(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-06-22
(45)【発行日】2023-06-30
(54)【発明の名称】物体、ウェハ、及びマスクブランクの表面上の粒子を検出する方法
(51)【国際特許分類】
G01N 21/94 20060101AFI20230623BHJP
G03F 1/84 20120101ALI20230623BHJP
G01N 21/956 20060101ALI20230623BHJP
【FI】
G01N21/94
G03F1/84
G01N21/956 A
(21)【出願番号】P 2019553253
(86)(22)【出願日】2018-03-14
(86)【国際出願番号】 EP2018056352
(87)【国際公開番号】W WO2018177747
(87)【国際公開日】2018-10-04
【審査請求日】2021-03-12
(31)【優先権主張番号】102017205212.0
(32)【優先日】2017-03-28
(33)【優先権主張国・地域又は機関】DE
(73)【特許権者】
【識別番号】503263355
【氏名又は名称】カール・ツァイス・エスエムティー・ゲーエムベーハー
(74)【代理人】
【識別番号】100147485
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100205833
【氏名又は名称】宮谷 昂佑
(72)【発明者】
【氏名】オリバー バイエル
(72)【発明者】
【氏名】ミカエル ゲルハルト
【審査官】村田 顕一郎
(56)【参考文献】
【文献】特表2012-531042(JP,A)
【文献】特開2011-027662(JP,A)
【文献】特開昭62-282445(JP,A)
【文献】特開平09-113927(JP,A)
【文献】特開2017-050256(JP,A)
【文献】特開2013-242179(JP,A)
【文献】特開昭50-072911(JP,A)
【文献】特開2010-267934(JP,A)
【文献】特開2003-177100(JP,A)
【文献】特開2010-210568(JP,A)
【文献】米国特許第04767660(US,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84-21/958
G03F 1/84
(57)【特許請求の範囲】
【請求項1】
物体(2、3、14)の表面(11)上の堆積粒子(P)を検出する方法であって、
前記物体(2、3、14)の前記表面(11)の部分領域(T)に測定放射線(9)を照射するステップと、
前記照射された部分領域(T)で散乱した測定放射線(9)を検出するステップと、
前記検出された測定放射線(9)に基づき前記物体(2、3、14)の前記表面(11)上の前記粒子(P)を検出するステップと
を含み、前記照射するステップ及び前記測定放射線(9)を検出するステップ中に、前記物体(2、3、14)の前記表面(11)に、前記測定放射線に関する前記表面(11)の反射率(R)を低下させる反射防止コーティング(13)及び/又は表面構造(15)を設け、前記反射防止コーティング(13)及び/又は前記表面構造(15)により粒子検出限界を下げることを特徴とし、
前記反射防止コーティング(13)及び/又は前記表面構造(15)は、強度閾値(Is)に基づく前記粒子検出限界を下げるために、前記表面(11)の粗さに起因するヘイズ散乱光強度の度数分布(18)のFWHMを、前記反射防止コーティング(13)及び/又は前記表面構造(15)を設けない場合に比べて減少させるように提供される方法。
【請求項2】
請求項1に記載の方法において、前記粒子(P)を、マイクロリソグラフィ用のウェハ(3)又はマスクブランク(2)の形態の物体の前記表面(11)上で検出する方法。
【請求項3】
請求項1又は2に記載の方法において、前記測定放射線(9)は所定の測定波長(λ
M)を有する方法。
【請求項4】
請求項1~3のいずれか1項に記載の方法において、前記散乱した測定放射線(9)を、入射した測定放射線(9)に対して第1散乱角(α
1)~第2散乱角(α
2)の検出角度範囲で検出する方法。
【請求項5】
請求項1~4のいずれか1項に記載の方法において、前記反射防止コーティング(13)を多層コーティングとして形成する方法。
【請求項6】
請求項4に記載の方法において、前記反射防止コーティング(13)は、前記第1散乱角(α
1)~前記第2散乱角(α
2)の前記検出角度範囲で、前記反射率(R)の最大値(R
MAX)と前記反射率(R)の最小値(R
MIN)との差が5%未満である前記測定放射線(9)に関する角度依存反射率(R)を有する方法。
【請求項7】
請求項1~6のいずれか1項に記載の方法において、前記測定放射線(9)に関する前記反射防止コーティング(13)の前記反射率(R)は、15%未満である方法。
【請求項8】
請求項1~7のいずれか1項に記載の方法において、前記表面構造(15)を針状微細構造として形成する方法。
【請求項9】
請求項1~8のいずれか1項に記載の方法に
おいて、前記物体(3)はシリコンからできている方法。
【請求項10】
請求項9に記載の方法において、前記表面構造(15)をブラックシリコンとして形成する方法。
【請求項11】
請求項1~8のいずれか1項に記載の方法において、前記物体(14)を、前記測定放射線(9)をフィルタリングする光学フィルタガラスから形成する方法。
【請求項12】
請求項1~11のいずれか1項に記載の方法において、前記物体(2、3、14)は、前記測定放射線(9)に関して1×10
41/cmを超える吸収係数を有する材料からできている方法。
【請求項13】
請求項1~12のいずれか1項に記載の方法において、前記物体(2、3、14)は、厚さ(d
1、d
2)が500μm以上3mm以下である方法。
【請求項14】
請求項1~13のいずれか1項に記載の方法において、前記部分領域(T)で散乱した前記測定放射線(9)の散乱光強度(I)が前記強度閾値(Is)を上回る場合に粒子(P)を前記照射された部分領域(T)で検出する方法。
【請求項15】
請求項1~14のいずれか1項に記載の方法において、少なくとも前記物体(2、3、14)を前記測定放射線(9)で照射するステップ及び前記散乱した測定放射線(9)を検出するステップを、マイクロリソグラフィ用のマスクブランク(2)又はウェハ(3)を測定する測定装置(1)で実行する方法。
【発明の詳細な説明】
【技術分野】
【0001】
[関連出願の参照]
本願は、2018年3月28日の独国特許出願第10 2017 205 212.0号の優先権を主張し、その全開示内容を参照により本願の文脈に援用する。
【0002】
本発明は、物体の表面上の堆積粒子を検出する方法であって、物体の表面の部分領域に測定放射線を照射するステップと、照射された部分領域で散乱した測定放射線を検出するステップと、検出された測定放射線に基づき物体の表面上の粒子を検出するステップとを含む方法に関する。
【背景技術】
【0003】
堆積粒子は、通常は望ましくない妨害粒子である。例えば、検出された妨害粒子の数に基づきクリーンルームの清浄度を調べることが可能である。(試験)物体は、原理上は妨害粒子の検出に適した表面を有する任意の物体であり得る。
【0004】
上記方法は、例えば、(通常は未露光)マイクロリソグラフィ用、例えばEUVリソグラフィ用のウェハの又はマスクブランクの形態の板状物体の表面上の堆積粒子を検出するために実行することができる。粒子検出の測定原理は、物体の表面での測定放射線の散乱に基づく。表面で後方散乱された測定放射線の検出による粒子検出の原理に基づく測定装置は、例えばRudolph Technologies Inc.によりウェハの検査用には「Reflex FSI」という商品名で、マスクの検査用には「Reflex TT MBI」という商品名で提供されている。
【0005】
これらの測定装置では、レーザビームの形態の測定放射線を通常は用いて指定の入射角で物体の表面を照射する。表面で散乱した測定放射線は暗視野測定で検出され、すなわち物体の表面で散乱した測定放射線が検出される検出角度範囲は、表面の照射に用いられる測定放射線の入射角から逸れ、その結果、表面で反射する放射線部分は無視される。
【0006】
このような暗視野測定では、正確な完全平滑表面で反射する全放射線部分がこの表面で抑えられ、これは表面で散乱した測定放射線のみが検出されることを意味する。しかしながら、各表面は微視的レベルの粗さを有し、これは測定放射線のうち表面で反射する部分も測定放射線の検出中に必然的に検出されることを意味する。検出放射線の上記部分は、バックグラウンド信号を発生させ、その強度は、表面の粗さ又は研磨品質に応じて、場合によっては表面に施された(薄)膜の均質性に応じて変わり、膜の上側に検査対象表面が形成される。
【0007】
ヘイズ信号とも称するバックグラウンド信号に加えて、欠陥信号も測定放射線の検出中に記録される。上記測定原理では、通常は物体の表面が測定格子に分割され、表面の各行列要素又は部分領域が測定放射線により走査される。部分領域又は行列要素の走査中に検出される測定放射線は、積算又は積分される。部分領域又は行列要素毎に検出された測定放射線又は検出された測定信号は、バックグラウンド信号又はヘイズ信号と欠陥信号とが加算合成されたものである。欠陥信号は、表面又は場合によっては窪みに堆積した粒子と、掻き傷又は局所的表面欠陥等の局所的欠陥とにより生じる。掻き傷又は局所的欠陥は、概して、隣接する部分領域の検出された測定放射線で局所的パターンが特定されることにより粒子と区別される。例えば、複数の隣接する部分領域で検出された測定放射線が閾値を上回る場合、局所的表面欠陥を特定することができる。表面欠陥は通常は2次元に広がるが、掻き傷は実質的に1次元に広がる方向性の空間分布を通常は有し、したがって概して同様に特定して粒子と区別することができる。欠陥信号における粒子と掻き傷又は局所的表面欠陥との区別とは関係なく、粒子の検出は、ヘイズ信号に割り当てられる散乱光強度の値と欠陥信号に割り当てられる散乱光強度の値とを区別する必要がある。ヘイズ信号又は表面の粗さは、結果として粒子検出限界、すなわち粒子を一意に検出できる最小径を制限する。本願における粒子の検出限界又は最小粒径の通常のオーダは、約100nm以下である。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、検出粒子の検出限界を下げることができる、物体の表面上の粒子を検出する方法と、当該方法を実行する及びウェハ及びマスクブランクとを提供することである。
【課題を解決するための手段】
【0009】
上記目的は、導入部分で述べたタイプの方法であって、測定放射線を照射するステップ及び検出するステップ中に、物体の表面に測定放射線の反射率を低下させる反射防止コーティング及び/又は表面構造を設ける方法により達成される。
【0010】
本発明によれば、粒子は、粒子の検出前に測定放射線の反射率を低下させるよう処理された表面を有する物体上で検出される。この目的で、反射防止コーティングを物体の表面に施すことができ、且つ/又は表面構造を表面に設けることができ、これらは通常は粒子検出より前のステップで表面に設けられる。反射防止コーティングに加えて、表面構造も測定放射線に関する表面の反射率を大幅に低下させることができるが、それは測定放射線がフレネルの式に従って反射され得る急峻な界面がないからである。本願における(できる限り均質な)反射防止コーティング及び表面構造の両方又は単独で、通常は無視できるほど小さな散乱光部分しか引き起こさないか、又は散乱光測定に関連する空間周波数範囲の表面の粗さのごく僅かな変化しか引き起こさない。
【0011】
反射防止コーティング及び/又は表面構造による表面の反射率の低下は、このようにして散乱も、したがってバックグラウンド信号又はヘイズ信号の強度も低減するので粒子の検出に有用であり、これは物体の粗面で散乱する測定放射線がより少ないことを意味する。欠陥信号は、反射防止コーティング及び/又は表面構造の表面に堆積した粒子により発生し、その結果、特に粒子が強く吸収しすぎない粒子である場合は、粒子での散乱はその下の反射防止コーティング及び/又は表面構造による影響を全く又は僅かにしか受けない。反射率を低下させることにより、ヘイズ分布又はヘイズ信号の幅も低減される。測定信号又は測定放射線が欠陥信号であると解釈される下限の強度閾値は、通常は約3σであり、σはヘイズ分布の標準偏差を示す。したがって、(ヘイズ分布の最大から測定して)3σの幅が粒子検出下限を特定する。
【0012】
反射防止コーティング及び/又は表面構造が測定放射線に関する表面の反射率を半分に減らすとすると、ヘイズ分布全体が半減し、すなわちヘイズ分布の最大の強度値及びヘイズ分布の標準偏差の両方が半分になる。これに対して、ヘイズ分布の最大と粒子分布の最大との間の距離は不変のままである。距離の不変性は、物体の表面の表面要素又は部分領域から出る全散乱光強度が、表面の散乱光部分(ヘイズ)と欠陥散乱光部分とが加算合成されたものであるという仮定に基づく。したがって、粒子の検出中の信号対雑音比は、反射率の低下により増加し、粒子の検出限界は下がる。反射防止コーティング又は表面構造は、通常は粒子が検出される表面全体に延びることを理解されたい。
【0013】
表面の照射部分領域は、測定放射線を指定の入射角で、概して表面法線に対して垂直に通常は照射される、通常は略点状の部分領域である。粒子が検出される表面は多くの場合は平面状の表面であり、これは表面の全ての場所又は部分領域における表面法線が同じ方向を有することを意味する。表面全体の粒子を検出できるようにするために、検出された測定放射線が積分される部分領域又は行列要素は、通常は走査移動で表面にわたって動かされ、その目的で、検査対象物及び測定放射線又は測定光源を相互に対して移動させることができる。
【0014】
一変形形態では、粒子は、マイクロリソグラフィ用のマスクブランク又はマイクロリソグラフィ用のウェハの形態の物体の表面上で検出される。粒子の検出は、場合によっては放射線感応層(レジスト)が設けられている未露光ウェハの表面で、又は非構造化マスク、例えば非構造化EUVマスクで通常は実行される。このような測定では、ウェハ又はマスクの表面粗さを同時に測定することが可能である。ウェハ又はマスクの表面上の粒子を検出することが重要である場合、反射低減反射防止コーティング及び/又は適当な表面構造が設けられれば粒子検出限界を下げるのに有用である。こうして処理された表面への粒子の付着は、従来のウェハ又は従来のマスクブランクの表面への付着とおそらく全く又は僅かにしか異ならないか、又は適当な較正を用いて従来のウェハ又は従来のマスクブランクで生じる粒子数に変換することができ、その結果、適宜変更したウェハ又は適宜変更したマスクブランク上の粒子の検出は、未変更のウェハ又は未変更のマスクブランク上の粒子の検出と同様に有意義なものである。
【0015】
別の変形形態では、測定放射線は所定の測定波長を有する。測定放射線は、通常は単色であり、すなわち単一の規定波長を有する。単色測定放射線は、例えばレーザにより、又は例えばレーザダイオードにより生成することができる。測定放射線の測定波長は、通常は約380nm~約750nmの可視波長域、例えば約405nm又は635nmにある。単色測定放射線の使用は、散乱光測定に有用であることが分かっている。
【0016】
さらに別の変形形態では、散乱測定放射線は、入射測定放射線に対して第1散乱角~第2散乱角の検出角度範囲で検出される。指定の検出角度範囲のみでの表面の部分領域で散乱した測定放射線の検出は、表面散乱が異方性なので(ブラッグ回折)有用であり、これが意味するのは、1つ又は複数の検出角度がヘイズ信号の空間周波数と相関し、検出角度範囲の適当な選択により、ヘイズ信号又は表面粗さができる限り小さい検出に適した空間周波数範囲を選択することが可能であるということである。特定の直径範囲の粒子での散乱は、実質的に等方性と見なすことができるので、粒子の散乱光強度と表面散乱の散乱光強度との比ができる限り大きいように検出角度範囲を選択することが可能である。適当な検出角度範囲を選択するために、検査対象物の表面の粗さをできる限り正確に知るべきであり、表面粗さの変化は大きすぎてはならない。
【0017】
反射防止コーティングは、さらに別の変形形態では多層コーティングの形態である。多層コーティングは、通常は複数の高屈折率層及び低屈折率層を交互に有し、個々の層の層厚及び層材料又は屈折率は、物体の表面の反射率の所望の低下が得られるように選択される。このような多層コーティングの通常の設計は、測定波長の測定放射線に関して弱め合う干渉を起こし、このようにして反射率を低下させるようなものである。多層コーティングは、状況次第では比較的大きなスペクトル領域にわたって表面又は物体の反射率を大幅に低下させる。多層コーティングの設計時には、物体の材料、特に物体の屈折率も通常は考慮に入れられることを理解されたい。多層コーティングの代わりに単層のみを有する反射防止コーティングを用いることも可能であり得る。反射防止コーティングは、環境の屈折率と物体の材料の屈折率との間で徐々に遷移させることにより特に実現することもできる。複数の層を有するこのような反射防止コーティングを用いる場合、屈折率は環境から物体の材料へ徐々に増加する。
【0018】
さらに別の変形形態では、反射防止コーティングは、第1散乱角~第2散乱角の検出角度範囲で、反射率の最大値と反射率の最小値との間の差が5%未満、好ましくは2%未満、より好ましくは1%未満である測定放射線の角度依存反射率を有する。反射防止コーティングの反射率は、理想的には、検出角度範囲内で一定だが上記でさらに特定した範囲内でのみ少なくとも変わるべきである。
【0019】
さらに別の変形形態では、第1散乱角~第2散乱角の検出角度範囲での測定放射線に関する反射防止コーティングの反射率は、15%未満、好ましくは5%未満、特に1%未満である。さらに上述したように、反射防止コーティングは、物体の特定の材料に最適化される。したがって、反射防止コーティングの反射率の低下又は反射率は、表面が形成される物体の材料に応じて変わり、材料毎に異なり得る。反射防止コーティングは、検出角度範囲における表面の反射率を1%未満に低下させることを可能にすることが理想である。
【0020】
さらに別の変形形態では、表面構造は、特にモスアイ構造のように針状微細構造として具現される。このような微細構造は、横方向範囲が約1μm未満のオーダで長さが例えば約10μmのオーダの針又は針状構造を例えば有し得る。このような微細構造により、環境から物体の表面への屈折率の実質的に連続した遷移をもたらすことが可能であり、その結果、測定放射線の吸収が増加し、表面の反射率がこうして低減される。
【0021】
さらに別の実施形態では、物体はシリコンから形成される。物体がシリコンから形成されるという表現は、物体が完全にシリコンからなることを意味するとは限らず、物体は、コーティングが施され得るシリコンからできた基板、例えばエピタキシャル成長させたシリコン又は別の材料からできた少なくとも1つの層を有し得る。このようなコーティングの上側は、反射防止コーティングが施され且つ/又は表面構造が設けられる表面を形成し得る。シリコンから形成された物体は、例えばマイクロリソグラフィ用のウェハであり得る。
【0022】
シリコンからできている物体のコーティングされていない表面は、可視波長域の測定波長の測定放射線に関して高い反射率を有し、これは例えば約40%を超え得る。適当な反射防止コーティングの使用により、可視波長域の測定波長に関するシリコンの反射率を大幅に低下させることが可能である。シリコン用の反射防止コーティングは、例えばD. Gablerによる論文「モスアイのナノ光学のモデルに基づくシリコンフォトダイオードの反射防止(Entspiegelung von Silizium-Photodioden nach dem Vorbild der Nanooptik von Mottenaugen)[Rendering silicon photodiodes anti-reflective based on the model of the nanooptics of moth eyes]」(イルメナウ工科大学、2005年)から既知であり、当該文献全体を参照により本願の内容に援用する。表面構造を有しない反射防止コーティングに加えて、おそらく反射防止コーティングと組み合わせてシリコンの反射率を大幅に低下させることができるモスアイ型の構造化された、例えば六角形の表面構造も、上記文献に記載されている。この場合に用いることができる反射防止コーティングは例えば、SiXNYでできた、例えばSi3N4でできた、おそらく構造化された層である。
【0023】
改良形態において、表面構造はブラックシリコンの形態である。ブラックシリコンは、結晶シリコンの表面改質を表し、例えばイオン又は超短レーザパルスでの高エネルギー衝撃によりシリコン表面に生成することができ、測定放射線の吸収を増加させて反射率を低下させるさらに上述した針状微細構造が形成される。
【0024】
さらに上述したように、物体の環境、通常は空気から物体の材料へ屈折率が徐々に又はおそらく連続して遷移する場合に、表面の反射率を低下させることが原理上は可能である。反射防止コーティング及び/又は表面構造により、例えば格子構造又はモスアイ構造によりこれを達成して、(有効媒体として)そのような屈折率プロファイルをもたらすことができる。
【0025】
さらに別の変形形態では、物体は、測定波長の測定放射線をフィルタリングする光学フィルタガラスから、特にロングパスフィルタガラスから形成される。物体が放射線を照射される物体の前側の表面の反射率に加えて、物体が測定放射線に関して高い透過率を示す場合には、物体の後側、すなわち測定放射線を受けない側の反射率も散乱光測定に関与する。物体の後側での測定放射線の反射も最小化されるべきである。物体の後側における反射を最小化する可能性の1つは、測定放射線に関して高い吸収率又は高い吸収係数を有する材料からできている物体を測定に用いることである。物体の材料は、例えば、測定波長での透過率が非常に低い光学フィルタガラスとすることができ、その結果、例えばSchottによるイオン着色ロングパスフィルタガラスRG1000の場合のように、例えば全可視波長域におけるその内部透過率が厚さ3.0mmで10-5未満である。光学フィルタガラスは、マイクロリソグラフィ用のマスクブランクで必要に応じて用いられるように、従来の透明ガラス基板の代わりに例えば用いることができる。
【0026】
さらに別の変形形態では、物体は、測定放射線に関して1×1041/cmを超える吸収係数を有する材料からできている。この材料は、さらに上述した光学フィルタガラスであり得る。他の材料、例えばシリコンも、測定放射線に関して、約405nmの測定波長で通常は例えば約1051/cmを超える吸収係数を有する。
【0027】
さらに別の変形形態の場合、物体は厚さが500μm以上、好ましくは1mm以上である。材料の厚さが増加すると材料の吸収率が上昇する。従来のシリコンウェハは、厚さが約650μmであり、高い吸収係数(上記参照)により、測定放射線をほぼ全部吸収し、これは従来のウェハの後側により反射される測定放射線が事実上ないことを意味する。
【0028】
さらに別の変形形態では、部分領域で散乱した測定放射線の散乱光強度が強度閾値を上回る場合にのみ、照射された部分領域で粒子が検出される。測定波長の約半分未満、例えば約200nm以下の直径DSを有する散乱中心については、散乱光強度Iが直径の6乗に比例し、すなわちI~DS
6であるとほぼ言える(レイリー散乱)。したがって、粒子により引き起こされるような比較的大きな散乱中心は、高い散乱光強度Iをもたらすが、表面の粗さ又は凹凸はより低い散乱光強度Iをもたらす。強度閾値を上回る散乱光強度Iが表面の部分領域で測定される場合、表面のその部分領域に粒子があると見なすことができ、少なくとも閾値を上回ることは、部分領域における粒子の存在の必要条件である。
【0029】
さらに別の変形形態では、少なくとも物体に測定放射線を照射するステップ及び散乱測定放射線を検出するステップは、マイクロリソグラフィ用のマスクブランク又はウェハを測定する測定装置で実行される。検査対象物は、この場合は(変更した)ウェハ又は(変更した)マスクブランクであり得るが、このような測定装置に適した寸法を有する他の板状物体を測定装置で検査することも可能である。粒子を検出するステップも同様に測定装置で実行することができるが、検出された測定放射線の評価を異なる空間的に分離された装置で実行することも可能である。
【0030】
本発明は、可視波長域又はUV波長域の少なくとも1つの測定波長の測定放射線に関する表面の反射率を低下させる反射防止コーティング及び/又は表面構造が表面に設けられたウェハにも関する。このようなウェハ(測定ウェハ)は、さらに上述した方法の実行時に用いられることが有利であり得る。反射防止コーティング又は表面構造は、この方法と共にさらに上述したように形成され得る。ウェハは通常はシリコンからなる。さらに上述したように、可視波長域は380nm~750nmにある。本願の意味の範囲内でのUV波長域は、190nm~380nmの波長にある。可視波長域よりも小さな波長の測定放射線の使用が有用であり得るが、それは粒子における散乱光強度(レイリー散乱)は通常は1λM
4に比例するからであり、λMは測定波長を示す。
【0031】
本発明は、可視波長域又はUV波長域の少なくとも1つの測定波長の測定放射線に関する表面の反射率を低下させる反射防止コーティング及び/又は表面構造が表面に設けられた、マイクロリソグラフィ用の、特にEUVリソグラフィ用のマスクブランクにも関する。このようなマスクブランク、すなわち非構造化マスクも、粒子検出限界を下げるためにさらに上述した方法で用いられることが有利であり得る。
【0032】
EUVリソグラフィに用いられる場合のマスクブランクは、例えばガラスセラミックZerodur(登録商標)(Schottの商標)又はチタンドープ石英ガラスULE(登録商標)(Corningの商標)又は熱膨張率が小さい他のガラスセラミック若しくはチタンドープ石英ガラス等の、ゼロ膨張材料として知られるものから、すなわち熱膨張率が低い材料から通常はできている。VUVリソグラフィ用のマスクブランクに用いられる材料は例えば、例えばNTAR7からのクロム層を例えば設けた従来の石英ガラスであり得る。
【0033】
上述のウェハ及び/又は上述のマスクブランクにおける反射防止コーティングは、特に上記方法と共にさらに上述したように具現することができ、第1散乱角~第2散乱角の検出角度範囲で、反射率の最大値と反射率の最小値との間の差が5%未満、好ましくは2%未満、特に1%未満である測定放射線に関する角度依存反射率を有し、且つ/又は検出角度範囲での測定放射線に関する反射防止コーティングの反射率は、15%未満、好ましくは5%未満、特に1%未満である。検出角度範囲の第1(最小)角度は特に20%以下、検出角度範囲の第2角度は特に60%以上であり得る。
【0034】
本発明のさらに他の特徴及び利点は、本発明に不可欠な詳細を示す図面を参照した以下の本発明の例示的な実施形態の説明と特許請求の範囲とから明らかである。個々の特徴は、それぞれ単独で個別に又は本発明の変形形態との任意の所望の組み合わせで複数として実現され得る。
【0035】
例示的な実施形態を概略図に示し、以下の説明に記載する。
【図面の簡単な説明】
【0036】
【
図1】マイクロリソグラフィ用のマスクブランク又はウェハの表面を検査する、特に粒子を検出する測定装置の概略図である。
【
図1b】測定装置により測定放射線を照射された部分領域を有するマスク又はウェハの平面を示す。
【
図2a】表面の照射に用いられて表面で検出角度範囲に散乱する測定放射線の概略図を示す。
【
図2b】粒子が表面上に堆積した検査対象表面の概略図を示す。
【
図3a】反射防止コーティングが検査対象表面に施された検査対象物の概略図を示す。
【
図3b】反射防止コーティングが検査対象表面に施された検査対象物の概略図を示す。
【
図3c】検査対象表面の反射率を低下させる表面構造を有する検査対象物の概略図を示す。
【
図4】従来の表面の検査中又は
図3a~
図3cに示す表面の検査中に記録された散乱光強度の
度数分布の概略図を示す。
【
図5】測定装置の検出角度範囲内の2つの異なる反射防止コーティングを設けた
図3aの表面の反射率の概略図を示す
【発明を実施するための形態】
【0037】
図面の以下の説明において、同一の参照符号が同一又は機能的に同一のコンポーネントに用いられる。
【0038】
図1aは、散乱光測定を用いるマスク2又はウェハ3を検査する測定装置1を示す。測定装置1は、例えばRudolph Inc.によりマスク2の検査用には「Reflex TT MBI」という商品名で、ウェハ3の検査用には「Reflex FSI」という商品名で提供されている測定装置1であり得る。
【0039】
測定装置1は、固定された機械本体4を有し、その上側に測定ヘッド5が取り付けられる。測定ヘッド5は、XYZ座標系のZ方向に延びる回転軸6の周りで回転可能に機械本体4に取り付けられる。Z方向に延びる追加回転軸8の周りで回転可能に取り付けられた回転板7も、機械本体4に取り付けられる。
【0040】
測定ヘッド5は、約405nmの測定波長λ
Mの測定光ビームの形態の測定放射線9を生成する、レーザダイオードの形態の測定光源10を有する。測定光源10が発した測定放射線9は、偏向ミラーでZ方向に、すなわち2つの回転軸6、8と平行に偏向され、回転板7上に位置するマスク2の上側の、
図1bに示す実質的に丸い部分領域Tに入射する。部分領域Tは、マスク2を追加回転軸8の周りで回転させること及び測定ヘッド5をその回転軸6の周りで回転させることにより、マスク2の表面11にわたって移動させることができ、その結果、部分領域Tをマスク2の表面11全体に沿って移動又は変位させることができる。測定装置1又は適当に変更した測定装置1は、
図1bに示すウェハ3の検査に用いることもできる。
【0041】
図2aで見ることができるように、マスク2の平面状の表面11を垂直に、したがって表面法線の方向に照射するために用いられる測定放射線9は、表面11で半球の全方向に後方散乱される。しかしながら、測定ヘッド5に取り付けられた検出器12は、実質的に点状の部分領域Tにおいて第1散乱角α
1~第2散乱角α
2の検出角度範囲で散乱した測定放射線9のみを検出する。図示の例では、第1散乱角α
1は32°であり、第2散乱角α
2は68°である。散乱測定放射線9を第1及び第2散乱角α
1、α
2間の検出角度範囲のみで検出器12により検出するために、楕円凹面鏡及びピンホールミラーが測定ヘッド5に組み込まれる。
図2aに示す場合とは異なり、検出角度範囲は、部分領域Tに関して回転対称であり、すなわち周方向で(すなわち360°の角度にわたって)検出角度範囲で部分領域Tにおいて後方散乱した全測定放射線9が、検出器12により捕捉される。
【0042】
測定放射線9は、表面11に対して垂直に放射されるので、理想的な完全に平面状の表面11で反射する測定放射線9は、表面11から同様に垂直方向に出なければならず、したがって検出器12により捕捉される検出角度範囲外にあることになる。実際にはどの表面11も、用いられる研磨法の品質、表面11の製造材料等に応じた微視的スケールの粗さを有する。
図2bは、そのような微視的粗さを有する現実の表面11の詳細を示す。表面11に堆積した粒子P及び表面11の一部に施されたコーティング13も同様に図示する。表面11で散乱して検出器12により捕捉された測定放射線9は、表面11の粗さに起因した散乱光により生じる第1部分と、表面11上の欠陥、例えば
図2bに示す粒子Pに起因した第2部分とを有する。
【0043】
次式(ブラッグの式)に従って、表面格子の格子周期Gは、測定放射線9の測定波長λM、測定放射線9の入射角αE、及び散乱角αSに関係する。
sin(αE)-sin(αS)=λM/G
【0044】
測定放射線9の垂直入射の場合、すなわち測定放射線の入射角αEが0°、測定波長λMが408nm、第1散乱角α1が32°、及び第2散乱角α1が68°の場合、約800nmの最大格子周期GMax及び400nmの最小格子周期GMINが得られ、すなわち上記で指定した検出角度範囲は、約400nm~約800nmの空間波長領域(又は格子周期Gの範囲)に対応する。上記空間波長領域は、表面11の粗さに起因した散乱光により生じる散乱測定放射線9の第1部分に関する。
【0045】
測定波長λMの約半分未満の直径DSを有する粒子Pの散乱中心については、散乱光強度Iが直径の6乗に比例し、すなわちI~DS
6であるとほぼ言える(レイリー散乱)。粒子はほぼ等方的に散乱し、つまり検出器12により記録された散乱測定放射線9の第2部分の強度は、選択された検出角度範囲に僅かにしか依存しない。検出角度範囲の、より正確には第1散乱角α1及び第2散乱角α2の適当な選択は、表面11の粗さが理想的に最小である空間周波数領域に対応するものであり、これにより、検出器12により捕捉される表面11の粗さに起因した散乱測定放射線9の第1部分を最小化することができる。
【0046】
粒子Pがもたらすような、通常は約0.25λ
M~約0.5λ
Mの直径範囲にある比較的大きな散乱中心では、特に半導体分野で用いられる従来のSiウェハ及びマスク等の物体で高い散乱光強度Iが得られるが、表面11の粗さ又は凹凸では、散乱光強度Iが低くなり、
図4を参照してこれを以下で説明する。
【0047】
図4は、散乱光強度Iの「欠陥カウント(defect count)」(D.C.)として知られるものを示し、これは欠陥信号17と称する第1部分とヘイズ信号18と称する第2部分とを有する。ヘイズ信号18は、表面11全体で散乱した測定放射線9の、すなわち表面11全体にわたる部分領域Tの移動中に検出された全測定放射線9の
度数分布を表し、表面11は測定中に例えば測定格子に分割され得る。これに対して、欠陥信号17は、(例えば測定格子の格子要素に対応する)部分領域Tで測定された散乱光強度Iである。
図4で見ることができるように、欠陥信号17は、ヘイズ信号18よりも高い散乱光強度Iでその最大を有する。
【0048】
粒子P等の大きな欠陥ほど高い散乱光強度Iにつながるので(上記参照)、欠陥信号17が表面11上の粒子P及び場合によってはさらなる欠陥に起因する一方で、ヘイズ信号18は実質的には表面11の粗さに起因する。強度閾値ISを上回る散乱光強度Iが表面11の部分領域Tで測定された場合、粒子Pが表面11上の部分領域Tにあると見なされ、すなわち検出器12により測定された散乱光強度Iが強度閾値ISを上回る場合、指定の照射期間で、粒子Pが検出される。
【0049】
照射期間中に部分領域Tで記録された散乱測定放射線9について加算又は積分が行われた後に、測定のために表面11が分割された測定格子の隣接する部分領域Tが粒子Pについて同様に検査される。閾値ISを上回る散乱光強度Iが複数の隣接する部分領域Tで測定される場合、適当なアルゴリズムを用いて表面11上の掻き傷又は局所的表面欠陥の有無を推定することが可能である。したがって、表面11の部分領域Tにおける散乱光強度Iの閾値ISを上回ることは、表面11の部分領域Tにおける粒子Pの存在に必要な基準だがおそらく十分な基準ではない。
【0050】
図4で見ることができるように、ヘイズ信号18は、比較的大きな半値全幅(FWHM)を有し、実質的にガウス性のヘイズ信号18の右端は欠陥信号17におそらく部分的に重なる。ヘイズ信号18の右端は、
度数分布の比較的小さな部分しか構成しないが、ヘイズ信号18のみにより散乱光強度Iが強度閾値I
Sを上回る場合があり、これは粒子Pが表面11の部分領域に存在しないのに粒子Pがそこで検出されることを意味する。そのため、強度閾値I
S、したがって検出可能な最小粒径D
Sは、粒子Pの検出の誤差を回避するために任意に小さくすることができない。
【0051】
検出限界、すなわち検出可能な最小粒径DSを下げるために、ヘイズ信号18及び欠陥信号17をできる限り相互に分離する必要がある。これは、ヘイズ信号18の幅を減らして、粒子検出限界に関する強度閾値ISも下げることにより達成することができる。これは表面11の粗さの低減によっても達成され得るが、これは概して容易に可能なことではない。
【0052】
検出限界を下げるために、従来のマスクブランク2を用いる代わりに、
図3aに示すように、反射防止コーティング13が表面に施された板状物体14が
図1aの測定装置1に導入される。
図2bで見ることができるように、均一な厚さで施されたコーティング13の上側は粗い表面11に従い、すなわち施されたコーティング13は表面11の粗さを増加させない。したがって、
図1aの測定装置を用いて検査される表面11は、その粗さに関して元の表面11に実質的に一致する。
【0053】
反射防止コーティング13により、測定放射線9に関する表面11の反射率、したがって散乱効果が低減し、すなわち、特定の入射角で入射する測定放射線9の強度I
Iの強度I
Oの下側第1部分は、反射防止コーティング13が施されていない表面11の場合よりも反射される。したがって、反射率の低下により、検出器12に入射し表面11の表面粗さに起因した測定放射線9の第1部分は低減され、その結果、
図4で見ることができるように表面11で測定された散乱光分布が変化する。
【0054】
反射防止コーティング13が設けられた表面11で測定されたヘイズ散乱光分布18’は、散乱光強度Iに関して低減され、すなわち
図4において左へずれる。欠陥ピーク又は欠陥信号17’も同様に左へずれるが、ヘイズ散乱光分布18’の最大と欠陥信号17’の最大との間の距離Aは不変のままである。これは、表面11の格子要素から出る全散乱光強度Iが表面11の散乱光部分、すなわちヘイズ信号18又は18’と欠陥信号17又は17’とが加算合成されたものであるという仮定に基づく。
【0055】
図4に示す例では、表面11の反射率が反射防止コーティング13により半分になると見なされた。したがって、
図4から明白なように、ヘイズ信号18、18’が最大となる散乱光強度は100a.u.から50a.u.に低下する。ヘイズ信号18、18’の標準偏差又はFWHM値もそれに応じて変化する。反射防止コーティングのない表面11の場合、FWHM値は約10a.u.(約95a.u.~約105a.u.)である。表面11の反射率の半減の場合、FWHM値も半分に、すなわち約5a.u.(105/2a.u.~95/2a.u.)に減る。ヘイズ信号18、18’の散乱測度に基づき通常は規定される強度閾値I
S又はI
S’(下記参照)は、それに応じて下がる。したがって、左へずれたヘイズ信号18’の場合の強度閾値I
S’も同様に、ずれたヘイズ信号18’の最大の方向へ左にずれるが、ここでは粒子Pの検出の誤り率は増加しない。
【0056】
強度閾値I
S又はI
S’は、例えばヘイズ信号18、18’の分散、FWHM値、標準偏差、又は別の散乱測度に応じて固定され得る。例えば、強度閾値I
S又はI
S’は、3σ値として知られるものとして規定することができ、すなわち、ヘイズ信号18、18’の最大から測定したヘイズ信号18、18’の標準偏差σの3倍を超える散乱光強度I
S又はI
S’が、検出信号17と関連すると考えられ、粒子Pの存在を意味すると評価される。ヘイズ信号18、18’の散乱測度は相互に変換することもでき、例えば強度閾値I
S又はI
S’を求める際の標準偏差σ及び
図4に示すFWHM値に関して以下の関係が当てはまる:FWHM値≒2.3548σ。
【0057】
板状物体14に施された反射防止コーティング13は、
図3aに示す例では、測定波長λ
Mに関して高屈折率及び低屈折率の複数の個別層13a、13bを交互に有する多層コーティングであり、その層厚は、405nmの測定波長λ
Mの測定放射線9に関して弱め合う干渉が起こるよう選択される。2つの反射防止コーティングに関して
図5に示すように、第1散乱角α
1~第2散乱角α
1の測定角度範囲での物体14の反射率Rは、ここで5.0%未満に低減され得る。点破線又は破線で示す反射率Rは、シリコンウェハの形態のシリコンでできている物体14にそれぞれ施された2つの異なる構成の反射防止コーティング13に対応する。反射防止コーティング13の正確な層構成は、ここではより詳細に論じない。2つの反射防止コーティング13の一方は、この検出角度範囲に最適化され、その結果、検出角度範囲での反射率Rの最大値R
MAXと反射率Rの最小値R
MINとの間の差は約5%未満であり、すなわち検出角度範囲での反射率Rに関して、R
MAX-R
MIN<5.0%である。
【0058】
反射防止コーティング13の反射率Rに関して
図5に点破線で示す場合とは異なり、最小反射率R
MINは必ずしも第1散乱角α
1で達成されるわけではなく、最大反射率R
MAXは必ずしも第2散乱角α
2で達成されるわけではない。理想的には、
図5に破線で示す反射防止コーティング13の反射率Rの場合のように、反射防止コーティング13の反射率Rは全検出角度範囲で(ほぼ)不変である。対応する反射防止コーティング13が、UV波長域の、例えば約248nmの測定波長λ
Mの測定放射線12にも最適化され得ることを理解されたい。反射防止コーティング13の最適化のために、物体14の屈折率を知る必要がある。
【0059】
板状物体14がシリコンウェハである上記例の代替として、板状物体14は、例えば光学フィルタガラス、特にSchottによりRG1000という商品名で市販されており405nmの測定波長λMの測定放射線9に関して約1.54の屈折率を有するロングパスフィルタガラスでもあり得る。ロングパスフィルタガラスの形態の物体14は、3mmの厚さd1で10-5未満の残留透過率を有し、すなわち物体14の後側から反射する測定放射線9が事実上ない。物体14の前側に反射防止コーティング13があることにより、表面11の反射率Rをコーティングされていない表面11に比べて18分の1未満に低下させることができる。
【0060】
物体14の厚さd
1及びその寸法は、
図1aの測定装置1に嵌まって物体14をそこで測定できるように選択される。ウェハ又は光学フィルタガラスの代わりに、用いられる物体14は、異なる材料、例えばマスクブランク2で一般的であるように、例えば石英ガラス、チタンドープ石英ガラス、又はガラスセラミック(EUVリソグラフィ用のマスクブランクの場合)とすることもできる。特に、以下でより詳細に説明するように、従来のマスクブランク2は、反射防止コーティング13を施すこと又は場合によっては微細構造化することにより測定用に準備され得る。
【0061】
さらに上述したように、信号対雑音比を下げるか又は粒子検出限界を下げるよう
図1aの測定装置1での測定用のウェハ3を準備することも可能である。
図3bは、反射防止コーティング13が施されたこのようなシリコンウェハ3を示し、反射防止コーティング13は、例えば導入部分で引用したD. Gablerによる論文「モスアイのナノ光学のモデルに基づくシリコンフォトダイオードの反射防止(Entspiegelung von Silizium-Photodioden nach dem Vorbild der Nanooptik von Mottenaugen)[Rendering silicon photodiodes anti-reflective based on the model of the nanooptics of moth eyes]」(イルメナウ工科大学、2005年)におけるように構成することができ、且つ例えば窒化ケイ素Si
XN
Yからなり得る。
【0062】
このような反射防止コーティング13により、405nmの測定波長λ
Mの測定放射線9に関する反射率Rを、コーティングされていないシリコンからできた表面11に対して約4分の1に低下させることができる。可視波長域でのコーティングされていないシリコンの反射率Rは、通常は約30%を超え、405nmの測定波長λ
Mでは約50%であり、
図3bの反射防止コーティング13が設けられた表面11の反射率Rは約5%未満である(
図5参照)。測定波長λ
Mでの結晶シリコンの吸収係数は10
51/cmを超える。市販のウェハ3は、厚さd
2が約650μmであり、ウェハ3の後側に達してそこで反射される測定放射線9が事実上ない。
【0063】
例えば表面構造化又は異なる測定波長λMの選択による反射防止コーティング13の最適化により、測定放射線9に関するウェハ3又は表面11の反射率Rがさらに低減され、したがって散乱光測定における粒子Pの検出限界をさらに下げることができることを理解されたい。
【0064】
図3cはウェハ3を示し、その場合、表面構造15が表面11の反射率Rの低減のために施され、図示の例での上記表面構造15は、ブラックシリコンとして知られるもの、すなわちイオン又は超短レーザパルスでの高エネルギー衝撃により生成された針状微細構造である。ブラックシリコンの形態の表面構造15は、表面11における測定放射線9の吸収を増加させ、したがって405nmの測定波長λ
Mの測定放射線9に関するその反射率Rを特に約2%未満に、すなわち約20分の1に大幅に低下させる。したがって、
図3cに示すウェハ3の場合、粒子検出限界を従来の非表面構造化ウェハ3に比べて大幅に下げることができる。
【0065】
従来のウェハ3の代わりに、反射防止コーティング13又は表面構造15を、エピタキシャル蒸着シリコン層を表面11に塗布して欠陥数を減らした点が従来のウェハと異なるウェハ3に設けることもできる。粗さ測定によれば、このようなエピタキシャルシリコン損を有するウェハ3の場合に表面粗さが従来のシリコンウェハに対して増加し、結果として粒子検出限界が上がる(上記参照)。このような変更したシリコンウェハ3の表面11の反射を低減することにより、粒子検出限界を許容可能な値に下げることができる。基板として働くウェハ3上又はマスクブランク2上に施される他のタイプの層でも、粒子検出限界を上述のように下げることができる。
【0066】
表面構造15と構造化表面11に施される反射防止コーティング13との組み合わせを、表面11の反射率Rの低減に用いることもできることを理解されたい。表面11の反射率Rを低減するために、針状微細構造の代わりに例えば格子構造又はモスアイ構造を用いることも可能である。
【0067】
原理上、物体2、3、14の環境、通常は空気から、物体2、3、14の材料へ屈折率が徐々に又はおそらく連続して遷移することにより、表面11の反射率Rを低減することもでき、すなわち、このような屈折率プロファイル又はこのような遷移を(有効媒体として)もたらす表面11の変更は、概して表面11の反射率の低下につながる。したがって、さらに上述した粒子Pの検出のために、対応する有効媒体を表面11の反射率Rの低下に用いることができる。
【0068】
要約すると、さらに上述したように、すなわち反射率Rを低下させた適当に変更した表面11を有する試験物体2、3、14を用いることにより、粒子検出限界を下げて、それによる誤り率の上昇を伴わずにより小さな粒径DSを有する粒子Pを検出できるようにすることが可能である。