(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-03-24
(45)【発行日】2023-04-03
(54)【発明の名称】電流測定一体型アパーチャアレイ
(51)【国際特許分類】
H01J 37/09 20060101AFI20230327BHJP
H01J 37/244 20060101ALI20230327BHJP
H01J 37/28 20060101ALI20230327BHJP
【FI】
H01J37/09 A
H01J37/244
H01J37/28 B
(21)【出願番号】P 2021555021
(86)(22)【出願日】2020-03-11
(86)【国際出願番号】 EP2020056432
(87)【国際公開番号】W WO2020193130
(87)【国際公開日】2020-10-01
【審査請求日】2021-11-08
(32)【優先日】2019-03-28
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】504151804
【氏名又は名称】エーエスエムエル ネザーランズ ビー.ブイ.
(74)【代理人】
【識別番号】100079108
【氏名又は名称】稲葉 良幸
(74)【代理人】
【識別番号】100109346
【氏名又は名称】大貫 敏史
(74)【代理人】
【識別番号】100117189
【氏名又は名称】江口 昭彦
(74)【代理人】
【識別番号】100134120
【氏名又は名称】内藤 和彦
(72)【発明者】
【氏名】マングナス,アルベルタス,ヴィクター,ゲラルドス
(72)【発明者】
【氏名】グーセン,マイケル,ロベルト
(72)【発明者】
【氏名】スマクマン,エルウィン,ポール
【審査官】鳥居 祐樹
(56)【参考文献】
【文献】特開2006-186125(JP,A)
【文献】特開2006-079911(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/09
H01J 37/244
H01J 37/28
H01J 37/305
H01L 21/30
(57)【特許請求の範囲】
【請求項1】
一次荷電粒子ビームを生成するように構成された荷電粒子源と、アパーチャアレイ
と、を備えるマルチビーム装置であって、
前記アパーチャアレイは、
前記一次荷電粒子ビームから複数のビームレットを形成するように構成された複数のアパーチャと、
回路構成に連結されると共に前記アパーチャアレイを照射する前記一次荷電粒子ビームの少なくとも一部の電流を検出するように構成された検出器であって、前記一次荷電粒子ビームに関して前記アパーチャアレイのビーム入射側に配設された、検出器と、を
有し、
前記検出器は、前記一次荷電粒子ビームの少なくとも前記一部の位置の変化又はサイズの変化のうち少なくとも一方を検出するための回路構成に連結されている、マルチビーム装置。
【請求項2】
前記検出器は、前記一次荷電粒子ビームの少なくとも前記一部の電荷を蓄積するため及び前記蓄積された電荷に基づいて前記電流を測定するための回路構成を含む、請求項1の装置。
【請求項3】
前記検出器は、前記一次荷電粒子ビームの少なくとも前記一部の前記電流を監視するための回路構成に連結されている、請求項1の装置。
【請求項4】
前記一次荷電粒子ビームの少なくとも前記一部の前記電流は、前記一次荷電粒子ビームの総電流を判定するために用いられる、請求項1の装置。
【請求項5】
前記検出器は、前記一次荷電粒子ビームの複数のパラメータのうち少なくとも1つの変化を検出するように構成された複数の電流検出器を備える、請求項1の装置。
【請求項6】
前記複数のパラメータは、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又は前記ビーム電流密度の均一性のうち少なくとも1つを備える、請求項
5の装置。
【請求項7】
前記複数の電流検出器の各々は、前記アパーチャアレイの少なくとも1つのアパーチャと関連付けられている、請求項
5の装置。
【請求項8】
前記複数の電流検出器の各々は、前記アパーチャアレイ上に配設されている、請求項
5の装置。
【請求項9】
前記検出器は、ファラデーカップ、ダイオード、ダイオードのアレイ、又はシンチレータを備える、請求項1の装置。
【請求項10】
マルチビーム装置においてビーム電流を測定する方法であって、
一次荷電粒子ビームをアパーチャアレイに照射することと、
前記アパーチャアレイのビーム入射側に位置決めされた検出器を用いて前記一次荷電粒子ビームの少なくとも一部の電流を検出することと、
前記検出器を、前記一次荷電粒子ビームの少なくとも前記一部の位置の変化又はサイズの変化のうち少なくとも一方を検出するための回路構成に連結することと、
前記検出された電流に基づいて、複数のビームパラメータのうち少なくとも1つのビームパラメータを調節することと、
を備える、方法。
【請求項11】
前記一次荷電粒子ビームの少なくとも前記一部の電荷を蓄積することと、
前記蓄積された電荷に基づいて前記ビーム電流を測定することと、
を更に備える、請求項
10の方法。
【請求項12】
前記一次荷電粒子ビームの少なくとも前記一部の前記ビーム電流を監視することを更に備える、請求項
10の方法。
【請求項13】
前記一次荷電粒子ビームの前記一部の複数のパラメータのうち少なくとも1つの変化を検出することを更に備える、請求項
10の方法。
【請求項14】
前記検出器は、複数の電流検出器を備え、
前記複数の電流検出器の各々は、前記アパーチャアレイの少なくとも1つのアパーチャと関連付けられている、請求項
10の方法。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
[0001] 本願は2019年3月28日に提出された欧州出願第19166009.1号の優先権を主張するものであり、同出願は参照によりその全体が本明細書に組み込まれる。
【0002】
[0002] 本明細書に記載される実施形態はマルチビーム装置を開示し、より具体的には一体型ビーム電流測定能力を有するアパーチャアレイを含むマルチビーム電子顕微鏡を開示する。
【背景技術】
【0003】
[0003] 集積回路(IC)の製造プロセスにおいて、未完成の又は完成した回路部品は、設計に従って製造され且つ欠陥がないことを保証するために、検査される。光学顕微鏡又は走査電子顕微鏡(SEM)などの荷電粒子(例えば電子)ビーム顕微鏡を利用する検査システムが採用され得る。IC部品の物理的なサイズは縮小し続けているため、欠陥検出の精度及び歩留まりがより重要になる。スループット及び解像度を高めるためにより明るい電子源が用いられてもよいが、電子源の安定性が犠牲にされ、検査ツールをその所望の目的に対して不十分なものにするおそれがある。
【0004】
[0004] このように、関連技術のシステムは、例えば高ビーム電流での電子源の安定性の判定において、制約に直面している。本技術における更なる改善が望まれている。
【発明の概要】
【0005】
[0005] 本開示の実施形態は、マルチビーム装置においてビーム電流を測定するシステム及び方法を提供し得る。一態様においては、本開示はマルチビーム装置を対象とする。マルチビーム装置は、一次荷電粒子ビームを生成するように構成された荷電粒子源と、アパーチャアレイと、を含み得る。アパーチャアレイは、一次荷電粒子ビームから複数のビームレットを形成するように構成された複数のアパーチャと、アパーチャアレイを照射する一次荷電粒子ビームの少なくとも一部の電流を検出するための回路構成を含む検出器と、を備え得る。
【0006】
[0006] 検出器は、一次荷電粒子ビームの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含み得る。回路構成は、一次荷電粒子ビームの少なくとも一部の電流を監視するように構成され得る。一次荷電粒子ビームの少なくとも一部の電流は、一次荷電粒子ビームの総電流を判定するために用いられ得る。
【0007】
[0007] 検出器は、少なくとも一次荷電粒子ビームの一部の位置又はサイズの変化を更に検出するための回路構成を含み得る。検出器は、一次荷電粒子ビームの複数のパラメータのうち少なくとも1つの変化を検出するように構成された複数の電流検出器を備え得る。複数のパラメータは、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又はビーム電流密度の均一性を備え得る。複数の電流検出器の各々は、アパーチャアレイの少なくとも1つのアパーチャと関連付けられ得ると共にアパーチャアレイ上に配設され得る。電流検出器は、ファラデーカップ、ダイオード、ダイオードのアレイ、シンチレータ、又は光電子増倍管を備え得る。
【0008】
[0008] 別の一態様においては、本開示は、一次荷電粒子ビームを生成するように構成された荷電粒子源を備えるマルチビーム装置を対象とする。装置は、第1の複数のアパーチャを備え一次荷電粒子ビームから複数のビームレットを形成するように構成された第1のアパーチャアレイと、第2のアパーチャアレイと、を含み得る。第2のアパーチャアレイは、第2の複数のアパーチャと、複数の電流検出器と、を備えていてもよく、複数の電流検出器の各々は、第2の複数のアパーチャの少なくとも1つのアパーチャと関連付けられると共に、第2のアパーチャアレイを照射する複数のビームレットのうち対応するビームレットの電流を検出するための回路構成を含む。
【0009】
[0009] 第1のアパーチャアレイは、荷電粒子源と第2のアパーチャアレイとの間に配設された電流制限アパーチャアレイを備え得る。複数の電流検出器の各々は、複数のビームレットのうち対応するビームレットの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含み得る。複数の電流検出器の各々は、対応するビームレットの電流を監視するため及び対応するビームレットの位置の変化又はサイズの変化のうち少なくとも一方を検出するための回路構成を含み得る。複数の電流検出器の各々は、対応するビームレットの複数のパラメータのうち少なくとも1つの変化を検出するための回路構成を含んでいてもよく、複数のパラメータは、ビームレット位置、ビームレット直径、ビームレット電流、ビームレット電流密度、又はビームレット電流密度の均一性のうち1つを備える。複数の電流検出器の各々は、ファラデーカップ、ダイオード、ダイオードのアレイ、シンチレータ、又は光電子増倍管であってもよい。
【0010】
[0010] 更に別の一態様においては、本開示は、一次荷電粒子ビームを生成するように構成された荷電粒子源と、一次荷電粒子ビームから複数のビームレットを形成するように構成された第1の複数のアパーチャを含む第1のアパーチャアレイと、第1のアパーチャアレイを照射する一次荷電粒子ビームの少なくとも一部の電流を検出するための回路構成を含む第1の電流検出器と、を含むマルチビーム装置を対象とする。マルチビーム装置は、第2の複数のアパーチャを備える第2のアパーチャアレイを含んでいてもよく、第2の複数のアパーチャの各々は、複数のビームレットのうち対応するビームレットの少なくとも一部を受けるように構成されている。
【0011】
[0011] 第1の電流検出器は、一次荷電粒子ビームの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含み得る。第2のアパーチャアレイは、第2の複数のアパーチャのうち少なくとも1つと関連付けられた第2の電流検出器を備え得る。
【0012】
[0012] 更に別の一態様においては、本開示は、マルチビーム装置においてビーム電流を測定する方法を対象とする。方法は、アパーチャアレイに一次荷電粒子ビームを照射すること及び一次荷電粒子ビームの少なくとも一部の電流を検出することを含み得る。方法は、制御回路を用いて、複数のビームパラメータのうち少なくとも1つのビームパラメータを検出された電流に基づいて調節することを備え得る。方法は更に、一次荷電粒子ビームの少なくとも一部の電荷を蓄積すること及び蓄積された電荷に基づいてビーム電流を測定することを備え得る。
【0013】
[0013] 方法は更に、一次荷電粒子ビームの少なくとも一部のビーム電流を監視することと、一次荷電粒子ビームの一部の複数のパラメータのうち少なくとも1つの変化を検出することと、を備え得る。複数のパラメータは、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又はビーム電流密度の均一性のうち少なくとも1つを備える。方法は更に、一次荷電粒子ビームの少なくとも一部の測定された電流に基づいて一次荷電粒子ビームの総電流を判定することを備え得る。検出器は複数の電流検出器を備えていてもよく、複数の電流検出器の各々がアパーチャアレイの少なくとも1つのアパーチャと関連付けられている。
【0014】
[0014] 更に別の一態様においては、本開示は、マルチビーム装置の1つ以上のプロセッサによって実行可能でありマルチビーム装置にマルチビーム装置においてビーム電流を測定するための方法を実施させる一組の命令を記憶する非一時的コンピュータ可読媒体を対象とする。方法は、アパーチャアレイへの一次荷電粒子ビームの照射を制御すること及び検出器によって検出された一次荷電粒子ビームの少なくとも一部の検出された電流に基づいて一次荷電粒子ビームの電流を判定することを備え得る。
【0015】
[0015] マルチビーム装置の1つ以上のプロセッサによって実行可能な一組の命令は、マルチビーム装置に、一次荷電粒子ビームの少なくとも一部の電荷を蓄積するように検出器を作動させてもよく、蓄積された電荷に基づいて一次荷電粒子ビームの少なくとも一部の電流を測定する。
【図面の簡単な説明】
【0016】
【
図1】[0016] 本開示の実施形態と一致する例示的な電子ビーム検査(EBI)システムを図示する概略図である。
【
図2】[0017] 本開示の実施形態と一致する
図1の例示的な電子ビーム検査システムの一部であり得る例示的な電子ビームツールを図示する概略図である。
【
図3】[0018] 本開示の実施形態と一致するマルチビーム装置におけるアパーチャアレイの例示的な配列を図示する概略図である。
【
図4】[0019] 本開示の実施形態と一致する
図1の例示的な電子ビーム検査システムの一部であり得る例示的なマルチビーム装置を図示するブロック図である。
【
図5A】[0020] 本開示の実施形態と一致する一体型ビーム電流検出器を含むマルチビーム装置のアパーチャアレイの例示的な構成を図示する概略図である。
【
図5B】[0020] 本開示の実施形態と一致する一体型ビーム電流検出器を含むマルチビーム装置のアパーチャアレイの例示的な構成を図示する概略図である。
【
図5C】[0020] 本開示の実施形態と一致する一体型ビーム電流検出器を含むマルチビーム装置のアパーチャアレイの例示的な構成を図示する概略図である。
【
図5D】[0020] 本開示の実施形態と一致する一体型ビーム電流検出器を含むマルチビーム装置のアパーチャアレイの例示的な構成を図示する概略図である。
【
図6】[0021] 本開示の実施形態と一致するマルチビーム装置においてビーム電流を測定する例示的な方法を示すフローチャートである。
【発明を実施するための形態】
【0017】
[0022] 次に、例示的な実施形態を詳細に参照する。これらの実施形態の例は添付の図面に図示されている。以下の説明は添付の図面を参照する。添付の図面において、異なる図面で同じ番号は、別途表示されない限り、同一又は類似の要素を表す。以下の例示的な実施形態の説明に記載される実装形態は、全ての実装形態を代表するものではない。そうではなく、それらは、添付の特許請求の範囲に記載の開示される実施形態に関係する態様と一致する装置及び方法の例に過ぎない。例えば、いくつかの実施形態は電子ビームを利用するという文脈で記載されるが、本開示はそれに限定されない。他の種類の荷電粒子ビームが同様に適用されてもよい。また、光学撮像、光検出、X線検出など、他の撮像システムが用いられてもよい。
【0018】
[0023] デバイスの物理的なサイズを削減しながら電子機器の演算能力を高めることは、ICチップ上のトランジスタ、キャパシタ、ダイオードなどの回路部品の実装密度を有意に高めることによって達成できる。例えば、スマートフォンにおいては、(親指の爪のサイズの)ICチップが20億個を超えるトランジスタを含むことがあり、各トランジスタのサイズは人間の髪の毛の1000分の1未満である。当然のことながら、半導体IC製造は、数百もの個々のステップを備える複雑なプロセスである。たとえ1つのステップにおいてでもエラーがあれば、最終製品の機能性に劇的に影響を及ぼす可能性がある。たとえ1つの「キラー欠陥」でもデバイス不良を引き起こし得る。製造プロセスの目標は、プロセスの全体的な歩留まりを向上させることである。例えば、50ステップからなるプロセスが75%の歩留まりを得るには、個々のステップが99.4%よりも高い歩留まりを有さなければならず、個々のステップの歩留まりが95%であれば、全体的なプロセス歩留まりは7%まで落ちる。
【0019】
[0024] ジオメトリが縮小し、ICチップ産業が(NANDゲート、フィン電界効果トランジスタ(FinFET)、及び先進動的ランダムアクセスメモリ(DRAM)などの)3次元(3D)アーキテクチャに移行するにつれ、各下位ノードで欠陥を発見することはより困難且つ高価になっている。ICチップ製造設備においては高いプロセス歩留まりが望ましいが、時間当たりに処理されるウェーハの数として定義されるウェーハスループットを高く維持することも不可欠である。高いプロセス歩留まり及び高いウェーハスループットは、特にオペレータの介入を伴うとき、欠陥の存在によって強い影響を受け得る。したがって、(SEMなどの)検査ツールによるマイクロサイズ及びナノサイズの欠陥の検出及び識別は、高歩留まり、高スループット、及び低コストを維持するのに不可欠であろう。
【0020】
[0025] 半導体チップは、非常に低いレベルの塵、浮遊粒子、エアロゾル粒子、及び化学蒸気などの汚染物質を有する極めて清浄で制御された環境において製作される。より具体的には、半導体クリーンルームには、立方フィート当たりの特定の粒子サイズの粒子の数によって規定される制御されたレベルの汚染を有することが要求される。典型的なチップ製造クリーンルームは空気の立方フィート当たり1~10個の粒子を含有し、各粒子は直径が5μm未満である。比較のため、典型的な都市環境における戸外の大気は立方フィート当たりおよそ12億5000万個の粒子を含有し、各粒子は直径が200μmまでの平均サイズを有する。プロセス中のウェーハ上の1μmほどの小さな一片の塵はそのチップ上に位置する数千のトランジスタに及ぶかもしれず、これは潜在的にチップ全体を使い物にならなくするおそれがある。場合によっては、レチクル上、又はウェーハ上に繰り返しパターンを創出するために用いられるフォトマスク上の一片の塵は、反復性の物理的又は電気的な欠陥を引き起こすかもしれない。例えば、単一のチップにおいてトランジスタを接続する1本以上の金属ワイヤは、重複したり塵粒子を通じて望ましくなく接続されたりして、チップ全体で回路に短絡を引き起こすかもしれない。
【0021】
[0026] (例えば時間当たりのウェーハプロセスの数として定義される)スループットを高く維持しながら高精度且つ高解像度でウェーハを観察し、検査し、撮像する能力を確保することは、ますます重要になっている。スループットを高めるべく、いくつかの検査ツールは、サンプル表面上に複数のプローブスポットを同時に形成するために、複数のビームを用い得る。一例として、ある検査ツールは、マルチビーム検査システム又はマルチ荷電粒子ビーム装置におけるように、一次ビームを生成し、その一次ビームが複数のビーム(例えば「ビームレット」)に分割され、その複数のビームがその後それぞれサンプル表面にわたってスキャンされてもよい。
【0022】
[0027] マルチビームSEMのようなマルチ荷電粒子ビーム装置において高いスループットを維持しながら解像度を高めるためには、複数のビームレットが可能な限り多くの電子を有するように、一次ビームが高い電流密度又は高い輝度を有するのが望ましい。一次ビーム(例えば電子ビーム)の電流密度は、単位時間当たりのビームの単位面積当たりの電子(又は電荷)の数として定義され得る。電流密度は重要なビームパラメータであり得るが、電子顕微鏡の文脈においては、ビーム輝度の方が関連性が高いであろう。なぜなら、電子はある範囲の発散角をもって電子源を出て行くものであり、ビーム内の電子の角度分布は重要なパラメータであり得るからである。したがって、ビーム輝度は、一次源の単位立体角当たりの電流密度(ステラジアンで表される)として定義され得る。
【0023】
[0028] 高輝度電子ビームは、例えば、アノードと典型的には電子源であるカソードとの間の電圧を増加させることによって生成され得る。しかしながら、一次電子源を長期間にわたって高い電圧に曝すことは、電子源の耐久性及び安定性に影響を及ぼし得る。一次電子源の不安定性は、ソースの性能のみならず生成される一次電子ビームにも影響を及ぼすであろう。例えば、一次電子ビームは、経時的な放出電流のばらつき、検査システムの他のコンポーネントに対する一次ビームの位置のばらつき、ビームのサイズのばらつき、ビームの総電流のばらつき、ビームの電流密度の均一性のばらつきなどを呈して、潜在的に検査システムの全体的な効率及びスループットを低減させるかもしれない。
【0024】
[0029] マルチビームSEMシステムにおいては、一次電子ビームが複数のビームレットに分割され、その複数のビームレットの各々がサンプル表面上にプローブスポットを作り出し得る。ビームレットの電子とサンプルとの相互作用は、サンプル上のプローブスポットに関連する情報を含む信号を生成する。生成された信号はその後、処理されてプロービングされたサンプル領域を表す画像を創出し、したがってユーザがサンプル及びサンプル上の欠陥を視覚的に分析することを可能にする。不安的な電子源からの不安定な一次電子ビームは、生成されるビームレット電流に不均一性を引き起こすおそれがあり、その結果、画質に強い影響を与える。ICチップの製造設備においては、ウェーハの検査及び欠陥分析に関して、マルチビームSEMなどの視覚検査ツールに依存することが多い。よって、画質に妥協することはウェーハを分析及び検査するユーザの能力を妨げるかもしれず、潜在的には全体的なスループットに影響を及ぼす。
【0025】
[0030] 画質は、不安定な一次電子ビーム、不安定な一次電子源、正しく較正されていない検出システム、SEMカラムの正しく整列されていない光学素子、サンプル汚染、機械的な振動、熱的干渉及び音響干渉などを含むがこれらに限定されない多くの要因によって影響され得るので、ウェーハ検査の最中に画質の劣化の理由を判定することは非常に困難である。これらの結像欠陥の原因(sources of imaging defects)のいずれか又は全てが潜在的に検査システムの全体的な解像度及びスループットに強い影響を与え得る。本開示のいくつかの態様は、アパーチャアレイでビーム電流(又はビームレット電流)を測定し、それによって、一次電子ビームがウェーハ検査のためにスキャンされている間に、一次電子源又は一次電子ビームの不安定性を検出及び監視することを提案する。測定情報は更に、不安定性の原因を判定するため及びそれに応じて一次電子源、一次電子ビーム、又は検査システムの関連するコンポーネントを調節するために利用されてもよい。
【0026】
[0031] 本開示の一態様においては、ビーム電流検出器を含むマルチビーム装置が一次ビーム又はビームレットの電流を測定するために用いられ得る。ビーム電流検出器は、一次電子ビーム又はビームレットによって照射されるアパーチャアレイ上に配設されてもよい。ビーム電流検出器は、一次電子ビームの少なくとも一部の電荷を蓄積すること及び一次電子ビームの一部の電流を測定することによって一次電子ビームの電流を測定するための回路構成を含んでいてもよい。
【0027】
[0032] 図面中のコンポーネントの相対的な寸法は、明瞭性のために誇張され得る。以下の図面の説明においては、同一又は類似の参照番号は同一又は類似のコンポーネント又は実体を参照し、個々の実施形態に関する相違のみが説明される。
【0028】
[0033] 本明細書において用いられるとき、具体的に別段の規定が無い限り、「又は」という用語は、実行不可能である場合を除き、可能なあらゆる組み合わせを含む。例えば、あるコンポーネントがA又はBを含み得ると述べられている場合、具体的に別段の規定が無いか又は実行不可能でない限り、そのコンポーネントは、A、又はB、又はA及びBを含み得る。二つ目の例として、あるコンポーネントがA、B、又はCを含み得ると述べられている場合、具体的に別段の規定が無いか又は実行不可能でない限り、そのコンポーネントは、A、又はB、又はC、又はA及びB、又はA及びC、又はB及びC、又はA及びB及びCを含み得る。
【0029】
[0034] 次に、
図1を参照する。同図は、本開示の実施形態と一致する例示的な電子ビーム検査(EBI)システム100を図示している。
図1に示されるように、荷電粒子ビーム検査システム1は、メインチャンバ10と、ロード/ロックチャンバ20と、電子ビームツール100と、機器フロントエンドモジュール(EFEM)30と、を含む。電子ビームツール100はメインチャンバ10内に位置している。
【0030】
[0035] EFEM30は第1のロードポート30a及び第2のロードポート30bを含む。EFEM30は追加的なロードポートを含んでいてもよい。第1のロードポート30a及び第2のロードポート30bは、検査対象のウェーハ(例えば、半導体ウェーハ又は他の材料で作製されたウェーハ)又はサンプルを含有するウェーハ前面開口一体化ポッド(FOUP)を受け取る(以下、ウェーハ及びサンプルは「ウェーハ」と総称する)。EFEM30の1つ以上のロボットアーム(図示しない)がウェーハをロード/ロックチャンバ20に輸送する。
【0031】
[0036] ロード/ロックチャンバ20はロード/ロック真空ポンプシステム(図示しない)に接続されており、ロード/ロック真空ポンプシステムは大気圧を下回る第1の圧力に到達するようにロード/ロックチャンバ20のガス分子を除去する。第1の圧力に到達した後、1つ以上のロボットアーム(図示しない)がウェーハをロード/ロックチャンバ20からメインチャンバ100に輸送する。メインチャンバ100はメインチャンバ真空ポンプシステム(図示しない)に接続されており、メインチャンバ真空ポンプシステムは第1の圧力を下回る第2の圧力に到達するようにメインチャンバ100のガス分子を除去する。第2の圧力に到達した後、ウェーハは電子ビームツール100による検査を受ける。
【0032】
[0037] コントローラ40が、電子ビームツール100に電子的に接続されると共に、他のコンポーネントにも電子的に接続され得る。コントローラ40は、EBIシステム1の様々な制御を実行するように構成されたコンピュータであってもよい。コントローラ40は、
図1にはメインチャンバ10、ロード/ロックチャンバ20、及びEFEM30を含む構造の外部にあるものとして示されているが、コントローラ40がその構造の一部であり得ることは理解される。
【0033】
[0038] 本開示は電子ビーム検査システムを収容するメインチャンバ100の例を提供するが、この開示の態様はその最も広範な意味において電子ビーム検査システムを収容するチャンバに限定されないことに留意されたい。むしろ、前述の原理は他のチャンバにも適用され得ることが理解される。
【0034】
[0039] 次に、
図2を参照する。同図は、本開示の実施形態と一致する
図1の例示的な荷電粒子ビーム検査システムの一部であり得る例示的な電子ビームツールを図示する概略図を図示する。電子ビームツール100(本明細書においては装置100とも称される)は、電子源101と、ガンアパーチャ103を有するガンアパーチャプレート171と、集光レンズ110と、ソース変換ユニット120と、一次投影光学系130と、サンプルステージ(
図2には図示しない)と、二次光学系150と、電子検出デバイス140と、を備えている。一次投影光学系130は対物レンズ131を備え得る。電子検出デバイス140は複数の検出素子140_1,140_2,及び140_3を備え得る。ビーム分離器160及び偏向スキャンユニット132が一次投影光学系130の内部に設置され得る。装置100の他の一般的に知られているコンポーネントが適宜追加/省略されてもよいことは理解されるであろう。
【0035】
[0040] 電子源101、ガンアパーチャ171、集光レンズ110、ソース変換ユニット120、ビーム分離器160、偏向スキャンユニット132、及び一次投影光学系130は、装置100の一次光軸100_1と整列され得る。二次光学系150及び電子検出デバイス140は、装置100の二次光軸150_1と整列され得る。
【0036】
[0041] 電子源101は、カソード、抽出器又はアノードを備えることができ、一次電子がカソードから放出され得ると共に、抽出又は加速されて、クロスオーバ(仮想又は現実)101sを形成する一次電子ビーム102を形成し得る。一次電子ビーム102はクロスオーバ101sから放出されるものとして視覚化され得る。
【0037】
[0042] ソース変換ユニット120は画像形成素子アレイ(
図2には図示しない)を備え得る。画像形成素子アレイは、一次電子ビーム102の複数のビームレットによってクロスオーバ101sの複数の並列画像(仮想又は現実)を形成するために、複数のマイクロ偏向器又はマイクロレンズを備え得る。
図2は一例として3つのビームレット102_1,102_2,及び102_3を示しており、ソース変換ユニット120は任意の数のビームレットに対応し得ることが理解される。
【0038】
[0043] 集光レンズ110は一次電子ビーム102を合焦させ得る。ソース変換ユニット120の下流のビームレット102_1,102_2,及び102_3の電流は、集光レンズ110の合焦力を調節することによって又はビーム制限アパーチャアレイ内の対応するビーム制限アパーチャの径方向のサイズを変更することによって、可変にすることができる。対物レンズ131は、ビームレット102_1,102_2,及び102_3を検査のためにサンプル190上に合焦させ得ると共にサンプル190の表面上に3つのプローブスポット102_1s,102_2s,及び102_3sを形成し得る。ガンアパーチャプレート171は、クーロン相互作用効果を低減させるために、使用されていない一次電子ビーム102の最外殻電子を遮断し得る。クーロン相互作用効果は、プローブスポット102_1s,102_2s,及び102_3sの各々のサイズを拡大させる恐れがあり、したがって検査解像度を劣化させ得る。
【0039】
[0044] ビーム分離器160は静電偏向器を備えるウィーンフィルタ型のビーム分離器であってもよく、静電双極子場E1及び磁気双極子場B1(いずれも
図2には図示しない)を生成する。これらが印加される場合、静電双極子場E1によってビームレット102_1,102_2,及び102_3の電子に及ぼされる力は、磁気双極子場B1によって電子に及ぼされる力と規模が等しく方向が逆である。したがって、ビームレット102_1,102_2,及び102_3はゼロ偏向角度でビーム分離器160をまっすぐ通過し得る。
【0040】
[0045] 偏向スキャンユニット132は、サンプル190の表面の一区画の3つの小さなスキャン領域にわたってプローブスポット102_1s,102_2s,及び102_3sをスキャンするために、ビームレット102_1,102_2,及び102_3を偏向させ得る。プローブスポット102_1s,102_2s,及び102_3sにおけるビームレット102_1,102_2,及び102_3の入射に応じて、3つの二次電子ビーム102_1se,102_2se,及び102_3seがサンプル190から放出され得る。二次電子ビーム102_1se,102_2se,及び102_3seの各々は、二次電子(≦50eVのエネルギ)及び後方散乱電子(50eVとビームレット102_1,102_2,及び102_3のランディングエネルギとの間のエネルギ)を含むエネルギの分布を有する電子を備え得る。ビーム分離器160は、二次電子ビーム102_1se,102_2se,及び102_3seを二次光学系150に向け得る。二次光学系150は、二次電子ビーム102_1se,102_2se,及び102_3seを電子検出デバイス140の検出素子140_1,140_2,及び140_3上に合焦させ得る。検出素子140_1,140_2,及び140_3は、対応する二次電子ビーム102_1se,102_2se,及び102_3seを検出し得ると共に、サンプル190の対応するスキャン領域の画像を構築するために用いられる、対応する信号を生成し得る。
【0041】
[0046] 次に、
図3を参照する。同図は、本開示の実施形態と一致するマルチビーム装置300におけるアパーチャアレイの例示的な配列を図示している。マルチビーム装置300は
図2の電子ビームツール100に実質的に類似していてもよいことが理解されるべきである。マルチビーム装置300は、一次電子源301と、一次電子ビーム302と、電流制限アパーチャアレイ305と、集光レンズ310と、ビーム制限アパーチャアレイ320とを含んでいてもよい。マルチビーム装置300のコンポーネントの各々は一次光軸300_1と整列されてもよい。
【0042】
[0047] マルチビーム装置300の一次電子源301及び一次電子ビーム302は、
図2に図示される電子ビームツール100の電子源101及び一次電子ビーム102と実質的に類似している。いくつかの実施形態においては、一次電子源301は、例えば、タングステンフィラメント、六ホウ化ランタン(LaB
6)カソード、六ホウ化セリウム(CeB
6)、タングステン/酸化ジルコニウム(W/ZrO
2)等を含んでいてもよい。電子源が、加熱されたソースからの熱電子放出を通じて、又はカソードからの電場誘起放出を通じて、電子を生成してもよい。電子放出又は電子生成の他の適当な方法が採用されてもよい。
【0043】
[0048] 一次電子ビーム302は、サンプル(図示しない)に向けて電子を駆動するための高加速電場に起因して高い運動エネルギを有する電子を備え得る。電子の運動エネルギは0.2~40keVの範囲内又はそれより高くてもよく、引出電圧、加速電圧、ビーム修正レンズ(beam-modification lens)、又は同様のものによって判定される。いくつかの実施形態においては、一次電子ビーム302は光軸(図示しない)を有していてもよく、一次電子ビーム302はその光軸に沿ってサンプルの方に進む。一次電子ビーム302の光軸は一次光軸300_1と整列していてもよい。
【0044】
[0049] マルチビーム装置300は、複数のビームレットを形成するための複数のアパーチャ303を有する電流制限アパーチャアレイ305を備え得る。
図3は一例として3つのビームレット302_1,302_2,及び302_3を示しているが、電流制限アパーチャアレイ305が適宜任意の数のアパーチャ303を備えて任意の数のビームレットを形成してもよいことは理解される。電流制限アパーチャアレイ305のアパーチャ303の断面は、例えば、円形、長方形、楕円形、又はこれらの組み合わせであってもよい。電流制限アパーチャアレイ305は、一次光軸300_1に沿って一次電子源301と集光レンズ310との間に位置決めされ得る。電流制限アパーチャアレイ305は、一次電子源301から固定的な所定の距離離れて設置されてもよい。
【0045】
[0050] いくつかの実施形態においては、電流制限アパーチャアレイ305は均一なアパーチャのマトリクスを備えていてもよく、例えば、電流制限アパーチャアレイ305の各アパーチャ303は断面、形状、又はサイズが均一であり得る。いくつかの実施形態においては、電流制限アパーチャアレイ305は、不均一な断面、形状、又はサイズのアパーチャを含む不均一なアパーチャのマトリクスを備えていてもよい。いくつかの実施形態においては、アパーチャ303は、線形、円形、長方形、螺旋形、ジグザグ形、蛇行状、三角形パターン、又はこれらの組み合わせに配列されてもよい。電流制限アパーチャアレイ305のアパーチャはアレイを横断して無作為にレイアウトされてもよいことは理解される。アパーチャの他の適当なレイアウト及び構成も用いられ得る。
【0046】
[0051] いくつかの実施形態においては、電流制限アパーチャアレイ305は、金属、セラミック、プラスチック、合金、合成物、半導体、又は真空対応でアパーチャ303を形成するために加工され得る任意の適当な材料を備えていてもよい。電流制限アパーチャアレイ305のアパーチャ303は、フォトリソグラフィ、エンボス、超精密レーザ加工、射出成形、機械掘削、微小電気機械システム(MEMS)ベースの技術など又は任意の他の適当な技術を用いて製造され得る。
【0047】
[0052] いくつかの実施形態においては、マルチビーム装置300は、
図2のガンアパーチャプレート171のようなアパーチャプレート(図示しない)を含んでいてもよい。アパーチャプレートは、クーロン相互作用効果を低減させるために、使用されていない一次電子ビーム102の最外殻電子を遮断するように構成され得る。クーロン相互作用効果は、サンプル表面上のプローブスポットのサイズを拡大させ得るので、とりわけ検査解像度を劣化させる。
【0048】
[0053] いくつかの実施形態においては、マルチビーム装置300は、電流制限アパーチャアレイ305及びアパーチャプレートを含んでいてもよい。アパーチャプレートは一次電子源301と電流制限アパーチャアレイ305との間に設置され得る。アパーチャプレートは、アパーチャプレートの平面が一次光軸300_1に垂直になるように一次電子源301から所定の距離で設置され得る。アパーチャプレートの位置は固定されてもよいし、又はビーム電流要件に基づいて調節可能であってもよい。
【0049】
[0054] 電流制限アパーチャアレイ305は、一次電子ビーム302をビームレット302_1,302_2,及び302_3に分割することによって一次ビーム電流を低減させるように構成されていてもよい。ビームレット302_1,302_2,及び302_3の各々は、一次電子ビーム302の一次ビーム電流よりも低い、関連するビームレット電流を有し得る。関連するビームレット電流は、本明細書において用いられる場合、ビームレットを形成する電子の時間間隔当たりの数によって判定される電流として参照される。
【0050】
[0055] 戻って
図3を参照すると、マルチビーム装置300の集光レンズ310は、
図2に図示される電子ビームツール100の集光レンズ110と実質的に類似している。集光レンズ310はビームレット302_1,302_2,及び302_3をコリメートするように構成されていてもよい。ソースから到来する電子ビームは本質的に発散性であり、コリメートされない電子ビームは、望ましくなく大きなプローブスポットを生成して、その結果、取得される画像の解像度が不良になり得る。例えば、
図3において、302_1など1つ以上のビームレットは、アパーチャプレート(図示しない)又は電流制限アパーチャアレイ305を通過した後、発散するかもしれず、集光レンズ310によってコリメートされて複数の相対的に平行なビームレットになることが必要であり得る。
【0051】
[0056] マルチビーム装置300はビーム制限アパーチャアレイ320を備えていてもよい。ビームレット302_1,302_2,及び302_3は、集光レンズ310を通過した後、ビーム制限アパーチャアレイ320に向けられ得る。ビーム制限アパーチャアレイ320は、ビームレットを受けるように及びビームレットの少なくとも一部を通過させるように構成された複数のアパーチャ323を備え得る。いくつかの実施形態においては、複数のアパーチャ323の各々は、集光レンズ310からコリメートされたビームレット(例えばビームレット302_1)を受けるように整列されていてもよい。
【0052】
[0057] ビーム制限アパーチャアレイ320は、長方形、円形、三角形、正方形、蛇行状、又は螺旋形パターンに配列されたアパーチャ323のマトリクスを備えていてもよい。いくつかの実施形態においては、アパーチャ323は、ビーム制限アパーチャアレイ320を横断して無作為にレイアウトされ得る。ビーム制限アパーチャアレイ320のアパーチャ323は、均一な断面、形状、又はサイズを有し得る。
【0053】
[0058] 次に、
図4を参照する。同図は、本開示の実施形態と一致する
図1の例示的な電子ビーム検査システム100の一部であり得る例示的なマルチビーム装置400を図示している。マルチビーム装置400は、一次電子源401と、一次電子ビーム402と、複数のアパーチャ403を有する電流制限アパーチャアレイ405と、電流検出器404と、集光レンズ410と、ビーム制限アパーチャアレイ420と、対物レンズ431と、ビーム制御回路440と、電流測定回路450と、レンズ制御回路460と、ステージ制御回路470と、コントローラ480と、ステージ495上に配設されたサンプル490と、を含み得る。いくつかの実施形態においては、ビーム制御回路440、電流測定回路450、レンズ制御回路460、ステージ制御回路470、及びコントローラ480のうち1つ以上は、
図1のコントローラ40の一部であってもよい。複数のアパーチャ403の各々は、ビームレット(例えば402_1,402_2,402_3)及びサンプル490上の対応するプローブスポット(例えば402_1S,402_2S,402_3S)を創出するように構成されている。
【0054】
[0059] 一次電子源401、一次電子ビーム402、及び集光レンズ410は、それぞれ一次電子源301、一次電子ビーム302、及び集光レンズ310に類似しているか又は実質的に類似していることは理解される。電流制限アパーチャアレイ405は、アパーチャ303又は電流制限アパーチャアレイ305に実質的に類似した複数のアパーチャ403を備えていてもよい。
【0055】
[0060] 電流制限アパーチャアレイ405は、一次電子ビーム402の電流を測定するように構成された電流検出器404を含んでいてもよい。いくつかの実施形態においては、電流検出器404は、ファラデーカップ、ダイオード、ダイオードのアレイ、又はシンチレータを備え得る。電流検出の他のデバイス及び技術も採用され得ることは理解される。
【0056】
[0061] いくつかの実施形態においては、マルチビーム装置400は、電流制限アパーチャアレイ405上に配設された1つの電流検出器404を含み得る。電流検出器404は、入射する一次電子ビーム402の少なくとも一部が電流検出器404の全体をカバーするように電流制限アパーチャアレイ405上に設置されてもよい。電流検出器404に入射する一次電子ビーム402の一部の電荷(例えば電子)は、所定の時間にわたって蓄積され得る。電流検出器404に入射する一次電子ビーム402の一部の電流は、蓄積された電荷に基づき、電流測定回路450を用いて測定され得る。例えば、電子などの荷電粒子の連続ビームの場合、電子の電荷が1.6×10-19クーロンであると仮定すると、1nA(1×10-9アンペア)の測定された電流は、1秒毎に電流検出器404に入射する、60億2500万個までの電子に相当する。
【0057】
[0062] いくつかの実施形態においては、電流測定回路450は、電流検出器404と、電流測定回路450を制御するように構成されたコントローラ480と、に電気的に接続されていてもよい。電流測定回路450は、タイミング制御ユニットと、測定回路と、サンプルアンドホールド回路と、アナログ・デジタル変換器回路と、信号処理及びマルチビーム装置400の他のコンポーネントとの通信に用いられる他の関連のあるコンポーネントとを含み得る。コントローラ480は、コンピュータ、サーバ、マイクロプロセッサ、プロセッサ、又は集積回路を含む中央処理装置を備えていてもよい。いくつかの実施形態においては、コントローラ480は、
図1のコントローラ40の一部であってもよく、又はこれに実質的に類似していてもよい。
【0058】
[0063] 一次電子ビーム402の総電流又は電流密度は、ビームのうち電流検出器404に入射する部分の測定された電流又は電流密度に基づいて判定され得る。例えば、一次電子ビーム402の電流密度は、ビームのその部分の測定された電流と一次電子ビーム402に曝される電流検出器の面積とに基づいて判定され得る。
【0059】
[0064] いくつかの実施形態においては、電流検出器404は、ビーム電流又はビーム電流密度を長期間にわたって監視して、ビーム電流、ビーム電流密度、電流制限アパーチャアレイ405に対するビームの位置、ビームのサイズ、及び電流密度の均一性を含むがこれらに限定されないビームパラメータのばらつきを判定するように構成されていてもよい。例えば、電流検出器404が電流制限アパーチャアレイ405に入射する一次電子ビーム402の直径の縁部の付近に設置される場合、電流検出器404が全体を一次電子ビーム402でカバーされないようにビームの位置が小さくずれると、検出される電荷の量が減少して、測定される電流を小さくさせるかもしれない。
【0060】
[0065] マルチビーム装置400のような従来のマルチビームSEMにおいては、一次電子ビーム402は断面が円形の円錐形に発散するビームを備えていてもよく、電流制限アパーチャアレイ405はアパーチャ(例えば
図7に示されるアパーチャ703)の正方形アレイを含んでいてもよい。そのような構成においては、1つよりも多くの電流検出器404を採用するのが望ましいであろう。例えば、アパーチャの正方形アレイの各辺に沿って及び電流制限アパーチャアレイ405に入射する一次電子ビーム402の周囲によって形成される境界内に電流検出器(例えば電流検出器404又は
図7の電流検出器704)を設置することは、X方向及びY方向に沿ったビームドリフトの検出を可能にし得る。本開示の文脈において、ビームの「ドリフト」とは、ビームパラメータの、そのパラメータの意図された初期値に対する経時的な有限且つ連続的変動を指し得る。例えば、ドリフトは、一次光軸(例えば
図3の一次光軸300_1)に対して測定されたビーム位置のX座標及びY座標の変化、又は一次光軸に垂直な平面に沿ったビームコーン直径のサイズの変化を指し得る。電流測定回路450からの情報に基づいてビームパラメータのドリフトを検出及び判定すると、コントローラ480は、ビーム制御回路440を通じてソース設定を、又はレンズ制御回路460を通じてレンズ設定を、又はステージ制御回路470を通じてビームターゲット位置決めを調節することによって、一次電子ビーム402の再位置決め又は再整形を促進し得る。他の制御機構も必要に応じて適宜採用され得ることは理解される。
【0061】
[0066]
図4に図示されるビーム制御回路440は、一次電子ビーム402を制御するように構成され得る。一次電子ビームを制御することは、引出電圧を制御すること、加速電圧を制御すること、ビーム偏向電圧を制御すること、などを含み得るが、これらに限定されない。いくつかの実施形態においては、ビーム制御回路440は、コントローラ480を通じた電流測定回路450からのフィードバックに基づいて一次電子ビーム402を制御してもよい。例えば、電流測定回路480は、アパーチャアレイ405に入射するビーム電流密度のばらつきを判定して信号を生成し得る。コントローラ480は、信号処理回路(図示しない)を用いて入力信号を処理すると共に入力信号に基づいて出力信号を生成し得る。出力信号は、信号に基づいて一次電子ビーム402のビーム電流密度を調節するべく、ビーム制御回路440に伝達され得る。
【0062】
[0067]
図4に図示される測定回路450は、一次電子ビーム402又はビームレット402_1,402_2,及び402_4の電流を測定するように構成され得る。測定回路450は、電流制限アパーチャアレイ405上に配設された1つ以上の電流検出器404と電気的に接続され得る。いくつかの実施形態においては、測定回路450は、電流検出器404及びビーム制限アパーチャアレイ上に配設された電流検出器(図示しない)と電気的に接続されていてもよい。測定回路450は、電流検出器404(例えばファラデーカップ)、電流計などの電流測定機器、又は電圧計、又は電導リードから接地への抵抗器に生じた電圧を示すオシロスコープと接続された電気リード線を備えていてもよい。いくつかの実施形態においては、測定回路450はコントローラ480と情報交換をしてもよい。
【0063】
[0068] いくつかの実施形態においては、電流測定回路450は、電流検出器404を制御するように構成された切替デバイスを備えていてもよい。切替デバイスは、プログラムされた時間割に基づいて電荷を収集するように電流検出器404を制御してもよい。例えば、切替デバイスは、検出モードでは電流検出器404を50%のデューティサイクルで動作させるように構成されていてもよい。しかし、監視モードでは、電流検出器404は100%のデューティサイクルで動作されてもよい。デューティサイクルとは、ある期間のうち信号又はシステムが起動している部分を指し得る。ファラデーカップのような電流検出器は、電子を引き付ける又は跳ね返すための電圧信号を印加することによって作動又は停止され得る。
【0064】
[0069]
図4に図示されるレンズ制御回路460は、集光レンズ410又は対物レンズ431を制御するように構成され得る。レンズ制御回路460はコントローラ480と情報交換をしてもよい。いくつかの実施形態においては、集光レンズ410若しくは対物レンズ431、又は両方が、コントローラ480からの情報に基づいて調節されてもよい。例えば、レンズ制御回路460は、ビームレットがコリメートされることを保証するように集光レンズの焦点又は合焦強度を調節し得る。いくつかの実施形態においては、レンズ合焦回路450は、レンズ調節及びレンズ位置に関係する情報を記憶するためのローカルメモリのような記憶モジュールを備えていてもよい。コントローラ480は、ビーム制御回路440、測定回路450,レンズ制御回路460、又はステージ制御回路470からの情報を記憶するように構成されたグローバルメモリを備えていてもよい。
【0065】
[0070]
図4に図示されるステージ制御回路470は、サンプル490が固定設置されているステージ495の移動を制御するように構成され得る。ステージ制御回路470は、位置センサからステージ位置情報を受信するように及びステージ位置情報を処理して受信した位置情報に基づきステージ495を移動させるための信号を生成するように構成された信号処理ユニットを含み得る。いくつかの実施形態においては、ステージ495の位置は、プローブスポット402_1S,402_2S,又は402_3Sの場所に基づいて調節されてもよい。ステージ制御回路470はコントローラ480と情報交換をしてもよい。いくつかの実施形態においては、ステージ495の位置は、ステージ制御回路470によって、ビームパラメータのばらつきを補償するように調節されてもよい。
【0066】
[0071] いくつかの実施形態においては、マルチビーム装置の一次光軸400_1は、電流制限アパーチャアレイ405の幾何中心と整列し得る。1つ以上の電流検出器404が、一次電子源401に関係する情報を得るために、電流制限アパーチャアレイ405の幾何中心又はその付近に設置されてもよい。いくつかの実施形態においては、電流制限アパーチャアレイ405の中心又はその付近に設置された電流検出器404から得られた情報は、ドリフトの原因を判定するために、電流制限アパーチャアレイ405の他の場所に設置された電流検出器404から得られた情報と組み合わせて利用されてもよい。例えば、平面(例えば、電流制限アパーチャアレイ405の、一次電子ビーム402が入射すると共に電流検出器404が配設された平面)を横断する一次電子ビーム402内の電子密度のマップが、X-Y軸における電子密度勾配又は平面内の電子密度を判定するために生成されて、ウェーハが検査されている間にユーザがドリフトを補正することを可能にし得る。
【0067】
[0072] ビーム制限アパーチャアレイ420は、ビームレット402_1,402_2,及び402_3を受けるように及び対物レンズ431へと通過してサンプル490上に対応するプローブスポット402_1S,402_2S,及び402_3Sを形成する電子の数を制限するように構成された複数のアパーチャ423を含み得る。いくつかの実施形態においては、ビーム制限アパーチャアレイ420は、ビーム制限アパーチャアレイ上に配設された複数の電流検出器404(図示しない)を備えていてもよい。ビーム制限アパーチャアレイ420は、アパーチャ423の各々と関連付けられた電流検出器404を含んでいてもよい。代替的には、各電流検出器404が1つよりも多くのアパーチャ423と関連付けられていてもよい。例えば、ビーム制限アパーチャアレイ420がビーム制限アパーチャアレイ420の基板によって隔てられた2つのアパーチャ423を備えており、したがって単一のビームレット(例えばビームレット402_3)が、ビーム制限アパーチャアレイ420のその2つのアパーチャを備える部分を、隔てている基板を含めて全体的に照射する場合、及び電流検出器404が基板のアパーチャ423を隔てている部分内に設置される場合である。
【0068】
[0073] いくつかの実施形態においては、マルチビーム装置400は、電流制限アパーチャアレイ405に加え、アパーチャプレート(例えば
図2のガンアパーチャプレート171)及びビーム制限アパーチャアレイ420を含み得る。1つ以上の電流検出器404が、アパーチャプレート、ビーム制限アパーチャアレイ420、及び電流制限アパーチャアレイ405上にも採用され得る。そのような構成においては、ビーム位置、ビーム電流密度、ビーム電流密度均一性などのビームパラメータが、SEMカラムの一次電子ビーム402又はビームレット402_1,402_2,及び402_3の経路に沿った複数の場所で監視されて、ドリフトの原因を判定すると共にウェーハの検査中にユーザがドリフトを補正することを可能にし得る。
【0069】
[0074] いくつかの実施形態においては、電流検出器404は、MEMSベースのデバイス製造技術を用いて製作された1つ以上の微細加工ファラデーカップを含んでいてもよい。ファラデーカップのような電流検出器は、接地された外殻内に同軸に封入された導電円筒電荷レシーバカップ(conducting cylindrical charge receiver cup)を含んでいてもよい。内カップと外殻との間の間隙は、誘電体又はポリマ、空気、セラミック等を含むがこれらに限定されない絶縁体で充填され得る。ファラデーカップは、迷走電子を跳ね返すために、及びカップ内に収集されたイオン又は電荷の後方散乱を阻止するためにも、前方に抑制格子を含み得る。金属ワイヤなどの同軸コネクタが内カップと電気的に接続されて測定回路を形成し得る。電荷又は電子検出にファラデーカップを用いることの利点のうちいくつかは、高い精度、分析されている電荷のエネルギ及び質量からの独立性、スケーラビリティ、製造性、操作の容易性、幅広い真空レベルとの互換性、及びデータ分析の容易性であり得るが、これらに限定されない。
【0070】
[0075] 次に、
図5Aを参照する。同図は、本開示の実施形態と一致する複数のアパーチャ503及び電流検出器504を含む電流制限アパーチャアレイ505の例示的な構成を図示している。
図5Aは4つの電流検出器504-1,504-2,504-3,及び504-4を図示しているが、それより多い又は少ない電流検出器が用いられてもよい。電流制限アパーチャアレイ505は、
図4の電流制限アパーチャアレイ405に実質的に類似している。図示するように、
図5Aは、電流制限アパーチャアレイ505に入射する一次電子ビーム402の周囲を描く仮想境界515を示しており、アパーチャ503の正方形アレイと、仮想境界515の縁部に沿って、しかし仮想境界515によって表される限定された領域内に位置する、1つ以上の電流検出器504とを包含している。いくつかの実施形態においては、電流検出器504は、いずれの電流検出器もアパーチャ503のアレイを荷電粒子が通過するのを妨げないように、電流制限アパーチャアレイ505上の、仮想境界515によって表される限定された領域内のどこかに位置していてもよい。
【0071】
[0076] いくつかの実施形態においては、電流検出器(例えば
図5Aの504-1,504-2,504-3,又は504-4)は、電流制限アパーチャアレイ505の少なくとも1つのアパーチャと関連付けられていてもよい。例えば、電流制限アパーチャアレイ505がn個のアパーチャを備える場合、電流検出器の数はn-mであり得る。ただし、mは正の整数であり、m<nである。いくつかの実施形態においては、2つ以上の電流検出器が電流制限アパーチャアレイ505の1つのアパーチャと関連付けられていてもよい。例えば、電流制限アパーチャアレイ505がn個のアパーチャを備える場合、電流検出器の数はn+mであり得る。ただし、mは正の整数である。いくつかの実施形態においては、電流制限アパーチャアレイ505の各アパーチャは1つの電流検出器504と関連付けられていてもよい。そのような構成においては、アパーチャの数は電流検出器の数に等しい。
【0072】
[0077] 次に、
図5Bを参照する。同図は電流制限アパーチャアレイ505の例示的な構成を図示しており、電流制限アパーチャアレイ505の幾何中心が一次光軸500_1(
図3の一次光軸300_1及び
図4の一次光軸400_1に類似)と整列している。そのような構成においては、電流検出器504Cが中央のアパーチャ503の付近に位置していてもよい。また、1つ以上の周辺の電流検出器504も採用され得る。
【0073】
[0078] いくつかの実施形態においては、電流制限アパーチャアレイ505の各アパーチャ503は、そのアパーチャに隣接して配設された1つの関連する電流検出器504を有していてもよい。そのような構成においては、各電流検出器504が
図4の入射一次電子ビーム402に関係する情報を生成し得る。生成された情報は、
図4の電流測定回路450又はコントローラ480内のローカルメモリに記憶され得る。その情報は、例えばドリフトの原因を判定するべく、一次電子ビーム402内の電子密度のマッピングを生成するために利用され得る。
【0074】
[0079] いくつかの実施形態においては、総ビーム電流は、電流検出器(例えば504-1,504-2,504-3,及び504-4)によって収集される総ビーム電流又は検出される平均ビーム電流に基づいて判定され得る。電流制限アパーチャアレイ505の例示的な構成を図示する
図5Cに示されるように、電流制限アパーチャアレイ505に入射する一次電子ビーム402の断面を表す仮想境界515Cはx軸に沿ってずらされ、したがって電流検出器504-2の一部は一次電子ビーム402に曝されない。検出器によって収集されるビーム電流の量は、ビームのうち電流検出器に入射する部分に基づいて変動し得る。例えば、電流検出器504-2によって収集される荷電粒子の数は、電流検出器504-1,504-3,504-4のうち1つによって収集される荷電粒子の数と比較して少ないであろう。したがって、収集される総ビーム電流はより少なくなり得、一次電子ビーム402のドリフトを示す。いくつかの実施形態においては、各電流検出器504は、収集される荷電粒子の数に関係する情報を生成するように構成されていてもよい。そのような構成においては、ビームドリフトの量及び方向は、各電流検出器から受信された情報に基づいて判定され得る。
【0075】
[0080] 次に、
図5Dを参照する。同図は電流制限アパーチャアレイ505の例示的な構成を図示していて、仮想境界515Dによって表される一次電子ビーム402の直径は、
図5Aに示される仮想境界515によって表される一次電子ビーム402の直径と比較して小さく、したがって1つ以上の電流検出器504の一部は一次電子ビーム402の電子に曝されない。いくつかの実施形態においては、
図5Dに図示されるように、仮想境界515Dによって表される一次電子ビーム402は、1つ以上のアパーチャ503の全体には入射せず、プローブスポットのサイズ及び形状のばらつきを引き起こし得る。電流検出器504によって収集されるビーム電流の量は、電流制限アパーチャアレイ505に入射するビームサイズの変化を示し得る。したがって、ビームサイズの変化は、各電流検出器504によって収集される荷電粒子の数に関係する情報に基づいて判定され得る。
【0076】
[0081] 図示はしないものの、いくつかの実施形態においては、仮想境界515Dによって表される電流制限アパーチャアレイ505に入射する一次電子ビーム402は、すべてのアパーチャ503を曝露するのに十分な大きさであってもよいが、1つ以上の電流検出器504のうち一部のみが曝露されてもよいことは理解される。
【0077】
[0082]
図6は、本開示の実施形態と一致するマルチビーム装置(例えば
図3のマルチビーム装置300)においてビーム電流を測定する例示的な方法のプロセスフローチャートを表す。ビーム電流を測定する方法は、一次荷電粒子源から電子ビームなどの一次荷電粒子ビームを生成することと、一次荷電粒子ビームをアパーチャアレイに照射することと、アパーチャアレイに入射する一次荷電粒子ビームの電流を検出することと、を含み得る。
【0078】
[0083] ステップ610において、一次荷電粒子ビーム(例えば
図3の一次電子ビーム302)がアパーチャアレイ(例えば
図3の電流制限アパーチャアレイ305)に照射され得る。一次荷電粒子ビームは一次荷電粒子源(例えば
図3の一次電子源301)から生成され得る。いくつかの実施形態においては、マルチビーム装置は、一次荷電粒子源と電流制限アパーチャアレイとの間に配設されたガンアパーチャプレートを含んでいてもよい。ガンアパーチャプレートは、一次電子ビームの最外殻電子を遮断することによってビーム電流又はビーム電流密度を調節するように構成されていてもよく、それによって電流密度の均一性がより高い電子ビームを作り出す。
【0079】
[0084] 電流制限アパーチャアレイは、複数のビームレット(例えばビームレット302_1,302_2,及び302_3)を生成するように構成された複数のアパーチャ(例えば
図3のアパーチャ303)を備え得る。電流制限アパーチャアレイは、一次電子ビームの最外殻電子及び軸外ビーム電子を遮断してクーロン相互作用効果を低減させるように構成され得る。クーロン相互作用効果は、プローブスポットの各々のサイズを拡大させ、したがって検査解像度を劣化させるおそれがある。
【0080】
[0085] いくつかの実施形態においては、電流制限アパーチャアレイはアパーチャのマトリクスを備え得る。マトリクスの各アパーチャは、サイズ、形状、又は断面が均一であってもよい。アパーチャは、長方形、又は正方形、又は円形のマトリクスに配列されてもよい。アパーチャの他のレイアウトも可能である。
【0081】
[0086] ステップ620において、回路構成を含む検出器(例えば
図4の電流検出器404)が、一次電子ビームの少なくとも一部の電流を検出するように構成され得る。一次電子ビームの総電流は、ビームのうち検出器に入射する部分の検出された電流に基づいて判定され得る。いくつかの実施形態においては、検出器は、電流制限アパーチャアレイ上に配設された1つの電流検出器を備えていてもよい。ビーム電流又はビーム電流密度に関係する情報が、1つの電流検出器によって検出される電流に基づいて得られ得る。
【0082】
[0087] いくつかの実施形態においては、
図5Aから
図5Dに図示されるように、検出器は、電流制限アパーチャアレイ上に配設された複数の電流検出器(例えば
図5Aの電流検出器504)を備え得る。例えば、1つ以上の電流検出器504は、仮想境界515の縁部に沿って、しかし仮想境界515によって表される限定された領域内に位置していてもよい。いくつかの実施形態においては、電流検出器504は、いずれの電流検出器もアパーチャ503のアレイを荷電粒子が通過するのを妨げないように、電流制限アパーチャアレイ505上の、仮想境界515によって表される限定された領域内のどこかに位置していてもよい。そのような構成では、ビーム電流又はビーム電流密度に加え、ビーム位置及びビーム円錐直径も判定され得る。いくつかの実施形態においては、電流検出器が電流制限アパーチャアレイの各アパーチャに隣接して設置され得る。そのような構成では、各電流検出器から得られた情報に基づいてビーム電流密度の均一性を判定することが可能であろう。
【0083】
[0088] 電流検出器は電流測定回路(例えば
図4の電流測定回路450)に電気的に接続されていてもよい。電流検出器の各々は、電流計、電圧計、オシロスコープなどであるがこれらに限定されない電気測定デバイスに接続された電気リード線を備え得る。電流検出器は、ファラデーカップ、ダイオード、ダイオードのアレイ、又はシンチレータを備え得る。電流検出の他の手段も採用され得る。
【0084】
[0089] ステップ630において、検出器は、一次電子ビームのうち検出器に入射する少なくとも一部の電荷を蓄積するように構成され得る。一次電子ビームの電子などの電荷は検出器において所定の期間にわたって収集され得る。電流検出器は電流測定回路の切替デバイスによって制御され得る。
【0085】
[0090] 検出モードでは、切替デバイスは、50%のデューティサイクル又は75%のデューティサイクルで動作するように電流検出器を作動し得る。しかし、監視モードでは、電流検出器は100%のデューティサイクルで動作し得る。100%のデューティサイクルとは、電流検出器の連続動作を指す。
【0086】
[0091] ステップ640において、ビーム電流又はビームレット電流が蓄積された電荷に基づいて測定され得る。電流検出器は一次電子ビームの一部に曝露され得るので、ビームのうち電流検出器に入射する部分の電荷のみを蓄積し得る。総電流又は電流密度は、電子ビームの一部を表す蓄積された電荷の測定された電流、電流検出器上に入射するビームの面積、一次荷電粒子ビームの曝露の時間及び電荷のタイプに基づいて判定され得る。
【0087】
[0092] ステップ650において、(例えば
図4の電流測定回路450を用いて)ビーム電流を測定した後、ビームのパラメータを調節することができる。例えば、
図4を参照すると、コントローラ480は、ビーム制御回路440に信号を送信して一次電子ビーム402を制御するように構成されていてもよい。一次電子ビーム402を制御することは、測定されたビーム電流に基づいて1つ以上のビームパラメータを調節することを含み得る。ビームパラメータは、例えば、引出電圧を制御すること、加速電圧を制御すること、ビーム偏向電圧を制御することなどによって調節され得る。例えば、ビームが電流制限アパーチャアレイ505のアパーチャの全てを十分にカバーするのに十分な大きさではないと判定すると、一次電子ビーム402のビーム電流はサイズを拡大するように増大され得るので、全てのアパーチャを入射する一次電子ビーム402でカバーし得る。いくつかの実施形態においては、一次電子ビーム402は、例えば、全てのアパーチャが十分な電流を受け得ると共に入射する一次ビームによってカバーされ得るように一次電子ビームを偏向させることによって、測定されたビーム電流に基づいて判定されたドリフトをオフセットするように調節され得る。
【0088】
[0093] いくつかの実施形態においては、電流検出器は、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又は電流密度の均一性を含むがこれらに限定されない複数のビームパラメータを監視するように構成されていてもよい。
図5Aから
図5Dに図示されるように、電流制限アパーチャアレイ上に1つ以上の電流検出器を設置することは、電流検出器によって収集されるビーム電流の量に基づいてビーム位置を判定することを可能にし得る。例えば、ビームがある方向にずらされる場合、電子の総数と、したがって収集される電流とが、ずれの量及びずれの方向に基づいて変動し得るので、ユーザがビーム位置、ビーム電流、及びビーム電流密度を判定することが可能になる。
図5Dに図示されるように、ビーム位置は、周辺の電流検出器によって収集される電荷の量に基づいて判定され得る。
【0089】
[0094] 実施形態は更に、以下の条項を用いて記載することもできる。
1.一次荷電粒子ビームを生成するように構成された荷電粒子源と、
アパーチャアレイであって、
一次荷電粒子ビームから複数のビームレットを形成するように構成された複数のアパーチャと、
アパーチャアレイを照射する一次荷電粒子ビームの少なくとも一部の電流を検出するための回路構成を含む検出器と、
を備える、アパーチャアレイと、
を備える、マルチビーム装置。
2.検出器は、一次荷電粒子ビームの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含む、条項1の装置。
3.検出器は、一次荷電粒子ビームの少なくとも一部の電流を監視するための回路構成を含む、条項1及び2のいずれか一項の装置。
4.検出器は、一次荷電粒子ビームの少なくとも一部の位置の変化又はサイズの変化のうち少なくとも一方を検出するための回路構成を含む、条項3の装置。
5.一次荷電粒子ビームの少なくとも一部の電流は、一次荷電粒子ビームの総電流を判定するために用いられる、条項1から4のいずれか一項の装置。
6.検出器は、一次荷電粒子ビームの複数のパラメータのうち少なくとも1つの変化を検出するように構成された複数の電流検出器を備える、条項1から5のいずれか一項の装置。
7.複数のパラメータは、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又はビーム電流密度の均一性のうち少なくとも1つを備える、条項6の装置。
8.複数の電流検出器の各々は、アパーチャアレイの少なくとも1つのアパーチャと関連付けられている、条項6及び7のいずれか一項の装置。
9.複数の電流検出器の各々は、アパーチャアレイ上に配設されている、条項6から8のいずれか一項の装置。
10.検出器は、ファラデーカップ、ダイオード、ダイオードのアレイ、又はシンチレータを備える、条項1から9のいずれか一項の装置。
11.一次荷電粒子ビームを生成するように構成された荷電粒子源と、
第1の複数のアパーチャを備えると共に一次荷電粒子ビームから複数のビームレットを形成するように構成された第1のアパーチャアレイと、
第2のアパーチャアレイであって、
第2の複数のアパーチャと、
複数の電流検出器であって、複数の電流検出器の各々は第2の複数のアパーチャのうち少なくとも1つのアパーチャと関連付けられると共に、第2のアパーチャアレイを照射する複数のビームレットのうち対応するビームレットの電流を検出するための回路構成を含む、複数の電流検出器と、
を備える、第2のアパーチャアレイと、
を備える、マルチビーム装置。
12.第1のアパーチャアレイは、荷電粒子源と第2のアパーチャアレイとの間に配設される、条項11の装置。
13.第1のアパーチャアレイは、電流制限アパーチャアレイを備える、条項11及び12のいずれか一項の装置。
14.複数の電流検出器の各々は、複数のビームレットのうち対応するビームレットの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含む、条項11から13のいずれか一項の装置。
15.複数の電流検出器の各々は、対応するビームレットの電流を監視するための回路構成を含む、条項11から14のいずれか一項の装置。
16.複数の電流検出器の各々は、対応するビームレットの位置の変化又はサイズの変化のうち少なくとも一方を検出するための回路構成を含む、条項15の装置。
17.複数の電流検出器の各々は、対応するビームレットの複数のパラメータのうち少なくとも1つの変化を検出するための回路構成を含む、条項11から16のいずれか一項の装置。
18.複数のパラメータは、ビームレット位置、ビームレット直径、ビームレット電流、ビームレット電流密度、又はビームレット電流密度の均一性のうち少なくとも1つを備える、条項17の装置。
19.複数の電流検出器の各々は、ファラデーカップ、ダイオード、ダイオードのアレイ、又はシンチレータを備える、条項11から18のいずれか一項の装置。
20.一次荷電粒子ビームを生成するように構成された荷電粒子源と、
第1のアパーチャアレイであって、
一次荷電粒子ビームから複数のビームレットを形成するように構成された第1の複数のアパーチャと、
第1のアパーチャアレイを照射する一次荷電粒子ビームの少なくとも一部の電流を検出するための回路構成を含む第1の電流検出器と、
を備える、第1のアパーチャアレイと、
第2の複数のアパーチャを備える第2のアパーチャアレイであって、第2の複数のアパーチャの各々は、複数のビームレットのうち対応するビームレットの少なくとも一部を受けるように構成されている、第2のアパーチャアレイと、
を備える、マルチビーム装置。
21.第1の電流検出器は、一次荷電粒子ビームの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含む、条項20の装置。
22.第2のアパーチャアレイは、第2の複数のアパーチャのうち少なくとも1つと関連付けられた第2の電流検出器を備える、条項20及び21のいずれか一項の装置。
23.第2の電流検出器は、複数のビームレットのうち対応するビームレットの少なくとも一部の電荷を蓄積するため及び蓄積された電荷に基づいて電流を測定するための回路構成を含む、条項22の装置。
24.第1の電流検出器は、一次荷電粒子ビームの複数のパラメータのうち少なくとも1つの変化を検出するための回路構成を含む、条項20から23のいずれか一項の装置。
25.第2の電流検出器は、対応するビームレットの複数のパラメータのうち少なくとも1つの変化を検出するための回路構成を含む、条項22から24のいずれか一項の装置。
26.一次荷電粒子ビームの複数のパラメータは、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又はビーム電流密度の均一性のうち少なくとも1つを備える、条項24の装置。
27.対応するビームレットの複数のパラメータは、ビームレット位置、ビームレット直径、ビームレット電流、ビームレット電流密度、又はビームレット電流密度の均一性のうち少なくとも1つを備える、条項25の装置。
28.第1の電流検出器は、ファラデーカップ、ダイオード、ダイオードのアレイ、又はシンチレータを備える、条項20から27のいずれか一項の装置。
29.第2の電流検出器は、ファラデーカップ、ダイオード、ダイオードのアレイ、シンチレータを備える、条項22から28のいずれか一項の装置。
30.第1のアパーチャアレイは、複数の電流検出器を備える、条項20から29のいずれか一項の装置。
31.マルチビーム装置においてビーム電流を測定する方法であって、
一次荷電粒子ビームをアパーチャアレイに照射することと、
アパーチャアレイ上に位置決めされた検出器を用いて一次荷電粒子ビームの少なくとも一部の電流を検出することと、
検出された電流に基づいて、複数のビームパラメータのうち少なくとも1つのビームパラメータを調節することと、
を備える、方法。
32.一次荷電粒子ビームの少なくとも一部の電荷を蓄積することと、
蓄積された電荷に基づいてビーム電流を測定することと、
を更に備える、条項30の方法。
33.一次荷電粒子ビームの少なくとも一部のビーム電流を監視することを更に備える、条項30及び31のいずれか一項の方法。
34.一次荷電粒子ビームの一部の複数のパラメータのうち少なくとも1つの変化を検出することを更に備える、条項30から32のいずれか一項の方法。
35.複数のパラメータは、ビーム位置、ビーム直径、ビーム電流、ビーム電流密度、又はビーム電流密度の均一性のうち少なくとも1つを備える、条項33の方法。
36.一次荷電粒子ビームの少なくとも一部の測定された電流に基づいて一次荷電粒子ビームの総電流を判定することを更に備える、条項30から34のいずれか一項の方法。
37.検出器は、複数の電流検出器を備え、
複数の電流検出器の各々は、アパーチャアレイの少なくとも1つのアパーチャと関連付けられている、条項30から35のいずれか一項の方法。
38.マルチビーム装置の1つ以上のプロセッサによって実行可能でありマルチビーム装置にマルチビーム装置においてビーム電流を測定するための方法を実施させる一組の命令を記憶する非一時的コンピュータ可読媒体であって、方法は、
アパーチャアレイへの一次荷電粒子ビームの照射を制御することと、
検出器によって検出された一次荷電粒子ビームの少なくとも一部の電流に基づいて一次荷電粒子ビームの電流を判定することと、
を備える、非一時的コンピュータ可読媒体。
39.マルチビーム装置の1つ以上のプロセッサによって実行可能な一組の命令は、マルチビーム装置に更に、
一次荷電粒子ビームの少なくとも一部の電荷を蓄積するように検出器を作動させることと、
蓄積された電荷に基づいて一次荷電粒子ビームの少なくとも一部の電流を測定することと、
測定された電流に基づいて、複数のビームパラメータのうち少なくとも1つのビームパラメータを調節することと、
を実施させる、条項37の非一時的コンピュータ可読媒体。
【0090】
[0095] 画像検査、画像取得、ステージの位置決め、ビーム合焦、電場調節、ビーム屈曲などを実行するべくコントローラ(例えば
図1のコントローラ40)のプロセッサのための命令を記憶する非一時的コンピュータ可読媒体が提供されてもよい。非一時的な媒体の一般的な形態は、例えば、フロッピーディスク、フレキシブルディスク、ハードディスク、ソリッドステートドライブ、磁気テープ、又は任意の他の磁気データ記録媒体、コンパクトディスク読み出し専用メモリ(CD-ROM)、任意の他の光学データ記録媒体、穴のパターンを有する任意の物理的媒体、ランダムアクセスメモリ(RAM)、プログラム可能読み出し専用メモリ(PROM)、及び消去可能プログラム可能読み出し専用メモリ(EPROM)、FLASH-EPROM又は任意の他のフラッシュメモリ、不揮発性ランダムアクセスメモリ(NVRAM)、キャッシュ、レジスタ、任意の他のメモリチップ又はカートリッジ、及び同じもののネットワーク化されたバージョンを含む。
【0091】
[0096] 本開示の実施形態が上記に記載され添付図面に図示されたそっくりそのままの構造に限定されないこと、及びその範囲を逸脱することなく様々な修正及び変更がなされ得ることは理解されるであろう。本開示を様々な実施形態との関連で説明してきたが、当業者には、本明細書の検討及び本明細書に開示される発明の実施から、本発明の他の実施形態が明らかになるであろう。本明細書及び実施例は例示的なものとしてのみ考えられることが意図されており、本発明の真の範囲及び精神は以下の特許請求の範囲によって示される。
【0092】
[0097] 上記の記載は、例示的であることを意図されたものであって、限定的であることは意図されていない。したがって、下記の特許請求の範囲を逸脱することなく記載されたように変更が行われ得ることは当業者には明らかであろう。