(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-24
(45)【発行日】2023-04-03
(54)【発明の名称】低K及びその他の誘電体膜をエッチングするための処理チャンバ
(51)【国際特許分類】
H01L 21/3065 20060101AFI20230327BHJP
H05H 1/46 20060101ALN20230327BHJP
【FI】
H01L21/302 105A
H01L21/302 101B
H05H1/46 M
(21)【出願番号】P 2021121123
(22)【出願日】2021-07-23
(62)【分割の表示】P 2020009882の分割
【原出願日】2012-10-17
【審査請求日】2021-07-23
(32)【優先日】2011-10-27
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2012-10-12
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】100101502
【氏名又は名称】安齋 嘉章
(72)【発明者】
【氏名】ルボミルスキー ディミトリー
(72)【発明者】
【氏名】ネマニ スリニバス
(72)【発明者】
【氏名】イエー エリ-
(72)【発明者】
【氏名】ベロストットスキー セルゲイ ジー
【審査官】加藤 芳健
(56)【参考文献】
【文献】特表2010-512031(JP,A)
【文献】特表2011-525299(JP,A)
【文献】特開2009-076870(JP,A)
【文献】特開平10-330970(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H05H 1/46
C23F 1/00
(57)【特許請求の範囲】
【請求項1】
エッチング処理中にワークピースを支持するチャックであって、第1RF源に結合されたチャックと、
チャックの上方に配置され、第1供給ガスを第1チャンバ領域に分配するシャワーヘッドであって、
シャワーヘッドは第2RF源に結合されるように動作可能であり、
チャック及びシャワーヘッドは、シャワーヘッドとチャックとの間の第1チャンバ領域内で第1供給ガスの第1プラズマを容量的に励起させて
おり、チャックはシャワーヘッドに垂直な方向に移動可能である、又はチャックは、チャックからワークピースを持ち上げるリフターを備えて、エッチング処理中にシャワーヘッドによるワークピースの加熱を制御しているシャワーヘッドと、
チャックに対向するシャワーヘッドの上方に配置され、シャワーヘッドから電気的に分離された二次電極であって、
二次電極及びシャワーヘッドは、シャワーヘッドと二次電極との間の第2チャンバ領域内で第2供給ガスの第2プラズマを容量的に放電させ、
二次電極はチャックから独立して動作可能である、二次電極とを備えるプラズマエッチングチャンバ。
【請求項2】
二次電極は、第1及び第2供給ガスを第2チャンバ領域に分配するための第2シャワーヘッドであり、
シャワーヘッドはさらに、第1供給ガス又は反応種を第2プラズマから第1チャンバ領域に導いている、請求項1に記載のプラズマエッチングチャンバ。
【請求項3】
チャック及び二次電極は両方とも、リレーを介して第1RF源に結合されている、請求項1に記載のプラズマエッチングチャンバ。
【請求項4】
シャワーヘッドを二次電極から電気的に絶縁する第1誘電体リングと、
チャックを囲む接地チャンバ壁からシャワーヘッドを電気的に絶縁する第2誘電体リングとをさらに備える、請求項1に記載のプラズマエッチングチャンバ。
【請求項5】
シャワーヘッドはデュアルゾーンシャワーヘッドであり、デュアルゾーンシャワーヘッドは、
第1及び第2チャンバ領域を流体的に結合する第1複数の開口部と、
第1チャンバ領域を、第2チャンバ領域から分離された流体源に流体的に結合する第2複数の開口部とを有している、請求項1に記載のプラズマエッチングチャンバ。
【請求項6】
第1チャンバ領域に結合され、シャワーヘッドに対向するチャックの下に配置された少なくとも1つのターボ分子ポンプをさらに備える、請求項1に記載のプラズマエッチングチャンバ。
【請求項7】
エッチング処理中にワークピースを支持するチャックであって、第1RF源に結合されたチャックと、
チャックの上方に配置され、第1供給ガスを第1チャンバ領域に分配するシャワーヘッドであって、
シャワーヘッドは第2RF源に結合されるように動作可能であり、
チャック及びシャワーヘッドは、シャワーヘッドとチャックとの間の第1チャンバ領域内で第1供給ガスの第1プラズマを容量的に励起させて、チャックにRFバイアス電位を供給して
おり、チャックはシャワーヘッドに垂直な方向に移動可能である、又はチャックは、チャックからワークピースを持ち上げるリフターを備えて、エッチング処理中にシャワーヘッドによるワークピースの加熱を制御している、シャワーヘッドと、
チャックに対向するシャワーヘッドの上方に配置され、シャワーヘッドから電気的に分離されたリモートRFプラズマ源であって、
リモートRFプラズマ源は、チャックにRFバイアス電位を供給することなく、リモートプラズマ源内で第2供給ガスの第2プラズマを放電させており、
リモートRFプラズマ源はチャックから独立して動作可能である、リモートRFプラズマ源とを備えるプラズマエッチングチャンバ。
【請求項8】
シャワーヘッド及びリモートRFプラズマ源の両方は、リレーを介して第2RF源に結合されている、請求項7に記載のプラズマエッチングチャンバ。
【請求項9】
リモートRFプラズマ源とシャワーヘッドとの間に配置された第2シャワーヘッドであって、リモートRFプラズマ源によって生成されたエッチング種を分配する第2シャワーヘッドをさらに備える、請求項7に記載のプラズマエッチングチャンバ。
【請求項10】
シャワーヘッドはデュアルゾーンシャワーヘッドであり、デュアルゾーンシャワーヘッドは、
第1チャンバ領域とリモートプラズマ源とを流体的に結合する第1複数の開口部と、
第1チャンバ領域を、リモートプラズマ源から分離された流体源に流体的に結合する第2複数の開口部とを有している、請求項7に記載のプラズマエッチングチャンバ。
【請求項11】
第1チャンバ領域に結合され、シャワーヘッドに対向するチャックの下に配置された少なくとも1つのターボ分子ポンプをさらに備える、請求項7に記載のプラズマエッチングチャンバ。
【請求項12】
チャックは、チャックの中心と整列された中心を有する単一のターボ分子ポンプでチャンバ壁から片持ち支持されている、請求項7に記載のプラズマエッチングチャンバ。
【請求項13】
エッチング処理中にワークピースを支持するチャックであって、第1RF源に結合されたチャックと、
チャックの上方に配置され、第1供給ガスを第1チャンバ領域に分配するシャワーヘッドであって、
シャワーヘッドは第2RF源に結合されるように動作可能であり、
チャック及びシャワーヘッドは、シャワーヘッドとチャックとの間の第1チャンバ領域内で第1供給ガスの第1プラズマを容量的に励起させて、チャックにRFバイアス電位を供給している、シャワーヘッドと、
シャワーヘッドの上方に配置され、垂直に積み重ねられた一対の電極に結合されて、第1チャンバ領域の上方にDCプラズマ放電を生成する単一の高電圧DC電源であって、
一対の電極は誘電体スペーサによってシャワーヘッドから電気的に絶縁され、
シャワーヘッドは、DC電源結合電極の陰極に対して陽極電位に負にバイアスされている、高電圧DC電源とを備えるプラズマエッチングチャンバ。
【請求項14】
DC電源結合電極の陽極は、DCプラズマ放電からの電子を通すための開口部を有する第2シャワーヘッドであり、
シャワーヘッドはさらに、第1チャンバ領域へ第1供給ガスを導くか、又は電子を通過させている、請求項13に記載のプラズマエッチングチャンバ。
【請求項15】
シャワーヘッドはデュアルゾーンシャワーヘッドであり、デュアルゾーンシャワーヘッドは、
DCプラズマ放電からの電子を通過させている第1複数の開口部と、
第1チャンバ領域を、DCプラズマ放電から分離された流体源に流体的に結合する第2複数の開口部とを有している、請求項13に記載のプラズマエッチングチャンバ。
【請求項16】
チャックはシャワーヘッドに垂直な方向に移動可能になっていて、エッチング処理中にシャワーヘッドによるワークピースの加熱を制御している、請求項13に記載のプラズマエッチングチャンバ。
【請求項17】
エッチング処理中にワークピースを支持するチャックであって、第1RF源に結合されたチャックと、
チャックの上方に配置され、第1供給ガスを第1チャンバ領域に分配するシャワーヘッドであって、
シャワーヘッドは第2RF源に結合されるように動作可能であり、
チャック及びシャワーヘッドは、シャワーヘッドとチャックとの間の第1チャンバ領域内で第1供給ガスの第1プラズマを容量的に励起させて、チャックにRFバイアス電位を供給して
おり、チャックはシャワーヘッドに垂直な方向に移動可能になっていて、エッチング処理中にシャワーヘッドによるワークピースの加熱を制御しているシャワーヘッドと、
エッチングチャンバの誘電チャンバ蓋の上方に配置された導電コイルであって、誘電チャンバ蓋とシャワーヘッドとの間に配置された第2チャンバ領域に誘導結合プラズマ放電を生成する導電コイルとを備えるプラズマエッチングチャンバ。
【請求項18】
シャワーヘッドはデュアルゾーンシャワーヘッドであり、デュアルゾーンシャワーヘッドは、
反応種を第2チャンバ領域から第1チャンバ領域に通過させている第1複数の開口部と、
第1チャンバ領域を、第2チャンバ領域から分離された流体源に流体的に結合する第2複数の開口部とを有している、請求項17に記載のプラズマエッチングチャンバ。
【発明の詳細な説明】
【関連出願の相互参照】
【0001】
本出願は、「低K及びその他の誘電体膜をエッチングするための処理チャンバ」と題さ
れ、2011年10月27日に出願された米国仮出願第61/552,183号の利益を
主張し、その内容のすべてをすべての目的のために参照によりここに援用する。
【技術分野】
【0002】
本発明の実施形態は、マイクロ電子デバイス処理の分野に関し、特に低k誘電体膜のプ
ラズマエッチングに関する。
【従来の技術の説明】
【0003】
半導体製造においては、低k誘電体は二酸化ケイ素に対して小さな誘電率を有する材料
である。低k誘電体材料の実装は、マイクロ電子デバイスの継続的なスケーリングを可能
にするために使用されるいくつかの戦略のうちの一つである。デジタル回路では、絶縁誘
電体は、導電性部品(例えば、ワイヤ相互接続及びトランジスタ)を互いから絶縁する。
構成要素がスケーリングされ、トランジスタが互いにより近くに移動するにつれて、絶縁
性誘電体は、電荷の蓄積及びクロストークがデバイスの性能に悪影響を与える点まで薄く
なってきている。二酸化ケイ素を同じ厚さの低k誘電体と交換することによって寄生容量
が低減し、より速いスイッチング速度とより低い熱放散を可能にする。
【0004】
しかしながら、このような膜の処理、特にこのような膜のエッチングは、材料に損傷を
与える及び/又は材料を不安定にする又はそうでなくともデバイス製造のために不適当に
することが見出されているので、低k誘電体処理技術の発展には大幅な改善が必要とされ
る。
【図面の簡単な説明】
【0005】
本発明の実施形態は、添付図面の図において、限定ではなく例として示される。
【
図1】本発明の一実施形態に係る、単一のプラズマエッチングチャンバで低k誘電体膜をエッチングするためのマルチ動作モードエッチング処理を示すフロー図である。
【
図2】本発明の一実施形態に係る、エッチングチャンバが、
図1に示されるエッチング処理によって利用される複数のモードで動作することができる方法を更に示すフロー図である。
【
図3F】本発明の一実施形態に係る、処理に曝される典型的なワークピースへのマルチ動作モードエッチング処理100の方法の作用を表す断面図を示す。
【
図4】一実施形態に係る、
図1に示されるマルチ動作モードエッチング処理を実行する1以上のエッチングチャンバを含むように構成することができるマルチチャンバ処理プラットホームの平面図である。
【
図5A】一実施形態に係る、
図1に示されたマルチ動作モードエッチング処理を実行するために、エッチングチャンバ内で利用することができるデュアルゾーンシャワーヘッドの切り欠き斜視図を示す。
【
図5B】本発明の実施形態に係る、
図5Aの切り欠き斜視図の拡大された部分を示す。
【
図6A】一実施形態に係る、
図1に示されたエッチング処理の改質操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図6B】一実施形態に係る、
図1に示されたエッチング処理のエッチング操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図6C】一実施形態に係る、
図1に示されたエッチング処理の堆積操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図7】一実施形態に係る、
図1に示されたエッチング処理の改質操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図8A】一実施形態に係る、
図1に示されたエッチング処理の改質操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図8B】一実施形態に係る、
図1に示されたエッチング処理のエッチング操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図8C】一実施形態に係る、
図1に示されたエッチング処理の堆積操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図9A】一実施形態に係る、
図1に示されたエッチング処理の改質操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図9B】一実施形態に係る、
図1に示されたエッチング処理のエッチング操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図9C】一実施形態に係る、
図1に示されたエッチング処理の堆積操作を実行するように構成されたエッチングチャンバの断面図を示す。
【
図10】一実施形態に係る、
図1に示された様々な操作を実行するように構成されたエッチングチャンバの断面図を示す。
【詳細な説明】
【0006】
概して、本明細書内に記載されるプラズマエッチング方法の実施形態は、低k(及び他
の誘電体)材料をエッチングし、エッチングされた膜の残りの部分を良好な状態で残すた
めに損傷機構を利用する。本明細書内に記載されるプラズマエッチング方法の実施形態は
、周期的に少なくとも2つの別個のプラズマベースの操作を真空中で(すなわち、真空を
破ることなく)行い、好ましくは、最大スループットの利点のために同じチャンバ内で行
う。これらの操作のうちの1つの間に、異方性(指向性)プラズマは、エッチングされる
誘電体膜の一部のバルク構造及び/又は組成を改質し、これによって二酸化ケイ素(Si
O2)又はシリコン亜酸化物(SiOx)のようにする。この膜改質操作は、第1プラズ
マ条件で誘電体膜の一部に制御可能にかつ選択的に損傷を与えるものとして概念化するこ
とができる。これらの操作のうちの第2の操作の間に、等方性(無指向性)条件は、バル
ク特性を有する下地絶縁膜上に選択的に(改質された構造又は組成を有する)改質膜部分
を除去する。これらの操作は、順次繰り返し実行し、これによって任意の所望の膜除去累
積量を達成する(すなわち、所望のエッチング深さを達成する)ことができる。バルク膜
のエッチングを2つの別個の操作又は動作モードに分離しているが、プラズマ条件の設計
、並びにこれらの条件を提供するためのエッチングチャンバの設計は、大幅により大きな
自由度及び/又はより大きなプロセスウィンドウを有する。
【0007】
誘電体膜のエッチング処理の少なくともこれらの2つの別々の動作モードへの分離はま
た、有利なことにエッチングされた構造に隣接する領域内の誘電体膜の組成をほとんど変
えることなく(例えば、側壁はプラズマエッチングへの曝露を通して悪影響を受けない)
、低k又は他の誘電体膜内への異方性プロファイルのエッチングを可能にするエッチング
パラメータの制御のレベルを提供する。この正確な制御の重要な源は、本質的に高度に化
学的である等方性エッチング条件から生じ、こうして、(例えば、ある程度の炭素を組み
込んだ)SiO2の特性から逸脱したバルク特性を有する下地の誘電体の間に非常に高い
選択性を提供する。2つの材料組成間の高い選択性は、第1材料層が消費された後、しば
しば、エッチングを停止するために(例えば、エッチング可能でない組成を有する下地の
エッチング停止層によって、エッチング可能な組成を有する層のエッチングを終了させる
手段として多重材料堆積膜スタック内で)利用されているが、本明細書内の技術は、バル
ク膜自体への高い選択性のエッチング処理によって、バルク膜を介して徐々にエッチング
する。
【0008】
実施形態では、マルチ動作モードエッチング処理は、完全にフッ素を含まない。従来の
誘電体のエッチングは、異方性を達成するために、エッチングされた誘電体層の側壁上に
堆積されたCFポリマーに依存してエッチングしていたが、本明細書内の方法は、膜エッ
チング処理(モード)の高い選択性と組み合わせた膜改質処理(モード)の異方性によっ
て、エッチングの異方性を達成している。典型的なフルオロカーボン系(CxFyベース
)のエッチング及び付随するCFポリマーの回避は、任意のパッシベーションポリマーの
エッチングされた誘電体表面を比較的きれいにする。このように、(例えば、膜中の炭素
種の酸化によって)誘電体を損傷する可能性のあるプラズマ又は他の手段によるエッチン
グ後処理(PET)を回避することができる。
【0009】
エッチング方法のより詳細な説明、このような方法がどのようにして単一チャンバ内で
実行可能であるのか、このようなエッチング方法の実施形態を実行するために使用される
チャンバハードウェアが、ここで提供される。
図1は、本発明の一実施形態に係る、単一
のプラズマエッチングチャンバによって低k誘電体膜をエッチングするためのマルチ動作
モードエッチング処理100を示すフロー図である。
図3A~
図3Fは、本発明の一実施
形態に係る、マルチ動作モードエッチング処理100の方法の、処理に曝される例示的な
ワークピースへの効果を表す断面図を示す。
【0010】
操作105で開始し、ワークピースは、プラズマ処理チャンバ内にロードされる。ワー
クピースは、一般に、任意の形態をとることができるが、
図2Aに図示される例示的な実
施形態では、ワークピースは、エッチングされる誘電体が上部に配置される基板302を
含む。基板302は、製造工程に耐える好適な任意の材料であることができ、マイクロ電
子デバイス層(例えば、ICデバイス、光学デバイス、MEMSデバイス、又は同様のマ
イクロ/ナノ製造デバイス用のもの)を配置し、及び/又は、形成することができるため
の土台として役立つ。本発明の一実施形態によれば、基板302は、例えば、結晶シリコ
ン、ゲルマニウム又はシリコン/ゲルマニウムが挙げられるが、これらに限定されないI
V族系材料で構成される。具体的な一実施形態では、基板302は単結晶シリコン基板で
ある。別の一実施形態では、基板302はIII-V族材料から構成される。別の一実施
形態では、複数の能動素子が、基板302として画定された領域内に配置される。
【0011】
ワークピースは、エッチングされる露出した誘電体を更に含む。
図1及び
図3A~3F
に図示された例示的な実施形態では、露出した誘電体は、低k材料であるが、より一般的
には、二酸化ケイ素ではなく、本明細書内に記載される機構によって酸化ケイ素(SiO
x)のような材料に改質可能である任意の材料であることができる。
図3Aに図示される
例示的な実施形態では、低k誘電体層304は、二酸化ケイ素の誘電率よりも小さい誘電
率を有する(例えば、約3.9未満)。更なる一実施形態では、低k誘電体層304は、
例えば、フッ素ドープ二酸化ケイ素、炭素ドープ二酸化ケイ素、多孔質二酸化ケイ素、多
孔質炭素ドープ二酸化ケイ素、スピンオンシリコーンベースポリマー誘電体、又はスピン
オン有機ポリマー誘電体が挙げられるが、これらに限定されない材料である。例示的な一
実施形態によれば、低k誘電体層304は、2.7未満のバルク誘電定数を有する多孔質
SiCOH層である。
【0012】
マルチ動作モードエッチング処理100は、例えば、下地のトポグラフィが低k誘電体
層(例えば、低kスペーサエッチング)内で構造を形成するために利用されるエッチング
において、非マスクのエッチングにも適用可能であるが、例示の実施形態では、低k誘電
体層304は、(例えば、ビア又はトレンチのエッチングのために)マスクされる。
図3
Aに図示されるように、マスク層306は、低k誘電体層304の一部の上に配置された
フォトレジスト層又はハードマスク層である。フォトレジストは、当該技術分野で公知の
いずれであってもよい(例えば、193、EUVなど)。同様に、マスク層306がハー
ドマスクである場合、SiO
xエッチング処理に対して所望の選択性を提供することがで
きる当該技術分野で公知の任意の材料を利用することができる。代表的な材料としては、
アモルファスカーボン(例えば、APF(商標名))、シリコン又は金属(例えば、チタ
ン、タンタル)の窒化物、シリコン又は金属の炭化物などが挙げられる。
【0013】
図1に戻ると、操作110では、ワークピースの露出した部分が、イオン束に衝突され
、これによって露出した材料層の特性を改質し、より具体的には、低k膜の上部厚さ内の
炭素含有量を減少させる。イオン束は、マスクの下にある領域が束に曝露されないように
異方性であるのが好ましい。イオン束は、低イオンエネルギーを有する原子又は分子種の
1以上の種類のものであることができる。このように、有利な一実施形態では、種は、低
k材料内の成分を機械的にミーリング除去(例えば、メチル基をノックオフ)することが
でき、それらと化学的に反応するのではない。したがって、イオン束は、ターゲット成分
との化学的反応性が比較的低い原料ガスを起源とすることができる。典型的なイオン種は
、ヘリウムイオン、ネオンイオン、キセノンイオン、窒素イオン、又はアルゴンイオンで
あり、イオン束のエネルギーレベルを下げるような非常に低いプラズマDCバイアスを供
給できるように、低いイオン化電位(例えば、2-4eV)を有するので、Ar
+は好ま
れる。更にイオン束エネルギーを調整するために、ネオン及びヘリウムのような電気陽性
な希釈剤をアルゴン環境に添加することもできる。処理圧力は、有利には10ミリトール
未満であり、より高い方向性とより有利なことには5ミリトール未満である。50W~1
00W程度の低RF電力は、供給ガスのイオン化電位に応じて、二酸化ケイ素マトリック
スから炭素種をたたき出すことによって、低k誘電体膜を改質するためには有利であるこ
とが見出されている。
【0014】
図3Bは、ワークピースへの操作110の効果を示す。図示されるように、イオン束3
07は、低k誘電体層304の改質部分308を形成する。一実施形態では、改質部分3
08は、炭素が枯渇しており、したがって、低k誘電体層304のバルクの未改質部分3
08に対してSiO
xが豊富にある。改質部分308の膜密度及び形態もまた、低k誘電
体層304に関連して変えることができる。例えば、改質部分308は、操作110の間
、イオン衝撃によって緻密化又はそうでなければ機械的に損傷を受ける(例えば、粗くさ
れる)場合がある。イオン束に応じて、改質部分308の深さは、50Å以下に達する場
合がある。
【0015】
図1に戻って、操作120では、下地のバルク(又は
図3C内の低k誘電体層304の
未改質部分304B)の上で低k誘電体層のSiO
xの豊富な改質部分を選択的に除去す
るために、ドライエッチング処理が利用される。除去される改質部分が低k誘電体膜中の
分子成分の寸法程度であるので、エッチング操作120は、原子層エッチング又は分子レ
ベルエッチング(MLE)であると考えることができる。一実施形態では、操作120は
、少なくとも三フッ化窒素(NF
3)と水素源(例えば、アンモニア(NH
3)又は水蒸
気(H
2O))から生成されたプラズマを伴い、これによって反応性エッチング種NH
4
F及び/又はNH
4F・HFを生成する。更なる一実施形態では、水蒸気(H
2O)がN
F
3及びNH
3と共に供給され、これによって操作120でのSiO
xのエッチング速度
を更に高める。非反応性ガス(例えば、He)もまた、操作120の間に使用してもよい
。
【0016】
別の一実施形態では、エッチング処理100は、siconi型のエッチング技術を採
用し、これは譲受人に譲渡された米国特許出願第12/620,806号に更により詳細
に記載されており、操作120の間に実行することができる二段階機構を伴う。本実施形
態では、水蒸気(H2O)と薄い固体ケイ酸塩エッチング副生成物(例えば、(NH4)
2SiF6)が低い第1ワークピース温度(例えば、30℃)で形成され、その後より高
い第2ワークピース温度(例えば、100℃)でケイ酸塩がワークピースから昇華する。
しかしながら、特定の実施形態では、例えば、より高いエッチング速度が望まれる場合は
、siconiエッチングが、一定の高いワークピース温度で実行される。基板温度を循
環させるオーバーヘッドなしに、エッチング処理100は、より高いエッチング速度のた
めに、より迅速に循環させることができる。好ましくは、操作120での一定のワークピ
ース温度は、約80℃~100℃の間である。ハードマスク及び方法100のマスクされ
ない実施形態に対してより高い温度が可能であるが、フォトレジストを使用する実施形態
に対して操作120での最大一定ワークピース温度は、網状化を回避するように約120
℃未満である。特定の実施形態では、操作110及び120の両方が、一定の高い温度で
実行され、これによってワークピース温度のサイクルに関連するオーバーヘッドを回避す
る。
【0017】
図1に戻ると、エッチング処理コントローラは、エッチング処理終了基準が、操作12
0の完了後に満たされるかどうかを判断する。エッチング処理終了基準は、処理時間、終
点信号(光学的又はその他)等に基づくことができる、エッチング処理終了基準が満たさ
れた場合、処理100は完了し、ワークピースはチャンバ150からアンロードされる。
エッチング処理終了基準がまだ満たされていない場合、操作110に戻ることによって後
続の反復が開始される。
【0018】
更なる一実施形態では、低温コンフォーマルシリコンベースの誘電体層が、操作130
でワークピースの上に堆積される。堆積操作130は、エッチング処理100の間に周期
的に実行することができ、これによって例えば、理想的に衝突の無い輸送モードではない
イオン束の関数として完全には異方性ではない改質操作から生じるプロファイルのアンダ
ーカット又は曲りに対抗する。
図1に図示されるように、堆積操作130は、エッチング
サイクルカウント閾値が満たされた条件でのみ実行され、ここで各エッチングサイクルは
、操作110及び120の両方の単一の性能を伴う。このように、所定の割合又はデュー
ティサイクルでエッチング及び堆積操作を共に交互に配置する「マルチX」周期的処理の
ために、堆積操作130は、エッチングサイクル毎に(エッチングサイクルカウント閾値
は1)、又はいくらか少ない割合で(エッチングサイクルカウント閾値は1より大きい)
実行してもよい。
【0019】
図3Dに更に図示されるように、堆積操作130は、少なくともエッチング操作120
によって露出されたバルク低k誘電体304Bの側壁上に形成されている保護層312を
形成する。保護層312の厚さは、操作130がエッチング操作120に対して実行され
る頻度に依存して幅広く変化させることができる。一般に、堆積操作130は、側壁の被
覆を確実にするためにコンフォーマル堆積処理を伴う。実施形態において、コンフォーマ
ル堆積処理は、上層のマスク材料(例えば、フォトレジスト)を保存するように低い温度
(例えば、130℃未満)である。一実施形態では、保護層312は、二酸化ケイ素であ
る。しかしながら、有利な一実施形態では、保護層312は、炭素ドープ酸化ケイ素であ
る。炭素ドープ層の堆積は、エッチング操作120に対して保護層130の抵抗を有利に
も増加させることができ、これによってエッチング操作120を介した後続の反復は、完
全には保護層130を除去せず、特にトレンチ310の側壁からは完全には除去しない。
更に別の一実施形態では、保護層312は窒化ケイ素である。保護層130がエッチング
操作120に選択性を提供する炭素ドープ及び窒化の実施形態では、エッチングサイクル
カウント閾値は、エッチングに費やされる処理100の大部分で高くすることができ、全
体的な低k誘電体のエッチング速度は増加する。
【0020】
実施形態に応じて、任意の一般的に知られているシリコン前駆体は、操作130で使用
することができ、例えば、四フッ化ケイ素(SiF4)、四塩化ケイ素(SiCl4)、
シラン(SiH4)、又は任意の一般的に知られるケイ素含有炭化前駆体(例えば、オク
タメチルシクロテトラシロキサン(OMCTS)、テトラメチルジシロキサン(TMDS
O)、テトラメチルシクロテトラシロキサン(TMCTS)、テトラメチル-ジエトキシ
-ジシロキサン(TMDDSO)、ジメチル-ジメトキシル-シラン(DMDMS)が挙
げられるが、これらに限定されない)が挙げられるが、これらに限定されない。保護層が
窒化物であることができる更なる実施形態では、前駆体(例えば、トリシリルアミン(T
SA)及びジシリルアミン(DSA)が挙げられるが、これらに限定されない)を使用す
ることができる。これらの原料のいずれも、PECVD処理において、酸素ラジカル源(
例えば、酸素(O2)、オゾン(O3)、二酸化炭素(CO2)又は水(H2O)が挙げ
られるが、これらに限定されない)と反応することができる。
【0021】
操作130に続いて、操作110に戻ることによって後続の反復が実行される。このよ
うに、
図3E及び3Fに更に示されるように、エッチングの前面がターゲット膜を通して
徐々に進められ、これによって漸進的により深いトレンチ210Bを形成する。
【0022】
図2は、エッチングチャンバが、エッチング処理100の複数のモードで動作すること
ができる方法を更に示すフロー図である。方法200は、操作205でチャンバ内にワー
クピースを受け取ることから始まる。イオンミーリングプラズマは、ワークピースに最も
近いシャワーヘッドの下に配置されたチャンバの第1領域内で励起される。RF源は、ワ
ークピース上にDCバイアス電位を提供し、これによって改質操作110のために本明細
書内の他の箇所に記載のイオン束を生成する。実施形態では、RF源は、ワークピースが
上で支持される台座又はチャックを介して容量結合され、これによってワークピースのす
ぐ上の第1チャンバ領域内でプラズマを生成する。このような一実施形態では、容量結合
プラズマ(CCP)はチャックから始まり(すなわち、チャックはRF駆動され)、ワー
クピースに最も近いシャワーヘッドは、RFリターンパスを(すなわち、陽極として)提
供する。
【0023】
操作320の間、SiOエッチングプラズマは、チャンバの第2領域内で励起され、こ
れによってイオン束をワークピースへ誘導する方法でワークピースにバイアスを掛けるの
を最小化又は回避する。一実施形態では、エッチング操作320を本質的に高度に化学的
にするために、第2チャンバ領域は、ワークピースに最も近いシャワーヘッドの上方に配
置され、したがって操作310の間に生成されるイオンミーリングプラズマよりもワーク
ピースから相対的により遠くに配置される。一実施形態では、台座又はチャックは、操作
320の間、RF給電されず、これによってワークピースバイアス電位を最小化する。リ
モート及び/又はソフトイオン化技術が操作320で使用され、これによってワークピー
ス上に大きなバイアス電位を形成することなく、本明細書内の他の箇所に記載されるエッ
チング操作120のための反応種を形成する。このような一実施形態では、ワークピース
に最も近いシャワーヘッドまで又はシャワーヘッドから、ウェハからシャワーヘッドの反
対側に配置された電極から又は電極まで(例えば、ワークピースに最も近いシャワーヘッ
ドの上方の電極から又は電極まで)、第2CCPが始まる。別の一実施形態では、DC放
電は、エッチング操作120中のソフトイオン化のための電子源として用いられる。一代
替実施形態では、リモートプラズマ源(RPS)が、チャンバの第2領域内にプラズマを
形成するために使用される。更に別の一実施形態では、誘導結合プラズマ(ICP)が、
チャンバの第2領域内にプラズマを形成するために使用される。これらの実施形態の各々
のためのエッチングチャンバハードウェア構成は、本明細書内の他の箇所に更に記載され
ている。
【0024】
保護層を堆積する(例えば、
図1の操作130)実施形態では、酸化プラズマがチャン
バのリモート第2領域内で生成され、ケイ素(及び炭素)含有前駆体がチャンバ内に(例
えば、第1チャンバ領域内に)導入され、これによってワークピースへと運ばれた酸化種
と反応する。このように、プラズマエッチングチャンバの第1領域及び第1動作モードは
、低k誘電体膜の部分的な厚さを改質するために利用することができ、プラズマエッチン
グチャンバの第2領域及び第2動作モードは、低k誘電体膜の改質された厚さをエッチン
グするために利用することができる。第2領域は更に、保護層を堆積する第3動作モード
で操作することができる。
【0025】
siconi型処理を利用する実施形態では、siconi型エッチングの2段階は、
更にエッチングチャンバの異なる領域内で始められ、生成された2つの異なるプラズマを
伴うことができる。例えば、siconi型処理を実行するために、第1及び第2チャン
バ領域の両方を利用してもよく、siconi型処理を実行するために、第2チャンバ領
域及び第3チャンバ領域を使用してもよい。
【0026】
図4に図示されるように、本明細書内の他の箇所に記載されるよう構成された1以上の
低kエッチングチャンバ405が、統合されたプラットホームに結合され、これによって
マルチチャンバ処理システムを形成している。マルチ動作モードエッチング処理100に
対して記載される1以上の実施形態は、
図4に図示されるマルチチャンバシステム内の低
kエッチングチャンバ405の各々によって実行することができる。
図4を参照すると、
マルチチャンバ処理プラットホーム400は、複数の処理モードを同時に適応制御可能な
当該技術分野で公知の任意のプラットホームであることが可能である。典型的な実施形態
は、カリフォルニア州サンタクララにあるアプライドマテリアルズ社(Applied
Materials, Inc.)から市販されているOpus(商標名)Advant
Edge(商標名)システム、Producer(商標名)システム、又はCentur
a(商標名)システムを含む。
【0027】
処理プラットホーム400は、本明細書内に記載されるエッチング処理の任意の適応制
御を可能にする制御信号を提供するための統合計測(IM)チャンバ425を更に含むこ
とができる。IMチャンバ425は、様々な膜特性(例えば、厚さ、粗さ、組成)を測定
するために当該技術分野で公知の任意の計測を含むことができ、更に、例えば、限界寸法
(CD)、側壁角(SWA)、構造高さ(HT)などの格子パラメータを真空化で自動化
された方法で特徴づけることが可能である場合がある。
図4に更に図示されるように、マ
ルチチャンバ処理プラットホーム400は、ロボットハンドラ450を有する搬送チャン
バ401に結合された前面開口統一ポッド(FOUP)435及び445を保持するロー
ドロックチャンバ430を更に含む。
【0028】
低kエッチングチャンバ405内で実行されるエッチング処理は、処理100の各サイ
クルを反復的に推進するので、低kエッチングチャンバ405は、RF源を異なる電極に
結合するリレーを作動させることによって、及び/又は動作モード間で調節するために異
なる電極に分離して結合された異なるRF源を動作させることによって、処理200を介
して自動的に循環することができる。このような低kエッチングチャンバ405の制御は
、1以上のコントローラ470によって提供可能である。コントローラ470は、様々な
サブプロセッサ及びサブコントローラを制御する工業環境で使用可能な汎用データ処理シ
ステムの任意の形態のうちの1つであることができる。一般に、コントローラ470は、
一般的な構成要素の中でもとりわけメモリ473及び入力/出力(I/O)回路474と
通信する中央処理装置(CPU)472を含む。CPU472によって実行されるソフト
ウェア命令は、マルチチャンバ処理プラットホーム400に、例えば、低kエッチングチ
ャンバ405内に基板をロードさせ、マルチ動作モードエッチング処理200を実行させ
、低kエッチングチャンバ405から基板をアンロードさせる。当該技術分野で知られる
ように、ロボットハンドラ450又はロードロックチャンバ430の追加のコントローラ
が、複数の低kエッチングチャンバ405の統合を管理するために提供される。
【0029】
本明細書内の他の箇所に詳細に記載されたエッチング処理チャンバのうちの1以上は、
ワークピースへの流体(反応種、ガスなど)の分配及び輸送のための従来のシャワーヘッ
ド又は「デュアルゾーン」シャワーヘッド(DZSH)のいずれかを使用することができ
る。DZSHの詳細な説明は、譲受人に譲渡された米国特許出願第12/836,726
号に見出すことができるが、
図5A及び
図5Bは、マルチ動作モードプラズマエッチング
チャンバの特定の実施形態で有利に活用することができるDZSH500のいくつかの構
成を示す。
図5Aは、DZSHの切り欠き斜視図であり、
図5Bは、
図5Aの切り欠き斜
視図の拡大部分を示す。図示のように、DZSH500は、複数の第1開口部514を有
する上部マニホルド510と、複数の第2開口部524を有する下部マニホルド530を
含む。第1流体の流れF
3は、DZSH500の下に配置された処理領域に入る前に、開
口部514、マニホルド中心の第2開口部524、及び底部マニホルド530内の第2開
口部534を介してシャワーヘッドを通る。第2流体の流れF
4は、チャネルネットワー
クを介して1以上の第2ガスチャネル538へ、及び開口部542を介して処理領域へ送
出される。第1流体及び第2流体は、処理領域内へそれぞれ送出されるまでDZSH内で
互いに分離されている。このように、第1流体は、励起状態で(例えば、ラジカル又はイ
オン種として)供給することができ、一方第2流体は、未反応及び/又は非励起状態で供
給することができる。
【0030】
一実施形態では、プラズマエッチングチャンバは、DZSHに結合されたプラズマ源を
含む。一実施形態では、「Siconiエッチング」源を、(アプライドマテリアルズ社
から市販されている)Siconiエッチング/プレクリーンチャンバから使用すること
ができ、これによって本明細書内に記載される複数の動作モードチャンバのための少なく
とも1つのプラズマを提供する。例えば、Siconiエッチング源は、イオンミーリン
グ操作(例えば、
図1の110)を実施する第1容量プラズマ源のうちの少なくとも1つ
と、エッチング操作(例えば、
図1の120)及び/又は本明細書内に記載されるオプシ
ョンの堆積操作(例えば、
図1の130)を実施する第2容量結合プラズマ源を提供する
ことができる。
【0031】
図6A、6B及び6Cは、一実施形態に係る、エッチング処理100(
図1)内の各操
作を実行するために、複数の動作モード(状態)に構成されたエッチングチャンバの断面
図を示す。一般に、エッチングチャンバ601は、イオンミーリング操作を実施するため
の第1容量結合プラズマ源と、エッチング操作及びオプションの堆積操作を実施するため
の第2容量結合プラズマ源を含む。
図6Aは、一実施形態に係る、改質操作110(
図1
)を実行するように構成されたエッチングチャンバ601の断面図を示す。エッチングチ
ャンバ601は、チャック650を囲む接地されたチャンバ壁640を有する。実施形態
では、チャック650は、処理中にチャック650の上面にワークピース302をクラン
プする静電チャック(ESC)であるが、当該技術分野で公知の他のクランプ機構もまた
使用可能である。
【0032】
チャック650は、埋設された熱交換器コイル617を含む。例示的な実施形態では、
熱交換器コイル617は、1以上の熱伝導流体チャネルを含み、この熱伝導流体チャネル
を、熱伝導流体(例えば、エチレングリコール/水混合物、ガルデン(商標名)又はフロ
リナート(商標名)等)は通過し、これによってチャック650の温度及び究極的にはワ
ークピース302の温度を制御することができる。
【0033】
チャック650は、高電圧DC電源648に結合されたメッシュ649を含み、これに
よってメッシュ649は、ワークピース302の静電クランプを実施するDCバイアス電
位を運ぶことができる。チャック650は、第1RF電源に結合され、そのような一実施
形態では、メッシュ649は第1RF電源に結合され、これによってDC電圧オフセット
及びRF電圧電位は共に、チャック650の上面上の薄い誘電体層全面に亘って結合され
る。例示的な実施形態では、第1RF電源は、第1及び第2RF発生器652、653を
含む。RF発生器652、653は、当該技術分野で公知の任意の工業的周波数で動作さ
せることができるが、ある典型的な実施形態では、RF発生器652は、有利な指向性を
提供するために、60MHzで動作させる。第2RF発生器653もまた提供される場合
は、典型的な周波数は2MHzである。
【0034】
チャック650がRF給電されることによって、RFリターンパスが第1シャワーヘッ
ド625によって提供される。第1シャワーヘッド625は、チャックの上方に配置され
、これによって第1シャワーヘッド625及びチャンバ壁640によって画定された第1
チャンバ領域684内に第1供給ガスを分配する。このように、チャック650及び第1
シャワーヘッド625は、第1チャンバ領域684内で第1供給ガスの第1プラズマ67
0に容量的に電力供給する第1RF結合電極対を形成する。RF給電されたチャックの容
量結合に起因するDCプラズマバイアス(すなわち、RFバイアス)は、第1プラズマ6
70からワークピース302までイオン束(例えば、第1供給ガスがArの場合は、Ar
イオン)を生成し、これによってイオンミーリングプラズマを提供する(例えば、
図2の
操作220)。第1シャワーヘッド625は、接地されるか、又はチャック650の周波
数(例えば13.56MHz又は60MHz)以外の周波数で動作可能な1以上の発生器
を有するRF源628に交互に結合することができる。図示の実施形態では、第1シャワ
ーヘッド625は、例えば、コントローラ420によって、エッチング処理中に自動的に
制御することができるリレー627を介して接地又はRF供給源628に選択的に結合さ
れる。
【0035】
図6Aに更に図示されるように、エッチングチャンバ601は、低処理圧力で高いスル
ープットが可能なポンプスタックを含む。実施形態では、少なくとも1つのターボ分子ポ
ンプ665、666が、ゲートバルブ660を介して第1チャンバ領域684に結合され
、第1シャワーヘッド625と対向するチャック650の下方に配置される。ターボ分子
ポンプ665、666は、適切なスループットを有する任意の市販のものであることがで
き、特に、第1供給ガスを所望の流量(例えば、Arを50~500sccm)で、10
ミリトール未満、好ましくは、5ミリトール未満に処理圧力を適切に維持するような大き
さのものであることができる。
図6Aに図示される実施形態では、チャック650は、2
つのターボ分子ポンプ665及び666の間でセンタリングされた台座の一部を形成する
が、代替の構成では、チャック650は、チャック650の中心と整列された中心を有す
る単一のターボ分子ポンプによってチャンバ壁640から片持ち支持された台座上にあっ
てもよい。
【0036】
第2シャワーヘッド610は、第1シャワーヘッド625の上方に配置される。一実施
形態では、処理中に、第1供給ガス源(例えば、アルゴンボトル690)は、ガス入口6
76に結合され、第1供給ガスは、第2シャワーヘッド610を貫通して延びる複数の開
口部680を通って第2チャンバ領域681内へ流され、第1シャワーヘッド625を貫
通して延びる複数の開口部682を通って第1チャンバ領域684内へ流される。開口部
678を有する追加の流れ分配器615が、エッチングチャンバ601の直径全域に亘っ
て第1供給ガス流616を更に分配してもよい。一代替実施形態では、第1供給ガスは、
第2チャンバ領域681から分離した開口部683を介して第1チャンバ領域684内に
直接流入する(破線623で示される)。例えば、第1シャワーヘッドがDZSHである
場合、開口部683は、
図5Bの開口部542に対応している。
【0037】
図6Bは、一実施形態に係る、
図1のエッチング操作120を実行するために、
図6A
に示された状態から再構成されたエッチングチャンバ601の断面図を示す。図示される
ように、二次電極605は、第1シャワーヘッド625の上方に配置され、第2チャンバ
領域681をその間に有する。二次電極605は、更に、エッチングチャンバ601の蓋
を形成してもよい。二次電極605及び第1シャワーヘッド625は、誘電体リング62
0によって電気的に分離しており、第2RF結合電極対を形成し、これによって第2チャ
ンバ領域681内で第2供給ガスの第2プラズマ691を容量放電する。有利なことには
、第2プラズマ691は、チャック650上に大きなRFバイアス電位を供給しない。図
6Bに図示されるように、第2RF結合電極対の少なくとも一方の電極が、(
図1のエッ
チング操作120中に)
図2の操作220において、エッチングプラズマを励起するため
のRF源に結合される。二次電極605は、第2シャワーヘッド610に電気的に結合さ
れる。好ましい一実施形態では、第1シャワーヘッド625は接地面に結合されるか、又
は浮いており、動作のイオンミーリングモードの間にRF電源628によって第1シャワ
ーヘッド625を給電可能にもするリレー627を介して接地に結合することができる。
第1シャワーヘッド625が接地される場合、例えば、13.56MHz又は60MHz
で動作する1以上のRF発生器を有するRF電源608は、他の動作モードの間(例えば
、イオンミーリング操作110の間)、第1シャワーヘッド625が給電されるならば二
次電極605を浮いたままにしておくこともできるのだが、二次電極605を接地可能に
もするリレー607を介して二次電極605に結合される。
【0038】
第2供給ガス源(例えば、NF3ボトル691)及び水素源(例えば、NH3ボトル6
92)は、ガス入口676に結合される。このモードでは、第2供給ガスが第2シャワー
ヘッド610を通って流れ、第2チャンバ領域681内で励起される。その後、反応種(
例えば、NH4F)が、第1チャンバ領域684に入り、ワークピース302と反応する
。更に図示されるように、第1シャワーヘッド625がDZSHである実施形態では、第
2プラズマ691によって生成された反応種と反応させるために、1以上の供給ガスを供
給してもよい。そのような一実施形態では、水源693を複数の開口部683に結合する
ことができる。
【0039】
一実施形態では、チャック650は、第1シャワーヘッド625に垂直な方向に距離Δ
H2に沿って移動可能である。チャック650は、ベローズ655によって囲まれた作動
機構などの上にあり、これによって(80℃~150℃又はそれ以上の高温となる)チャ
ック650とシャワーヘッド625との間の熱伝達を制御する手段として、第1シャワー
ヘッド625に近付くように、又は第1シャワーヘッド625から遠ざかるように、チャ
ック650を移動することができる。このように、第1シャワーヘッド625に対して所
定の第1及び第2位置の間でチャック650を移動させることによって、siconiエ
ッチング処理を実施することができる。あるいはまた、チャック650は、エッチング処
理中に第1シャワーヘッド325による加熱を制御するために、距離ΔH1だけチャック
650の上面からワークピース302を上昇させるリフターを含む。エッチング処理が一
定温度(例えば、約90~110℃)で実行される他の実施形態では、チャック変位機構
は避けることができる。
【0040】
コントローラ420は、自動的に第1及び第2RF結合電極対に交互に電力供給するこ
とによって、エッチング処理中に第1及び第2プラズマ690及び691を交互に励起す
ることができる。
【0041】
図6Cは、一実施形態に係る、
図1に示された堆積操作130を実行するように再構成
されたエッチングチャンバ601の断面図を示す。図示されるように、第3プラズマ69
2は、第2プラズマ691に対して記載した方法のいずれかで実施することができるRF
放電によって第2チャンバ領域681内で生成される。第1シャワーヘッド625が堆積
中に第3プラズマ692を生成するために電力供給される場合、第1シャワーヘッド62
5は、チャンバ壁に対して電気的に浮くように、誘電体スペーサ630によって接地され
たチャンバ壁640から分離される。例示的な実施形態では、酸化剤(O
2)供給ガス源
694がガス入口676に結合される。第1シャワーヘッド625がDZSHである実施
形態では、本明細書内の他の箇所に記載されるケイ素含有前駆体の何れか(例えば、OM
CTS源695)は、第1チャンバ領域684内に結合され、これによって第2プラズマ
692から第1シャワーヘッド625を通過する反応種と反応させることができる。ある
いはまた、ケイ素含有前駆体はまた、酸化剤と一緒に、ガス入口676を通って流される
。
【0042】
図7は、一実施形態に係る、改質操作110を実行するように構成されたエッチングチ
ャンバ701の断面図を示す。図示されるように、エッチングチャンバ701は、片持ち
のチャック660と、チャック660の中心と整列された中心を有する単一のターボポン
プ665を有する。更に図示されるように、第1シャワーヘッド625は接地され、一方
、チャック660及び二次電極605は共に、リレー607を介して同一のRF源に結合
され、これによって駆動電極をチャック660と二次電極605の間で、イオンミーリン
グとエッチング操作210及び220の間で交互に行い、これによって改質及びエッチン
グ操作110及び120をそれぞれ実行し、プラズマの位置は、チャンバ601の文脈で
説明されたように、第1チャンバ領域684と第2領域681の間で変化する。あるいは
また、RF源608は、独立して、チャック660に電力供給するRF源(例えば、1以
上の発生器652及び653)とは独立した二次電極に電力供給し、プラズマの位置は、
チャンバ601の文脈で説明されたように、第1チャンバ領域684と第2領域681の
間で変化させることができる。
【0043】
図8Aは、一実施形態に係る、
図1に示されたエッチング処理の改質操作110を実行
するように構成されたエッチングチャンバ801の断面図を示す。一般に、エッチングチ
ャンバ801は、イオンミーリング操作を実施するための第1容量結合プラズマ源と、エ
ッチング操作を実施するリモートプラズマ源と、オプションで、堆積操作を実施する第2
容量結合プラズマ源を含む。
【0044】
エッチングチャンバ801は、チャック660と対向する第1シャワーヘッド625の
上方に配置されたリモートRFプラズマ源823を含む。操作のイオンミーリングモード
では、エッチングチャンバ801は、実質的にエッチングチャンバ601に対して記載し
たように、第1チャンバ領域684内に容量結合された第1プラズマ670を提供する。
図示の実施形態では、チャック660は、第1RF電源(RF発生器652及び653)
に結合され、第1シャワーヘッド625は、接地に、又は第1RF電源652、653の
周波数以外の周波数で608動作可能な1以上のRF発生器を含む第2RF電源に、リレ
ー607Bを介して選択的に結合される。第1シャワーヘッド625が給電される場合、
第1シャワーヘッド625は、チャンバ壁640に対して電気的に浮くように誘電体スペ
ーサ630によって接地されたチャンバ壁640から分離される。第1シャワーヘッド6
25に電力供給される実施形態では、第2シャワーヘッド610及び二次電極605は、
第1シャワーヘッド625と同電位に電気的に接続することができる。
【0045】
図8Bは、一実施形態に係る、
図1に示されたエッチング操作120を実行するために
図8Aに示されたものから再構成されたエッチングチャンバ801の断面図を示す。
図8
Bに示されるように、操作のエッチングモードでは、リモートRFプラズマ源823は、
ガス入口824を通して供給された第2供給ガスの第2プラズマ693を放電することが
できる。例示的な一実施形態では、リモートRFプラズマ源823及び第1シャワーヘッ
ド625は共に、コントローラによって制御可能なリレー607Aを介して同じRF電源
821に結合され、これによって第1プラズマ670とリモートプラズマ693に電力を
交互に供給する。リモートプラズマ693は、チャック660に大きなRFバイアス電位
を掛けることなく生成することができる。好ましい一実施形態では、第1シャワーヘッド
625は、接地されるか、又は浮いている。第2供給ガス源691、692(NF
3、N
H
3)は、ガス注入口824に結合され、反応種(例えば、NH
4F)がその後第1シャ
ワーヘッド625を通って流れる。本明細書内の他の箇所に記載されるように、追加の流
れの分配が、第1シャワーヘッド610及び/又は流れ分配器615によって提供されて
もよい。第1シャワーヘッド625がDZSHを含む一実施形態では、水蒸気693が開
口部693を通って供給され、これによって開口部682を通って第1チャンバ領域68
4に入る反応種と反応することができる。
【0046】
図8Cは、一実施形態に係る、
図1に示された堆積操作130を実行するために、
図8
A及び8Bに示された状態から再構成されたエッチングチャンバ801の断面図を示す。
図8Cに示されるように、堆積動作モードの間、チャック660は、給電されないまま(
例えば、浮いた状態)にすることができる1以上のRF発生器652、653を含む第1
RF電源に結合される。第1シャワーヘッド625は、RF発生器652の周波数(例え
ば、13.56MHz)以外の周波数であることが可能な1以上のRF発生器608を含
む第2RF電源に結合される。誘電体スペーサ630によって接地されたチャンバ壁64
0から分離され、更に誘電体スペーサ620によって第2シャワーヘッド601から分離
された第1シャワーヘッド625によって、第1シャワーヘッド625へのRF電力は、
(例えば、酸化原料ガス(O
2694等)の)第3のプラズマ692を第2チャンバ領域
681内で生成することができる。例示的な一実施形態では、第1シャワーヘッド625
及びリモートRFプラズマ源823は共に、コントローラ470によって制御可能なリレ
ー607Aを介して同じRF電源821に結合され、これによってエッチングと堆積(例
えば、それぞれ
図1の操作120と130)の間、第3プラズマ692とリモートプラズ
マ693に電力を交互に供給する。
【0047】
コントローラ420は、自動的に2つの電源に交互に電力供給することによって、エッ
チング処理中に第1プラズマ670及びリモートプラズマ693を交互に励起することが
できる。コントローラ420は、同様にチャンバ801を堆積モードに置くことができる
。
【0048】
図9Aは、一実施形態に係る、
図1に示された改質操作110を実行するように構成さ
れたエッチングチャンバ901の断面図を示す。一般に、エッチングチャンバ901は、
イオンミーリング操作を実施するための容量結合プラズマ源と、エッチング操作を実施し
、オプションの堆積操作を実施するための電子線源を含む。
図9Aに示されるように、実
質的に本明細書内の他の箇所に記載されるように、第1供給ガス690を第1チャンバ領
域684内に分配するチャック650の上方に配置された第1シャワーヘッド625によ
って容量放電が提供される。チャック660及び第1シャワーヘッド625は、第1供給
ガス(例えばAr)のRFプラズマ670を容量放電する第1RF結合電極対を形成する
。
【0049】
図9Bは、一実施形態に係る、
図1に示されたエッチング操作120を実行するように
再構成されたエッチングチャンバ901の断面図を示す。図示されるように、高電圧DC
電源943が、二次電極605及び第2シャワーヘッド610に結合され、これによって
第1シャワーヘッド625の上方に配置されたDC電極対を形成し、これによってDC電
極間のチャンバ領域内にDCグロー放電618を発生させる。DC電極対は、誘電体スペ
ーサ620によって第1シャワーヘッド625から電気的に絶縁されている。第1シャワ
ーヘッド625は、更に、誘電体スペーサ630によってチャンバ壁640から分離され
、これによって第1シャワーヘッド625の制御を可能にする。
【0050】
動作時には、二次電極605は、陰極DC電位(例えば、4-8kV)にバイアスされ
、一方、第2シャワーヘッド610は、陽極電位(例えば、-100V~-200V)に
バイアスされる。第1供給ガス(例えば、Arボトル690)から生成されたDCグロー
放電618からの電子は、第2チャンバ領域681内の開口部680を通過する。第1シ
ャワーヘッド625はまた、DC電源に(例えば、リレーを介して第2シャワーヘッド6
10に)結合され、二次電極605の陰極電位に対して陽極電位に負にバイアスされる。
第1シャワーヘッド625への負のバイアスによって、電子は第1シャワーヘッド625
を通って、第1チャンバ領域684内へ通過することができる。第1シャワーヘッド62
5は、更にこの目的を推進するための大きな穴を有することができる。このように、「電
子線」源は、供給ガス(例えば、DZSHの実施形態では、開口部683によって供給さ
れるNF3及びNH3)を第1チャンバ領域684内でソフトにイオン化する手段であり
、これによってワークピース302に大きなバイアスを掛けることなく、反応性エッチン
グ種(例えば、NH4Fなど)を提供する。
【0051】
図9Bに更に示されるように、チャック660は、イオンミーリングモードの間、RF
源(発生器652及び653)に結合されると同時に、チャック660はまた、エッチン
グ操作と成膜操作のいずれか一方又は両方の間、接地電位又は陰極電位に維持することも
できる。制御可能な可変静電チャック電位963は、接地電位と正バイアスの間で供給さ
れ、DCグロー放電618からワークピース302までの電子束を制御することができる
。更なる一実施形態では、エッチングチャンバ901は、第1シャワーヘッド625とチ
ャック660の間に配置されたシーフ電極947を含む。シーフ電極625は、可変コン
デンサ964を介して接地されており、ワークピース305への電子束を更に制御する。
図示されるように、シーフ電極947は、第1誘電体スペーサ630によって第1シャワ
ーヘッド625から絶縁され、第2誘電体スペーサ937によって接地されたチャンバ壁
640から絶縁された導電リングである。
【0052】
図9Cは、一実施形態に係る、
図1に示された堆積操作130を実行するように再構成
エッチングチャンバ901の断面図を示す。エッチング操作120のために使用されるD
CD電源又は第2チャンバ領域681内で生成された第2RFプラズマのいずれかが、実
質的に本明細書内の他の箇所に記載されるように、保護層のPECVD堆積を行うために
用いられる。DC電源が利用される場合、第2シャワーヘッド610から発する電子は、
第1シャワーヘッド625及びシリコン含有前駆物質を通過する(例えば、OMCTS6
95が開口部683を介して供給される)。酸素もまた、開口部683によって供給され
、電子束によってイオン化される。
【0053】
コントローラ420は、自動的に2つの電源に交互に電力供給することによって、エッ
チング処理中に第1プラズマ670及びDCグロー放電618を交互に励起することがで
きる。コントローラ420は、同様にチャンバ901を堆積モードに置くことができる。
【0054】
更なる一実施形態では、電子束を用いて堆積保護層のインサイチュー硬化を実行するこ
とができ、本質的には電子線硬化型処理を実行する。設置電位と正バイアスの間に設けら
れた制御可能な可変チャック電位963は、この目的のためにも、DCグロー放電618
からワークピース302までの電子束を制御することができる。具体的には、硬化が望ま
れる場合は、ワークピース302は、接地電位に置くことができ、硬化が望まれない場合
は、ワークピース302は、陰極電位に置くことができる。
【0055】
図10は、一実施形態に係る、
図1に示されたエッチング処理100の種々のモードを
実行するように構成されたエッチングチャンバ1001の断面図を示す。一般に、エッチ
ングチャンバ1001は、イオンミーリング操作を実行するためのCCPと、エッチング
操作を実行し、オプションの堆積操作を実行するための誘導結合プラズマ源(IPS)を
含む。
【0056】
図10に示されるように、第1チャンバ領域684内の改質操作110(
図1)のため
のCCPプラズマの文脈で前述されたすべてのチャンバの構成要素は、RF電極対を形成
するチャック660及び第1シャワーヘッド625と共に再び提供される。一実施形態で
は、第1シャワーヘッド625は、実質的に本明細書内の他の箇所で説明されたように、
電力供給する、電気的に浮遊させる、又は接地することができるDZSHである。エッチ
ング操作(例えば、
図1の120)のために、導電コイル1052のセットが発生器60
8を含むRF源に結合され、これによって当該技術分野で公知の任意の方法で誘導結合プ
ラズマ692を生成する。第1シャワーヘッドのDZSHの実施形態において、大きなサ
イズの穴と組み合わせたICP源は、誘電蓋1006を貫通して導入される供給ガス(例
えば、NF
3691及びNH
3692)の効率的なイオン化を可能にする。
【0057】
コントローラ420は、自動的に2つの電源に交互に電力供給することによって、エッ
チング処理中に第1プラズマ670及びICPプラズマ692を交互に励起することがで
きる。コントローラ420は、同様にチャンバ1001を堆積モードに置くことができる
。
【0058】
上記の説明は、例示であって限定的なものではないことを意図していることを理解すべ
きである。更に、詳細に記載されているもの以外の多くの実施形態が、上記の説明を読み
、理解することにより、当業者には明らかであろう。本発明は特定の例示的な実施形態を
参照して説明したが、本発明は上記実施形態に限定されないことが認識されるであろうが
、添付の特許請求の範囲の趣旨及び範囲内で修正及び変更して実施することができる。し
たがって、本発明の範囲は、そのような特許請求の範囲が権利を与える均等物の全範囲と
共に、添付の特許請求の範囲を参照して決定されるべきである。