IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 大陽日酸株式会社の特許一覧

<>
  • 特許-窒化物半導体基板のアニール方法 図1
  • 特許-窒化物半導体基板のアニール方法 図2
  • 特許-窒化物半導体基板のアニール方法 図3
  • 特許-窒化物半導体基板のアニール方法 図4
  • 特許-窒化物半導体基板のアニール方法 図5
  • 特許-窒化物半導体基板のアニール方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-06
(45)【発行日】2023-06-14
(54)【発明の名称】窒化物半導体基板のアニール方法
(51)【国際特許分類】
   C30B 33/02 20060101AFI20230607BHJP
   C30B 25/18 20060101ALI20230607BHJP
   C30B 29/38 20060101ALI20230607BHJP
   H01L 21/205 20060101ALI20230607BHJP
【FI】
C30B33/02
C30B25/18
C30B29/38 C
C30B29/38 D
H01L21/205
【請求項の数】 4
(21)【出願番号】P 2019019673
(22)【出願日】2019-02-06
(65)【公開番号】P2020125230
(43)【公開日】2020-08-20
【審査請求日】2020-12-15
【審判番号】
【審判請求日】2022-04-28
(73)【特許権者】
【識別番号】320011650
【氏名又は名称】大陽日酸株式会社
(74)【代理人】
【識別番号】100128358
【弁理士】
【氏名又は名称】木戸 良彦
(74)【代理人】
【識別番号】100086210
【弁理士】
【氏名又は名称】木戸 一彦
(72)【発明者】
【氏名】三嶋 晃
(72)【発明者】
【氏名】富田 優志
【合議体】
【審判長】宮澤 尚之
【審判官】後藤 政博
【審判官】伊藤 真明
(56)【参考文献】
【文献】特開2017-55116(JP,A)
【文献】特開2006-339396(JP,A)
【文献】国際公開第2008/010541(WO,A1)
【文献】特開2015-42598(JP,A)
【文献】特開2011-37666(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C30B 1/00 - 35/00
H01L 21/324
(57)【特許請求の範囲】
【請求項1】
基板の表面に窒化物半導体薄膜を成長させた窒化物半導体基板をアニールホルダに設置し、該アニールホルダと前記窒化物半導体基板とを一緒にガス中で加熱することにより前記窒化物半導体薄膜をアニールする方法において、前記窒化物半導体基板の最上面と、前記窒化物半導体基板と前記アニールホルダの底面との間に、それぞれダミー基板を設置し、
前記ダミー基板は、前記窒化物半導体基板の基板と同じ材質で形成され、
複数枚の前記窒化物半導体基板を重ねて前記アニールホルダに設置する際には、窒化物半導体基板における前記窒化物半導体薄膜の面の方向を逆に向けて交互に重ねることを特徴とする窒化物半導体基板のアニール方法。
【請求項2】
前記基板は、Al元素比率が40%以上のアルミニウム化合物で形成されていることを特徴とする請求項記載の窒化物半導体基板のアニール方法。
【請求項3】
前記窒化物半導体薄膜は、AlGaIn(1-x-y)N(0≦x≦1、0≦y≦1、(x+y)≦1)であることを特徴とする請求項1又は2記載の窒化物半導体基板のアニール方法。
【請求項4】
前記ガスは、窒素、アルゴン、ヘリウム、クリプトン、ネオン、一酸化炭素、アンモニアのいずれか一種のガス又は複数が混合したガスであることを特徴とする請求項1乃至3のいずれか1項記載の窒化物半導体基板のアニール方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、窒化物半導体基板のアニール方法に関し、詳しくは、基板の表面に窒化物半導体薄膜を成長させた窒化物半導体基板をアニールホルダに設置してアニールする方法に関する。
【背景技術】
【0002】
紫外発光素子は、蛍光灯の代替、高密度DVD、生化学用レーザ、光触媒による公害物質の分解、He-Cdレーザ、水銀灯の代替など、次世代の光源として幅広く注目されている。この紫外発光素子は、ワイドギャップ半導体と呼ばれるAlGaN系窒化物半導体からなり、サファイアなどの異種基板上に積層される。しかし、サファイアは、AlGaNとの格子不整合が大きいため、多数の貫通転位が存在し、非発光再結合中心となって内部量子効率を著しく低下させてしまう。
【0003】
これに対して、AlNは、AlGaNと格子定数が近く、200nmの紫外領域まで透明であるため、発光した紫外線を吸収することなく、紫外光を効率よく外部へ取り出すことができる。しかし、バルクの単結晶AlN結晶は、1インチサイズでも大変高価で容易に入手できないため、コスト及び量産性を考えた場合、紫外発光素子の基板材料には不向きである。一方、サファイアは、4~6インチサイズが安価に入手できる状況にある。このようなことから、サファイア基板上に高品質AlN単結晶膜を作製することができれば、これを基板に用いてAlGaN系発光素子を準ホモエピタキシャル成長させることにより、結晶の欠陥密度を低く抑えた紫外発光素子を安価に作製することができる。
【0004】
しかしながら、AlNは、サファイアとの格子不整合が大きいため、サファイア上に成長したAlN膜には多数の貫通転位が存在する。このため、AlGaN系発光素子用の基板として不適切である。そこで、AlN結晶の欠陥密度を低く抑えた高品質な層(薄膜)を得る方法として、表面が平坦で、かつ、高品質なAlN膜の製造方法が開示されている(例えば、特許文献1参照。)。さらに、それぞれの表面に、原子をイオン注入した少なくとも一対の単結晶炭化ケイ素基板を、イオン注入面同士を対向させるように密接又は近接させて密閉容器内に配置して熱処理する工程が開示されている(例えば、特許文献2参照。)。
【0005】
両者を組み合わせることにより、窒化物半導体基板を得ることが可能と思われるが、アニールの際に、窒化物半導体基板が密閉容器に接触したり、外気に接触したりすると、高温雰囲気で不活性ガスに曝されることによって窒化物半導体基板の片面(サファイア基板部)が劣化するおそれがあり、結果として、窒化物半導体基板が大きく反りかえることがあった。また、カーボン部材のアニールホルダに接触する場合においても、その接触によって同様に大きく反りかえることがあった。そこで、一酸化炭素を添加することによってサファイア基板の劣化を防ぐ方法が開示されている(例えば、特許文献3参照。)。
【先行技術文献】
【特許文献】
【0006】
【文献】特開2017-55116号公報
【文献】特開2006-339396号公報
【文献】特開2015-042598号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかし、各特許文献に記載の手法を組み合わせても、基板の反りを安定的に制御することは困難であり、大きく反り返った基板は、その後の成膜処理で、膜厚分布の均一性が損なわれたり、さらには、その後の各処理を行う装置に入らなくなったりするなどの問題があった。
【0008】
そこで本発明は、窒化物半導体基板をアニールする際の反りの発生を極力低減することができる窒化物半導体基板のアニール方法を提供することを目的としている。
【課題を解決するための手段】
【0009】
上記目的を達成するため、本発明の窒化物半導体基板のアニール方法は、基板の表面に窒化物半導体薄膜を成長させた窒化物半導体基板をアニールホルダに設置し、該アニールホルダと前記窒化物半導体基板とを一緒にガス中で加熱することにより前記窒化物半導体薄膜をアニールする方法において、前記窒化物半導体基板の最上面と、前記窒化物半導体基板と前記アニールホルダの底面との間に、それぞれダミー基板を設置することを特徴としている。
【0010】
さらに、本発明の窒化物半導体基板のアニール方法は、前記ダミー基板が前記窒化物半導体基板の基板と同じ材質で形成されていることを特徴とし、特に、前記基板がAl元素比率が40%以上のアルミニウム化合物で形成されていることを特徴としている。さらに、複数枚の前記窒化物半導体基板を重ねて前記アニールホルダに設置する際には、窒化物半導体基板における前記窒化物半導体薄膜の面の方向を逆に向けて交互に重ねることを特徴としている。
【0011】
加えて、前記窒化物半導体薄膜が、AlGaIn(1-x-y)N(0≦x≦1、0≦y≦1、(x+y)≦1)であること、前記ガスが、窒素、アルゴン、ヘリウム、クリプトン、ネオン、一酸化炭素、アンモニアのいずれか一種のガス又は複数が混合したガスであることを特徴としている。
【発明の効果】
【0012】
本発明の窒化物半導体基板のアニール方法によれば、アニールする際の窒化物半導体薄膜基板の反りを低減させることができる。
【図面の簡単な説明】
【0013】
図1】本発明の窒化物半導体基板のアニール方法の処理状態の第1形態例を示す模式図である。
図2】第1形態例における処理後の窒化物半導体基板の反り量を測定した結果を示す図である。
図3】本発明の窒化物半導体基板のアニール方法の処理状態の第2形態例を示す模式図である。
図4】第2形態例における処理後の窒化物半導体基板の反り量を測定した結果を示す図である。
図5】ダミー基板を使用せずにアニールした窒化物半導体基板の反り量を測定した結果を示す図である。
図6】本発明の窒化物半導体基板のアニール方法の処理状態の第3形態例を示す模式図である。
【発明を実施するための形態】
【0014】
図1及び図2は、本発明の第1形態例を示している。本形態例に示す窒化物半導体基板のアニール方法は、基板(ウエハ)11の表面(片面)に窒化物半導体薄膜12を成長させた窒化物半導体基板13をアニールホルダ14に設置し、該アニールホルダ14と前記窒化物半導体基板13とを一緒にガス中で加熱することにより前記窒化物半導体基板13をアニールする際に、前記窒化物半導体基板13の両外面(表面及び裏面の両面)にダミー基板15を設置したものである。
【0015】
基板11は、用途や成膜する薄膜の種類に応じた材質のものを使用でき、厚さや外形は任意であるが、通常は、サファイア製の円盤状の基板を用いることが好ましく、ダミー基板15は、窒化物半導体薄膜12に悪影響を与えないものであればよく、厚さや形状も任意であるが、通常は、窒化物半導体薄膜12を成膜していない基板11をそのまま使用することが好ましい。例えば、厚さ900μm、直径100mmのサファイア基板を使用することができる。この場合、基板11の材質は、サファイア(Al)のようなAl元素比率が40%以上のアルミニウム化合物であればよい。
【0016】
窒化物半導体薄膜12は、周知のMOCVD法などを使用し窒化物半導体薄膜であるAlGaIn(1-x-y)N(0≦x≦1、0≦y≦1、(x+y)≦1)を成膜したもので、例えば、前記化学式におけるx=1であるAlNを挙げることができる。
【0017】
窒化物半導体基板13を設置するアニールホルダ14は、例えば、カーボンを筒状に形成したものであって、内部に設置した窒化物半導体基板13を均一に加熱できるように形成されている。アニールホルダ14の内径は、基板11の直径以上で、筒内の高さ(深さ)は、少なくとも1枚の窒化物半導体基板13と2枚のダミー基板15との計3枚を積層した高さよりも大きく形成され、通常は、複数枚の窒化物半導体基板13を同時に収納可能な高さに形成されている。
【0018】
アニールの際の雰囲気として使用するガスには、基板11や窒化物半導体薄膜12、アニールホルダ14に悪影響を及ぼさなければ任意のガスを使用でき、通常は、窒素、アルゴン、ヘリウム、クリプトン、ネオン、一酸化炭素、アンモニアのいずれか一種のガス又は複数が混合した混合ガスを使用することが好ましい。
【0019】
図1に示すように、1枚の窒化物半導体基板13をアニール処理する際には、2枚のダミー基板15の間に、窒化物半導体基板13を挟んで重ね合わせた状態でアニールホルダ14内に設置し、窒化物半導体基板13を設置した状態のアニールホルダ14を周知のアニール装置(図示せず)に配置する。そして、アニール装置内を、あらかじめ設定されたガスの雰囲気、例えば窒素雰囲気で満たした状態で、あらかじめ設定された温度、例えば1700℃で、あらかじめ設定された時間、例えば3時間保持することにより、窒化物半導体基板13のアニール処理が行われる。
【0020】
図2は、基板11として厚さ900μm、直径100mmのサファイア基板を使用し、表面にMOCVD法により窒化物半導体薄膜12としてAlNを300nmの厚みで成膜した窒化物半導体基板13を、図1に示すようにしてアニールホルダ14に設置し、周知のアニール装置にて、窒素雰囲気中、1700℃で3時間保持してアニールし、常温まで冷却した窒化物半導体基板13の反り量を測定した結果を示している。この測定結果から、窒化物半導体基板13の反り量は、15μm以下に抑えられていることがわかる。
【0021】
また、基板11の窒化物半導体薄膜12側(表面側)に重ね合わせたダミー基板15は、アニール装置での加熱の際に窒化物半導体薄膜12が蒸発しないようにするための蒸発防止用としても機能しており、加熱によって窒化物半導体薄膜12が劣化することを防止している。
【0022】
図3及び図4は、本発明の第2形態例を示している。本形態例は、2枚以上で、偶数枚の窒化物半導体基板13を同時にアニールする際の状態を示している。偶数枚、図3においては6枚の窒化物半導体基板13をアニールする際には、各窒化物半導体基板13における窒化物半導体薄膜12の面の方向を逆に向けて交互に重ね、窒化物半導体薄膜12同士を対向させた状態とし、最外面に窒化物半導体薄膜12が向かないようにする。そして、アニールホルダ14内に設置するときに、アニールホルダ14の底面上に置いた1枚目のダミー基板15の上に、窒化物半導体薄膜12同士を対向させた偶数枚の窒化物半導体基板13を重ね合わせて設置し、さらに、最上面に、2枚目のダミー基板15を載置する。
【0023】
この状態でアニールホルダ14をアニール装置に配置してアニールすることにより、基板11の反り、及び、窒化物半導体薄膜12の蒸発を抑制した効果的なアニールを行うことができる。
【0024】
図4は、図3に示すように、6枚の窒化物半導体基板13と2枚のダミー基板15を設置して前記同様の処理条件でアニールしたときの各窒化物半導体基板13における反り量を測定した結果を示している。その結果、6枚すべての窒化物半導体基板13の反り量が15μm以下に抑えられていることがわかる。
【0025】
図5は、図3と同様に、6枚の窒化物半導体基板13を同時にアニールする際に、上下のダミー基板15を使用せずにアニールした際の各窒化物半導体基板13における反り量を測定した結果を示している。この結果から、最上段及び最下段の窒化物半導体基板に、40~50μmの大きな反りが発生しているのがわかる。したがって、ダミー基板15を上下にそれぞれ配置することにより、アニールの際の反りの発生を防止できることがわかる。
【0026】
図6は、3枚以上の奇数枚の窒化物半導体基板13を同時にアニールする際の状態を示している。奇数枚、図5においては7枚の窒化物半導体基板13をアニールする際には、6枚の窒化物半導体基板13については、前記第2形態例(図3)と同様に、窒化物半導体薄膜12同士を対向させた状態とし、残りの1枚は、前記第1形態例(図1)と同様に、窒化物半導体薄膜12をダミー基板15で覆うようにしているので、窒化物半導体薄膜12の蒸発による劣化を抑えながら、反りの発生を抑制することができる。
【0027】
このように、窒化物半導体基板13をアニールする際に、アニールホルダ14の底面と窒化物半導体基板13との間、及び、窒化物半導体基板13の外面部分にダミー基板15を重ねた状態でアニールすることにより、窒化物半導体基板13の反りを低減することができ、その後の各処理を確実に行うことができ、生産性の向上を図ることができる。これにより、紫外発光素子の製造コストの低減を図ることができる。
【0028】
特に、ダミー基板15として、窒化物半導体基板13を作成するための基板11と同じものを用いることにより、基板11とは異なる素材や厚さで形成したダミー基板を用意する場合に比べて、ダミー基板を簡単に用意することができ、ダミー基板に要するコストの削減を図れる。
【0029】
なお、基板の材質、厚さや直径などの形状は任意であり、窒化物半導体薄膜も、目的に応じて任意の薄膜にすることができ、AlGaIn(1-x-y)N(0≦x≦1、0≦y≦1、(x+y)≦1)におけるx、yの数値も任意である。さらに、アニールする際の雰囲気ガスの種類も任意であり、窒素、アルゴン、ヘリウム、クリプトン、ネオンなどの不活性ガスをはじめとして、一酸化炭素、アンモニアを用いることができ、これらのいずれか一種のガスを用いてもよく、複数のガス種を混合した混合ガスを用いることもできる。また、アニールの条件も、基板の材質や窒化物半導体薄膜の種類、雰囲気ガスの種類などの条件に応じて、温度及び時間を適宜に設定することができる。
【符号の説明】
【0030】
11…基板、12…窒化物半導体薄膜、13…窒化物半導体基板、14…アニールホルダ、15…ダミー基板
図1
図2
図3
図4
図5
図6