(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-15
(45)【発行日】2023-06-23
(54)【発明の名称】半導体RFプラズマ処理のためのパルス内のRFパルス
(51)【国際特許分類】
H01L 21/3065 20060101AFI20230616BHJP
H05H 1/46 20060101ALI20230616BHJP
H03K 4/92 20060101ALI20230616BHJP
H03K 3/80 20060101ALI20230616BHJP
H01L 21/205 20060101ALI20230616BHJP
H01J 37/32 20060101ALI20230616BHJP
H03K 3/57 20060101ALN20230616BHJP
【FI】
H01L21/302 101C
H05H1/46 R
H03K4/92
H03K3/80
H01L21/205
H01J37/32
H03K3/57
(21)【出願番号】P 2020529679
(86)(22)【出願日】2018-11-28
(86)【国際出願番号】 US2018062765
(87)【国際公開番号】W WO2019112849
(87)【国際公開日】2019-06-13
【審査請求日】2021-11-25
(32)【優先日】2017-12-08
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2017-12-07
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】ロング・マオリン
(72)【発明者】
【氏名】ワン・イーホウ
(72)【発明者】
【氏名】ウー・イン
(72)【発明者】
【氏名】パターソン・アレックス
【審査官】鈴木 智之
(56)【参考文献】
【文献】米国特許出願公開第2016/0172216(US,A1)
【文献】特開2009-187975(JP,A)
【文献】特開2014-142266(JP,A)
【文献】特開平10-074598(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H05H 1/46
H03K 4/92
H03K 3/80
H01L 21/205
H01J 37/32
H03K 3/57
(57)【特許請求の範囲】
【請求項1】
方法であって、
第1のON-OFFパルス高周波(RF)クロックを定義する工程であって、前記第1のON-OFFパルスRFクロックは、ON-OFFパルスを有さないOFF状態によって分離されたON-OFFパルス列を有する、工程と、
前記第1のON-OFFパルスRFクロックを反転させて第1の反転ON-OFFパルス信号を出力する工程と、
前記第1のON-OFFパルスRFクロック及び前記第1の反転ON-OFFパルス信号に基づいて第1の増幅方形波形を出力する工程と、
第1の整形波形を印加して、前記第1の増幅方形波形の大きさを調節し、第1の整形された波形を生成する工程と、
前記第1の
整形された波形に基づいて第1の整形正弦波形を生成する工程と、
前記第1の整形正弦波形を第1の電極に送出する工程と、
を含む、方法。
【請求項2】
請求項1に記載の方法であって、
前記第1の電極は、コイルまたは基板支持体である、方法。
【請求項3】
請求項1に記載の方法であって、
前記第1のON-OFFパルスRFクロックは、ON状態を有し、
前記第1の整形正弦波形を生成する前記工程は、前記第1の整形正弦波形を前記
第1の整形
された波形から抽出する工程を含む、方法。
【請求項4】
請求項3に記載の方法であって、
前記
第1の増幅方形波形の前記大き
さは、レベル間形状波形、またはマルチレベル形状波形、または任意形状波形を出力するために
調節される、方法。
【請求項5】
請求項1に記載の方法であって、
前記第1のON-OFFパルスRFクロックは、ON状態を有し、
前記ON-OFFパルス列は、前記ON状態および前記OFF状態の周波数よりも大きい周波数を有する、方法。
【請求項6】
請求項1に記載の方法であって、さらに、
第2のON-OFFパルスRFクロックを定義する工程であって、前記第2のON-OFFパルスRFクロックは、ON-OFFパルスを有さないOFF状態によって分離されたON-OFFパルス列を有する、工
程、
を含む、方法。
【請求項7】
請求項
6に記載の方法であって、
前記第2のON-OFFパルスRFクロックは、前記第1のON-OFFパルスRFクロックに基づいて定義される、方法。
【請求項8】
請求項
7に記載の方法であって、
前記第2のON-OFFパルスRFクロックは、前記第1のON-OFFパルスRFクロックに対して反転される、方法。
【請求項9】
請求項6に記載の方法であって、
前記第2のON-OFFパルスRFクロックを反転させて第2の反転ON-OFFパルス信号を出力する工程と、
前記第2のON-OFFパルスRFクロック及び前記第2の反転ON-OFFパルス信号に基づいて第2の増幅方形波形を出力する工程と、
を更に含む、方法。
【請求項10】
請求項9に記載の方法であって、
第2の整形波形を印加して、前記第2の増幅方形波形の大きさを調節し、第2の整形された波形を生成する工程と、
前記第2の整形された波形に基づいて第2の整形正弦波形を生成する工程と、
前記第2の整形正弦波形を第2の電極に送出する工程と、
を更に含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本実施形態は、半導体RFプラズマ処理のためのパルス内の高周波(RF)パルスに関する。
【背景技術】
【0002】
プラズマシステムは、ウエハ上で様々な動作を実施するために用いられる。プラズマシステムは、高周波(RF)発生器、RFマッチ、およびプラズマチャンバを備える。RF発生器は、RFケーブルを介してRFマッチに接続され、RFマッチは、プラズマチャンバに接続される。RF電力は、RFケーブルおよびRFマッチを介して、ウエハが処理されるプラズマチャンバに提供される。また、1つ以上のガスがプラズマチャンバに供給され、RF電力を受け取ると、プラズマがプラズマチャンバ内で生成される。1つ以上のガスおよびRF電力の供給の間、ウエハのプラズマ処理は、所望の方法で制御されることが望ましい。
【0003】
これに関連して、本開示で説明される実施形態が生じる。
【発明の概要】
【0004】
本開示の実施形態は、半導体高周波(RF)プラズマ処理のためのパルス内のRFパルス用のシステム、装置、方法、およびコンピュータプログラムを提供する。本実施形態は、例えば、プロセス、または装置、またはシステム、またはハードウェア、または方法、またはコンピュータ可読媒体など、多くの方法で実施されうることを理解されたい。いくつかの実施形態が以下に説明される。
【0005】
様々な実施形態では、同時の高速ON-OFFパルスおよび低速パルス(例えば、レベル間、またはマルチレベルパルス、または任意波形パルス/変調)を可能にし、高速ON-OFFパルスは、低速パルスに常に組み込まれている、方法および装置が説明される。同時に1以上のパルス周波数を有するパルスプラズマが提供される。マッチレスプラズマ源において高速ON-OFFパルスおよび低速パルスが同時に実施される。
【0006】
いくつかの実施形態では、「パルス内のパルス」は、低速パルスに組み込まれた高速ON-OFFパルスとして定義される。高周波(RF)クロック自体は、RF周波数で継続的に動作している。高速ON-OFFパルスは、複数のゲートドライバの入力でRFクロックをONおよびOFFするものであり、ゲートドライバの入力の前のANDゲートによって実施されうる。低速パルスまたは変調は、アジャイルDCレールのレール電圧を操作することによって実行される。1つ以上の反応素子と共にRFアンテナまたはコイルによって形成されるフィルタは、RF周波数用のバンドパスフィルタであり、ブリッジ回路の出力における方形波をRF周波数またはRFクロック周波数の回動範囲内の正弦波形に変換する。RFクロック周波数は、RFアンテナおよび1つ以上の反応素子を含むプラズマ負荷が、プラズマの有無に関わらず、ブリッジ回路の出力に対して完全に抵抗性があるように動作中に調節される。
【0007】
本明細書に記載のシステムおよび方法のいくつかの利点が提供される。トランス結合プラズマ(TCP)源または誘導結合プラズマ(ICP)源に印加されたときの高速ON-OFFパルスは、低電子温度で低プラズマ電位の冷プラズマを生成することで、小角度のイオンエネルギ分布を形成する。よって、これにより、等方性エッチング処理におけるチャージングダメージが低減または防止される。また、TCP源またはICP源に印加されたときの高速ON-OFFパルスは、非同期バイアスRFパルスと組み合わされたときに、高アスペクト比エッチングまたは高アスペクト比堆積を可能にする。一方で、レベル間、またはマルチレベル、または任意波形のパルスは、高選択性、高エッチング速度、優れた均一性など、他の向上したプロセス性能を実現する。本明細書に記載の方法および装置は、高速ON-OFFパルス、および、レベル間、またはマルチレベル、または任意波形の低速パルスの両方の同時動作を可能にする。
【0008】
他の態様は、添付の図面と併せて、以下の発明を実施するための形態から明らかになるだろう。
【図面の簡単な説明】
【0009】
実施形態は、添付の図面と併せて、以下の発明を実施するための形態を参照して理解される。
【0010】
【
図1】パルス内のパルスを実施するためのシステムの実施形態を示す図。
【0011】
【
図2A】高周波(RF)クロック信号の実施形態を示す説明図。
【0012】
【
図2B】周波数f
Fast pulsingを有するON-OFFパルス信号の実施形態を示す説明図。
【0013】
【
図2C】
図2AのRFクロック信号と
図2BのON-OFFパルス信号との間でAND動作を実施することによって生成されるON-OFFパルスRFクロック信号の実施形態を示す説明図。
【0014】
【
図3A】ON-OFFパルスRFクロック信号を用いて整形波形が生成されたときの、プラズマチャンバ内における時間tに対する電子温度の過渡状態を表すグラフの実施形態を示す図。
【0015】
【
図3B】ON-OFFパルスRFクロック信号を用いて整形波形が生成されたときの、時間tに対するプラズマ電位を表すグラフの実施形態を示す図。
【0016】
【
図3C】ON-OFFパルスRFクロック信号を用いて整形波形が生成されたときの、時間tに対するイオン密度を表すグラフの実施形態を示す図。
【0017】
【
図4A】標準表示および拡大表示におけるRFクロック信号の実施形態を示す図。
【0018】
【
図4B】標準表示および拡大表示の両方におけるON-OFFパルス信号の実施形態を示す図。
【0019】
【
図4C】
図4BのON-OFFパルス信号によってフィルタリングされた
図4AのRFクロック信号と併せて実行されるマルチレベルパルス波形の例を示す図。
【0020】
【
図4D】
図4BのON-OFFパルス信号によってフィルタリングされた
図4AのRFクロック信号と併せて実行される任意波形の例を示す図。
【0021】
【
図5A】
図4Cのマルチレベルパルス波形が印加されたときの
図1のプラズマ負荷におけるRF電流の実施形態を示す説明図。
【0022】
【0023】
【
図5C】
図5Bに示されたRF電流波形の拡大である正弦波形を示す説明図。
【0024】
【
図6】パルス内のRFパルスおよびパルス内のRFパルスによるRFバイアスを有するトランス結合プラズマ(TCP)源を備えるシステムの実施形態を示す図。
【0025】
【
図7】TCPとバイアスとの間のON-OFFパルスが異なる位相または非同期である場合に、同時のON-OFF非同期TCPバイアスパルス、およびマルチレベルTCPパルス、および任意波形バイアスパルスを有するTCP源向けのRF電流波形およびRFバイアス向けのRF電流波形の例を示す図。
【0026】
【
図8A】レベル間パルスに従って整形されたON-OFFパルスRFクロック信号を表すグラフの実施形態図。
【0027】
【
図8B】マルチレベルパルスに従って整形されたON-OFFパルスRFクロック信号を表すグラフの実施形態図。
【0028】
【
図8C】任意波形に従って整形されたON-OFFパルスRFクロック信号を表すグラフの実施形態図。
【0029】
【
図9】マッチレスRF源を用いてパルス信号内のパルスを生成するための方法の実施形態を示すフローチャート。
【0030】
【0031】
【
図10B】ブリッジ回路の出力における方形波電圧を表す図。
【0032】
【
図10C】ブリッジ回路から出力されてアンテナまたはプラズマ負荷に提供されるRF電流を表す図。
【発明を実施するための形態】
【0033】
以下の実施形態は、半導体RFプラズマ処理のためのパルス内の高周波(RF)パルスを説明している。本実施形態が、これらの特定の詳細の一部または全てなしで実施されてよいことは明らかだろう。他の例では、周知のプロセス動作は、本実施形態を不必要に曖昧にしなように詳細には説明されていない。
【0034】
高周波(RF)クロック信号発生器は、高速ON-OFFパルス周波数信号発生器に追加して提供される。また、整形波形を生成するために波形発生器が提供される。RFクロック信号発生器によって生成されたRFクロック信号は、高速ON-OFFパルス周波数信号発生器によって生成されたパルス信号を用いてフィルタリングされて、フィルタリングされた信号が出力される。フィルタリングされた信号はゲートドライバに提供されて、複数の方形波信号が出力される。方形波信号は増幅回路に提供されて、増幅方形波信号が生成される。増幅波形波信号は、次に、フィルタリングされた波形を用いて整形される。フィルタリングされた波形は、整形波形を用いて直流(DC)電圧をフィルタリングすることによって生成される。整形波形は、任意形状波形、またはマルチレベル波形、またはレベル間波形であってよい。増幅方形波信号の整形は、整形波形を生成する。整形波形の高次高調波は、ウエハを処理するために電極に提供されるRF電力を出力するために、リアクタンス回路によってフィルタリングされる。
【0035】
図1は、本明細書において「パルス内のパルス」と説明されるプロセスを実施するためのシステム100の実施形態を示す。一実施形態では、システム100は、コントローラ、高周波(RF)周波数クロック104、高速ON-OFFパルス周波数信号発生器106、低速パルス周波数信号発生器108、ANDゲート110、ゲートドライバ112、ハーフブリッジ回路114、直流(DC)電源V
DCからのDC電圧を印加するDCレール116、リアクタンス回路118、および別のANDゲート122を含む、マッチレス誘電結合プラズマ(ICP)源102を備える。マッチレスICP源102とプラズマ負荷120との間に接続されたインピーダンス整合回路および関連するRFケーブルはない。ANDゲートは、本明細書では時にフィルタを意味する。ANDゲート122は、ハーフブリッジ回路114の電界効果トランジスタ(FET)144Aのドレイン端子Dに接続される。FET144Aのソース端子Sは、ハーフブリッジ回路114の別のFET144Bのドレイン端子Dに接続され、FET144Bのソース端子は、接地電位に接続される。
【0036】
リアクタンス回路118の例は、電極124(例えば、RFアンテナまたはRFコイル)を有するプラズマ負荷120に接続されている可変コンデンサである。RF周波数クロック104は、高周波を有するデジタル信号または方形波信号であるRFクロック信号134を生成する発振回路を備える。高速ON-OFFパルス周波数信号発生器106は、デジタル信号または方形波信号などの、高速ON-OFFパルス周波数fFast pulsingを有するON-OFFパルス信号136を生成する発振回路を備える。高速ON-OFFパルス周波数fFast pulsingは、RF電力ONからRF電力OFFへの過渡状態の間のプラズマ特性の動態に基づいて決定される。ON-OFFパルスは、RFクロック信号134とON-OFFパルス信号136との間で入力としてAND動作を実施するANDゲート110を用いて実現される。AND動作は、フィルタリング動作の一例である。ANDゲート110は、ON-OFFパルスRFクロック信号126を出力する。
【0037】
ゲートドライバ112は、ON-OFFパルスRFクロック信号126を受信して、複数の方形波信号128Aおよび方形波信号128Bを出力する。ゲートドライバ112のゲートG1は、ON-OFFパルスRFクロック信号126を受信し、方形波信号128Aを出力するためにON-OFFパルスRFクロック信号126の大きさを増幅する、または増幅しない。増幅が実施されない場合は、ON-OFFパルスRFクロック信号126は、ゲートG1を通過する。ゲートドライバ112の別のゲートG2は、ON-OFFパルスRFクロック信号126を受信し、ON-OFFパルスRFクロック信号126を反転させて、反転方形波信号128Bを出力する。方形波信号128Aおよび方形波信号128Bは、各々、デジタル信号またはパルス信号である。例えば、方形波信号128Aおよび方形波信号128Bは、各々、低レベルと高レベルとの間で遷移する。方形波信号128Aおよび方形波信号128Bは、互いに逆方向に同期している。例えば、方形波信号128Aは、低電力レベルから高電力レベルに遷移する。方形波信号128Aが低電力レベルから高電力レベルに遷移する時間間隔または期間に、方形波信号128Bは、高電力レベルから低電力レベルに遷移する。逆方向同期によって、ハーフブリッジ回路114のFET144AおよびFET144Bは、連続してオンされ、連続してオフされることができる。ハーフブリッジ回路114は、本明細書では時に増幅回路を意味する。
【0038】
アジャイルDCレール116およびハーフブリッジ回路114は、方形波信号128Aおよび方形波信号128Bから増幅方形波形を生成する。増幅方形波形を生成するために、FET144AおよびFET144Bは、連続して操作される。例えば、FET144Aがオンされている期間または時に、FET144Bはオフされている。また、FET144Bがオンされている期間または時に、FET144Aはオフされている。FET144AおよびFET144Bは、同時または同時期間にオンされない。
【0039】
FET144Aがオンのときは、電流は、DC電圧源VDCからハーフブリッジ回路114の出力O1に流れて、出力O1で電圧が生成され、FET144Bはオフされる。出力O1の電圧は、発振回路を含み、本明細書において時に波形発生器を意味するパルス周波数信号発生器108から受信された電圧値に従って生成される。FET144Bがオフのときは、出力O1から、FET144Bに接続されている接地電位に流れる電流はない。電流は、出力O1からリアクタンス回路118に流れる。電流は、FET144Aがオンのときは、DC電圧源VDCからコンデンサリアクタンス回路118に押し出される。また、FET144BがオンでFET144Aがオフのときは、出力O1で生成された電圧は、出力O1からFET144Bに接続された接地電位に流れる電流を生成する。電流は、接地電位によって出力O1から引き込まれる。FET144Aがオフの時間間隔には、DC電圧源VDCから出力O1に流れる電流はない。
【0040】
また、低速パルス周波数信号発生器108は、任意形状、またはマルチレベルパルス形状、またはレベル間パルス形状を有するエンベロープを有する整形波形138を生成する。低速パルス周波数信号発生器108の低速パルス周波数、または、整形波形138の低速パルス周波数は、fSlow pulsingで表される。レベル間パルス形状は、低電力レベルと高電力レベルとの間で定期的に遷移する。マルチレベルパルス形状は、3つ以上の電力レベルの間で定期的に遷移する。任意形状は、任意の形状を有し、定期的に繰り返す。コントローラ142は、整形波形138を生成するように低速パルス周波数信号発生器108を制御する。コントローラ142は、整形波形138の形状を低速パルス周波数信号発生器108に提供する。低速パルス周波数信号発生器108は、コントローラ142から受信した形状を有する整形波形138を生成する。波形の形状は、波形のエンベロープの形状である。エンベロープの例は、ピーク間の大きさまたはゼロ-ピーク間の大きさを含む。
【0041】
ANDなどのANDゲート122は、DC電圧源VDCによって提供されたDC電圧を整形波形138によってフィルタリングして、整形波形138に従って整形された大きさを有するフィルタリングされた波形140を生成する。フィルタリングされた波形140は、ハーフブリッジ回路114の出力O1において増幅方形波に印加されて、出力O1で整形波形130を生成するために増幅方形波が整形される(そのエンベロープが増加または減少する)。整形波形130は、デジタル波形または方形波形である。増幅方形波形のエンベロープは、増幅方形波形のゼロ-ピーク間の振幅またはピーク間の振幅を修正することによって整形または調節される。整形波形130の例は、レベル間形状波形、またはマルチレベル形状波形、または任意形状波形を含み、整形波形130の形状は、フィルタリングされた波形140の形状と一致する。整形波形130のエンベロープの形状は、フィルタリングされた波形140のエンベロープの形状と一致する。
【0042】
リアクタンス回路118は、整形波形130の高次高調波をフィルタアウトまたは除去して、基板を処理するためのプラズマチャンバ内でプラズマを生成するまたは維持するためにプラズマ負荷120の電極124に提供される、RF電力を有する整形正弦波形132を出力または抽出する。整形波形130の大きさは、複数の波形の大きさの組み合わせであって、そのうちの1つは基本周波数を有し、残りはより高次の高調波を有する。より高次の高調波をフィルタアウトすることによって、基本周波数を有する整形正弦波形132が出力される。整形正弦波形132は、整形波形130のエンベロープの形状と一致する形状のエンベロープを有する。プラズマチャンバは、プラズマ負荷120を備える。基板処理の例は、基板上に材料を堆積する工程、基板をエッチングする工程、基板を洗浄する工程、および基板をスパッタリングする工程を含む。整形正弦波形132の形状は、フィルタリングされた波形140の形状によって定義される。例えば、整形正弦波形132のエンベロープは、フィルタリングされた波形140のエンベロープと同じ形状を有する。
【0043】
いくつかの実施形態では、「パルス内のパルス」は、低速パルス内に組み込まれた高速パルスとして定義される。RFクロック発生器104は、RF周波数で連続的に動作している。いくつかの実施形態では、「高速パルス」は、ゲードドライバ112の入力でRFクロック信号134をONやOFFすることであり、ONやOFFすることは、ゲートドライバ112の入力の前のANDゲート110によって実施されてよい。低速パルスまたは変調は、DC電圧源VDCによって提供されたDC電圧であるレール電圧を操作することによって行われる。1つ以上のリアクタンス素子(例えば、リアクタンス素子118)と共にRFプラズマアンテナまたはコイルによって形成されたフィルタは、ブリッジ出力における方形波をRF周波数またはRFクロック周波数の同調範囲の正弦波形に遷移させるRF周波数用のバンドパスフィルタである。RFクロック周波数は、プラズマ負荷120および1つ以上のリアクタンス素子が、プラズマの有無に関わらず、ハーフブリッジ回路114の出力O1に完全に抵抗性があるように動作中に調節される。
【0044】
一実施形態では、電極124の代わりに、基板支持体に埋設された下部電極またはプレートなどの別の電極が用いられ、整形正弦波形132のRF電力は、別の電極に供給される。基板支持体の例は、チャックを含む。
【0045】
一実施形態では、n型のFET144AおよびFET144Bではなく、p型のFETが用いられる。
【0046】
図2Aは、RFクロック信号134の実施形態を表す。RFクロック信号134は、
図2Bに表されるON-OFFパルス信号136よりも高い周波数を有する。例えば、RFクロック信号134の複数パルスは、ON-OFFパルス信号136の1パルスが生成される期間に生成される。RFクロック信号134は、ON状態の複数のインスタンス212A、インスタンス212B、およびインスタンス212Bを含み、オフ状態の複数のインスタンス214Aおよびインスタンス214Bを含む。インスタンス214Aは、インスタンス212Aに続き、インスタンス212Bは、インスタンス214Aに続く。インスタンス214Bは、インスタンス212Bに続き、インスタンス212Cは、インスタンス214Bに続く。
【0047】
図2Bは、周波数f
Fast pulsingを有するON-OFFパルス信号136の実施形態を表す。ON-OFFパルス信号136は、RFクロック信号134の周波数よりも低い高周波を有する。例えば、ON-OFFパルス信号136のパルスのオン時間は、RFクロック信号134のパルスのオン時間よりも長い。別の例として、ON-OFFパルス信号136のパルスのオフ時間は、RFクロック信号134のパルスのオフ時間よりも長い。ON-OFFパルス信号136は、ON状態の複数のインスタンス210A、インスタンス210B、およびインスタンス210C、ならびに、OFF状態の複数のインスタンス208Aおよびインスタンス208Bを有する。ON状態のインスタンスおよびOFF状態のインスタンスは、定期的に繰り返す。
図2Bに示されるように、インスタンス210Aの次にインスタンス208Aが続く。インスタンス208Aの次にインスタンス210Bが続き、インスタンス210Bの次にインスタンス208Bが続く。インスタンス208Bの次にインスタンス210Cが続く。
【0048】
図2Cは、AND動作を実施することによって生成されるON-OFFパルスRFクロックの実施形態を表す。
図2Cに示されるように、ON-OFFパルス信号136の2つの隣接するONパルスの間にあるRFクロック信号134のパルスは、ANDゲート110によってフィルタアウトされて、ON-OFFパルスRFクロック信号126が生成される。ON-OFFパルスRFクロック信号126は、RFクロック信号134のパルス列T
R1、RFクロック信号134のパルス列T
R2、RFクロック信号134のパルス列T
R3を含む。列T
R1は、ON状態のインスタンス210Aの間に起こり、列
TR2は、ON状態のインスタンス210Bの間に起こり、列
TR3は、ON状態のインスタンス210Cの間に起こる。列T
R1は、OFF状態のインスタンス208Aによって列T
R2から分離され、列T
R2は、OFF状態のインスタンス208Bによって列T
R3から分離される。インスタンス208Aおよびインスタンス208Bの各々の間に、ON-OFFパルスRFクロック信号126は、RFクロック信号134のON-OFFパルスを除去する。インスタンス208Aおよびインスタンス208Bの各々の間のON-OFFパルスRFクロック信号126のパルスは、
図1のANDゲート110によってフィルタアウトされる。
【0049】
図3Aは、
図1の整形波形130がON-OFFパルスRFクロック信号126を用いて生成されるときの、時間tに対するプラズマチャンバ内の電子温度kTeの過渡状態を表すグラフの実施形態である。電子温度は、RF電力がプラズマ負荷120に供給されるときに高状態から低状態に遷移する。
【0050】
図3Bは、整形波形130がON-OFFパルスRFクロック信号126を用いて生成されるときの、時間tに対するプラズマチャンバ内のプラズマ電位Vpを表すグラフの実施形態である。プラズマ電位Vpは、RF電力がプラズマ負荷120に供給されるときに高状態から低状態に遷移する。
【0051】
図3Cは、整形波形130がON-OFFパルスRFクロック信号126を用いて生成されるときの、時間tに対するプラズマチャンバ内のイオン密度Niを表すグラフの実施形態である。
図3Aから
図3Cの各々における時間tは、マイクロ秒で測定されている。
図3Aおよび
図3Cに示されるように、OFF時間の間に電子温度が高レベルから低レベルに遷移するのに約10マイクロ秒かかるが、イオン密度は約80%に留まる。よって、高速ON-OFFパルス周波数f
Fast pulsingは、約1キロヘルツ(kHz)から1メガヘルツ(MHz)の範囲で最大25kHz以上であってよい。
【0052】
いくつかの実施形態では、本明細書に記載のプラズマチャンバは、300ミリメートルのウエハを処理するために用いられるコンダクタエッチングチャンバである。これはただの一例である。様々な実施形態では、本明細書に記載のプラズマチャンバは、他の大きさのウエハを処理するために用いられるチャンバである。例えば、プラズマチャンバは、200mmのウエハ、または450mmのウエハ、または別の大きさのウエハを処理するために用いられる。
【0053】
角イオンエネルギは、ON-OFFパルス信号136のOFF時間に電子温度の関数として急速に最小に到達する。バイアスRFがTCPのON-OFFパルスと非同期的にON-OFFパルスされるときは、TCPのOFF時間にバイアスRFによって加速されたイオンは、ウエハに対する高指向性を有して、エッチングのための望ましい垂直プロファイル、または、ギャップ充填のための望ましいボトムアップ堆積を生じさせる。これは、深堀シリコンエッチング(DSE)プロセスにおいて最大約150のアスペクト比を達成するための、高アスペクト比エッチングが実施される方法である。しかし、バイアスRFがTCPのON-OFFパルスと非同期的なマルチレベルパルスで動作するときは、マルチレベルパルスの周波数は、約10ヘルツ(Hz)から1kHzの周波数f
Slow pulsingの範囲でDCレール116を移動する速度によって制限される。DCレール116を移動する速度は、
図1のFET144AおよびFET144Bをオンおよびオフする速度である。TCPのON-OFFパルスが、低パルス周波数で動作する場合、または、ON-OFFパルス信号136の長いOFF時間を有する場合は、エッチング速度は、OFF時間の低平均イオン密度によって制限される。ON-OFFパルス、およびマルチレベルパルス、または任意波形パルス、またはレベル間パルスの利点を最大限に活用するために、高速ON-OFFパルス周波数f
Fast pulsingは、低速パルス周波数f
Slow pulsingを有する低速のマルチレベルパルス、または任意波形パルス、またはレベル間パルスに組み込まれる。バイアスRF電力が用いられるプロセスアプリケーションでは、バイアスRFの高速ON-OFFパルスは、同じ周波数f
Fast pulsingでTCP源の高速ON-OFFパルスと非同期的である、または位相が異なる。ON-OFFパルスは、TCPとバイアスとの間で常に非同期が実行されるが、TCP源のマルチレベルパルスまたは任意波形パルス、およびバイアスRFは、それらの低速パルス周波数で互いに独立して流れる。
【0054】
図4Aは、標準表示および拡大表示の両方におけるRFクロック信号134の実施形態を示す。RFクロック信号134は、高レベルと低レベルとの間で高周波などの高周波数で流れる。
【0055】
図4Bは、標準表示および拡大表示の両方におけるON-OFFパルス信号136の実施形態を示す。ON-OFFパルス信号136は、RFクロック信号134よりも低い周波数で高レベルと低レベルの間に流れ、ON-OFFパルス信号136の周波数は、RFクロック信号134をフィルタリングするために用いられる。
【0056】
図4Cは、
図4AのRFクロック信号134および
図4BのON-OFFパルス信号136と同時に実行される、マルチレベルパルス波形410Aなどの低速パルス波形の例を示す。マルチレベルパルス波形410Aは、マルチレベル整形エンベロープ412Aを有し、
図1の整形波形138の例である。マルチレベル整形エンベロープ412Aは、マルチレベルパルス整形されており、DC電圧源V
DCのDC電圧に印加される複数の電力レベル(例えば、PWR1、PWR2、PWR3、およびPWR4)を有する。複数の電力レベルは、定期的に繰り返す。マルチレベルの整形エンベロープ412AがDC電圧源V
DCのDC電圧に印加されるときは、マルチレベル整形エンベロープ412Aを有するフィルタリングされた波形140は、
図1のANDゲート122から出力される。
【0057】
一実施形態では、PWR1からPWR4までの4つの電力レベルの代わりに、その4つの電力レベルよりも大きいまたは小さい電力レベルを有する別のマルチレベルパルス波形が用いられ、その4つの電力レベルよりも大きいまたは小さい電力レベルは、定期的に繰り返される。
【0058】
図4Dは、
図4AのRFクロック信号134および
図4BのON-OFFパルス信号136と同時に実行される、任意波形410Bなどの別の低速パルス波形の例を示す。任意波形410Bは、任意形状のエンベロープ412Bを有し、
図1の整形波形138の別の例である。任意形状エンベロープ412Bは、DC電圧源V
DCのDC電圧への印加のために異なる大きさを有する。任意形状エンベロープ412BがDC電圧源V
DCのDC電圧に印加されると、任意形状エンベロープ412Bを有するフィルタリングされた波形140が
図1のANDゲート122によって生成される。
【0059】
図5Aは、
図4Cのマルチレベルパルス波形410Aが印加されたときの、
図1のプラズマ負荷120におけるRF電流波形501の実施形態を表す。
図5AにおいてAと表された区画は、RF電流波形501の複数の部分502、部分504、部分506、部分508、部分510、部分512、部分514、部分516、部分518、および部分520を有する。RF電流波形501は、プラズマ負荷120で生成され、
図1の整形正弦波形132の典型である。
【0060】
図5Bは、
図5Aに示されたRF電流波形501の拡大を表す。
図5Aの区画Aは、
図5Bで詳細に表されている。例えば、部分502、部分504、部分506、部分508、部分510、部分512、部分514、部分516、部分518、および部分520は全て、
図5Bにおいて詳細に明らかになっている。部分502、部分504、部分506、部分508、部分510、部分512、部分514、部分516、部分518、および部分520は、各々、
図5Cで表される正弦RF信号である。
【0061】
また、
図5Cは、
図5Bに示されたRF電流波形501の拡大である正弦波形を表す。
図5Cは、
図5BにおいてBと表された区画の拡大である。
図5Cで示されるように、部分510および部分512は、各々、正弦信号である。
【0062】
図6は、複合TCP源およびパルス内のRFパルスによるRFバイアスを備えるシステム600の実施形態を示す。システム600は、
図1のマッチレスICP源102を備える。システム600は、さらに、インバータなどのNOTゲート623およびマッチレスバイアス源602を備える。マッチレスバイアス源602は、コントローラ142、RF周波数クロック604、高速ON-OFFパルス周波数信号発生器106、ANDゲート610、低速パルス周波数信号発生器608、ゲートドライバ612、ハーフブリッジ回路614、別のDC電圧源V
DCのDC電圧が印加されるDCレール616、リアクタンス回路618、およびANDゲート622を備える。リアクタンス回路618の例は、プラズマ負荷620に接続されているインダクタである。電極124は、プラズマチャンバのコイルまたはアンテナであり、バイアス電極638は、プラズマチャンバの基板支持体に埋設された下部電極である。
【0063】
RFクロック604は、RFクロック104と同じ構造および機能を有する。また、ゲートドライバ612は、ゲートドライバ112と同じ構造および機能を有し、アジャイルDCレール616は、アジャイルDCレール116と同じ構造および機能を有する。同様に、低速パルス周波数信号発生器608は、低速パルス周波数信号発生器108と同じ構造および機能を有する。しかし、低速パルス周波数信号発生器608は、低速パルス周波数発生器108から独立して動作する。例えば、低速パルス周波数信号発生器608は、任意形状波形を生成し、同時に、低速パルス周波数信号発生器108は、マルチレベル形状波形を生成する。
【0064】
RFクロック604は、RFクロック信号621を生成する。NOTゲート623は、ON-OFFパルス信号136を反転させて、反転ON-OFFパルス信号624を出力する。例えば、ON-OFFパルス信号136がON状態を有する時間間隔では、反転ON-OFFパルス信号624は、OFF状態を有し、ON-OFFパルス信号136がOFF状態を有する時間間隔では、反転ON-OFFパルス信号624は、ON状態を有する。
【0065】
ANDゲート610は、反転ON-OFFパルス信号624を用いてRFクロック信号621をフィルタリングして、ON-OFFパルスRFクロック信号626を出力する。ON-OFFパルスRFクロック信号126がON状態または高電力レベルを有する期間に、ON-OFFパルスRFクロック信号626は、OFF状態または低電力レベルを有し、ON-OFFパルスRFクロック信号126がOFF状態または低電力レベルを有する期間に、ON-OFFパルスRFクロック信号626は、ON状態または高電力レベルを有する。ON-OFFパルスRFクロック信号626のON状態の複数インスタンスは、ON-OFFパルスRFクロック信号626のOFF状態の複数インスタンスの間、RFクロック信号621のパルスがないRFクロック信号621のON-OFFパルス列を有する。
【0066】
ゲートドライバ612のゲートG3は、ON-OFFパルスRFクロック信号626を受信し、方形波信号628Aを出力するためにON-OFFパルスRFクロック信号626を増幅する、または増幅しない。ON-OFFパルスRFクロック信号626が増幅されないときは、ON-OFFパルスRFクロック信号626は、ゲートG3を通過し、方形波信号628Aとして出力される。また、ゲートドライバ612のゲートG4は、ON-OFFパルスRFクロック信号626を受信し、ON-OFFパルスRFクロック信号626を反転させて方形波信号628Bを出力する。方形波信号628Bは、方形波信号628Aに対して反転して同期される。
【0067】
ハーフブリッジ回路114が増幅方形波形を生成するのと同様に、ハーフブリッジ回路614は、方形波信号628Aおよび方形波信号628Bを受信し、方形波信号628Aおよび方形波信号628Bから増幅方形波形を生成する。また、低速パルス周波数信号発生器608は、任意形状、またはマルチレベルパルス形状、またはレベル間パルス形状を有するエンベロープを有する整形波形630を生成する。コントローラ142は、整形波形630を生成するように低速パルス周波数信号発生器608を制御する。コントローラ142は、整形波形630の形状を低速パルス周波数信号発生器608に提供する。整形波形630の形状は、整形波形138の形状と異なりうる、または同じでありうる。低速パルス周波数信号発生器608は、コントローラ142から受信した形状を有する整形波形630を生成する。
【0068】
ANDなどのANDゲート622は、マッチレスバイアス源602のDC電圧源VDCによって提供されたDC電圧を整形波形630によってフィルタリングして、整形波形630に従って整形された大きさを有するフィルタリングされた波形632を生成する。フィルタリングされた波形632は、整形波形630のエンベロープの形状と同じ形状のエンベロープを有する。フィルタリングされた波形632は、ハーフブリッジ回路614の出力O2で増幅方形波形に印加されて、出力O2で整形波形634を生成するためにマッチレスバイアス源602の増幅方形波形を整形(そのエンベロープを増加させるまたは減少させるなど)する。整形波形634は、デジタル波形または方形波形である。マッチレスバイアス源602内で生成された増幅方形波形のエンベロープは、増幅方形波形のゼロ-ピークの振幅またはピーク間の振幅を変調することによって調節される。整形波形634の例は、レベル間形状波形、またはマルチレベル形状波形、または任意形状波形を含み、整形波形634の形状は、フィルタリングされた波形632の形状と一致する。整形波形634のエンベロープの形状は、フィルタリングされた波形632のエンベロープの形状と一致する。
【0069】
リアクタンス回路618は、整形波形634のより高次の高調波をフィルタアウトまたは除去して、RF電力を有する整形正弦波形636を出力または抽出する。整形正弦波形636のRF電力は、プラズマチャンバ内でプラズマを生成するため、またはプラズマを維持するためにプラズマ負荷620のバイアス電極638に提供されて、プラズマチャンバの基板支持体上に支持された基板が処理される。整形波形634の大きさは、複数の波形の大きさの組み合わせであり、そのうちの1つは基本周波数を有し、残りはより高次の高調波を有する。より高次の高調波をフィルタアウトすることによって、基本周波数を有する整形正弦波形636が出力される。整形正弦波形636は、整形波形634のエンベロープの形状と一致する形状のエンベロープを有する。整形正弦波形636の形状は、フィルタリングされた波形632の形状によって定義される。例えば、整形正弦波形636のエンベロープは、フィルタリングされた波形632のエンベロープと同じ形状を有する。
【0070】
マッチレスICP源102は、パルス内のRFパルスを有する整形正弦波形132をプラズマチャンバのプラズマ負荷120に供給し、マッチレスバイアス源602は、パルス内のRFパルスを有する整形正弦波形636をプラズマチャンバのプラズマ負荷620に供給する。整形正弦波形636は、整形正弦波形132に対して反転して同期される。例えば、整形正弦波形132が高電力レベルを有する時または期間に、整形正弦波形636は低電力レベルを有し、整形正弦波形132が低電力レベルを有する時または期間に、整形正弦波形636は高電力レベルを有する。
【0071】
様々な実施形態では、インダクタの代わりに、1つ以上のコンデンサがリアクタンス回路として用いられる。いくつかの実施形態では、コンデンサの代わりに、1つ以上のインダクタがリアクタンス回路として用いられる。
【0072】
一実施形態では、NOTゲート623の代わりに、ON-OFFパルス信号136の位相を変更して、ANDゲート610に提供されるON-OFFパルス信号を出力するために位相器が用いられる。
【0073】
図7は、TCPとバイアスとの間のON-OFFパルスが異なる位相または非同期である場合の、同時にON-OFF非同期TCPバイアスパルス、マルチレベルTCPパルス、および任意波形バイアスパルスを有するTCP源のRF電流波形501、および、RFバイアスのRF電流波形704の例である。例えば、低速パルス周波数信号発生器108は、マルチレベルパルス整形波形を生成して、RF電流波形501をプラズマ負荷120に提供し、低速パルス周波数信号発生器608は、任意形状整形波形を生成して、RF電流波形704をプラズマ負荷620に提供する。
【0074】
いくつかの実施形態では、TCPとバイアスとの間のON-OFFパルスは、同位相である。
【0075】
図8Aは、
図6のプラズマ負荷120または
図6のプラズマ負荷620などのプラズマ負荷に印加される整形波形802を表すグラフの実施形態図である。整形波形802は、
図6のハーフブリッジ回路114の出力O1で生成された整形波形130の例、または、
図6のハーフブリッジ回路614の出力O2で生成された整形波形634の例である。
図8Aのグラフは、時間tにわたる整形波形802の大きさまたは振幅を描いている。整形波形802は、RFクロック信号134および整形波形804に基づいて生成される。整形波形804は、低速パルス周波数信号発生器108によって生成された整形波形138の例、または、
図6の低速パルス周波数信号発生器608によって生成された整形波形の例である。整形波形802は、低速パルス周波数信号発生器108または低速パルス周波数信号発生器608などの低速パルス周波数信号発生器がレベル間パルスをRFクロック信号134に印加するときに生成される。整形波形802は、低電力レベルと高電力レベルとの間を定期的に遷移する。
【0076】
図8Bは、
図6のプラズマ負荷120または
図6のプラズマ負荷620に印加される整形波形810を表すグラフの実施形態図である。整形波形810は、
図6のハーフブリッジ回路114の出力O1で生成された整形波形130の別の例、または、
図6のハーフブリッジ回路614の出力O2で生成された整形波形634の別の例である。
図8Bのグラフは、時間tにわたる整形波形810の大きさを描いている。整形波形810は、RFクロック信号134および整形波形812に基づいて生成され、低速パルス周波数信号発生器108によって生成された整形波形138の例、または、
図6の低速パルス周波数信号発生器608によって生成された整形波形の例である。整形波形810は、低速パルス周波数信号発生器108または低速パルス周波数信号発生器608がマルチレベルパルスをRFクロック信号134に印加するときに生成される。
【0077】
図8Cは、
図6のプラズマ負荷120または
図6のプラズマ負荷620に供給される整形波形820を表すグラフの実施形態図である。整形波形820は、
図6のハーフブリッジ回路114の出力O1で生成された整形波形130のさらに別の例、または、
図6のハーフブリッジ回路614の出力O2で生成された整形波形634のさらに別の例である。
図8Cのグラフは、時間tに対する整形波形820の大きさを描いている。整形波形820は、RFクロック信号134および整形波形822に基づいて生成され、低速パルス周波数信号発生器108によって生成された整形波形138の例、または、
図6の低速パルス周波数信号発生器608によって生成された整形波形の例である。整形波形820は、低速パルス周波数信号発生器108または低速パルス周波数信号発生器608が任意形状パルスをRFクロック信号134に印加するときに生成される。
【0078】
図9は、
図6のプラズマ負荷120またはプラズマ負荷620などのプラズマ負荷に印加されるRF波形の生成を表す方法900の実施形態のフローチャートである。方法900は、
図6のON-OFFパルスRFクロック126またはON-OFFパルスRFクロック626などのON-OFFパルスRFクロックを定義する動作902を含む。ON-OFFパルスRFクロックは、ON-OFFパルスを有さないOFF状態によって分離されたON-OFFパルス列を有する。方法900は、さらに、ON-OFFパルスRFクロックの大きさを調節して整形正弦波形を生成する、整形波形138または整形波形630(
図6)などの整形波形を印加する動作90
4を含む。整形正弦波形は、
図6に表される整形正弦波形132または整形正弦波形636でありうる。方法900は、整形正弦波形を、
図6のプラズマ負荷120またはプラズマ負荷620などのプラズマ負荷の電極に送出する動作90
6を含む。
【0079】
図10Aは、時間tに対する低速パルス信号1006、時間tに対する高速パルス信号1008、および時間tに対するRFクロック信号134を描くグラフ1000の実施形態図である。低速パルス信号1006は、
図6の整形波形138または整形波形630の例であり、高速パルス信号1008は、
図6のON-OFFパルス信号136の例である。
図10Aは、同時の高速ON-OFFパルスと共に、低速パルス信号1006のマルチレベルパルスを表す。
【0080】
図10Bは、時間tに対する
図1のハーフブリッジ回路114の出力O1における方形波電圧1012を描くグラフ1002の実施形態図である。方形波電圧1012は、出力O1で提供された整形波形130の例である。
【0081】
図10Cは、
図1のハーフブリッジ回路114から出力された正弦波形のRF電流1014を描くグラフ1004の実施形態図である。RF電流1014は、
図1の電極124、または
図1のプラズマ負荷120に提供される。RF電流1014は、
図1の整形正弦波形132の例である。
【0082】
本明細書に記載の実施形態は、ハンドヘルドハードウェアユニット、マイクロプロセッサシステム、マイクロプロセッサに基づくまたはプログラミング可能な家電機器、ミニコンピュータ、メインフレームコンピュータなどを含む、様々なコンピュータシステム構成によって実行されてよい。本明細書に記載の実施形態は、コンピュータネットワークを通じて接続されるリモート処理ハードウェアユニットによってタスクが実施される分散コンピューティング環境においても実行されうる。
【0083】
いくつかの実施形態では、ホストコンピュータなどのコントローラは、上述の例の一部でありうるシステムの一部であってよい。そのシステムは、処理ツール、チャンバ、処理用プラットフォーム、および/または、特定の処理部品(ウエハ台座、ガス流システムなど)を含む、半導体処理装置を備える。このシステムは、半導体ウエハまたは基板の処理前、処理中、および処理後のその動作を制御するための電子機器と統合される。電子機器は、このシステムの様々な部品または副部品を制御しうる「コントローラ」を意味する。コントローラは、処理条件および/またはシステムの種類に応じて、プロセスガスの供給、温度設定(例えば、加熱および/または冷却)、圧力設定、真空設定、電力設定、RF生成器の設定、RF整合回路設定、周波数設定、流量設定、流体供給設定、位置動作設定、このシステムに接続もしくは接続されたツールおよび他の搬送ツール、および/または、ロードロックに対するウエハ搬送を含む、本明細書に開示のプロセスを制御するようにプログラムされる。
【0084】
概して、様々な実施形態では、コントローラは、命令を受け取り、命令を発行し、動作を制御し、洗浄動作を可能にし、エンドポイント測定を可能にするなどの様々な集積回路、ロジック、メモリ、および/または、ソフトウェアを有する電子機器として定義される。集積回路は、プログラム命令を記憶するファームウェア形式のチップ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)、プログラマブルロジックデバイス(PLD)、1つ以上のマイクロプロセッサ、またはプログラム命令(例えば、ソフトウェア)を実行するマイクロコントローラを含む。プログラム命令は、様々な個別設定(または、プログラムファイル)の形式でコントローラに伝達される命令であって、プロセスを半導体ウエハ上でもしくは半導体ウエハ向けに実行するための動作パラメータを定義する。いくつかの実施形態では、動作パラメータは、1つ以上の層、材料、金属、酸化物、シリコン、二酸化シリコン、表面、回路、および/または、ウエハダイの製造中における1つ以上の処理工程を実現するために、プロセスエンジニアによって定義されるレシピの一部である。
【0085】
いくつかの実施形態では、コントローラは、システムに統合または接続された、そうでなければシステムにネットワーク接続された、もしくはこれらが組み合わされたコンピュータの一部である、またはそのコンピュータに接続される。例えば、コントローラは、「クラウド」内にある、または、ファブホストコンピュータシステムの全てもしくは一部であり、ウエハ処理のリモートアクセスを可能にする。コントローラは、システムへのリモートアクセスを可能にして、製造動作の進捗状況を監視し、過去の製造動作の経歴を調査し、複数の製造動作から傾向または性能の基準を調査し、現在の処理のパラメータを変更し、現在の処理に続く処理工程を設定し、または、新しいプロセスを開始する。
【0086】
いくつかの例では、リモートコンピュータ(例えば、サーバ)は、ローカルネットワークまたはインターネットを含むコンピュータネットワークを通じて、プロセスレシピをシステムに提供する。リモートコンピュータは、次にリモートコンピュータからシステムに伝達されるパラメータおよび/もしくは設定のエントリまたはプログラミングを可能にするユーザインタフェースを含む。いくつかの例では、コントローラは、ウエハを処理するための設定の形式の命令を受信する。その設定は、ウエハ上で実施されるプロセスの種類、および、コントローラが接続するまたは制御するツールの種類に固有であることを理解されたい。よって、上述のように、コントローラは、例えば、互いにネットワーク接続される1つ以上の個別のコントローラを含むことによって、および、本明細書に記載のプロセスの実行などの共通の目的に向かって協働することによって分散されてよい。かかる目的で分散されたコントローラの例は、遠隔に(例えば、プラットフォームレベルで、または、リモートコンピュータの一部として)設置され、協働してチャンバにおけるプロセスを制御する1つ以上の集積回路と連通する、チャンバ上の1つ以上の集積回路を含む。
【0087】
制限するのではなく、様々な実施形態では、システムは、プラズマエッチングチャンバ、堆積チャンバ、スピンリンスチャンバ、金属めっきチャンバ、クリーンチャンバ、ベベルエッジエッチングチャンバ、物理気相堆積(PVD)チャンバ、化学気相堆積(CVD)チャンバ、原子層堆積(ALD)チャンバ、原子層エッチング(ALE)チャンバ、イオン注入チャンバ、ならびに、半導体ウエハの製作および/もしくは製造において関連するもしくは使用される他の半導体処理チャンバを含む。
【0088】
上述の動作は、トランス結合プラズマ(TCP)リアクタを参照して説明されるが、いくつかの実施形態では、上述の動作は、他の型のプラズマチャンバ(例えば、コンダクタツール、誘電エッチングチャンバ、イオン注入チャンバ、シャワーヘッドを有するチャンバなど)に当てはまることにさらに注意されたい。
【0089】
上述のように、ツールによって実施されるプロセス工程に応じて、コントローラは、他のツール回路もしくはツールモジュール、他のツール部品、クラスタツール、他のツールインタフェース、隣接するツール、近接するツール、工場全体に設置されたツール、メインコンピュータ、別のコントローラ、または、半導体製造工場においてツール位置および/もしくはロードポートに対してウエハ容器を搬入出する材料搬送に用いられるツール、のうちの1つ以上と連通する。
【0090】
上記の実施形態を踏まえて、いくつかの実施形態が、コンピュータシステムに格納されたデータを含む様々なコンピュータ実施動作を採用することを理解されたい。これらのコンピュータ実施動作は、物理量を操作するものである。
【0091】
いくつかの実施形態は、これらの動作を実施するためのハードウェアユニットまたは装置にも関する。この装置は、専用コンピュータのために特別に作成されている。専用コンピュータとして定義されるときは、コンピュータは、特定の目的で動作する能力を有しながら、なお、特定の目的の一部ではない他の処理、プログラムの実行、またはルーチンを実施する。
【0092】
いくつかの実施形態では、本明細書に記載の動作は、選択的に作動されたコンピュータによって実施される、または、コンピュータメモリに格納された1つ以上のコンピュータプログラムによって構成される、または、コンピュータネットワークを通じて得られる。データがコンピュータネットワークを通じて得られるときは、データは、多くの計算資源などコンピュータネットワーク上の他のコンピュータによって処理されてよい。
【0093】
本明細書に記載の1つ以上の実施形態は、非一時的コンピュータ可読媒体のコンピュータ可読コードとしても作成されうる。非一時的コンピュータ可読媒体は、後にコンピュータシステムに読み込まれるデータを記憶するメモリデバイスなどのデータ記憶ハードウェアユニットである。非一時的コンピュータ可読媒体の例は、ハードドライブ、ネットワーク接続ストレージ(NAS)、ROM、RAM、コンパクトディスクROM(CD-ROM)、書き込み可能CD(CD-R)、書き換え可能CD(CD-RW)、磁気テープ、ならびに他の光学および非光学のデータ記憶ハードウェアユニットを含む。いくつかの実施形態では、非一時的コンピュータ可読媒体は、コンピュータ可読コードが分散されて記憶または実行されるようにネットワーク接続コンピュータシステムを通じて分散されたコンピュータ可読有形媒体を含む。
【0094】
上記のいくつかの方法動作は、特定の順序で説明されたが、様々な実施形態では、他のハウスキーピング動作が動作間に実施されること、または、方法動作が、微妙に異なる時間で起きるように、もしくは、様々な間隔での方法動作の発生を可能にするシステムで分散されるように、もしくは、上記とは異なる順序で実行されるように調節されることを理解されたい。
【0095】
一実施形態では、上記の実施形態の1つ以上の特徴は、本開示に記載の様々な実施形態に記載の範囲から逸脱することなく他の実施形態の1つ以上の特徴と組み合わされることにさらに注意されたい。
【0096】
前述の実施形態は、明確な理解のためにある程度詳細に説明されたが、添付の特許請求の範囲内で一定の変更および修正が実施されうることは明らかだろう。従って、本実施形態は、制限的でなく例示的とみなされ、実施形態は、本明細書に記載の詳細に限定されないが、添付の特許請求の範囲およびその同等内で修正されてよい。本開示は以下の適用例としても実現できる。
[適用例1]
整形正弦波形を生成するための方法であって、
ON-OFFパルス高周波(RF)クロックを定義する工程であって、前記ON-OFFパルスRFクロックは、ON-OFFパルスを有さないOFF状態によって分離されたON-OFFパルス列を有する、工程と、
前記ON-OFFパルスRFクロックの大きさを調節する整形波形を印加して前記整形正弦波形を生成する工程と、
前記整形正弦波形を電極に送出する工程と、
を含む、方法。
[適用例2]
適用例1に記載の方法であって、
前記電極は、コイルまたは基板支持体である、方法。
[適用例3]
適用例1に記載の方法であって、
前記ON-OFFパルスRFクロックは、ON状態を有し、
前記方法は、さらに、
前記ON-OFFパルスRFクロックを反転させて反転方形波信号を出力する工程と、
方形波信号および前記反転方形波信号から増幅方形波形を出力する工程と、を含み、
前記整形波形を印加する前記工程は、
整形波形を生成するように前記増幅方形波形の大きさを調節する工程と、
前記整形正弦波形を前記整形波形から抽出する工程と、
を含む、方法。
[適用例4]
適用例3に記載の方法であって、
前記増幅方形波形の前記大きさを調節する前記工程は、レベル間形状波形、またはマルチレベル形状波形、または任意形状波形を出力するために実施される、方法。
[適用例5]
適用例1に記載の方法であって、
前記ON-OFFパルスRFクロックは、ON状態を有し、
前記ON-OFFパルス列は、前記ON状態および前記OFF状態の周波数よりも大きい周波数を有する、方法。
[適用例6]
方法であって、
高周波を有するクロック信号を生成する工程と、
パルス信号を提供する工程と、
前記パルス信号のON状態およびOFF状態に従って前記クロック信号をフィルタリングして、ON-OFFパルス高周波(RF)クロック信号を出力する工程と、
前記ON-OFFパルスRFクロック信号から複数の方形波信号を生成する工程と、
前記複数の方形波信号から増幅方形波形を生成する工程と、
整形波形を生成する工程と、
前記整形波形に従ってアジャイル直流(DC)レールに関連付けられたDC電圧をフィルタリングして、フィルタリングされた波形を生成する工程と、
前記フィルタリングされた波形に基づいて前記増幅方形波形を整形して、整形波形を生成する工程と、
前記整形波形から整形正弦波形を抽出する工程であって、前記整形正弦波形は、前記フィルタリングされた波形によって定義された整形エンベロープに基づいて出力される、工程と、
基板を処理するためのプラズマを生成するために前記整形正弦波形のRF電力を提供する工程と、
を含む、方法。
[適用例7]
適用例6に記載の方法であって、
前記パルス信号を提供する前記工程は、前記高周波よりも低い周波数で前記パルス信号を提供する工程を含む、方法。
[適用例8]
適用例6に記載の方法であって、
前記パルス信号を提供する前記工程は、複数のパルスを提供して、ON状態の複数のインスタンスおよびOFF状態の複数のインスタンスを提供する工程を含み、
前記パルス信号の前記ON状態の前記複数のインスタンスの各々は、次に前記パルス信号の前記OFF状態の前記複数のインスタンスの対応するインスタンスが続き、前記パルス信号の前記OFF状態の前記複数のインスタンスの各々は、次に前記パルス信号の前記ON状態の前記複数のインスタンスの対応するインスタンスが続き、
前記クロック信号を生成する前記工程は、複数のパルスを生成して、ON状態の複数のインスタンスおよびOFF状態の複数のインスタンスを提供する工程を含み、
前記クロック信号の前記ON状態の前記複数のインスタンスの各々は、次に前記クロック信号の前記OFF状態の前記複数のインスタンスの対応するインスタンスが続き、前記クロック信号の前記OFF状態の前記複数のインスタンスの各々は、次に前記クロック信号の前記ON状態の前記複数のインスタンスの対応するインスタンスが続く、方法。
[適用例9]
適用例8に記載の方法であって、
前記クロック信号をフィルタリングする前記工程は、前記パルス信号の前記OFF状態に従って前記クロック信号の前記複数のパルスのいくつかをフィルタアウトする工程を含む、方法。
[適用例10]
適用例6に記載の方法であって、
前記ON-OFFパルスRFクロック信号を受信して前記複数の方形波信号を生成する前記工程は、
前記ON-OFFパルスRFクロック信号を通過させて前記複数の方形波信号の第1の方形波信号を出力する工程と、
前記ON-OFFパルスRFクロック信号を反転させて前記複数の方形波信号の第2の方形波信号を出力する工程と、
を含む、方法。
[適用例11]
適用例6に記載の方法であって、
前記フィルタリングされた波形に基づいて前記増幅方形波形を整形して前記整形波形を生成する前記工程は、前記フィルタリングされた波形のエンベロープを前記増幅方形波形に印加して、前記増幅方形波形のエンベロープを前記フィルタリングされた波形の前記エンベロープと一致させる工程を含む、方法。
[適用例12]
適用例6に記載の方法であって、
前記整形波形から前記整形正弦波形を抽出する前記工程は、前記整形波形からより高次の高調波を除去して基本周波数波形を出力する工程を含む、方法。
[適用例13]
適用例6に記載の方法であって、
前記整形エンベロープは、マルチレベルパルス形状エンベロープ、またはレベル間形状エンベロープ、または任意形状エンベロープである、方法。
[適用例14]
基板を処理するために用いられるプラズマチャンバの電極に高周波(RF)電力を提供するためのマッチレスプラズマ源であって、
高周波を有するクロック信号を生成するように構成されたRFクロックと、
パルス信号を提供するように構成されたパルス発生器と、
前記パルス信号のON状態およびOFF状態に従って前記クロック信号をフィルタリングしてON-OFFパルスRFクロック信号を出力するように構成された第1のフィルタと、
前記ON-OFFパルスRFクロック信号を受信して複数の方形波信号を生成するように構成されたゲートドライバと、
前記ゲートドライバから前記複数の方形波信号を受信して増幅方形波形を生成するように構成された増幅回路と、
整形波形を生成するように構成された波形発生器と、
前記整形波形に従ってアジャイル直流(DC)レールに関連付けられたDC電圧をフィルタリングしてフィルタリングされた波形を生成するように構成された第2のフィルタであって、前記フィルタリングされた波形は前記増幅方形波形を整形して、前記増幅回路の出力において整形波形が生成される、第2のフィルタと、
前記整形波形から整形正弦波形を抽出するように構成されたリアクタンス回路であって、前記整形正弦波形は、前記フィルタリングされた波形によって定義された整形エンベロープに基づいて出力され、前記リアクタンス回路は、前記基板の前記処理のためのプラズマを生成するために前記整形正弦波形の前記RF電力を提供するように構成されている、マッチレスプラズマ源。
[適用例15]
適用例14に記載のマッチレスプラズマ源であって、
前記パルス信号は、前記高周波よりも低い周波数を有する、マッチレスプラズマ源。
[適用例16]
適用例14に記載のマッチレスプラズマ源であって、
前記パルス信号は、複数のパルスを有してON状態の複数のインスタンスおよびOFF状態の複数のインスタンスを提供し、
前記パルス信号の前記ON状態の前記複数のインスタンスの各々は、次に前記パルス信号の前記OFF状態の前記複数のインスタンスの対応するインスタンスが続き、前記パルス信号の前記OFF状態の前記複数のインスタンスの各々は、次に前記パルス信号の前記ON状態の前記複数のインスタンスの対応するインスタンスが続き、
前記クロック信号は、複数のパルスを有してON状態の複数のインスタンスおよびOFF状態の複数のインスタンスを提供し、
前記クロック信号の前記ON状態の前記複数のインスタンスの各々は、次に前記クロック信号の前記OFF状態の前記複数のインスタンスの対応するインスタンスが続き、前記クロック信号の前記OFF状態の前記複数のインスタンスの各々は、次に前記クロック信号の前記ON状態の前記複数のインスタンスの対応するインスタンスが続く、マッチレスプラズマ源。
[適用例17]
適用例16に記載のマッチレスプラズマ源であって、
前記第1のフィルタは、前記パルス信号の前記OFF状態に従って、前記クロック信号の前記複数のパルスのいくつかをフィルタアウトするように構成されているANDゲートである、マッチレスプラズマ源。
[適用例18]
適用例14に記載のマッチレスプラズマ源であって、
前記ゲートドライバは、第1のゲートおよび第2のゲートを含み、前記第1のゲートは、前記ON-OFFパルスRFクロック信号を通過させて前記複数の方形波信号の第1の方形波信号を出力するように構成され、前記第2のゲートは、前記ON-OFFパルスRFクロック信号を反転させて前記複数の方形波信号の第2の方形波信号を出力するように構成されている、マッチレスプラズマ源。
[適用例19]
適用例14に記載のマッチレスプラズマ源であって、
前記フィルタリングされた波形は、前記フィルタリングされた波形のエンベロープに従って前記増幅方形波形のエンベロープを整形する、マッチレスプラズマ源。
[適用例20]
適用例14に記載のマッチレスプラズマ源であって、
前記リアクタンス回路は、前記整形波形からより高次の高調波を除去することによって前記整形波形から前記整形正弦波形を抽出して基本周波数波形を出力するように構成されている、マッチレスプラズマ源。
[適用例21]
適用例14に記載のマッチレスプラズマ源であって、
前記増幅回路は、複数のトランジスタを含み、前記第2のフィルタは、前記複数のトランジスタに接続されている、マッチレスプラズマ源。
[適用例22]
適用例14に記載のマッチレスプラズマ源であって、
前記整形エンベロープは、マルチレベルパルス形状エンベロープ、またはレベル間形状エンベロープ、または任意形状エンベロープである、マッチレスプラズマ源。
[適用例23]
適用例14に記載のマッチレスプラズマ源であって、
前記リアクタンス回路は、前記整形波形のより高次の高調波を除去して基本波形を生成するように構成され、前記整形正弦波形は、前記整形エンベロープを有する前記基本波形である、マッチレスプラズマ源。
[適用例24]
適用例14に記載のマッチレスプラズマ源であって、
リアクタンス回路は、RFマッチを用いることなく前記電極に接続されている、マッチレスプラズマ源。
[適用例25]
適用例14に記載のマッチレスプラズマ源であって、
前記DCアジャイルレールは、DC電圧源を備え、前記マッチレスプラズマ源は、さらに、前記整形波形の形状を制御するように構成されたコントローラを備える、マッチレスプラズマ源。
[適用例26]
適用例14に記載のマッチレスプラズマ源であって、
マッチレスバイアス源は、前記プラズマチャンバの基板支持体電極に接続されている、マッチレスプラズマ源。