(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-04-03
(45)【発行日】2023-04-11
(54)【発明の名称】液浸リソグラフィのためのイメージセンサ
(51)【国際特許分類】
G03F 7/20 20060101AFI20230404BHJP
G02B 1/18 20150101ALI20230404BHJP
G02B 5/22 20060101ALI20230404BHJP
G02B 5/18 20060101ALI20230404BHJP
G02B 1/10 20150101ALI20230404BHJP
【FI】
G03F7/20 521
G03F7/20 501
G02B1/18
G02B5/22
G02B5/18
G02B1/10
(21)【出願番号】P 2021560966
(86)(22)【出願日】2020-04-07
(86)【国際出願番号】 EP2020059859
(87)【国際公開番号】W WO2020212196
(87)【国際公開日】2020-10-22
【審査請求日】2021-10-25
(32)【優先日】2019-04-16
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】504151804
【氏名又は名称】エーエスエムエル ネザーランズ ビー.ブイ.
(74)【代理人】
【識別番号】100105924
【氏名又は名称】森下 賢樹
(74)【代理人】
【識別番号】100134256
【氏名又は名称】青木 武司
(72)【発明者】
【氏名】バナジー、ニルパム
(72)【発明者】
【氏名】リッケ、サンドロ
(72)【発明者】
【氏名】ベッカーズ、ヨハン、フランシスクス、マリア
(72)【発明者】
【氏名】ドンケルブローク、アラン、ヨハネス
(72)【発明者】
【氏名】グリム、ダニエル
(72)【発明者】
【氏名】ブラッケージ、ピーター
(72)【発明者】
【氏名】ラティー、ティム
(72)【発明者】
【氏名】ティルケ、マーティン
【審査官】田中 秀直
(56)【参考文献】
【文献】国際公開第2018/114229(WO,A1)
【文献】国際公開第2016/093087(WO,A1)
【文献】特開2013-025065(JP,A)
【文献】特開2014-216356(JP,A)
【文献】国際公開第2018/166738(WO,A1)
【文献】特開2010-004040(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/20
G02B 1/00-1/18
G02B 5/18
G02B 5/22
(57)【特許請求の範囲】
【請求項1】
格子と、
放射を吸収するように構成される格子上の吸収層と、
イメージセンサの上面に設けられる疎液性コーティングと、
吸収層と疎液性層の間に設けられ、吸収層より液浸液に対する反応性が低い保護層と、
を備え、
保護層は、吸収層により近いより稠密な副層、および、疎液性コーティングにより近いより粒状の副層を備える、
液浸リソグラフィのためのイメージセンサ。
【請求項2】
保護層は酸化物によって形成される、請求項1に記載のイメージセンサ。
【請求項3】
保護層は無機物によって形成される、請求項1または2に記載のイメージセンサ。
【請求項4】
保護層はSiO
2によって形成される、請求項1から3のいずれかに記載のイメージセンサ。
【請求項5】
保護層は光学的に少なくとも半透明である、請求項1から4のいずれかに記載のイメージセンサ。
【請求項6】
格子は突出部を備え、
保護層は、突出部の頂部に垂直な第1厚さ、および、突出部の側部に垂直な第2厚さを持ち、
第1厚さは、少なくとも第2厚さの半分、かつ、多くとも第2厚さの二倍である、
請求項1から5のいずれかに記載のイメージセンサ。
【請求項7】
保護層と疎液性コーティングの間に接着促進材が設けられる、請求項1から6のいずれかに記載のイメージセンサ。
【請求項8】
格子を提供することと、
放射を吸収するように構成される吸収層を格子上に形成することと、
吸収層より液浸液に対する反応性が低い保護層を吸収層上に形成することと、
イメージセンサの上面を形成する疎液性コーティングを形成することと、
表面の粗さを高めるために保護層の表面に不活性イオンを当てることと、
を備える液浸リソグラフィのためのイメージセンサを製造する方法。
【請求項9】
格子を提供することと、
放射を吸収するように構成される吸収層を格子上に形成することと、
吸収層より液浸液に対する反応性が低い保護層を吸収層上に形成することと、
イメージセンサの上面を形成する疎液性コーティングを形成することと、
を備え、
疎液性コーティングを形成するステップは、
より低い圧力環境下でより接着性の高い副層を形成することと、
続いてより高い圧力環境下でより接着性の低い副層を形成することと、
を備える、
液浸リソグラフィのためのイメージセンサを製造する方法。
【請求項10】
保護層を形成するステップは、格子の突出部の頂部および側部に沿って実質的に一様な厚さを有する保護層を形成するために、原子層堆積を使用することを備える、請求項8
または9に記載の方法。
【請求項11】
保護層を形成するステップは、原子層堆積された材料上に更なる材料をスパッタリングすることを備える、請求項
10に記載の方法。
【請求項12】
疎液性コーティングに対する接着性を高めるためにプラズマによって保護層の表面を活性化することを備える、請求項8から11のいずれかに記載の方法。
【請求項13】
吸収層はスパッタリングによって形成される、請求項8から12のいずれかに記載の方法。
【請求項14】
請求項1から7のいずれかに記載のイメージセンサを備える、液浸リソグラフィのための基板テーブル。
【請求項15】
請求項14に記載の基板テーブルと、
基板テーブルによって保持される基板上にパターニングデバイスからのパターンを投影するように構成される投影システムと、
投影システムと基板の間の空間に液浸液を提供するように構成される液体供給システムと、
を備えるリソグラフィ装置。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願へのクロスリファレンス]
本出願は、2019年4月16日に出願された欧州出願19169598.0号の優先権を主張し、その全体が参照により本書に援用される。
【0002】
[技術分野]
本発明は、液浸リソグラフィのためのイメージセンサ、基板テーブル、リソグラフィ装置、イメージセンサを製造する方法に関する。
【背景技術】
【0003】
リソグラフィ装置は、基板上に所望のパターンを適用するように構成された装置である。リソグラフィ装置は例えば集積回路(IC)の製造に使用されうる。リソグラフィ装置は、例えば、基板(例えばウェーハ)上に提供される放射感応性材料(レジスト)の層上に、パターニングデバイス(例えばマスク)のパターン(しばしば「デザインレイアウト」または「デザイン」ともいわれる)を投影してもよい。
【0004】
基板上にパターンを投影するためにリソグラフィ装置は電磁放射を使用してもよい。この放射の波長は、基板上にパターン形成されるフィーチャの最小サイズを決定する。現在使用されている典型的な波長は、365nm(i線)、248nm、193nm、13.5nmである。4nmから20nmまでの範囲内、例えば6.7nmまたは13.5nmの波長を有する極端紫外線(EUV)放射を使用するリソグラフィ装置は、例えば193nmの波長の放射を使用するリソグラフィ装置より小さいフィーチャを基板上に形成するために使用されうる。
【0005】
液浸リソグラフィ装置では、液体が液体閉じ込め構造によって液浸空間に閉じ込められる。液浸空間は、パターンを結像させる投影システムの最後の光学要素、および、パターンが転写される基板または基板が載置される基板テーブルの間にある。液体は、流体シールによって液浸空間に閉じ込められてもよい。液体閉じ込め構造は、例えば液浸空間における液体の流れおよび/または位置の制御を支援するために、ガスの流れを生成または使用してもよい。ガスの流れは、液体を液浸空間に閉じ込めるためのシールの形成を支援してもよい。基板テーブルの少なくとも一部は、最後の光学要素に対する基板テーブルの動きによる液体損失を低減するために、限られた親水性を有するコーティングによって覆われる。基板テーブルに統合されるセンサの少なくとも一部は、液体損失および残りの液体の蒸発による熱負荷を低減するために、限られた親水性を有するコーティングによって覆われる。
【0006】
液浸リソグラフィ装置は、基板を支持する基板テーブルに統合されるいくつかのセンサに依存する。これらのセンサは以下のために使用される。
・参照フレームに対する基板/基板テーブルのアライメント
・レンズの(再)調整、セットアップ、熱補償
・レチクル(マスク)の熱補償
センサのマークは、基板テーブルに組み込まれた透明(石英)プレート上に形成される薄膜層の積層構造に統合され、以下の機能を担う。
・DUVのための空間透過型フィルタ(ILIAS(Integrated Lens Interferometry At Scanner)センサ、パラレルILIASセンサ(PARIS)、透過型イメージセンサ「TIS」のセンサ機能)
・可視放射「VIS」、近赤外線「NIR」、中赤外線「MIR」のための空間反射型フィルタ(SMASH(Smart Alignment Sensor Hybrid)センサ機能)
【0007】
積層構造の頂面(マークがない領域)からの反射は、レベルセンサのために使用される。
【発明の概要】
【発明が解決しようとする課題】
【0008】
上方の層は、例えば深紫外放射の露光によって劣化する。コーティングまたは層の劣化を防止するのは困難な場合がある。
【0009】
コーティングまたは層の劣化は、基板またはセンサで結像するためのビーム経路に入り込んで結像誤差を引き起こす望ましくないパーティクルを生成しうることや、コーティングまたは層が一旦劣化すると、コーティングまたは層の存在によって実現されていた所望の属性がもはや存在しないという事実を含む多くの理由で望ましくない。
【0010】
劣化に対する高い耐性を持つ吸収層のある液浸リソグラフィ装置のためのイメージセンサを提供するのが望ましい。
【課題を解決するための手段】
【0011】
一態様では、格子と、放射を吸収するように構成される格子上の吸収層と、イメージセンサの上面に設けられる疎液性コーティングと、吸収層と疎液性層の間に設けられ、吸収層より液浸液に対する反応性が低い保護層と、を備える液浸リソグラフィのためのイメージセンサが提供される。
【0012】
一態様では、格子を提供することと、放射を吸収するように構成される吸収層を格子上に形成することと、吸収層より液浸液に対する反応性が低い保護層を吸収層上に形成することと、イメージセンサの上面を形成する疎液性コーティングを形成することと、を備える液浸リソグラフィのためのイメージセンサを製造する方法が提供される。
【図面の簡単な説明】
【0013】
発明の実施形態は、対応する参照符号が対応する部分を示す模式的な図面を参照して、例示的に記述される。
【0014】
【0015】
【
図2】リソグラフィ装置で使用される液体閉じ込め構造を模式的に示す。
【0016】
【0017】
【
図4】本発明のイメージセンサの一部の拡大断面図である。
【0018】
【0019】
【
図6】比較例のイメージセンサの一部の拡大断面図である。
【0020】
【
図7】比較例のイメージセンサの劣化を示す平面図である。
【発明を実施するための形態】
【0021】
本書において、「放射」および「ビーム」の用語は、紫外線放射(例えば、365、248、193、157、126nmの波長を有するもの)を含む全てのタイプの電磁放射を包含するために使用される。
【0022】
本書で使用される「レチクル」、「マスク」、「パターニングデバイス」の用語は、入射する放射ビームに、基板のターゲット部分に生成されるパターンに対応するパターン形成された断面を付与するために使用されうる一般的なパターニングデバイスを指すものと広義に解釈される。「ライトバルブ」の用語も、この文脈で使用されうる。典型的なマスク(透過型または反射型、バイナリ型、位相シフト型、ハイブリッド型等)に加え、他のこのようなパターニングデバイスの例はプログラマブルミラーアレイおよびプログラマブルLCDアレイを含む。
【0023】
図1は実施形態のリソグラフィ装置を模式的に示す。装置は以下の構成を備える。
・オプションで、放射ビームB(例えばUV放射またはDUV放射)を調整するように構成される照明システム(イルミネータ)IL
・パターニングデバイス(例えばマスク)MAを支持するように構成され、所定のパラメータに従ってパターニングデバイスMAを正確に位置決めするように構成される第1ポジショナPMに接続される支持構造(例えばマスクテーブル)MT
・所定のパラメータに従ってテーブルの表面、例えば基板Wの表面を正確に位置決めするように構成される第2ポジショナPWに接続され、一または複数のセンサを支持するセンサテーブル、または、基板(例えばレジストで覆われた製品基板)Wを保持するように構成される基板テーブルまたはウェーハテーブルWT等の支持テーブル
・パターニングデバイスMAによって放射ビームBに付与されたパターンを基板Wのターゲット部分C(例えばダイの部分、一つのダイ、複数のダイを含む)上に投影するように構成される投影システム(例えば屈折投影レンズシステム)PS
【0024】
リソグラフィ装置は、投影システムPSと基板Wの間の液浸空間を満たすために、基板Wの少なくとも一部が超純水(UPW)のような水等の比較的高い屈折率を有する液浸液によって覆われるタイプでもよい。液浸液は、パターニングデバイスMAと投影システムPSの間等のリソグラフィ装置内の他の空間に適用されてもよい。液浸技術は、投影システムの開口数を高めるために使用されうる。「液浸」の用語は、基板W等の構造が液浸液に浸らなければならないことを意味するのではなく、露光中に液浸液が投影システムPSと基板Wの間に位置することのみを意味する。投影システムPSから基板Wへのパターン形成された放射ビームBの経路の全体が液浸液を通過する。投影システムPSの最後の光学要素と基板Wの間に液浸液を提供するために、液体閉じ込め構造が投影システムPSの最後の光学要素と投影システムPSに対向するステージまたはテーブルの対向面の間の液浸空間の境界の少なくとも一部に沿って延びる。
【0025】
稼働中、照明システムILは、例えばビームデリバリシステムBDを介して、放射源SOからの放射ビームを受け取る。照明システムILは、放射の方向付け、成形、制御等のために、屈折型、反射型、磁気型、電磁気型、静電型等の様々なタイプの光学コンポーネント、および/または、他のタイプの光学コンポーネント、これらの任意の組合せを含んでもよい。照明システムILは放射ビームBを調整するために使用され、その断面における所望の空間または角度の強度分布がパターニングデバイスMAの平面上で実現される。
【0026】
用語「投影システム」PSは、使用される露光放射、および/または、液浸液または真空の使用等の他の要素にとって適切な、屈折型、反射型、反射屈折型、アナモルフィック型、磁気型、電磁気型および/または静電型の光学システム、これらの任意の組合せを含む様々なタイプの投影システムを包含するものと広義に解釈されるべきである。用語「投影レンズ」は、より包括的な用語「投影システム」と同義に解釈されうる。
【0027】
リソグラフィ装置は、二つ以上の支持テーブル、例えば、二つ以上の支持テーブル、または、一または複数の支持テーブルおよび一または複数のクリーニング、センサまたは測定テーブルの組合せを有するタイプでもよい。例えば、リソグラフィ装置は、投影システムの露光側に位置する二つ以上のテーブルを備えるマルチステージ装置であり、各テーブルが一または複数の物体を備えるおよび/または保持する。例えば、一または複数のテーブルは、放射感応性基板を保持してもよい。例えば、一または複数のテーブルは、投影システムからの放射を測定するためのセンサを保持してもよい。例えば、マルチステージ装置は、放射感応性基板を保持するように構成される第1テーブル(すなわち支持テーブル)および放射感応性基板を保持するように構成されない第2テーブル(以下では、測定、センサおよび/またはクリーニングテーブル等を包括的かつ例示的に指すものとする)を備える。第2テーブルは、放射感応性基板と異なる一または複数の物体を備えてもよいおよび/または保持してもよい。このような一または複数の物体は、投影システムからの放射を測定するセンサ、一または複数のアライメントマーク、および/または、クリーニングデバイス(例えば、液体閉じ込め構造をクリーニングするもの)から選択される一または複数のものを含んでもよい。
【0028】
稼働中、放射ビームBは、支持構造(例えばマスクテーブル)MT上に保持されるパターニングデバイス(例えばマスク)MA上のパターン(デザインレイアウト)に入射し、パターニングデバイスMAによってパターン付与される。パターニングデバイスMAを通過した放射ビームBは、投影システムPSによって基板Wのターゲット部分C上に照射される。第2ポジショナPWおよび位置センサIF(例えば干渉デバイス、リニアエンコーダ、二次元エンコーダ、静電容量センサ)によって、例えば異なるターゲット部分Cを放射ビームBの経路上の正確な照射位置に位置決めするために、基板テーブルWTは正確に駆動されうる。同様に、第1ポジショナPMおよび他の位置センサ(
図1では明示されない)は、放射ビームBの経路に対してパターニングデバイスMAを正確に位置決めするために使用されうる。パターニングデバイスMAおよび基板Wは、パターニングデバイスアライメントマークM1、M2および基板アライメントマークP1、P2を使用して位置決めされてもよい。図示の基板アライメントマークP1、P2は専用のターゲット部分を占めるが、これらはターゲット部分Cの間の空間に位置してもよい(これらはスクライブラインアライメントマークとして知られている)。
【0029】
コントローラ500は、リソグラフィ装置の全体の動作を制御し、特に以下で記述される動作プロセスを実行する。コントローラ500は、中央処理装置、揮発性および不揮発性ストレージ、キーボードやスクリーン等の一または複数の入力および出力デバイス、一または複数のネットワーク接続、リソグラフィ装置の様々な部分に対する一または複数のインターフェースを備える適切にプログラムされた汎用コンピュータによって実現される。と理解される 制御コンピュータとリソグラフィ装置の間の一対一の関係は不要であると理解される。一つのコンピュータは複数のリソグラフィ装置を制御しうる。ネットワークに接続された複数のコンピュータは、一つのリソグラフィ装置を制御するために使用されうる。コントローラ500は、リソグラフィ装置が一部を形成するリソセルまたはクラスタにおいて、一または複数の関係付けられた処理デバイスおよび基板ハンドリングデバイスを制御するように構成されてもよい。コントローラ500は、リソセルまたはクラスタの監視制御システムおよび/またはファブ(製造工場)の全体制御システムの下位ユニットとして構成されてもよい。提案される局所液浸システムでは、液体閉じ込め構造12が、投影システムPSの最後の光学要素100と投影システムPSに対向するステージまたはテーブルの対向面の間の液浸空間10の境界の少なくとも一部に沿って延びる。テーブルは稼働中に駆動され、ほとんど静止しないため、テーブルの対向面という表現が用いられる。一般的に、テーブルの対向面は、基板W、基板テーブルWT(例えば基板Wを囲む基板テーブル)、または両方の表面である。このような配置を
図2に示す。以下で記述される
図2の配置は、前述の
図1のリソグラフィ装置に適用されてもよい。
【0030】
図2は、液体閉じ込め構造12を模式的に示す。液体閉じ込め構造12は、投影システムPSの最後の光学要素100と基板テーブルWTまたは基板Wの間の液浸空間10の境界の少なくとも一部に沿って延びる。一実施形態では、シールが液体閉じ込め構造12と基板W/基板テーブルWTの表面の間に形成される。シールは、ガスシール16(ガスシールを有するこのようなシステムは欧州特許出願公報番号EP-A-1,420,298に開示されている)または液体シール等の非接触シールでもよい。
【0031】
液体閉じ込め構造12は、液体等の液浸流体を供給し、液浸空間10に閉じ込めるように構成される。液浸流体は、液体開口の一つ、例えば開口13aを通じて液浸空間10内に導入される。液浸流体は、液体開口の一つ、例えば開口13bを通じて除去されてもよい。液浸流体は、少なくとも二つの液体開口、例えば開口13aおよび開口13bを通じて液浸空間10内に導入されてもよい。いずれの液体開口が、液浸流体を供給するために使用され、オプションで液浸液を除去するために使用されるかは、基板テーブルWTの移動方向によって変わりうる。
【0032】
液浸流体は、稼働中に液体閉じ込め構造12の底面とテーブルの対向面(すなわち、基板Wの表面、および/または、基板テーブルWTの表面)の間に形成されるガスシール16によって、液浸空間10に閉じ込められてもよい。ガスシール16のガスは、液体閉じ込め構造12と基板Wおよび/または基板テーブルWTの間の隙間に、ガスインレット15を介して所定圧力下で提供される。ガスはガスアウトレット14と関係付けられたチャネルを介して取り出される。ガスインレット15での過圧、ガスアウトレット14での真空レベルおよび隙間の幾何学的形状は、液浸流体を閉じ込める内側への高速ガス流が発生するように調整される。液体閉じ込め構造12と基板Wおよび/または基板テーブルWTの間の液浸流体にガスが加える力によって、液浸流体が液浸空間10に閉じ込められる。液浸流体の境界にメニスカス320が形成される。このようなシステムは、米国特許出願公報番号US2004-0207824に開示されている。他の液体閉じ込め構造12を本発明の実施形態で使用してもよい。
【0033】
石英基板、放射のビームとの相互作用のための一または複数の下層、例えば水が少なくとも75°好ましくは少なくとも90°の後退接触角を示す限られた親水性を有する外層(疎液性コーティング、疎水性コーティングまたはコーティングとも呼ばれる)を備えるイメージセンサを参照して、本発明が以下で詳述される。
【0034】
図3は、本発明に係るイメージセンサ17の断面図である。
図3に示されるように、一実施形態ではイメージセンサ17が基板プレート200を備える。一実施形態では、基板プレート200は石英(SiO
2)プレートである。イメージセンサ17のマークは、基板プレート200の頂部上に形成される薄膜の積層構造300に統合される。基板プレート200は基板テーブルWTに統合される。
【0035】
薄膜の積層構造300は任意の数の層を備えてもよい。
図3に示されるように、一実施形態では積層構造300は少なくとも四つの層を備える。層310、320および330は、上方からイメージセンサ17上に投影されるDUV放射を吸収するための層、かつ、基板プレート200の下方の変換層800によって放射されうる基板プレート200の下方からの放射を吸収するための層である。変換層800は、DUV放射が照射されると可視光を放射するように構成される。層310、320および330は、イメージセンサ17の格子を形成する。
【0036】
図3に示されるように、一実施形態ではイメージセンサ17が吸収層350を備える。吸収層350は、層310、320および330によって形成される格子上に形成される。一実施形態では、吸収層350は放射を吸収するように構成される。一実施形態では、吸収層350は、VISおよび/またはNIRおよび/またはMIR放射を反射する。
【0037】
稼働中のイメージセンサ17は、液体閉じ込め構造12の下方を通過するように構成される。イメージセンサ17が液体閉じ込め構造12の下方を通過する時、イメージセンサ17は液浸液に覆われる。イメージセンサ17は液体閉じ込め構造12の下方を通過した後に液浸液から隔離される。
【0038】
図3に示されるように、一実施形態ではイメージセンサ17が疎液性コーティング400を備える。疎液性コーティング400はイメージセンサ17の上面に設けられる。疎液性コーティング400は、イメージセンサ17上または積層構造300上に残される液体を低減するために、イメージセンサ17および/またはイメージセンサ17の周りに適用される。
【0039】
リソグラフィ装置におけるイメージセンサ17の使用の説明に続いて、これらの層の目的および製造が詳細に記述される。イメージセンサは以下の機能を担う。
・深紫外線(DUV)のための空間透過型フィルタ(PARIS、ILIAS、TIS機能)
・VIS、NIR、MIRのための空間反射型フィルタ(SMASH機能)
【0040】
また、積層構造300の頂面(マークがない領域)からの反射は、他のセンサによって使用されうる。
【0041】
図3に示されるように、一実施形態ではイメージセンサ17が保護層500を備える。保護層500は、吸収層350と疎液性層400の間に設けられる。保護層500は、吸収層350を保護するためのものである。一実施形態では、保護層500は吸収層350より液浸液(例えば水)に対する反応性が低い。保護層500は液浸液が吸収層350と接触することを防ぐ。
【0042】
疎液性コーティング400はDUV放射の露光によって収縮および劣化する。これは疎液性コーティング400における穴の発生に繋がりうる。液体閉じ込め構造12からの液浸液は、疎液性コーティング400の下方の層と接触しうる。保護層500が設けられない場合、液浸液が疎液性コーティング400に発生した穴を通じて吸収層350と接触しうる。液浸液が吸収層350に接触すると、吸収層350は酸化等によって劣化しうる。
【0043】
吸収層350が酸化すると、層310、320および330によって形成される格子のパターンが変化しうる。これはオーバーレイの不正確性の増加および/または生産性の低下をもたらしうる。加えて、吸収層350の酸化は、疎液性コーティング400のイメージセンサ17からの剥離を引き起こしうる。これは、リソグラフィ装置におけるフォーカスの正確性を低下させ、リソグラフィプロセスの歩留まりを低下させうる。発明の一実施形態では、オーバーレイ性能の向上および/または生産性の向上および/またはフォーカスの改善および/または歩留まりの向上を達成することが期待される。
【0044】
図7は、比較例のイメージセンサ17の平面図である。平面視の
図7には疎液性コーティング400が剥離した剥離領域20が見られる。これは下方の積層構造300の残りを露出させる。
図7は吸収層350のために使用された材料の酸化物が形成された酸化領域19も示す。発明の実施形態は、
図7に示される剥離領域20および酸化領域19を低減することが期待される。
【0045】
一実施形態では、保護層500が酸化物によって形成される。酸化物によって形成される保護層500を提供することによって、保護層500は液浸液に対する反応性がより低くなる。これは、液浸液に接触した時の保護層500の安定性がより高くなることを意味する。
【0046】
一実施形態では、保護層500は無機物によって形成される。一実施形態では、保護層500はSiO2によって形成される。SiO2は無機酸化物材料である。あるいは、保護層500は、アルミニウム酸化物またはジルコニウム酸化物等の他の材料によって形成されてもよい。
【0047】
一実施形態では、保護層500は、疎液性コーティング400と同様の光学特性を有する。これは、イメージセンサ17の光学性能に対する保護層500の影響を低減する。一実施形態では、保護層500は光学的に少なくとも半透明である。保護層500は半透明または透明でもよい。
【0048】
図3に示されるように、一実施形態では格子が穴101によって分離された突出部を備える。
図4は、本発明の実施形態に係るイメージセンサ17の部分のイメージである。
図4に示されるように、一実施形態では保護層500が突出部の頂部に垂直な第1厚さt
tを持つ。保護層500は突出部の側部に垂直な第2厚さt
sを持つ。一実施形態では、第1厚さt
tは第2厚さt
sの少なくとも半分である。一実施形態では、第1厚さt
tは第2厚さt
sの多くとも二倍である。第1厚さt
tおよび第2厚さt
sは互いに比較的同様の大きさである。例えば、第1厚さt
tは、第2厚さt
sより多くとも20%、オプションで多くとも10%大きくてもよい。一実施形態では、第1厚さt
tは、第2厚さt
sの少なくとも80%、オプションで少なくとも90%である。
【0049】
これは保護層500が実質的にコンフォーマルにコーティングされることを意味する。これは回折格子フィーチャのエッジが一様に覆われることを担保する。
【0050】
保護層500は吸収層350上に形成される。一実施形態では、保護層500を形成するステップが、原子層堆積(ALD)を使用することを備える。これによって、保護層500が、層310、320および330によって形成される格子の突出部の頂部および側部に沿って実質的に一様な厚さを持つ。ALDは、吸収層350上に極めてコンフォーマルな保護層500のコーティングを実現するために使用されうる。
【0051】
一実施形態では、保護層500を形成するステップは、原子層堆積された材料上に更なる材料をスパッタリングすることを更に備える。このように、保護層500を形成するプロセスはマルチステップの積層プロセスでもよい。このようなマルチステッププロセスによって、保護層500の微細構造がより正確に制御される。
【0052】
ALDは、吸収層350により近い(例えば隣接する)より稠密な副層を形成するために使用されうる。続くスパッタリングは、疎液性コーティング400により近い(例えば隣接する)より粒状の副層を形成するために使用されうる。より稠密な副層は、吸収層350のより良い保護を提供するように構成される。より粒状の副層は、疎液性コーティング400に対するより良い接着を実現するように構成される。これは、より粒状の副層が、ALDを使用して形成されたより稠密な副層と比べて、より大きな総表面積(粒状故の粗さによる)の表面を有するためである。
【0053】
図5は、比較例のイメージセンサ17の断面図である。
図5に示される比較例のイメージセンサ17は、疎液性コーティング400と吸収層350の間に保護層500を有しない。
【0054】
図6は、このような比較例のイメージセンサ17の部分の拡大イメージである。
図6に示されるように、疎液性コーティング400を通って吸収層350に接触する水によって、チタン酸化物のストリーク18が形成される。これに対して、
図4では保護層500が提供されるため、チタン酸化物が形成されない。
【0055】
一実施形態では、疎液性コーティング400と保護層500の間の接着強度は、疎液性コーティング400と吸収層350の間の接着強度より低い。
【0056】
一実施形態では、イメージセンサ17を製造する方法は、疎液性コーティング400に対する接着性を高めるための保護層500の表面21のプラズマ活性化を備える。酸素プラズマ等の反応性イオンプラズマが、保護層500の表面21を処理するために使用されうる。表面処理は、疎液性コーティング400の形成より前に実行されうる。プラズマ活性化は、例えば表面21上にラジカルを形成することによって、保護層500の表面21を活性化する。これによって、保護層500と疎液性コーティング400の間の接着性が高められる。
【0057】
一実施形態では、接着促進材が保護層500と疎液性コーティング400の間に提供される。接着促進材は、疎液性コーティング400と保護層500の間の化学結合をブリッジするように構成される。考えられる接着促進材の例はHMDSおよびOTSを含む。他の接着促進材が使用されてもよい。
【0058】
一実施形態では、イメージセンサ17を製造する方法が、表面21の粗さを高めるために保護層500の表面21に不活性イオンを当てることを備える。これによって表面21の総表面積が大きくなり、疎液性コーティング400に対する接着性が高まる。保護層500の表面粗さは、非反応性エッチングを使用することによって調整されうる。保護層500の表面21は、表面21上の山と谷の間の表面21に垂直な方向の距離が多くとも10nmであるような粗さを有してもよい。
【0059】
一実施形態では、疎液性コーティング400を形成するステップが、より低い圧力環境でより接着性の高い副層を形成することと、続いてより高い圧力環境でより接着性の低い副層を形成することと、を備える。疎液性コーティング400を形成するための成膜パラメータは、保護層500との結合を強めるために最適化されうる。一実施形態では、より接着性の高い副層は多くとも10nmの厚さを持つ。疎液性コーティング400の厚さの残りは、より接着性の低い副層によって形成される。成膜パラメータを変えることによって、疎液性コーティング400は、保護層500に対してより良く接着する部分から、イメージセンサ17上に残る液体を低減する機能をより良く果たす部分に遷移するように形成されうる。
【0060】
一実施形態では、吸収層350がスパッタリングによって形成される。スパッタリングは、例えばALDに比べて低い温度で実行されうる。より低い温度の使用によって、製造中のイメージセンサ17がより良く保護される。
【0061】
一実施形態では、保護層500はアモルファスである。保護層500をアモルファスにすることによって、保護層500のイメージセンサ17に対する光学的な干渉を低減できる。例えば、アモルファス層は複屈折性ではない。
【0062】
イメージセンサ17は基板テーブルWT上にマウントされうる。イメージセンサ17は基板テーブルWTと一体的に構成されてもよい。
【0063】
イメージセンサ17を製造する一つの方法が
図3を参照して以下に記述される。
1)総厚100nm程度(例えば50-200nm)のBlue Chrome(CrO
x-Cr-CrO
x)の連続的な層310、320、330が石英基板プレート200上に形成される。Blue Chrome310、320、330は、基板プレート200下に配置される変換層800からの可視光の二次反射を最小化することが求められる。この変換層800はDUVを、センサによって検知される可視光に変換する。投影システムPSからのDUVは、Blue Chrome310、320、330にパターン形成された穴101を通過する。CrO
xの組成は、Cr
2O
3、CrO
xN
yまたはCrO
xN
yC
zである。Blue Chrome310、320、330内の層は、10-80nmの厚さのCrO
xからなる下層310、5-60nmの厚さのCrからなる中層320、20-100nmの厚さのCrO
xからなる上層330である。
2)PARIS/ILIAS/TIS/SMASHマークのパターン(一次元または二次元格子)および他のマークがリソグラフィによって形成され、石英表面(エッチストップとして機能する)が露出するまでBlue Chrome310、320、330がエッチングされる。スルーホール101がパターンを形成する。
3)総厚が最大300nmまたは100nm未満のTiNの吸収層350が、Blue Chrome310、320、330および基板プレート200の頂部上にパターンに従って形成される(例えばスパッタリングによって)。この吸収層350は、VIS/NIR/MIRの反射による測定のためのマークを提供し、これらのマークによって石英(VIS/IR/DUV)を通じた光の漏れが防がれる。この層は放射ブロッキング層ともいえる。
4)総厚が100nmのSiO
2の保護層500が吸収層350上に形成される。前半の保護層500はALDによって形成されうる。後半の保護層500はスパッタリングによって形成されうる。この保護層500は吸収層350を液浸液から保護する。
5)限られた親水性を有する疎液性コーティング400(Lipocer(登録商標)等の好ましくはメチル基を持つSi-O-Si-Oバックボーンを有する無機ポリマー等)が保護層500の頂部上に適用される。以下ではLipocerが言及される(しかしこれに限定する趣旨ではない)。例えば、疎液性コーティング400は、任意の無機および/または有機シリコンポリマーを備えてもよい。ポリマーは、メチル、エチル、プロピル、フェニル、ビニルから選択される一または複数の基を有してもよい。Lipocerは保護層500上に形成され、イメージセンサ17を有する基板テーブルWTが液体閉じ込め構造12の下方から移動する際の水の損失を最小化する。外層(Lipocer)の厚さは典型的には1-300nmであるが、それより大きく例えば最大500nmでもよい。
6)測定手順のために高いDUVドーズが予想されるセンサプレート上のいくつかのスポットでは、Lipocerが設けられない、例えば除去される(典型的にスポットは約100μm四方であるが、より大きく例えば2cm四方でもよい)。
【0064】
いくつかのスポットではTiNも除去されることで、DUVがBlue Chrome310、320、330の穴101を通じて石英プレート200の表面に到達する。このようなスポットは通常TIS、ILIASおよびPARIS(
図3参照)上にある。
【0065】
外層400が例えばTiNの吸収層350上に形成される例について前述したが、同等の特性を有する任意の他の窒化物が使用されてもよい(例えばCrN、AlTiN、TiAlNおよびZrN等)。
【0066】
イメージセンサおよび限られた親水性を有する疎液性の層またはコーティングに関して発明を前述した。しかし、発明は他のセンサやセンサとは異なる物体(例えばレンズ要素、基板テーブル等)の表面に適用されうる。
【0067】
リソグラフィ装置の用途に関してICの製造に具体的に言及したが、本リソグラフィ装置は他の用途、例えば、集積光学システム、磁気ドメインメモリのためのガイダンスおよび検出パターン、フラットパネルディスプレイ、液晶ディスプレイ(LCD)、薄膜磁気ヘッド等の製造等に用いてもよいと理解される。当業者は、このような代替的な用途の文脈において、「ウェーハ」または「ダイ」の用語は、それぞれより包括的な用語「基板」または「ターゲット部分」と同義に解釈されうると理解する。ここでの基板は、例えば、トラック(典型的には、基板にレジスト層を適用して露光レジストを現像するツール)、計測ツールおよび/または検査ツールにおいて、露光の前または後に処理されてもよい。適用可能な場合、本開示はこのような他の基板処理ツールに適用されうる。更に、例えば複数層のICを生成するために基板は複数回に亘って処理されてもよく、「基板」の用語は複数の処理済の層を既に含む基板を指してもよい。
【0068】
「放射」および「ビーム」の用語は、紫外線(UV)放射(例えば約365、248、193、157または126nmの波長を有するもの)を含む全てのタイプの電磁放射を包含する。
【0069】
「レンズ」の用語は、文脈が許す限り、屈折型、反射型、磁気型、電磁気型および静電型の光学コンポーネントを含む様々なタイプの光学コンポーネントの任意の一つまたは組合せを指してもよい。
【0070】
具体的な実施形態を前述したが、発明の実施形態は記述されたものと異なる態様で実施されてもよいと理解される。以上の記述は例示であり、本発明を限定する趣旨ではない。従って、本発明の範囲から逸脱することなく、記述された発明に変更を加えうることは当業者にとって自明である。