IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社堀場製作所の特許一覧

特許7287957放射線検出装置、コンピュータプログラム及び位置決め方法
<>
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図1
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図2
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図3
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図4
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図5
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図6
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図7A
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図7B
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図8
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図9
  • 特許-放射線検出装置、コンピュータプログラム及び位置決め方法 図10
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-05-29
(45)【発行日】2023-06-06
(54)【発明の名称】放射線検出装置、コンピュータプログラム及び位置決め方法
(51)【国際特許分類】
   G01N 23/223 20060101AFI20230530BHJP
   G01N 23/2252 20180101ALI20230530BHJP
   G01B 11/00 20060101ALI20230530BHJP
   H01J 37/22 20060101ALI20230530BHJP
   H01J 37/252 20060101ALI20230530BHJP
【FI】
G01N23/223
G01N23/2252
G01B11/00 H
H01J37/22 502L
H01J37/22 502H
H01J37/252 A
【請求項の数】 11
(21)【出願番号】P 2020525505
(86)(22)【出願日】2019-06-06
(86)【国際出願番号】 JP2019022580
(87)【国際公開番号】W WO2019240011
(87)【国際公開日】2019-12-19
【審査請求日】2022-03-22
(31)【優先権主張番号】P 2018114908
(32)【優先日】2018-06-15
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000155023
【氏名又は名称】株式会社堀場製作所
(74)【代理人】
【識別番号】100114557
【弁理士】
【氏名又は名称】河野 英仁
(74)【代理人】
【識別番号】100078868
【弁理士】
【氏名又は名称】河野 登夫
(72)【発明者】
【氏名】青山 朋樹
【審査官】比嘉 翔一
(56)【参考文献】
【文献】特開2010-071969(JP,A)
【文献】特開2004-012238(JP,A)
【文献】特開2009-300232(JP,A)
【文献】特開2003-331769(JP,A)
【文献】特開2014-038034(JP,A)
【文献】特開2007-178370(JP,A)
【文献】特開平09-061383(JP,A)
【文献】特開2004-191183(JP,A)
【文献】特開2016-099308(JP,A)
【文献】特開2011-149893(JP,A)
【文献】特開2004-069407(JP,A)
【文献】米国特許出願公開第2018/0128756(US,A1)
【文献】中国特許出願公開第107356619(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N23/00-23/2276
G01B15/00-15/08
H01J37/00-37/295
JSTPlus/JMEDPlus/JST7580(JDream3)
(57)【特許請求の範囲】
【請求項1】
試料保持部と、該試料保持部が保持する試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置において、
前記試料上の一の部分に焦点を合わせるべく、前記光学顕微鏡の焦点位置と前記試料の位置との関係を調整する調整部と、
前記試料上での前記焦点を合わせるべき位置を変更する変更部と、
該変更部により変更された前記試料上の位置において、前記調整部により焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を作成する撮影部と、
調整された前記焦点位置に応じて、所定の基点から前記試料の表面までの距離を算出する算出部と、
前記撮影部が作成した複数の部分画像を組み合わせた試料画像を作成する試料画像作成部とを備え
前記試料画像作成部は、前記算出部が算出した前記距離を前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成すること
を特徴とする放射線検出装置。
【請求項2】
前記試料上での放射線が照射される位置を順次変更し、放射線の検出結果を前記試料上の各部分に関連付けた放射線分布を作成する放射線分布作成部と、
前記放射線分布に基づいて、前記試料上での元素の分布を表した元素分布を作成する元素分布作成部と
を更に備えることを特徴とする請求項1に記載の放射線検出装置。
【請求項3】
前記試料上の各部分において放射線が照射される部分の大きさを利用して、前記放射線分布に対するデコンボリューションを行う補正部を更に備えること
を特徴とする請求項2に記載の放射線検出装置。
【請求項4】
前記元素分布作成部は、前記試料の表面に交差する高さ方向の元素の分布を含んだ前記元素分布を作成し、
前記元素分布に基づいて、前記試料の表面に交差する面内での元素の分布を表した前記試料の断面図を表示する表示部を更に備えること
を特徴とする請求項2又は3に記載の放射線検出装置。
【請求項5】
前記調整部は、前記焦点位置を調整した上で、前記一の部分に前記焦点が合わない場合に、前記一の部分に前記焦点を合わせるべく前記試料保持部を移動させること
を特徴とする請求項1乃至4のいずれか一つに記載の放射線検出装置。
【請求項6】
前記算出部が算出した前記距離に基づいて、前記試料上で放射線が照射される部分の大きさを特定する特定部を更に備えること
を特徴とする請求項1乃至5のいずれか一つに記載の放射線検出装置。
【請求項7】
前記試料画像作成部は、前記距離と前記特定部が特定した前記大きさとを前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成し、
前記試料画像と、前記試料上の各部分に関連付けた前記距離及び前記大きさとを表示する表示部を更に備えること
を特徴とする請求項6に記載の放射線検出装置。
【請求項8】
試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置を、コンピュータに制御させるコンピュータプログラムにおいて、
コンピュータに、
前記試料上の一の部分に焦点を合わせるべく、前記光学顕微鏡の焦点位置と前記試料の位置との関係を調整するステップと、
前記試料上での前記焦点を合わせるべき位置を変更するステップと、
該ステップにより変更された前記試料上の位置において、焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を作成するステップと、
調整された前記焦点位置に応じて、所定の基点から前記試料の表面までの距離を算出するステップと、
作成した複数の部分画像を組み合わせた試料画像を作成するステップとを含み、
前記試料画像を作成するステップでは、算出した前記距離を前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成する
処理を実行させることを特徴とするコンピュータプログラム。
【請求項9】
試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置からデータを取得するコンピュータに処理を実行させるコンピュータプログラムにおいて、
コンピュータに、
前記試料上の複数の位置において、焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を、複数組み合わせることにより、試料画像を作成するステップを含み、
前記ステップでは、所定の基点から前記試料の表面までの距離を前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成する
処理を実行させることを特徴とするコンピュータプログラム。
【請求項10】
コンピュータに、
前記試料上で放射線が照射される部分の大きさを特定するステップと、
前記試料上での放射線が照射される位置を順次変更し、前記試料上の各部分に放射線の検出結果及び特定した前記大きさを関連付けた放射線分布を作成するステップと、
前記試料上の各部分に関連付けられた前記大きさを利用して、前記放射線分布に対するデコンボリューションを行うステップと
を更に含む処理を実行させることを特徴とする請求項8又は9に記載のコンピュータプログラム。
【請求項11】
試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置を用いて、前記試料上で放射線を照射すべき部分の位置決めを行う方法において、
前記試料上の一の部分に焦点を合わせるべく、前記光学顕微鏡の焦点位置と前記試料の位置との関係を調整し、
前記試料上での前記焦点を合わせるべき位置を順次変更し、
変更された前記試料上の位置において、焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を作成し、
調整された前記焦点位置に応じて、所定の基点から前記試料の表面までの距離を算出し、
作成した複数の部分画像を組み合わせた試料画像を作成し、
前記試料画像は、算出した前記距離を前記試料上の複数の部分の夫々に関連付けた情報を含んでおり、
前記試料画像に基づいて、前記試料上で放射線を照射すべき部分の位置決めを行うこと
を特徴とする位置決め方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、試料の観察と、試料への放射線照射と、試料から発生する放射線の検出とを行う放射線検出装置、コンピュータプログラム及び位置決め方法に関する。
【背景技術】
【0002】
X線分析は、電子線又はX線等の放射線を試料へ照射し、試料から発生する特性X線を検出し、特性X線のスペクトルから試料に含有される成分を分析する手法である。X線分析の一例として、試料へ照射する放射線をX線とした蛍光X線分析がある。また、X線検出装置は、試料を観察するための光学顕微鏡を備えている。光学顕微鏡により撮影された試料の画像を用いて、試料上で放射線を照射される被照射部分の位置決めが行われる。特許文献1には、レーザを利用して放射線の照射方向に沿った高さ方向の試料の表面の位置を測定するX線検出装置が開示されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2011-47898号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
X線分析で用いられる試料が凹凸を有している場合は、試料上の位置に応じて高さ方向の試料の表面の位置が変化し、光学顕微鏡の焦点が部分的に試料の表面に合わないことがある。光学顕微鏡の焦点が試料の表面に合わない場合、試料の画像にぼやけが発生する。このため、試料が凹凸を有している場合は、試料の画像にぼやけが発生し、試料の画像に基づいて精度良く被照射部分の位置決めを行うことが困難である。特許文献1に開示されたX線検出装置は、被照射部分の高さ方向の位置を測定できるものの、横方向の被照射部分の位置決めの精度を向上させることはできない。また、特許文献1に開示されたX線検出装置は、レーザに対する安全機構が必要となり、コストが高いという問題がある。
【0005】
本発明は、斯かる事情に鑑みてなされたものであって、その目的とするところは、レーザを用いずに位置決めの精度を向上させることができる放射線検出装置、コンピュータプログラム及び位置決め方法を提供することにある。
【課題を解決するための手段】
【0006】
本発明に係る放射線検出装置は、試料保持部と、該試料保持部が保持する試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置において、前記試料上の一の部分に焦点を合わせるべく、前記光学顕微鏡の焦点位置と前記試料の位置との関係を調整する調整部と、前記試料上での前記焦点を合わせるべき位置を変更する変更部と、該変更部により変更された前記試料上の位置において、前記調整部により焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を作成する撮影部と、調整された前記焦点位置に応じて、所定の基点から前記試料の表面までの距離を算出する算出部と、前記撮影部が作成した複数の部分画像を組み合わせた試料画像を作成する試料画像作成部とを備え、前記試料画像作成部は、前記算出部が算出した前記距離を前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成することを特徴とする。
【0007】
本発明に係る放射線検出装置は、前記試料上での放射線が照射される位置を順次変更し、放射線の検出結果を前記試料上の各部分に関連付けた放射線分布を作成する放射線分布作成部と、前記放射線分布に基づいて、前記試料上での元素の分布を表した元素分布を作成する元素分布作成部とを更に備えることを特徴とする。
【0008】
本発明に係る放射線検出装置は、前記試料上の各部分において放射線が照射される部分の大きさを利用して、前記放射線分布に対するデコンボリューションを行う補正部を更に備えることを特徴とする。
【0009】
本発明に係る放射線検出装置は、前記元素分布作成部は、前記試料の表面に交差する高さ方向の元素の分布を含んだ前記元素分布を作成し、前記元素分布に基づいて、前記試料の表面に交差する面内での元素の分布を表した前記試料の断面図を表示する表示部を更に備えることを特徴とする。
【0010】
本発明に係る放射線検出装置は、前記調整部は、前記焦点位置を調整した上で、前記一の部分に前記焦点が合わない場合に、前記一の部分に前記焦点を合わせるべく前記試料保持部を移動させることを特徴とする。
【0012】
本発明に係る放射線検出装置は、前記算出部が算出した前記距離に基づいて、前記試料上で放射線が照射される部分の大きさを特定する特定部を更に備えることを特徴とする。 本発明に係る放射線検出装置は、前記試料画像作成部は、前記距離と前記特定部が特定した前記大きさとを前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成し、前記試料画像と、前記試料上の各部分に関連付けた前記距離及び前記大きさとを表示する表示部を更に備えることを特徴とする。
【0013】
本発明に係るコンピュータプログラムは、試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置を、コンピュータに制御させるコンピュータプログラムにおいて、コンピュータに、前記試料上の一の部分に焦点を合わせるべく、前記光学顕微鏡の焦点位置と前記試料の位置との関係を調整するステップと、前記試料上での前記焦点を合わせるべき位置を変更するステップと、該ステップにより変更された前記試料上の位置において、焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を作成するステップと、調整された前記焦点位置に応じて、所定の基点から前記試料の表面までの距離を算出するステップと、作成した複数の部分画像を組み合わせた試料画像を作成するステップとを含み、前記試料画像を作成するステップでは、算出した前記距離を前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成する処理を実行させることを特徴とする。
【0014】
本発明に係るコンピュータプログラムは、試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置からデータを取得するコンピュータに処理を実行させるコンピュータプログラムにおいて、コンピュータに、前記試料上の複数の位置において、焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を、複数組み合わせることにより、試料画像を作成するステップを含み、前記ステップでは、所定の基点から前記試料の表面までの距離を前記試料上の複数の部分の夫々に関連付けた情報を含んだ前記試料画像を作成する処理を実行させることを特徴とする。
【0015】
本発明に係るコンピュータプログラムは、コンピュータに、前記試料上で放射線が照射される部分の大きさを特定するステップと、前記試料上での放射線が照射される位置を順次変更し、前記試料上の各部分に放射線の検出結果及び特定した前記大きさを関連付けた放射線分布を作成するステップと、前記試料上の各部分に関連付けられた前記大きさを利用して、前記放射線分布に対するデコンボリューションを行うステップとを更に含む処理を実行させることを特徴とする。
【0016】
本発明に係る位置決め方法は、試料を観察するための光学顕微鏡と、該光学顕微鏡により観察される試料へ放射線を照射する照射部と、放射線の照射により前記試料から発生した放射線を検出する検出部とを備える放射線検出装置を用いて、前記試料上で放射線を照射すべき部分の位置決めを行う方法において、前記試料上の一の部分に焦点を合わせるべく、前記光学顕微鏡の焦点位置と前記試料の位置との関係を調整し、前記試料上での前記焦点を合わせるべき位置を順次変更し、変更された前記試料上の位置において、焦点を合わせるべく調整が行われた状態で前記光学顕微鏡を用いて撮影した部分画像を作成し、調整された前記焦点位置に応じて、所定の基点から前記試料の表面までの距離を算出し、作成した複数の部分画像を組み合わせた試料画像を作成し、前記試料画像は、算出した前記距離を前記試料上の複数の部分の夫々に関連付けた情報を含んでおり、前記試料画像に基づいて、前記試料上で放射線を照射すべき部分の位置決めを行うことを特徴とする。
【0017】
本発明においては、放射線検出装置は、試料上の複数の部分の夫々について光学顕微鏡の焦点を合わせて当該部分を撮影した部分画像を、複数組み合わせることにより、試料上の複数の部分に光学顕微鏡の焦点が合った試料画像を作成し、表示する。試料が凹凸を有している場合であっても、ぼやけが発生することが少なく、試料上の複数の部分が鮮明に表示される。使用者は、表示された試料画像を確認しながら、試料上で放射線を照射して分析を行うべき部分の位置決めを行うことができる。
【0018】
また、本発明においては、放射線検出装置は、試料上の各部分に放射線を照射し、各部分から発生した放射線を検出する。放射線検出装置は、試料上の各部分に放射線の検出結果と放射線の照射される大きさとを関連付けた放射線分布を作成する。また、放射線検出装置は、放射線分布に基づいて元素分布を作成する。試料上で放射線が照射される部分の大きさは、放射線分布及び元素分布の空間分解能に関係する。試料上で放射線が照射された各部分の大きさが記録されていることによって、放射線分布及び元素分布の空間分解能の把握が可能である。
【0019】
また、本発明においては、放射線検出装置は、試料上で放射線が照射された各部分の大きさを利用して放射線分布のデコンボリューションを行い、デコンボリューション後の放射線分布に基づいて元素分布を作成する。試料上の位置に応じて異なる放射線の照射された部分の大きさを利用することにより、適切にデコンボリューションが行われる。このため、試料に含まれる元素の位置及び量を可及的に正確に反映した元素分布が得られる。
【0020】
また、本発明においては、放射線検出装置は、試料中の高さ方向の元素分布を作成し、高さ方向に平行な面内での元素の分布を表した断面図を表示する。断面図により、試料内での各元素の高さ方向の分布を把握することが可能となる。
【0021】
また、本発明においては、放射線検出装置は、部分画像を作成する際に、光学顕微鏡の焦点位置を調整した上でも試料の表面に焦点が合わない場合、試料を高さ方向に移動させる。光学顕微鏡の焦点位置を調整可能な範囲を長大化させずに、光学顕微鏡の焦点を試料の表面に合わせる調整が可能である。
【0022】
また、本発明においては、放射線検出装置は、光学顕微鏡の焦点位置を調整することにより、所定の基点から試料上の複数の部分の表面までの距離を算出する。この距離は、試料上の位置に応じて異なる。使用者は、この距離を参照しながら、位置決めを行うことができる。このため、試料上で放射線を照射して分析を行うべき部分の高さ方向の位置を調整することが可能となる。
【0023】
また、本発明においては、放射線検出装置は、所定の基点から試料の表面までの距離に応じて、試料上で放射線が照射される部分の大きさを特定する。この大きさは、試料上の位置に応じて異なる。試料上のどの程度の範囲に放射線が照射され、試料上のどの程度の範囲から放射線が発生するのかが把握される。使用者は、この大きさを参照しながら、位置決めを行うことができる。このため、試料上で放射線を照射して分析を行うべき部分の大きさを調整することが可能となる。
【発明の効果】
【0024】
本発明にあっては、試料の詳細が鮮明に表示され、使用者は、試料上で放射線を照射して分析を行うべき部分の位置決めを精度良く行うことが可能である。従って、レーザを用いることなく、放射線検出装置での位置決めの精度が向上する等、本発明は優れた効果を奏する。
【図面の簡単な説明】
【0025】
図1】X線検出装置の構成を示すブロック図である。
図2】X線光学素子及びミラーの位置を変更したX線検出装置の構成を示すブロック図である。
図3】制御部の構成例を示すブロック図である。
図4】試料の位置と試料上でのX線の照射径との関係を示す模式図である。
図5】位置テーブルの内容例を示す概念図である。
図6】実施形態1に係るX線検出装置により、試料上でX線分析を行うべき部分の位置決めを行う処理の手順を示すフローチャートである。
図7A】表示部が表示する試料画像の例を示す模式図である。
図7B】表示部が表示する試料画像の例を示す模式図である。
図8】実施形態2に係るX線検出装置により元素分布を作成する処理の手順を示すフローチャートである。
図9】試料上での二次元の元素分布を表す画像の例を示す模式図である。
図10】試料の断面図の例を示す模式図である。
【発明を実施するための形態】
【0026】
以下本発明をその実施の形態を示す図面に基づき具体的に説明する。
(実施形態1)
図1は、X線検出装置1の構成を示すブロック図である。X線検出装置は、蛍光X線分析装置であり、放射線検出装置に対応する。X線検出装置は、試料6が載置される試料台16と、X線を放射するX線源11と、X線源11が放射するX線を収束して試料6へ照射するX線光学素子12と、X線を検出する検出部13とを備えている。試料台16は試料保持部に対応する。試料保持部は、載置以外の方法で試料を保持する形態であってもよい。X線源11は、例えばX線管である。X線光学素子12は、例えば、入射されたX線を内部で反射させながら導光するX線導管を用いたモノキャピラリレンズ、又は複数のX線導管を用いたポリキャピラリレンズである。X線光学素子12は、X線源11が放射したX線を入射され、X線を収束する。X線光学素子12が収束したX線は、試料台16に載置された試料6へ照射される。X線源11及びX線光学素子12は、照射部に対応する。試料6のX線を照射された部分では、蛍光X線が発生する。検出部13は、試料6から発生した蛍光X線を検出し、検出した蛍光X線のエネルギーに比例した信号を出力する。図1では、試料6に照射されるX線及び蛍光X線を矢印で示す。
【0027】
また、X線検出装置は、試料6を照明する図示しない光源と、ミラー14と、光学顕微鏡15と、X線光学素子12及びミラー14の位置を切り替える切替ステージ17とを備えている。切替ステージ17は、X線光学素子12及びミラー14が取り付けられており、移動することによって、X線光学素子12及びミラー14の位置を変更することができる。切替ステージ17は、図1に示す如く、X線光学素子12を、照射位置に位置決めすることができる。照射位置は、X線源11からのX線がX線光学素子12へ入射され、X線光学素子12から出射したX線が試料台16に載置された試料6へ照射されることになる位置である。
【0028】
図2は、X線光学素子12及びミラー14の位置を変更したX線検出装置1の構成を示すブロック図である。切替ステージ17は、X線光学素子12及びミラー14の位置を変更し、ミラー14を撮影位置に位置決めすることができる。撮影位置は、撮影位置にあるときのミラー14の光軸と照射位置にあるときのX線光学素子12の光軸とがほぼ同軸になる位置である。撮影位置にあるときのミラー14は、X線の照射軸上に位置する。試料6を照明した光は試料6で反射する。図2に示す如く、撮影位置にあるミラー14は、試料6で反射した光を反射し、光学顕微鏡15へ入射させる。図2では、光を矢印で示す。
【0029】
光学顕微鏡15は撮像素子を有している。ミラー14が撮影位置にある状態で、光学顕微鏡15は入射された光を検出し、試料6を撮影する。光学顕微鏡15の焦点は固定されている。即ち、光軸に沿った光学顕微鏡15から焦点までの距離は一定である。光学顕微鏡15は、移動することによって、X線検出装置内での焦点位置を変更することができる。なお、光学顕微鏡15は、光学系を含んでおり、光学系を調整することによって焦点位置を変更することができる形態であってもよい。また、X線検出装置は、レンズ等の光学系を更に備えていてもよい。
【0030】
X線検出装置1は、真空箱2及び試料箱3を備えている。真空箱2及び試料箱3は連結しており、真空箱2は試料箱3の上側に配置されている。X線光学素子12、検出部13及びミラー14は、夫々に、少なくとも一部分が真空箱2内に配置されている。X線源11及び光学顕微鏡15は、一部又は全部が真空箱2内に配置されていてもよく、真空箱2の外部に配置されていてもよい。試料台16は試料箱3内に配置されている。試料台16に載置された試料6は試料箱3内に配置される。
【0031】
真空箱2と試料箱3との境界には、窓部21が設けられている。窓部21は、平板状であり、真空箱2の底面の一部と試料箱3の上面の一部とを含んでいる。X線光学素子12は、X線の出射口を窓部21に対向させて配置されている。試料台16は、試料6が載置される載置面を窓部21に対向させて配置されている。試料台16に載置された試料6は、表面が窓部21に対向するように配置される。窓部21は、X線及び光を通過させることができる。例えば、窓部21は、透明であり、X線及び蛍光X線を通過させるための貫通孔が形成されている。
【0032】
光学顕微鏡15は、試料6で反射された光が窓部21を通り、撮影位置にあるミラー14で反射し、光学顕微鏡15へ入射するように、配置されている。X線源11及び検出部13は、X線が照射位置にあるX線光学素子12及び窓部21を通って試料6へ照射され、試料6で発生した蛍光X線が窓部21を通って検出部13へ入射するように、配置されている。撮影位置にあるときのミラー14の光軸と照射位置にあるときのX線光学素子12の光軸とはほぼ同軸であるので、光学顕微鏡15は、試料6のX線が照射されるべき被照射部分を撮影する。
【0033】
X線検出装置1は、更に、真空箱2の内部を真空にする図示しない排気部を備えている。X線検出装置1は、真空箱2及び試料箱3の内部を真空にする形態であってもよく、真空箱2の内部を真空にして試料箱3の内部は真空にしない形態であってもよい。窓部21に貫通孔が形成されており、かつ試料箱3の内部は真空にしない形態では、貫通孔をX線透過膜で塞いだ状態で真空箱2の内部が真空にされる。少なくとも真空箱2の内部が真空にされた状態で、X線の照射及び蛍光X線の検出が行われる。
【0034】
検出部13には、検出部13が出力した信号を処理する信号処理部42が接続されている。信号処理部42は、検出部13が出力した各値の信号をカウントし、検出された蛍光X線のエネルギーとカウント数との関係、即ち蛍光X線スペクトルを生成する処理を行う。
【0035】
光学顕微鏡15には、光学顕微鏡15の焦点位置を調整する焦点位置調整部41が連結されている。焦点位置調整部41は、光学顕微鏡15を移動させることによってX線検出装置内での光学顕微鏡15の焦点位置を調整する。焦点位置調整部41は、例えばステッピングモータを用いて構成されている。焦点位置調整部41は、試料台16に載置された試料6の表面に焦点が合うように、光学顕微鏡15の焦点位置を調整する。なお、焦点位置調整部41は、光学顕微鏡15が含んでいる光学系を調整することによって光学顕微鏡15の焦点位置を調整する形態であってもよい。
【0036】
X線検出装置1は、液晶ディスプレイ等の表示部43を備えている。表示部43は、光学顕微鏡15が撮影した試料6の画像を表示する。使用者は、表示部43に表示された試料6の画像を視認することにより、試料6を観察することができる。試料台16には、高さ方向、即ち窓部21に対して接離する方向と、横方向、即ち高さ方向に交差する方向とに試料台16を駆動させる第1駆動部44が連結されている。高さ方向は、試料台16に載置された試料6の表面に交差する方向である。第1駆動部44は、例えばステッピングモータを用いて構成されている。第1駆動部44の動作により、試料台16に載置された試料6は移動する。切替ステージ17には、切替ステージ17を移動させる第2駆動部45が連結されている。第2駆動部45の動作により、X線光学素子12及びミラー14の位置が変更される。なお、X線検出装置1は、表示部43以外に、紙等の記録用シートへの印刷、又は記録媒体への電子データの記録等の、データ出力のための機能を備えていてもよい。
【0037】
X線源11、光学顕微鏡15、焦点位置調整部41、信号処理部42、表示部43、第1駆動部44及び第2駆動部45は、制御部5に接続されている。図3は、制御部5の構成例を示すブロック図である。制御部5は、パーソナルコンピュータ等のコンピュータを用いて構成されている。制御部5は、演算を行うCPU(Central Processing Unit )51と、演算に伴って発生する一時的な情報を記憶するRAM(Random Access Memory)52と、光ディスク等の記録媒体50から情報を読み取るドライブ部53と、不揮発性の記憶部54と、使用者が操作することによる各種の処理指示等の情報が入力される入力部55とを備えている。記憶部54は例えばハードディスクである。入力部55は例えばキーボード又はポインティングデバイスである。また、制御部5は、X線源11、光学顕微鏡15、焦点位置調整部41、信号処理部42、表示部43、第1駆動部44及び第2駆動部45が接続されたインタフェース部56を備えている。
【0038】
CPU51は、記録媒体50からコンピュータプログラム541をドライブ部53に読み取らせ、読み取ったコンピュータプログラム541を記憶部54に記憶させる。CPU51は、必要に応じてコンピュータプログラム541を記憶部54からRAM52へロードし、ロードしたコンピュータプログラム541に従って制御部5に必要な処理を実行する。なお、制御部5はドライブ部53を備えていなくてもよい。コンピュータプログラム541は、図示しない外部のサーバ装置から制御部5へダウンロードされて記憶部54に記憶されてもよい。また、制御部5は、外部からコンピュータプログラム541を受け付けるのではなく、コンピュータプログラム541を記録した記録媒体を内部に備えた形態であってもよい。
【0039】
制御部5は、X線源11、光学顕微鏡15、焦点位置調整部41、信号処理部42、表示部43、第1駆動部44及び第2駆動部45の動作を制御する。信号処理部42は、生成した蛍光X線スペクトルを示すデータを制御部5へ出力する。制御部5は、信号処理部42からのデータを入力され、入力されたデータが示す蛍光X線スペクトルに基づいて、試料6に含まれる元素の定性分析又は定量分析を行う。また、制御部5は、使用者からの処理指示を入力部55に入力され、入力された処理指示に応じてX線検出装置1の各部を制御する。表示部43は、信号処理部42が生成した蛍光X線スペクトル又は制御部5による分析結果を表示してもよい。また、制御部5は複数のコンピュータで構成されていてもよい。例えば、制御部5は、各部の動作を制御するためのコンピュータと、分析処理を行うためのコンピュータとで構成されていてもよい。
【0040】
図4は、試料6の位置と試料6上でのX線の照射径との関係を示す模式図である。照射径は、試料6上で放射線が照射される部分の直径である。図4中には、試料台16に載置された試料6と、窓部21とを示している。窓部21の試料台16に対向した面を窓部21の下面と言う。図4に示した例では、X線光学素子12が照射位置にあるときに試料6へ照射されるX線の中心軸とミラー14が撮影位置にあるときに光学顕微鏡15へ入射する光の光軸とは一致しており、この軸を一点鎖線で示している。また、X線を実線矢印で示している。X線光学素子12で収束されたX線は、一旦最小に収束された後、徐々に広がる。このため、試料6の表面の位置に応じて、試料6の表面でのX線の照射径は変化する。照射径は、試料6上で放射線が照射される部分の大きさに対応する。試料6の位置を表すための距離の基点を窓部21の下面とする。
【0041】
X線光学素子12の焦点位置では、X線が最小に収束され、照射径は最小になる。照射径が最小である場合は、試料6の蛍光X線分析を行う際の空間分解能が最も細かくなる。このため、蛍光X線分析は照射径が最小になる状態で行われることが望ましい。X線が最小に収束される位置は、X線光学素子12の焦点位置であり、X線光学素子12によって定まっている。即ち、窓部21の下面から照射径が最小になる位置までの距離である最適距離D2は、予め定まっている。
【0042】
試料台16は、制御部5に制御される第1駆動部44により駆動され、高さ方向に所定の標準位置に配置される。光学顕微鏡15が所定の位置にある場合の光学顕微鏡15の焦点位置である基準焦点位置F2は、所定の位置にある。図4には、表面に基準焦点位置F2がある試料の表面を破線で示している。窓部21の下面から基準焦点位置F2までの距離である基準距離D3は、所定の距離である。一般的に、基準焦点位置F2は実際の試料6の表面上には無く、窓部21の下面から試料6のX線が照射される被照射部分までの距離D1は基準距離D3と異なる。距離D1は、窓部21の下面から試料6の表面までの距離である。試料6に照射されるX線の照射径D5は、距離D1に応じた値となる。また、試料6が凹凸を有する場合は、被照射部分の試料6上での位置に応じて、窓部21の下面から試料6の被照射部分までの距離D1とX線の照射径D5とは変化する。
【0043】
実際の試料6の被照射部分に焦点を合わせたときの光学顕微鏡15の焦点位置F1は、基準焦点位置F2とは異なる。焦点位置調整部41は、試料6の被照射部分に焦点を合わせるべく、光学顕微鏡15の焦点位置を自動で調整することができる。焦点位置を調整する際に焦点位置調整部41が光学顕微鏡15を移動させた距離に基づいて、調整された焦点位置F1から基準焦点位置F2までの距離D4が得られる。また、この焦点位置F1から基準焦点位置F2までの距離D4と基準距離D3とに基づいて、窓部21の下面から試料6の被照射部分までの距離D1を計算することができる。
【0044】
窓部21の下面から試料6の被照射部分までの距離D1と試料6に照射されるX線の照射径D5との関係は、予め記録されている。記憶部54は、距離D1及び照射径D5の値を互いに関連付けて記録した位置テーブル542を記憶している。図5は、位置テーブル542の内容例を示す概念図である。窓部21の下面から試料6の被照射部分までの距離D1の夫々の値に関連付けて、試料6に照射されるX線の照射径D5の値が記録されている。距離D1が夫々の値であるときの照射径D5の値は、予め測定されている。例えば、標準試料を用いて、標準試料の高さ方向の位置を変更しながら、距離D1及び照射径D5の値が実際に測定され、記録される。
【0045】
図6は、実施形態1に係るX線検出装置1により、試料6上でX線分析を行うべき部分の位置決めを行う処理の手順を示すフローチャートである。制御部5のCPU51は、コンピュータプログラム541に従って以下の処理を実行する。以下、ステップをSと略す。制御部5は第2駆動部45を動作させ、第2駆動部45は切替ステージ17を移動させ、ミラー14は撮影位置に配置される。試料6を載置した試料台16の高さ方向の位置は、第1駆動部44により所定の位置に定められる。光学顕微鏡15は試料6を撮影する。一般的に、光学顕微鏡15の焦点は、試料6の表面に合っていない。焦点位置調整部41は、試料6の表面に焦点を合わせるべく光学顕微鏡15の焦点位置を調整する(S101)。試料6の表面において光学顕微鏡15の焦点が合う部分は、撮影位置にあるときのミラー14の光軸が試料6の表面に交差する部分であり、試料上の一の部分に対応する。S101の処理により、実際の試料6表面に焦点を合わせたときの光学顕微鏡15の焦点位置F1が定まる。焦点位置調整部41は、既存の手法により、自動で焦点位置を調整する。なお、光学顕微鏡15が撮影した試料6の画像を表示部43が表示し、画像を視認した使用者が焦点位置調整部41を操作して、焦点位置の調整が行われていてもよい。
【0046】
CPU51は、焦点位置調整部41が焦点位置を調整した結果、試料6の表面に光学顕微鏡15の焦点が合ったか否かを判定する(S102)。例えば、CPU51は、焦点位置調整部41からの信号に応じて判定を行う。焦点位置調整部41が焦点位置を調整した上で、試料6の表面に焦点が合わない場合は(S102:NO)、CPU51は、試料6の表面に焦点を合わせるべく試料6を移動させる(S103)。S103では、CPU51は、第1駆動部44を動作させ、第1駆動部44に試料台16を高さ方向に移動させることにより、試料6を高さ方向に移動させる。焦点位置調整部41、第1駆動部44、並びにS101及びS103の処理は、調整部に対応する。調整部による調整によって、光学顕微鏡15の焦点位置と試料6の高さ方向(光軸に沿った方向)の位置とに関する調整結果が決定される。
【0047】
S103が終了した後、又はS102で試料6の表面に光学顕微鏡15の焦点が合った場合は(S102:YES)、CPU51は、窓部21の下面から試料6の被照射部分までの距離D1を算出する(S104)。S104では、CPU51は、焦点位置F1から基準焦点位置F2までの距離D4を特定し、距離D4及び基準距離D3に基づいて、窓部21の下面から試料6の被照射部分までの距離D1を算出する。
【0048】
例えば、CPU51は、焦点位置を調整する際に焦点位置調整部41が光学顕微鏡15を移動させた距離を、インタフェース部56を通じて焦点位置調整部41から取得することにより、距離D4を特定する。例えば、光学顕微鏡15を移動させた距離はステッピングモータのステップ数で表されており、CPU51は、ステップ数を長さへ変換することにより、距離D4を特定する。また例えば、CPU51は、第1駆動部44が試料台16を高さ方向に移動させた距離を取得することにより、距離D4を特定する。また例えば、CPU51は、焦点位置F1が基準焦点位置F2から窓部21へ近づいた場合の距離D4を正の値とし、焦点位置F1が基準焦点位置F2から更に窓部21と離隔した場合の距離D4を負の値として、基準距離D3から距離D4を差し引くことにより、距離D1を算出する。基準距離D3の値は、予め記憶部54に記憶されている。CPU51は、他の計算方法を用いて、距離D4及び基準距離D3から距離D1を計算してもよい。S104の処理は算出部に対応する。
【0049】
CPU51は、次に、算出した距離D1から、試料6上でのX線の照射径D5を特定する(S105)。例えば、CPU51は、位置テーブル542から、算出した距離D1に関連付けられた照射径D5を読み出すことにより、照射径D5を特定する。また例えば、CPU51は、位置テーブル542から、算出した距離D1の前後の値に関連付けられた複数の照射径D5を読み出し、読み出した複数の照射径D5を補間することによって、試料6上でのX線の照射径D5を特定する。また例えば、X線の径の変化の関数をコンピュータプログラム541が含んでおり、CPU51は、この関数を用いて、位置テーブル542から読み出した複数の照射径D5を補間することにより、試料6上でのX線の照射径D5を特定する。S105の処理は特定部に対応する。
【0050】
CPU51は、次に、試料6の表面に光学顕微鏡15の焦点が合っている状態で、光学顕微鏡15に試料6を撮影させることにより、部分画像を作成する(S106)。部分画像は、試料6上の焦点が合った一の部分を表した画像である。CPU51は、作成した部分画像を表すデータを記憶部54に記憶させる。また、CPU51は、S104で算出した距離D1、及びS105で特定した照射径を示す情報を、部分画像を表すデータに関連付けて記憶部54に記憶させる。S104で算出した距離D1は、窓部21の下面から、試料6上の焦点が合った一の部分までの距離である。また、S105で特定した照射径は、試料6上の焦点が合った一の部分へX線が照射されるときの照射径である。CPU51は、横方向の試料台16の位置も部分画像を表すデータに関連付けて記憶部54に記憶させてもよい。S106の処理は撮影部に対応する。
【0051】
CPU51は、次に、部分画像の作成を終了するか否かを判定する(S107)。例えば、CPU51は、試料6上の特定の範囲内又は指定された範囲内の全ての部分について部分画像を作成した場合に、部分画像の作成を終了すると判定する。また、例えば、部分画像の作成の終了の指示を入力部55で受け付けた場合に、CPU51は、部分画像の作成を終了すると判定する。部分画像の作成を終了しない場合は(S107:NO)、光学顕微鏡15の焦点を合わせるべき部分の試料6上での位置を変更する(S108)。S108では、CPU51は、第1駆動部44を動作させ、第1駆動部44に試料台16を横方向に移動させることにより、試料6を横方向に移動させる。この結果、撮影位置にあるときのミラー14の光軸が交差する部分の試料6上での位置、即ち光学顕微鏡15の焦点を合わせるべき部分の試料6上での位置が変更される。S108の処理は変更部に対応する。S108の後、CPU51は、処理をS101へ戻す。S101~S108の処理を繰り返すことにより、光学顕微鏡15の焦点が合った試料6上の複数の部分の夫々を表した複数の部分画像が作成される。複数の部分画像には、撮影されたときの調整部による調整結果が互いに異なる部分画像が含まれることになる。試料6上の撮影すべき全領域は、複数の部分領域にマトリックス状に分割されている。S101~S108の処理では、例えば、X線検出装置1は、光学顕微鏡15の焦点を合わせるべき部分の試料6上での位置を、一の部分領域から隣接する部分領域へ順次変更する。隣接する部分領域間では、光学顕微鏡15の視野が周縁部分で若干重なっていてもよい。
【0052】
部分画像の作成を終了する場合(S107:YES)、CPU51は、複数の部分画像を組み合わせることにより、試料6上の複数の部分を表した試料画像を作成する(S109)。光学顕微鏡15を用いて一度だけ試料6を撮影した画像は、試料6上の一部分に光学顕微鏡15の焦点が合ってはいるものの、他の部分には焦点が合っていないことがある。このため、試料6の画像には不鮮明な部分が含まれることがある。S109で作成した試料画像は、試料6上の複数の部分に焦点が合った画像となり、試料6上の複数の部分の夫々が鮮明になった画像となる。CPU51は、試料6上の各部分に距離D1及び照射径を関連付けた情報を含む試料画像を作成する。試料画像には、撮影されたときの調整部による調整結果が互いに異なる複数の部分画像が用いられることになる。また、CPU51は、作成した試料画像を表すデータを記憶部54に記憶させる。S109の処理は、試料画像作成部に対応する。
【0053】
CPU51は、次に、作成した試料画像を表示部43に表示させる(S110)。図7A及び図7Bは、表示部43が表示する試料画像の例を示す模式図である。試料画像では、試料6上の複数の部分に焦点が合っており、複数の部分が鮮明に表示される。S110では、表示部43は、試料画像に加えて、試料6上の各部分での距離D1及び照射径の値を表示してもよい。例えば、図7A及び図7Bに示すように、試料画像に重ねてカーソルが表示され、カーソルが対応する試料6上の部分に関連付けられた距離D1及び照射径が表示される。例えば、CPU51は、入力部55で受け付けた指示に応じてカーソルの位置を変更し、カーソルが対応する試料6上の部分に関連付けられた距離D1及び照射径を示す情報を記憶部54から読み出し、表示部43に距離D1及び照射径を表示させる。図7A図7Bとは、試料6上の異なった部分での距離D1及び照射径の値を表示している。カーソルが対応する試料6上の部分に応じた距離D1及び照射径の値が表示される。試料6上の部分が異なれば、距離D1及び照射径の値も異なる。なお、CPU51は、試料画像に基づいて、試料6の立体像を作成し、表示部43に表示させてもよい。また、CPU51は、試料画像に基づいて、高さ方向に平行な試料6の断面図を作成し、表示部43に表示させてもよい。
【0054】
CPU51は、次に、表示された試料画像を確認した使用者からの指示を入力部55で受け付け、受け付けた指示に応じて、試料6上でX線分析を行うべき部分の位置決めを行う(S111)。試料6上でX線分析を行うべき部分は、X線分析のためにX線源11からX線を照射すべき部分である。試料画像により、試料6上の各部分の高さ方向の位置が明らかになり、試料6上の各部分にX線を照射したときの照射径が明らかになる。使用者は、試料画像を用いて、試料6上の各部分に関する適切な情報を把握する。使用者は、試料6上でX線分析を行うべき部分の位置を指定する指示を入力部55へ入力する。例えば、表示部43に表示された試料画像に重ねたカーソルを利用して指示が入力される。X線検出装置1は、以上で位置決めの処理を終了する。
【0055】
S101~S111の処理が終了した後、使用者は、必要に応じて、X線分析の開始の指示を入力部55へ入力する。制御部5は、第2駆動部45の動作を制御し、切替ステージ17を移動させ、X線光学素子12を照射位置に配置させる。また、制御部5は、第1駆動部44の動作を制御し、位置決めされた試料6上の部分へX線が照射されるように、試料台16の位置を調整する。少なくとも真空箱2の内部が真空にされ、試料6へX線が照射され、検出部13は蛍光X線を検出し、信号処理部42は蛍光X線スペクトルを生成し、制御部5は試料6に含まれる元素の分析を行う。
【0056】
以上詳述した如く、本実施形態においては、X線検出装置1は、試料6上の複数の部分に光学顕微鏡15の焦点が合った試料画像を作成し、表示する。試料画像の表示により、試料6上の複数の部分が鮮明に表示される。試料6が凹凸を有している場合であっても、ぼやけが発生することが少なく、試料6の詳細が鮮明に表示される。使用者は、表示された試料画像に基づいて、試料6の詳細を正確に確認し、試料6上でX線分析を行うべき部分の横方向の位置決めを精度良く行うことが可能である。従って、X線検出装置1での位置決めの精度が向上する。また、X線検出装置1は、レーザを用いていないので、レーザに対する安全機構が不要であり、コストの上昇が防止される。
【0057】
また、X線検出装置1は、光学顕微鏡15の焦点位置を調整することにより、レーザを用いずに、窓部21の下面から試料6の表面までの距離D1を算出する。距離D1は、試料6上の位置に応じて異なる。使用者は、距離D1を参照しながら、試料6上でX線分析を行うべき部分の位置決めを行うことができる。これにより、使用者は、試料6上でX線が照射される部分の高さ方向の位置を調整することができる。
【0058】
また、X線検出装置1は、距離D1に応じて、試料6上の各部分にX線を照射するときの照射径を特定する。距離D1が試料6上の位置に応じて異なるので、照射径も試料6上の位置に応じて異なる。使用者は、試料6上のどの程度の範囲にX線が照射され、試料6上のどの程度の範囲から蛍光X線が発生するのかを把握することができる。また、使用者は、照射径を参照しながら、位置決めを行うことができる。これにより、使用者は、試料6上でX線が照射される部分の大きさを調整することができる。
【0059】
(実施形態2)
実施形態2では、試料6に含まれる元素の分布を作成する形態を示す。X線検出装置1の構成は、実施形態1と同様である。図8は、実施形態2に係るX線検出装置1により元素分布を作成する処理の手順を示すフローチャートである。制御部5のCPU51は、コンピュータプログラム541に従って以下の処理を実行する。CPU51は、第2駆動部45の動作を制御し、切替ステージ17を移動させ、ミラー14を撮影位置に配置させる(S201)。CPU51は、次に、実施形態1で説明したS101~S109と同様の処理を行うことにより、試料画像を作成する(S202)。CPU51は、試料6上の各部分に距離D1及び照射径を関連付けた情報を含む試料画像を表すデータを記憶部54に記憶させる。
【0060】
CPU51は、第2駆動部45の動作を制御し、切替ステージ17を移動させ、X線光学素子12を照射位置に配置させる(S203)。また、CPU51は、第1駆動部44の動作を制御し、試料台16を、高さ方向に所定の位置に配置させ、横方向に、試料6へX線が照射される位置に配置させる。元素分布を作成すべき試料6上の範囲又は最初にX線を照射すべき試料6上の位置を指定する指示を使用者が入力部55へ入力し、CPU51は、指示に従って試料6の位置を調整してもよい。X線を照射される試料6上の各部分は、試料画像が表す試料6上の各部分に対応する。
【0061】
X線検出装置1は、次に、試料6へX線を照射する(S204)。S204では、CPU51は、X線源11にX線を照射させる。X線は、X線光学素子12を通過し、窓部21を通過し、試料6へ照射される。試料6上でX線を照射された部分である被照射部分では、蛍光X線が発生する。蛍光X線は窓部21を通過し、検出部13は蛍光X線を検出する。信号処理部42は、蛍光X線スペクトルを生成し、蛍光X線スペクトルを示すデータを制御部5へ出力する。CPU51は、第1駆動部44を用いて制御した横方向の試料台16の位置から、試料6上での被照射部分の位置を特定する。CPU51は、試料画像に表される試料6上の複数の部分の中から照射部分に対応する部分を特定し、特定した部分に対応付けられた照射径を特定する。CPU51は、蛍光X線スペクトルを表すデータを取得し、蛍光X線スペクトル及び特定した照射径を、被照射部分の位置に関連付けて記録する(S205)。蛍光X線スペクトル及び照射径を被照射部分の位置に関連付けて記録したデータは、RAM52又は記憶部54に記憶される。
【0062】
CPU51は、次に、X線の照射及び蛍光X線の検出を終了するか否かを判定する(S206)。例えば、試料6上の指定された範囲についてX線の照射及び蛍光X線の検出が行われた場合に、X線の照射及び蛍光X線の検出を終了すると判定される。また、例えば、特定の広さの範囲についてX線の照射及び蛍光X線の検出が行われた場合に、X線の照射及び蛍光X線の検出を終了すると判定される。また、例えば、終了の指示が入力部55に入力された場合に、X線の照射及び蛍光X線の検出を終了すると判定される。
【0063】
X線の照射及び蛍光X線の検出を終了しない場合は(S206:NO)、CPU51は、第1駆動部44の動作を制御することにより、試料6を移動させ、被照射部分の試料6上での位置を変更する(S207)。X線検出装置1は、次に、処理をS204へ戻す。X線検出装置1は、S204~S207の処理を繰り返すことにより、被照射部分の試料6上での位置を順次変更し、被照射部分の位置を変更する都度、蛍光X線スペクトル及び照射径を被照射部分の位置に関連付けて記録する。このようにして、試料6はX線で走査される。S204~S207の処理では、試料台16の高さ方向の位置は一定に保たれる。
【0064】
X線の照射及び蛍光X線の検出を終了する場合は(S206:YES)、CPU51は、夫々の被照射部分の位置に関連付けて記録した蛍光X線スペクトル及び照射径を、夫々の被照射部分に対応する試料6上の各部分に関連付けた蛍光X線分布を、作成する(S208)。CPU51は、蛍光X線分布のデータを記憶部54に記憶する。蛍光X線分布には、各エネルギーの蛍光X線の試料6上での強度分布が含まれている。蛍光X線分布は放射線分布に対応し、S208の処理は放射線分布作成部に対応する。
【0065】
CPU51は、次に、蛍光X線分布に対してデコンボリューションを行う(S209)。デコンボリューションの例を説明する。試料6へ照射されるX線はある程度の照射径を有し、蛍光X線の強度分布は、試料6に含まれる元素の分布を反映した本来の分布とは異なった分布で測定される。測定された蛍光X線の強度分布は、照射されるX線の二次元強度分布と蛍光X線の本来の強度分布との畳み込みとみなすことができる。xy座標系上で、測定される蛍光X線の強度分布をf(x,y)、蛍光X線の本来の強度分布をg(x,y)、X線の二次元強度分布をh(x,y)とする。f(x,y)は下記の(1)式で表される。
【0066】
【数1】
【0067】
f(x,y)のフーリエ変換をF[f(x,y)]で表すと、畳み込み定理により、F[f(x,y)]は下記の(2)式で表される。
F[f(x,y)]=F[h(x,y)]F[g(x,y)] …(2)
【0068】
従って、f(x,y)の逆フーリエ変換をF-1[f(x,y)]で表すと、蛍光X線の本来の強度分布g(x,y)は、下記の(3)式で計算することができる。
【0069】
【数2】
【0070】
f(x,y)は、S208で作成した蛍光X線分布に含まれる各エネルギーの蛍光X線の試料6上での強度分布に対応する。h(x,y)は、照射径に応じたX線の二次元強度分布に対応する。例えば、CPU51は、f(x,y)をガウシアン関数で近似する。また、CPU51は、所定のモデルに従い、照射径に応じたh(x,y)を生成する。例えば、h(x,y)は、試料6上の一の部分の座標(x,y)を中心として照射径を半値幅とするガウシアン関数、又は照射径を直径とする円の内側では強度が1、円の外側では強度が0となる関数でもよい。また、例えば、CPU51は、測定により得られた離散的なf(x,y)の値、及び生成したh(x,y)を用いて、離散フーリエ変換及び逆離散フーリエ変換の計算を行ってもよい。S209の処理は補正部に対応する。
【0071】
デコンボリューションにより、蛍光X線分布は本来の分布に近くなるように補正され、分解能の高い蛍光X線分布が得られる。実際の照射径よりも大きい照射径を利用したデコンボリューションを行った場合は、実際の分布とは異なった蛍光X線分布が得られる。また実際の照射径よりも小さい照射径を利用したデコンボリューションを行った場合は、蛍光X線分布は変化せず、デコンボリューションの効果が得られない。S209では、試料6上の各部分に実際に照射されるX線の照射径を用いているので、適切にデコンボリューションが行われる。
【0072】
CPU51は、次に、作成された蛍光X線分布を用いて、試料6に含まれる元素の分布を表す元素分布を作成する(S210)。CPU51は、デコンボリューションを行った後の蛍光X線分布を用いて元素分布を作成する。なお、CPU51は、デコンボリューションを行っていない蛍光X線分布を用いて元素分布を作成することもできる。CPU51は、蛍光X線分布に基づいて、試料6上の各部分における元素分析を行い、分析によって特定した元素の種類及び量を試料6上の各部分に関連付けた元素分布を、作成する。元素分布は、試料6上の各部分に関連付けられた照射径の情報を含んでいてもよい。S210で作成した元素分布は、試料6に含まれる元素の二次元分布を表す。
【0073】
CPU51は、次に、作成された元素分布を用いて、試料6中の高さ方向の元素分布を作成する(S211)。S211では、CPU51は、特定した元素の種類及び量に基づいて試料6の母材を特定し、各元素からの蛍光X線の母材に対する透過率を特定する。元素の種類及び量に基づいて試料6の母材を特定するために必要なデータ、各元素からの蛍光X線の母材に対する透過率を示すデータは、予め記憶部54に記憶されている。CPU51は、各元素からの蛍光X線の透過率に応じて、各元素が存在する深さを特定する。CPU51は、元素の二次元分布に基づいて、試料6の各部分に表面からどの程度の深さまでどの種類の元素が存在しているかを特定する。CPU51は、試料画像において試料6上の各部分に対応付けられている距離D1に基づいて、試料6の各部分に存在している各元素の高さ方向の位置を特定する。CPU51は、各元素の量を横方向及び高さ方向の位置に関連付けることにより、試料6中の高さ方向の元素分布を作成する。S210及びS211の処理は、元素分布作成部に対応する。
【0074】
CPU51は、次に、作成した元素分布を表す元素分布画像を表示部43に表示させる(S212)。表示部43には、二次元の元素分布を表す画像、及び/又は高さ方向の元素分布を表す画像が表示される。CPU51は、高さ方向の元素分布を表す画像として、試料6の高さ方向に平行な面内での元素分布を表した断面図を作成し、表示部43に表示させる。なお、CPU51は、デコンボリューションを行っていない蛍光X線分布を用いて作成した元素分布を表す元素分布画像を表示部43に表示させることも可能である。
【0075】
図9は、試料6上での二次元の元素分布を表す画像の例を示す模式図である。図9には、二種類の元素の分布の例を示している。一の元素の分布を実線のハッチングで示し、他の元素の分布を破線のハッチングで示している。図9に示すように複数種類の元素の分布が重なった画像が表示されてもよく、各元素の分布を表す画像が個別に表示されてもよい。元素の量は、例えば、色、色の濃度又は明るさで表現される。使用者は、表示された元素分布画像を確認することにより、試料6上での各元素の二次元分布を把握することができる。
【0076】
図10は、試料6の断面図の例を示す模式図である。試料6の断面図が示され、断面内での元素の分布が示される。図10には、軽元素及び重元素の分布の例を示している。軽元素の分布を実線のハッチングで示し、重元素の分布を破線のハッチングで示している。重元素からの蛍光X線は透過率が高く、軽元素に比べてより深い位置にある重元素をX線分析により検出することが可能である。使用者は、表示された断面図を確認することにより、試料6内での各元素の高さ方向の分布を把握することができる。X線検出装置1は、以上で元素分布を作成する処理を終了する。
【0077】
以上詳述した如く、本実施形態においては、X線検出装置1は、試料6上の各部分でのX線の照射径を特定し、試料6をX線で走査し、各部分に照射径を関連付けた蛍光X線分布を作成し、蛍光X線分布に基づいて元素分布を作成する。X線の照射径は、蛍光X線分布及び元素分布の空間分解能に関係する。即ち、照射径が小さいほど、空間分解能は細かくなる。試料6が凹凸を有している場合、試料6上の各部分の位置によって照射径が異なるので、蛍光X線分布及び元素分布内の位置によって空間分解能は変動する。試料6上の各部分での照射径が記録されていることによって、使用者は、蛍光X線分布及び元素分布の空間分解能を把握することができる。
【0078】
また、本実施形態においては、X線検出装置1は、試料6上の各部分でのX線の照射径を利用して、蛍光X線分布のデコンボリューションを行い、デコンボリューション後の蛍光X線分布に基づいて元素分布を作成する。デコンボリューションを行った蛍光X線分布から元素分布を作成することにより、分解能の高い元素分布が得られる。試料6上の各部分の位置によって異なるX線の照射径を用いてデコンボリューションを行うので、適切にデコンボリューションが行われ、試料6に含まれる元素の位置及び量を可及的に正確に反映した元素分布が得られる。
【0079】
なお、実施形態1及び2においては、単数のX線光学素子12を用いた形態を示したが、X線検出装置1は、複数のX線光学素子12を備え、切替ステージ17により使用すべきX線光学素子12を切り替える形態であってもよい。また、実施形態1及び2においては、切替ステージ17によりX線光学素子12及びミラー14の位置を切り替える形態を示したが、X線検出装置1は、X線光学素子12及びミラー14を同軸にして備え、位置を切り替えずにX線光学素子12及びミラー14を使用する形態であってもよい。
【0080】
また、実施形態1及び2においては、試料6上での被照射部分の大きさとしてX線の照射径を用いる形態を示したが、X線検出装置1は、被照射部分の大きさとしてX線の照射面積を用いる形態であってもよい。また、実施形態1及び2においては、距離の基点を窓部21の下面として、窓部21の下面から試料6の被照射部分までの距離D1を算出する形態を示したが、X線検出装置1は、X線検出装置1内の他の部分を距離の基点とした形態であってもよい。距離の基点は、試料6へ照射されるX線の中心軸に沿ったいずれかの位置、又は試料6で反射して光学顕微鏡15へ入射する光の光軸に沿ったいずれかの位置にあることが望ましい。例えば、距離の点は、X線源11の出射口、X線光学素子12の先端、又はミラー14であってもよい。
【0081】
また、実施形態1及び2においては、X線をエネルギー別に分離して検出するエネルギー分散型の形態を示したが、X線検出装置は、X線を波長別に分離して検出する波長分散型の形態であってもよい。また、実施形態1及び2においては、X線を試料6へ照射し、試料6から発生した蛍光X線を検出する形態を示したが、X線検出装置1は、X線以外の放射線を試料6へ照射し、試料6から発生する特性X線を検出する形態であってもよい。また、実施形態1及び2においては、放射線検出装置がX線検出装置1である形態を示したが、放射線検出装置は、X線以外の放射線を検出部13で検出する形態であってもよい。例えば、放射線検出装置は、電子線を試料6へ照射し、試料6から発生する二次電子又は反射電子を検出部13で検出する形態であってもよい。
【0082】
本発明は上述した実施の形態の内容に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。即ち、請求項に示した範囲で適宜変更した技術的手段を組み合わせて得られる実施形態も本発明の技術的範囲に含まれる。
【符号の説明】
【0083】
1 X線検出装置(放射線検出装置)
11 X線源
12 X線光学素子
13 検出部
14 ミラー
15 光学顕微鏡
16 試料台
2 真空箱
21 窓部
3 試料箱
41 焦点位置調整部
43 表示部
44 第1駆動部
5 制御部
51 CPU
541 コンピュータプログラム
6 試料
図1
図2
図3
図4
図5
図6
図7A
図7B
図8
図9
図10