させてよい。エッチストップ層226は、一部の実施形態によれば、基板202の薄化の後に、例えばウェットエッチングおよび/またはドライエッチングによって除去される。
【0054】
図3における方法300の動作306に戻って参照すると、一部の実施形態において、複数の交互積層された導電層および誘電体層を形成するために、半導体層の表側および少なくとも1つの端に沿ってならびにノッチの上面、側面および下面に沿って複数の犠牲層および誘電体層が交互に堆積され、犠牲層が複数の導電層と置き換えられる。複数の犠牲層および誘電体層は、ALDを使用して交互に堆積できる。一部の実施形態において、犠牲層の各々が窒化シリコンを含み、誘電体層の各々が酸化シリコンを含み、導電層の各々が金属を含む。動作308で、一部の実施形態において、基板の一部分が除去されて、半導体層より下で交互積層された犠牲層および誘電体層を露出させる。基板の一部分を除去するために、交互積層された犠牲層および誘電体層の上方にエッチストップ層を堆積でき、エッチストップ層によって停止されるまで基板を薄化できる。
【0055】
図2Dに例示されるように、一部の実施形態において、半導体層214の表側および両端に沿ってならびに各ノッチ206または208(図2Cに図示される)の上面、側面および下面に沿って複数の犠牲層218および誘電体層220が形成される。各犠牲層218は、窒化シリコンなどの第1の誘電体を含むことができ、各誘電体層220は、酸化シリコンなど、第1の誘電体以外の第2の誘電体を含むことができる。犠牲層218および誘電体層220は、CVD、PVD、ALD、電気めっき、無電極めっきまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスによって交互に堆積できる。各犠牲層218および各誘電体層220の厚さを制御するために堆積速度および/または堆積時間を制御できる。一部の実施形態において、各対の犠牲層218および誘電体層220の合成厚は名目上同じである。上記したように、各対の犠牲層218および誘電体層220の合成厚は、一部の実施形態に従って、少なくとも一対の犠牲層218および誘電体層220がノッチ206および208に形成できるように各ノッチ206または208の深さの1/2より小さい。
【0056】
一部の実施形態において、犠牲層218および誘電体層220は、ALDを使用して交互に堆積される。厚さおよび表面均一性が十分に制御された犠牲層218および誘電体層220は、半導体層214の表側および両端に沿っての他に各ノッチ206または208の上面、側面および下面に沿ってALDを使用して堆積できる。すなわち、ALDを使用して、半導体層214および基板202のプロファイルに従って、連続層のスタックをコンフォーマルに堆積できる。一部の実施形態において、各ノッチ206または208の一部が犠牲層218および誘電体層220によって充填されず、それぞれのノッチ206または208に凹部222および224を残す。
【0057】
図2Eに例示されるように、一部の実施形態において、交互積層された犠牲層218および誘電体層220の上方にエッチストップ層226が堆積される。一部の実施形態において、エッチストップ層226はポリシリコンを含む。エッチストップ層226は、CVD、PVD、ALD、電気めっき、無電極めっきまたはその任意の組合せを含むがこれに限定されない1つまたは複数の薄膜堆積プロセスによって堆積できる。一部の実施形態において、エッチストップ層226は、エッチストップ層226がコンフォーマルに塗布されて凹部222および224(図2Dに図示される)も充填できるように、ALDを使用して堆積できる。
【0058】
図2Fに例示されるように、一部の実施形態において、基板202の一部分が除去されて、半導体層214より下で交互積層された犠牲層218および誘電体層220を露出させる。基板202は、エッチストップ層226によって停止されるまで薄化できる。一部の実施形態において、基板202は、CMP、ドライエッチングおよび/またはウェットエッチングによって薄化され、エッチストップ層226は、CMPエッチストップ層および/またはウェットエッチングのためのハードマスクとして働く。一部の実施形態において、基板202の一部分は、ノッチ206または208の下面および側面の一部分が除去されるように除去される。薄化の程度はエッチストップ層226によって制御できる。例えば、エッチストップ層226より下の基板202の一部ならびにエッチストップ層226より下の交互積層された犠牲層218および誘電体層220の一部が除去されて、半導体層214の裏側より下で垂直に延びる犠牲層218の一部を露出させてよい。エッチストップ層226は、一部の実施形態によれば、基板202の薄化の後に、例えばウェットエッチングおよび/またはドライエッチングによって除去される。
【0059】
図2Gに例示されるように、一部の実施形態において、1つまたは複数のスリット開口230が、各々交互積層された犠牲層218および誘電体層220を通して垂直に延びて形成される。スリット開口230は、ディープRIEなど、ウェットエッチングおよび/またはドライエッチングプロセスによって形成されて、犠牲層218(図2Fに図示される)を導電層232と置き換える以降のゲート置換プロセスのための経路を形成できる。導電層232との犠牲層218の置換は、誘電体層220(例えば、酸化シリコン)に選択的に犠牲層218(例えば、窒化シリコン)をウェットエッチングし、構造を導電層232で充填することによって行うことができる。導電層232は、タングステンなどの金属を含むことができる。導電層232は、PVD、CVD、ALD、任意の他の適切なプロセス、またはその任意の組合せによって堆積できる。結果として、ゲート置換プロセスの後に、半導体層214の裏側より下で垂直に延びる犠牲層218の一部がワード線コンタクト236になることができる。
【0060】
3Dメモリデバイスの他の構成要素(例えば、NANDメモリストリング、局所配線および周辺デバイス)を形成することの詳細は容易に認めることができ、したがって本明細書に記載されないことが理解される。例えば、NANDメモリストリングおよび局所配線の少なくとも一部は、交互積層された導電層および誘電体層堆積の後に、かつ基板の裏側薄化の前に形成されてよい。
【0061】
本開示の1つの態様によれば、3Dメモリデバイスを形成するための方法が開示される。基板の少なくとも1つの端にノッチが形成される。基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。半導体層の表側および少なくとも1つの端に沿ってならびにノッチの上面、側面および下面に沿って複数の交互積層された導電層および誘電体層が形成される。基板の一部分が除去されて、半導体層より下で交互積層された導電層および誘電体層を露出させる。
【0062】
一部の実施形態において、ノッチを形成するために、基板の両端にそれぞれ2つのノッチが形成される。
【0063】
一部の実施形態において、ノッチの深さは、導電層および誘電体層の合成厚の2倍より大きい。
【0064】
一部の実施形態において、半導体層を形成するために、ノッチがノッチ犠牲層で充填され、基板およびノッチ犠牲層より上に半導体層が堆積され、ノッチにおけるノッチ犠牲層が除去される。
【0065】
一部の実施形態において、半導体層の厚さは1μm以下である。一部の実施形態において、半導体層はポリシリコンを含む。
【0066】
一部の実施形態において、複数の交互積層された導電層および誘電体層を形成するために、複数の導電層および誘電体層は、ALDを使用して交互に堆積される。一部の実施形態において、導電層の各々がドープポリシリコンを含み、誘電体層の各々が酸化シリコンを含む。
【0067】
一部の実施形態において、複数の交互積層された導電層および誘電体層を形成するために、複数の犠牲層および誘電体層が、ALDを使用して交互に堆積され、犠牲層が導電層と置き換えられる。一部の実施形態において、犠牲層の各々が窒化シリコンを含み、誘電体層の各々が酸化シリコンを含み、導電層の各々が金属を含む。
【0068】
一部の実施形態において、基板の一部分を除去するために、交互積層された導電層および誘電体層の上方にエッチストップ層が堆積され、エッチストップ層によって停止されるまで基板が薄化される。一部の実施形態において、エッチストップ層はポリシリコンを含む。
【0069】
一部の実施形態において、基板の一部分は、ノッチの下面および側面の一部分が除去されるように除去される。
【0070】
本開示の別の態様によれば、3Dメモリデバイスを形成するための方法が開示される。基板の少なくとも1つの端にノッチが形成される。基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。半導体層の表側および少なくとも1つの端に沿ってならびにノッチの上面、側面および下面に沿って複数の犠牲層および誘電体層が交互に堆積される。基板の一部分が除去されて、半導体層より下で交互積層された犠牲層および誘電体層を露出させる。犠牲層が複数の導電層と置き換えられる。
【0071】
一部の実施形態において、複数の犠牲層および誘電体層は、ALDを使用して交互に堆積される。
【0072】
一部の実施形態において、犠牲層の各々が窒化シリコンを含み、誘電体層の各々が酸化シリコンを含み、導電層の各々が金属を含む。
【0073】
一部の実施形態において、半導体層を形成するために、ノッチがノッチ犠牲層で充填され、基板およびノッチ犠牲層より上に半導体層が堆積され、ノッチにおけるノッチ犠牲層が除去される。
【0074】
一部の実施形態において、基板の一部分を除去するために、交互積層された犠牲層および誘電体層の上方にエッチストップ層が堆積され、エッチストップ層によって停止されるまで基板が薄化される。
【0075】
本開示の更に別の態様によれば、3Dメモリデバイスを形成するための方法が開示される。基板の少なくとも1つの端にノッチが形成される。基板より上にあり、かつ基板の少なくとも1つの端を越えて側方に延びる半導体層が形成されてノッチを覆う。半導体層の表側および少なくとも1つの端に沿ってならびにノッチの上面、側面および下面に沿って複数の導電層および誘電体層が交互に堆積される。基板の一部分が除去されて、半導体層より下で交互積層された導電層および誘電体層を露出させる。
【0076】
一部の実施形態において、複数の導電層および誘電体層は、ALDを使用して交互に堆積される。
【0077】
一部の実施形態において、導電層の各々がドープポリシリコンを含み、誘電体層の各々が酸化シリコンを含む。
【0078】
一部の実施形態において、半導体層を形成するために、ノッチがノッチ犠牲層で充填され、基板およびノッチ犠牲層より上に半導体層が堆積され、ノッチにおけるノッチ犠牲層が除去される。
【0079】
一部の実施形態において、基板の一部分を除去するために、交互積層された導電層および誘電体層の上方にエッチストップ層が堆積され、エッチストップ層によって停止されるまで基板が薄化される。
【0080】
具体的な実施形態の上記の説明は、本開示の一般的性質を非常に明らかにするため、他者が、当業者の知識を適用することによって、本開示の一般概念から逸脱することなく、過度な実験なしで、そのような具体的な実施形態を様々な応用のために直ちに修正および/または適合できる。それ故、そのような適合および修正は、本明細書に提示される教示および指針に基づいて、開示される実施形態の均等物の意味および範囲内であると意図される。本明細書における語法または術語が説明の目的であり限定の目的でないことが理解されるはずであるため、本明細書の術語または語法は、教示および指針を考慮して当業者によって解釈されるはずである。
【0081】
以上、本開示の実施形態が、特定の機能の実装およびその関係を例示する機能ビルディングブロックを用いて記載された。これらの機能ビルディングブロックの境界は、説明の便宜上、本明細書において任意に定められた。特定の機能およびその関係が適切に行われる限り代替の境界を定めることができる。
【0082】
「発明の概要」および「要約」部分は、発明者らによって企図される本開示の全ての例証的な実施形態でなく1つまたは複数を記載することになり得、したがって、いかなる形であれ本開示および添付の特許請求の範囲を限定するとは意図されない。
【0083】
本開示の広さおよび範囲は、上記の例証的な実施形態のいずれによっても限定されるべきでなく、以下の特許請求の範囲およびそれらの均等物に従ってのみ定められるべきである。
【符号の説明】
【0084】
100 3Dメモリデバイス
101 3Dメモリデバイス
102 基板
103 基板
104 半導体層
106 パッド層
108 メモリスタック
110 導電層
112 誘電体層
114 端
116 端
118 端
120 端
122 第1の側方部分
124 第2の側方部分
126 垂直部分
128 ワード線コンタクト
130 NANDメモリストリング
132 半導体チャネル
134 メモリ膜
136 半導体プラグ
138 チャネルプラグ
140 NANDメモリストリング
142 半導体チャネル
144 メモリ膜
146 半導体プラグ
148 チャネルプラグ
202 基板
204 パッド層
206 ノッチ
208 ノッチ
210 ノッチ犠牲層
214 半導体層
218 導電層/犠牲層
220 誘電体層
222 凹部
224 凹部
226 エッチストップ層
228 ワード線コンタクト
230 スリット開口
232 導電層
236 ワード線コンタクト
図1A
図1B
図2A
図2B
図2C
図2D
図2E
図2F
図2G
図3