IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 旭硝子株式会社の特許一覧

特許7310806近赤外線吸収色素、光学フィルタおよび撮像装置
<>
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図1
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図2
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図3
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図4
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図5
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図6
  • 特許-近赤外線吸収色素、光学フィルタおよび撮像装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-10
(45)【発行日】2023-07-19
(54)【発明の名称】近赤外線吸収色素、光学フィルタおよび撮像装置
(51)【国際特許分類】
   C09B 57/00 20060101AFI20230711BHJP
   C09K 3/00 20060101ALI20230711BHJP
   G02B 5/22 20060101ALI20230711BHJP
   G02B 5/26 20060101ALI20230711BHJP
   G02B 5/28 20060101ALI20230711BHJP
【FI】
C09B57/00 X CSP
C09K3/00 105
G02B5/22
G02B5/26
G02B5/28
【請求項の数】 9
(21)【出願番号】P 2020522147
(86)(22)【出願日】2019-05-23
(86)【国際出願番号】 JP2019020536
(87)【国際公開番号】W WO2019230570
(87)【国際公開日】2019-12-05
【審査請求日】2022-02-14
(31)【優先権主張番号】P 2018102387
(32)【優先日】2018-05-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000044
【氏名又は名称】AGC株式会社
(74)【代理人】
【識別番号】110002000
【氏名又は名称】弁理士法人栄光事務所
(72)【発明者】
【氏名】服部 繁樹
【審査官】井上 明子
(56)【参考文献】
【文献】特開2001-117201(JP,A)
【文献】特開2013-076926(JP,A)
【文献】特開2009-015114(JP,A)
【文献】国際公開第2017/104283(WO,A1)
【文献】MALTESE, V et al.,Electro-optical Properties of Neutral and Radical Ion Thienosquaraines,Chemistry - A European Journal,2016年,Vol. 22,pp. 10179-10186
【文献】LIU, W et al.,Sensitive Structural Control of Macrocycle Threading by a Fluorescent Squaraine Dye Flanked by Polym,Organic Letters,2015年,Vol. 17,pp. 5268-5271
【文献】SHAW, SK et al.,Non-Covalent Assembly Method that Simultaneously Endows a Liposome Surface with Targeting Ligands, P,Chemistry - A European Journal,2017年,Vol. 23,pp. 12646-12654
(58)【調査した分野】(Int.Cl.,DB名)
C09B 57/00-57/14
C09K 3/00
G02B 5/00-5/32
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
式(A2)で示される化合物からなる近赤外線吸収色素。
【化1】
式(A2)中、
およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。
およびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
【請求項2】
前記Rは水素原子である請求項記載の近赤外線吸収色素。
【請求項3】
請求項1または2に記載の近赤外線吸収色素と樹脂とを含有する吸収層を備えたことを特徴とする光学フィルタ。
【請求項4】
さらに誘電体多層膜を含む反射層を有する請求項に記載の光学フィルタ。
【請求項5】
さらに透明基板を有し、前記透明基板上に前記吸収層を備えた請求項3または4に記載の光学フィルタ。
【請求項6】
前記透明基板は、ガラスにより構成される請求項に記載の光学フィルタ。
【請求項7】
前記ガラスは、近赤外線吸収ガラスである請求項に記載の光学フィルタ。
【請求項8】
前記透明基板は、樹脂により構成される請求項に記載の光学フィルタ。
【請求項9】
固体撮像素子と、撮像レンズと、請求項3~8のいずれか1項に記載の光学フィルタとを備えたことを特徴とする撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、可視波長領域の光を透過し、近赤外波長領域の光を遮蔽する近赤外線吸収色素、光学フィルタおよび該光学フィルタを備えた撮像装置に関する。
【背景技術】
【0002】
固体撮像素子を用いた撮像装置には、色調を良好に再現し鮮明な画像を得るため、可視域の光(以下「可視光」ともいう)を透過し近赤外域の光(以下「近赤外光」ともいう)を遮蔽する近赤外カットフィルタが用いられる。近赤外カットフィルタにおいては、樹脂中に近赤外線吸収色素を分散させた吸収層や、近赤外光を反射する誘電体多層膜からなる反射層により近赤外光の遮蔽が行われる。
【0003】
このような近赤外カットフィルタに用いる近赤外線吸収色素として、スクアリリウム骨格とその両側にヘテロ芳香環構造を有する色素が知られている。例えば、特許文献1には、スクアリリウム骨格の両側にカルコゲン原子を含むヘテロアリール環を有し、ヘテロアリール環にアミノ基が結合した構造の近赤外線吸収色素が記載されている。
【先行技術文献】
【特許文献】
【0004】
【文献】国際公開第2017/104283号
【発明の概要】
【発明が解決しようとする課題】
【0005】
ここで、近赤外カットフィルタに用いる近赤外線吸収色素には、これを含有する吸収層において、可視光を透過し近赤外光を遮蔽する光学特性を十分に発揮するために、吸収層を構成する樹脂に対する溶解性が求められている。しかしながら、可視光を透過し近赤外光を遮蔽する光学特性と樹脂に対する十分な溶解性をともに有する近赤外線吸収色素は得られていない。
【0006】
本発明は、可視光を透過し近赤外光を遮蔽する光学特性と樹脂に対する高い溶解性をともに有する近赤外線吸収色素、光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置の提供を目的とする。
【課題を解決するための手段】
【0007】
本発明は、式(A1)で示される化合物からなる近赤外線吸収色素(以下、近赤外線吸収色素(A1)ともいう)、および式(A2)で示される化合物からなる近赤外線吸収色素(以下、近赤外線吸収色素(A2)ともいう)を提供する。
【0008】
【化1】
【0009】
式(A1)中、
およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。RおよびRは、互いに連結して、ヘテロ原子を含んでもよい員数3~6の脂環または芳香環を形成してもよく、その場合、該環に結合する水素原子は置換基で置換されていてもよい。
およびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
【0010】
【化2】
【0011】
式(A2)中、
およびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基であり、
およびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
【0012】
また、本発明に係る光学フィルタは、上記近赤外線吸収色素(A1)、または近赤外線吸収色素(A2)と樹脂とを含有する吸収層を備えたことを特徴とする。
また、本発明に係る撮像装置は、固体撮像素子と、撮像レンズと、上記光学フィルタを備えたことを特徴とする。
【発明の効果】
【0013】
本発明によれば、可視光を透過し近赤外光を遮蔽する光学特性を有するとともに、樹脂に対する高い溶解性を有する近赤外線吸収色素を提供できる。さらに、本発明によれば、該色素を用いた光学フィルタ、および該光学フィルタを用いた色再現性に優れる撮像装置を提供できる。
【図面の簡単な説明】
【0014】
図1図1は実施形態の光学フィルタの一例を概略的に示す断面図である。
図2図2は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
図3図3は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
図4図4は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
図5図5は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
図6図6は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
図7図7は実施形態の光学フィルタの別の一例を概略的に示す断面図である。
【発明を実施するための形態】
【0015】
以下、本発明の実施の形態について説明する。
本明細書において、近赤外線吸収色素を「NIR色素」、紫外線吸収色素を「UV色素」と略記することもある。
本明細書において、式(A1)で示される化合物を化合物(A1)という。他の式で表される化合物も同様である。化合物(A1)からなるNIR色素をNIR色素(A1)ともいい、他の色素についても同様である。また、例えば、式(1a)で表される基を基(1a)とも記し、他の式で表される基も同様である。
本明細書において、数値範囲を表す「~」では、上下限を含む。
【0016】
<NIR色素>
本発明は、式(A1)に示されるNIR色素(A1)および式(A2)に示されるNIR色素(A2)を提供する。
【0017】
本発明のNIR色素(A1)は、分子構造の中央にスクアリリウム骨格を有し、スクアリリウム骨格の左右に各1個のチオフェン環が結合し、該チオフェン環はスクアリリウム骨格とは反対側のα位に、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基を2個有するアミノ基(以下、「アミノ基(X)」という)が結合した構造である。アミノ基(X)は、窒素原子に芳香環が直接結合する構成を有しない。
【0018】
本発明のNIR色素(A2)は、分子構造の中央にスクアリリウム骨格を有し、スクアリリウム骨格の左右に各1個のチエノチオフェン環が結合し、該チエノチオフェン環はスクアリリウム骨格とは反対側のα位に、アミノ基(X)が結合した構造である。
【0019】
NIR色素(A1)およびNIR色素(A2)は、スクアリリウム骨格と、アミノ基(X)を有する点で共通している。NIR色素(A1)およびNIR色素(A2)は、スクアリリウム骨格とアミノ基(X)を連結する基がチオフェン環を含む点で共通する。本発明のNIR色素(A1)およびNIR色素(A2)は、該構造を有することで、可視光を透過し近赤外光を遮蔽する光学特性に優れるとともに、樹脂に対する溶解性も高い。
【0020】
NIR色素(A1)およびNIR色素(A2)ではスクアリリウム骨格とアミノ基(X)を連結するチオフェン環を含む環の数が多い程、すなわち、NIR色素(A1)に比べてNIR色素(A2)の方が、最大吸収波長が大きい。したがって、所望の波長領域に応じてNIR色素の使い分けが可能である。
【0021】
以下、NIR色素(A1)およびNIR色素(A2)について詳細に説明する。NIR色素(A1)は、以下の式(A1)で示される。
【0022】
【化3】
【0023】
式(A1)中、RおよびRは、それぞれ独立して、水素原子、ハロゲン原子、水酸基、あるいは、置換基を有してもよく、炭素-炭素原子間に不飽和結合もしくは酸素原子を含んでよいアルキル基、アルコキシ基、アリール基またはアルアリール基である。RおよびRは、互いに連結して、ヘテロ原子を含んでもよい員数3~6の脂環または芳香環を形成してもよく、その場合、該環に結合する水素原子は置換基で置換されていてもよい。式(A1)中の2つのRは、スクアリリウム骨格の左右で異なってもよいが、製造容易性の観点から左右が同じであることが好ましい。Rおよび後述のR、Rについても同様である。
【0024】
ここで、本明細書において、特に断りのない限り、アルキル基は、直鎖状、分岐鎖状、環状またはこれらの構造を組み合わせた構造でもよい。アルキル基が炭素-炭素原子間に不飽和結合を有するのは、直鎖状または分岐鎖状の場合、もしくは環状であって芳香環を形成しない場合である。アルキル基が環状であって炭素-炭素原子間に不飽和結合を有するが芳香環を形成しない例としてはシクロアルケンが挙げられる。アルキル基が炭素-炭素原子間に酸素原子を有するのは、直鎖状、分岐鎖状、環状のいずれの場合でもよい。アルコキシ基が有するアルキル基についても同様である。さらに、以下のアリール基がアルキル基を有する場合のアルキル基、アルアリール基のアルキル基についても同様である。
ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられ、フッ素原子および塩素原子が好ましい。
【0025】
本明細書において、特に断りのない限り、アリール基は芳香族化合物が有する芳香環、例えば、ベンゼン環、ナフタレン環、ビフェニル、フラン環、チオフェン環、ピロール環等を構成する炭素原子を介して結合する基をいう。アリール基は該結合に寄与する炭素原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造、例えば、トリル基、キシリル基を含む。
【0026】
本明細書において、特に断りのない限り、アルアリール基は、芳香環にアルキル基が結合し、該アルキル基を構成する炭素原子を介して結合する基をいう。アルアリール基は、該結合に寄与するアルキル基が結合する原子以外の環構成原子に結合する水素原子がアルキル基置換されている構造を含む。
【0027】
およびRにおける置換基としては、ハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~20のアルコキシ基が挙げられる。RおよびRがアリール基またはアルアリール基の場合、置換基は、芳香環に結合する水素原子またはこれらが有するアルキル基の水素原子を置換する基であり、上記置換基の他にさらにアリール基を含む。
【0028】
およびRがアルキル基またはアルコキシ基の場合、炭素数は1~20が好ましく、1~15がより好ましく、1~12がさらに好ましい。RおよびRがアリール基の場合、炭素数は6~20が好ましく、6~15がより好ましく、6~12がさらに好ましい。RおよびRがアルアリール基の場合、炭素数は7~20が好ましく、7~16がより好ましく、7~13がさらに好ましい。
およびRが置換基を有する場合、上記炭素数には置換基の炭素数が含まれる。
【0029】
は、光安定性の観点から、水素原子または炭素数1~3のアルキル基が好ましく、水素原子が特に好ましい。
【0030】
は、可視光透過性や、樹脂および溶媒への溶解性の観点からは、炭素-炭素原子間に酸素原子を含んでよい炭素数3~20の直鎖状または分岐鎖状のアルキル基が好ましい。アルキル基の炭素数は、直鎖状の場合、3~12がより好ましく、分岐鎖状の場合、4~10がより好ましい。Rは、例えば、基(1a)~(5a)から選ばれる基がさらに好ましく、基(1a)が特に好ましい。特に、RおよびRの一方または両方が直鎖状のアルキル基である場合は、Rは、炭素数4~10の分岐鎖状のアルキル基が好ましい。
【0031】
【化4】
【0032】
は、製造容易性の観点からは、水素原子または炭素数1~8のアルキル基が好ましく、水素原子が特に好ましい。
【0033】
およびRが互いに連結して脂環または芳香環を形成してもよく、その場合の員数は3~6である。なお、員数はRおよびRが結合するチオフェン環の2つの炭素原子を含む原子数である。上記脂環または芳香環はヘテロ原子を含んでもよい。ヘテロ原子としては、酸素原子、窒素原子、硫黄原子が挙げられる。また、上記脂環または芳香環に結合する水素原子は置換基で置換されてよく、置換基としては、RおよびRにおける置換基として例示した置換基が挙げられる。
【0034】
およびRは、それぞれ独立して、置換基を有してもよく、炭素-炭素原子間に不飽和結合、酸素原子、脂環もしくは芳香環を含んでよい直鎖状または分岐鎖状のアルキル基である。
【0035】
およびRにおける置換基としては、RおよびRにおける置換基と同様の置換基、すなわち、ハロゲン原子、水酸基、カルボキシ基、スルホ基、シアノ基、アミノ基、N-置換アミノ基、ニトロ基、アルコキシカルボニル基、カルバモイル基、N-置換カルバモイル基、イミド基、炭素数1~20のアルコキシ基が挙げられる。
【0036】
およびRにおける置換基としては、さらに、環状のアルキル基またはアリール基が挙げられる。アリール基としては、1~5個の置換基を有してもよいフェニル基または、1~7個の置換基を有してもよいナフチル基が好ましい。フェニル基およびナフチル基の水素原子を置換してもよい置換基としては、炭素-炭素原子間に不飽和結合または酸素原子を含んでよい炭素数1~12のアルキル基、もしくはアルコキシ基、またはアルキルアミノ基(アルキル基の炭素数は1~12)が挙げられる。フェニル基およびナフチル基は、非置換または、水素原子が1~3個置換されているのが好ましく、置換基としては、メチル基、ターシャリーブチル基、ジメチルアミノ基、メトキシ基等が好ましい。
【0037】
およびRが、主鎖または側鎖に脂環または芳香環を含む場合、耐熱性や、NIR吸収波長の長波長化の点で好ましい。RおよびRが、主鎖または側鎖に脂環または芳香環を有しない場合、耐光性や、製造容易性や、樹脂および溶媒への溶解性の点で好ましい。脂環の炭素数としては3~10が好ましい。芳香環の炭素数は4~14が好ましい。
【0038】
およびRの炭素数としては1~20が挙げられる。RおよびRの炭素数は、直鎖状の場合2~20が好ましく、3~16がより好ましく、4~12がさらに好ましい。RおよびRの炭素数は、分岐鎖状の場合、3~20が好ましく、4~16がより好ましく、8~10がさらに好ましい。
およびRが置換基を有する場合、および主鎖または側鎖に脂環または芳香環を含む場合、上記炭素数には置換基、脂環、芳香環の炭素数が含まれる。
【0039】
およびRは同一であっても異なってもよいが、製造容易性の点から同一であるのが好ましい。RおよびRは、樹脂および溶媒への溶解性の観点からは、いずれか一方が分岐鎖状であるのが好ましく、両方が分岐鎖状であるのがより好ましい。
【0040】
およびRが分岐鎖状の場合、分岐の数は特に制限されない。分岐の数は1~5が好ましく、1~3がより好ましい。樹脂および溶媒への溶解性の観点からは、分岐の位置は、α位が好ましく、製造容易性の観点からは、β位が好ましい。一つの炭素原子から2つに分岐していてもよく3つに分岐していてもよい。
【0041】
およびRは、例えば、基(1b)~(5b)から選ばれる基がさらに好ましい。
-CH(C2n+1 …(1b)
-C(C2n+1 …(1c)
-CH-CH(C2n+1 …(2b)
-CH-C(C2n+1 …(2c)
-(CH-CH(C2n+1 …(3b)
-(CH-CH(C2n+1 …(4b)
-(CH-CH …(5b)
【0042】
ただし、式(1b)~(4b)においてnは1~10の整数であり、2~8が好ましく、4~6がより好ましい。式(1b)~(4b)における2個または3個のC2n+1は直鎖であっても分岐鎖であってもよく、同一であっても異なってもよい。式(5b)においてmは0~19の整数であり、1~19が好ましく、2~15がより好ましく、3~11がさらに好ましい。さらに、基(1b)~(5b)は炭素-炭素原子間に酸素原子を有してもよい。
【0043】
これらの中でも、基(1b)、基(1c)は、分岐の位置がα位にあり溶解性の点で好ましい。基(2b)、基(2c)は、分岐の位置がβ位にあり製造容易性の点で好ましく、特に、基(2b)が好ましい。基(2b)としては、例えば、2個の(C2n+1)がともにCHである上記基(3a)、2個の(C2n+1)の一方がC、他方がCである上記基(1a)が好ましい。
【0044】
NIR色素(A1)としては、より具体的には、R~Rが、以下の表1に示される化合物(表1には、そのNIR色素(A1)としての略号を併せて示す。)が挙げられる。表1において、R~Rは、式が示された基である場合、式の記号を示す。表1に示す全ての化合物において、R~Rは式の左右で全て同一である。
【0045】
【表1】
【0046】
NIR色素(A2)は、以下の式(A2)で示される。
【0047】
【化5】
【0048】
式(A2)において、Rは、式(A1)におけるRと好ましい態様を含めて同様にできる。また、Rは、式(A1)におけるRと好ましい態様を含めて同様である。さらに、式(A2)におけるRおよびRは、式(A1)におけるRおよびRと好ましい態様を含めて同様である。
【0049】
NIR色素(A2)としては、より具体的には、R~Rが、以下の表2に示される化合物(表2には、そのNIR色素(A2)としての略号を併せて示す。)が挙げられる。表2において、R~Rは、式が示された基である場合、式の記号を示す。表2に示す全ての化合物において、R~Rは、式の左右で全て同一である。
【0050】
【表2】
【0051】
NIR色素(A1)は、ジクロロメタン溶液中での最大吸収波長λmax(A1)が、概ね600~750nmの範囲にある。NIR色素(A1)は、ジクロロメタン溶液中で最大吸収波長λmax(A1)の光における透過率が10%となるように濃度調整をしたときの、波長418nmの光の透過率および波長482nmの光の透過率は、それぞれ、85%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、94%以上が特に好ましい。
【0052】
NIR色素(A1)は、ジクロロメタン溶液中での最大吸収波長λmax(A1)を有する吸収ピークの短波長側において分光透過率曲線の傾斜が急峻であることが好ましい。これにより、例えば、NIR色素(A1)を含む吸収層と誘電体多層膜を備える光学フィルタにおいて、誘電体多層膜が本来的に有する光の入射角により吸収波長がシフトする角度依存性の影響を受けることなく、誘電体多層膜の吸光特性を十分に活用でき、結果として近赤外線遮蔽特性に特に優れる光学フィルタとできる。
【0053】
表1に示すNIR色素(A1)のうちでも、溶解性の観点からは、NIR色素(A1-1)等が好ましい。
【0054】
NIR色素(A2)は、ジクロロメタン溶液中での最大吸収波長λmax(A2)が、概ね700~850nmの範囲にある。NIR色素(A2)は、ジクロロメタン溶液中で最大吸収波長λmax(A2)の光における透過率が10%となるように濃度調整をしたときの、波長418nmの光の透過率および波長482nmの光の透過率は、それぞれ、85%以上が好ましく、90%以上がより好ましく、92%以上がさらに好ましく、94%以上が特に好ましい。
【0055】
NIR色素(A2)は、ジクロロメタン溶液中での最大吸収波長λmax(A2)が上記範囲にあることで、例えば、NIR色素(A2)を含む吸収層と誘電体多層膜を備える光学フィルタにおいて、誘電体多層膜における、入射角にともない高反射率を得るべき近赤外光の一部が高透過率化する光抜けを有効に抑制でき、結果として近赤外線遮蔽特性に特に優れる光学フィルタとすることができる。
【0056】
表2に示すNIR色素(A2)のうちでも、溶解性の観点からは、NIR色素(A2-1)等が好ましい。
【0057】
NIR色素(A1)およびNIR色素(A2)は、有機溶媒に対する溶解性が良好であり、透明樹脂への相溶性も良好である。その結果、吸収層を薄くしても優れた分光透過率特性を有し、光学フィルタを薄型化できるため、加熱による吸収層の熱膨張を抑制できる。そのため、例えば、該吸収層上に積層する反射層や、反射防止層等の機能層を形成する際の熱処理時において、それらの層の割れ等の発生を抑制できる。
【0058】
NIR色素(A1)およびNIR色素(A2)は、例えば、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(スクアリン酸)と、スクアリン酸と結合して式(A1)または式(A2)に示す構造を形成可能なチオフェン誘導体とを反応させて製造できる。例えば、NIR色素(A1)およびNIR色素(A2)が左右対称の構造である場合、スクアリン酸1当量に対して上記範囲で所望の構造のチオフェン誘導体2当量を反応させればよい。
【0059】
以下に、具体例として、NIR色素(A1)を得る際の反応経路を示す。下記スキーム(F1)においてスクアリン酸を(s)で示す。スキーム(F1)において、R~Rは、式(A1)におけるR~Rと同様の意味である。
【0060】
スキーム(F1)によれば、アミノ基導入位置に臭素原子を有し、β位に所望の置換基(R、R)を有するチオフェン誘導体を出発物質とする。
【0061】
出発物質のチオフェン誘導体に所望の置換基(R、R)を有する3級アミンを反応させ中間体A1-1として、所望の置換基(R、R、NR)を有するチオフェン誘導体を得る。スクアリン酸(s)の1当量に対し、中間体A1-1の2当量を反応させて、NIR色素(A1)を得る。
【0062】
【化6】
【0063】
NIR色素(A2)は、下記スキーム(F2)により製造できる。下記スキーム(F2)においてスクアリン酸を(s)で示す。スキーム(F2)において、R~Rは、式(A2)におけるR~Rと同様の意味である。
【0064】
スキーム(F2)において、β位に所望の置換基(R、R)を有するチエノチオフェン誘導体のアミノ基導入位置にN-ブロモスクシンイミド(NBS)を反応させて臭素原子を導入した中間体A2-1を得る。
【0065】
中間体A2-1に所望の置換基(R、R)を有する3級アミンを反応させ中間体A2-2として、所望の置換基(R、R、NR)を有するチエノチオフェン誘導体を得る。スクアリン酸(s)の1当量に対し、中間体A2-2の2当量を反応させて、NIR色素(A2)を得る。
【0066】
【化7】
【0067】
本発明のNIR色素(A1)およびNIR色素(A2)の用途は特に限定されない。例えば、近赤外光を遮蔽する光学フィルタに適用可能である。
【0068】
<光学フィルタ>
本発明の一実施形態の光学フィルタ(以下、「本フィルタ」ともいう)は、本発明のNIR色素(A1)またはNIR色素(A2)と樹脂とを含有する吸収層を備える。本フィルタにおいて吸収層は、NIR色素(A1)およびNIR色素(A2)から選ばれる2種以上を含有してもよい。以下の説明において、NIR色素(A1)およびNIR色素(A2)から選ばれる1種または2種以上からなるNIR色素をNIR色素(A)という。
【0069】
本フィルタは、上記吸収層に加えて、誘電体多層膜からなる反射層をさらに有してもよい。以下の、説明において「反射層」は、誘電体多層膜からなる反射層を指す。
【0070】
本フィルタは、透明基板をさらに有してもよい。この場合、吸収層は透明基板の主面上に設けられる。本フィルタが透明基板と吸収層および反射層を有する場合、吸収層および反射層は、透明基板の主面上に設けられる。本フィルタは、吸収層と反射層を、透明基板の同一主面上に有してもよく、異なる主面上に有してもよい。吸収層と反射層を同一主面上に有する場合、これらの積層順は特に限定されない。
【0071】
本フィルタは、また他の機能層を有してもよい。他の機能層としては、例えば可視光の透過率損失を抑制する反射防止層が挙げられる。特に、吸収層が最表面の構成をとる場合には、吸収層と空気との界面で反射による可視光透過率損失が発生するため、吸収層上に反射防止層を設けるとよい。
【0072】
次に、図面を用いて本フィルタの構成例について説明する。図1は、吸収層11からなる光学フィルタ10Aを示す断面図である。吸収層11は、NIR色素(A)と樹脂とを含有する層で構成できる。光学フィルタ10Aにおいて、吸収層11はフィルムや基板の形態を取り得る。
【0073】
図2は、吸収層11の一方の主面上に反射層12を備えた光学フィルタ10Bの構成例である。光学フィルタ10Bにおいて、吸収層11は、NIR色素(A)と樹脂とを含有する層で構成できる。なお、「吸収層11の一方の主面(上)に、反射層12を備える」とは、吸収層11に接触して反射層12が備わる場合に限らず、吸収層11と反射層12との間に、別の機能層が備わる場合も含み、以下の構成も同様である。
【0074】
図3は、透明基板と吸収層を有する実施形態の光学フィルタの一例を概略的に示す断面図である。図4は、透明基板と吸収層と反射層を有する実施形態の光学フィルタの一例を概略的に示す断面図である。光学フィルタ10Cは、透明基板13と透明基板13の一方の主面上に配置された吸収層11を有する。光学フィルタ10Dは、透明基板13と透明基板13の一方の主面上に配置された吸収層11と透明基板13の他方の主面上に設けられた反射層12を有する。光学フィルタ10C、10Dにおいて、吸収層11は、NIR色素(A)と樹脂とを含有する層で構成できる。
【0075】
図5は、透明基板13の一方の主面に吸収層11を備え、透明基板13の他方の主面上および吸収層11の主面上に、反射層12aおよび12bを備えた光学フィルタ10Eの構成例である。図6は、透明基板13の両主面に吸収層11aおよび11bを備え、さらに吸収層11aおよび11bの主面上に、反射層12aおよび12bを備えた光学フィルタ10Fの構成例である。
【0076】
図5および図6において、組み合わせる2層の反射層12a、12bは、同一でも異なってもよい。例えば、反射層12a、12bは、紫外光および近赤外光を反射し、可視光を透過する特性を有し、反射層12aが、紫外光と第1の近赤外域の光を反射し、反射層12bが、紫外光と第2の近赤外域の光を反射する構成でもよい。
【0077】
また、図6において、2層の吸収層11aと11bは、同一でも異なってもよい。吸収層11aと11bが異なる場合、例えば、吸収層11aと11bが、各々、近赤外線吸収層と紫外線吸収層の組合せでもよく、紫外線吸収層と近赤外線吸収層の組合せでもよい。該近赤外線吸収層は、NIR色素(A)と樹脂とを含有する層で構成できる。
【0078】
図7は、図4に示す光学フィルタ10Dの吸収層11の主面上に反射防止層14を備えた光学フィルタ10Gの構成例である。反射防止層14は、吸収層11の最表面だけでなく、吸収層11の側面全体も覆う構成でもよい。その場合、吸収層11の防湿の効果を高められる。
【0079】
以下、吸収層、反射層、透明基板および反射防止層について説明する。
(吸収層)
吸収層はNIR色素(A)を含有する。吸収層は、本発明の効果を阻害しない範囲であれば、さらにNIR色素(A)以外のNIR色素(以下、その他のNIR色素という。)を含有してよい。
【0080】
吸収層中におけるNIR色素(A)の含有量は、NIR色素(A)とその他のNIR色素との合計量で樹脂100質量部に対して、0.1~30質量部が好ましい。0.1質量部以上で所望の近赤外線吸収能が得られ、30質量部以下で、近赤外線吸収能の低下やヘイズ値の上昇等が抑制される。また、NIR色素(A)とその他のNIR色素の合計の含有量は、0.5~25質量部がより好ましく、1~20質量部がさらに好ましい。
【0081】
その他のNIR色素としては、その最大吸収波長が660~1100nmの範囲にあり、該最大吸収波長とNIR色素(A)の最大吸収波長λmax(A)との間に所定の差があるものが好ましい。両者の最大吸収波長の差は、30nm以上が好ましく、50nm以上がより好ましく、80nm以上がさらに好ましく、100nm以上が特に好ましい。
【0082】
その他のNIR色素としては、シアニン系化合物、フタロシアニン系化合物、ナフタロシアニン系化合物、ジチオール金属錯体系化合物、ジイモニウム系化合物、ポリメチン系化合物、フタリド化合物、ナフトキノン系化合物、アントラキノン系化合物、インドフェノール系化合物、およびNIR色素(A)以外のスクアリリウム系化合物が挙げられる。その他のNIR色素は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
【0083】
吸収層は、NIR色素(A)と樹脂を含有し、典型的には、樹脂中にNIR色素(A)が均一に溶解または分散した層または(樹脂)基板である。樹脂は、通常、透明樹脂であり、吸収層は、NIR色素(A)以外にその他のNIR色素を含有してもよい。さらに、吸収層は、NIR色素以外の色素、特にはUV色素を含有してもよい。
【0084】
UV色素は、具体例に、オキサゾール系、メロシアニン系、シアニン系、ナフタルイミド系、オキサジアゾール系、オキサジン系、オキサゾリジン系、ナフタル酸系、スチリル系、アントラセン系、環状カルボニル系、トリアゾール系等の色素が挙げられる。この中でも、オキサゾール系、メロシアニン系の色素が好ましい。また、UV色素は、吸収層に1種を単独で用いてもよく、2種以上を併用してもよい。
【0085】
透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
【0086】
上記透明樹脂は、透明性、NIR色素(A)の溶解性、ならびに耐熱性の観点からは、ガラス転移点(Tg)の高い樹脂が好ましい。具体的には、ポリエステル樹脂、ポリカーボネート樹脂、ポリエーテルサルホン樹脂、ポリアリレート樹脂、ポリイミド樹脂、およびエポキシ樹脂から選ばれる1種以上が好ましく、ポリエステル樹脂、ポリイミド樹脂から選ばれる1種以上がより好ましい。
【0087】
吸収層は、さらに、本発明の効果を損なわない範囲で、密着性付与剤、色調補正色素、レベリング剤、帯電防止剤、熱安定剤、光安定剤、酸化防止剤、分散剤、難燃剤、滑剤、可塑剤等の任意成分を有してもよい。
【0088】
吸収層は、例えば、NIR色素(A)を含む色素と、樹脂または樹脂の原料成分と、必要に応じて配合される各成分とを、溶媒に溶解または分散させて塗工液を調製し、これを基材に塗工し乾燥させ、さらに必要に応じて硬化させて形成できる。上記基材は、本フィルタに任意に含まれる透明基板でもよいし、吸収層を形成する際にのみ使用する剥離性の基材でもよい。また、溶媒は、安定に分散できる分散媒または溶解できる溶媒であればよい。
【0089】
また、塗工液は、微小な泡によるボイド、異物等の付着による凹み、乾燥工程でのはじき等の改善のため界面活性剤を含んでもよい。さらに、塗工液の塗工には、例えば、浸漬コーティング法、キャストコーティング法、またはスピンコート法等を使用できる。上記塗工液を基材上に塗工後、乾燥させることにより吸収層が形成される。また、塗工液が樹脂の原料成分を含有する場合、さらに熱硬化、光硬化等の硬化処理を行う。
【0090】
また、吸収層は、押出成形によりフィルム状に製造可能でもあり、このフィルムを他の部材に積層し熱圧着等により一体化させてもよい。例えば、本フィルタが透明基板を含む場合、このフィルムを透明基板上に貼着してもよい。
【0091】
本フィルタは、吸収層を2層以上有してもよい。吸収層が2層以上で構成される場合、各層は同じでも異なってもよい。吸収層が2層以上の構成の場合、一方の層が、NIR色素を含む樹脂からなる近赤外線吸収層、もう一方の層が、UV色素を含む樹脂からなる紫外線吸収層とする例が挙げられる。また、吸収層は、それそのものが基板(樹脂基板)であってもよい。
【0092】
本フィルタにおいて、吸収層の厚さは、0.1~100μmが好ましい。吸収層が複数層からなる場合、各層の合計の厚さは、0.1~100μmが好ましい。厚さが0.1μm未満では、所望の光学特性を十分に発現できないおそれがあり、厚さが100μm超では、層の平坦性が低下し、吸収率の面内バラツキが生じるおそれがある。吸収層の厚さは、0.3~50μmがより好ましい。また、反射層や、反射防止層等の他の機能層を備えた場合、その材質によっては、吸収層が厚すぎると割れ等が生ずるおそれがある。そのため、吸収層の厚さは、0.3~10μmがより好ましい。
【0093】
(透明基板)
本フィルタにおいて透明基板は任意の構成要素である。本フィルタが透明基板を備える場合、該透明基板の厚さは、0.03~5mmが好ましく、薄型化の点から、0.05~1mmがより好ましい。透明基板の材料としては、可視光を透過するものであれば、ガラスや(複屈折性)結晶、樹脂が利用できる。
【0094】
透明基板用のガラスとしては、フツリン酸塩系ガラスやリン酸塩系ガラス等にCuO等を添加した吸収型のガラス(近赤外線吸収ガラス基材)、ソーダライムガラス、ホウケイ酸ガラス、無アルカリガラス、石英ガラス等が挙げられる。なお、「リン酸塩ガラス」には、ガラスの骨格の一部がSiOで構成されるケイリン酸塩ガラスも含むものとする。
【0095】
透明基板がフツリン酸塩系ガラスの場合、具体的にカチオン%表示で、P5+:20~45%、Al3+:1~25%、R:1~30%(但し、Rは、Li、Na、Kのうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)、Cu2+:1~20%、R2+:1~50%(但し、R2+は、Mg2+、Ca2+、Sr2+、Ba2+、Zn2+のうち少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有するとともに、アニオン%表示で、F:10~65%、O2-:35~90%を含有していることが好ましい。
【0096】
また、透明基板がリン酸塩系ガラスの場合、質量%表示で、P:30~80%、Al:1~20%、RO:0.5~30%、(但し、ROは、LiO、NaO、KOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である。)、CuO:1~12%、RO:0.5~40%(但し、ROは、MgO、CaO、SrO、BaO、ZnOのうちの少なくとも1つであって、左記の値は、それぞれの含有割合を合計した値である)を含有することが好ましい。
【0097】
市販品を例示すると、NF-50E、NF-50EX、NF-50T、NF-50TX、NF-50GX(AGC(株)製、商品名)等、BG-60、BG-61(以上、ショット社製、商品名)等、CD5000(HOYA(株)製、商品名)等が挙げられる。
【0098】
上記したCuO含有ガラスは、金属酸化物をさらに含有してもよい。金属酸化物として、例えば、Fe、MoO、WO、CeO、Sb、V等の1種または2種以上を含有すると、CuO含有ガラスは紫外線吸収特性を有する。これらの金属酸化物の含有量は、上記CuO含有ガラス100質量部に対して、Fe、MoO、WOおよびCeOからなる群から選択される少なくとも1種を、Fe:0.6~5質量部、MoO:0.5~5質量部、WO:1~6質量部、CeO:2.5~6質量部、またはFeとSbの2種をFe:0.6~5質量部+Sb:0.1~5質量部、もしくはVとCeOの2種をV:0.01~0.5質量部+CeO:1~6質量部とすることが好ましい。
【0099】
透明基板用の透明樹脂としては、アクリル樹脂、エポキシ樹脂、エン・チオール樹脂、ポリカーボネート樹脂、ポリエーテル樹脂、ポリアリレート樹脂、ポリサルホン樹脂、ポリエーテルサルホン樹脂、ポリパラフェニレン樹脂、ポリアリーレンエーテルフォスフィンオキシド樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリオレフィン樹脂、環状オレフィン樹脂、およびポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂等のポリエステル樹脂等が挙げられる。これらの樹脂は1種を単独で使用してもよく、2種以上を混合して使用してもよい。
【0100】
(反射層)
本フィルタにおいて反射層は任意の構成要素である。反射層は、誘電体多層膜からなり、特定の波長域の光を遮蔽する機能を有する。反射層としては、例えば、可視光を透過し、吸収層の遮光域以外の波長の光を主に反射する波長選択性を有するものが挙げられる。この場合、反射層の反射領域は、吸収層の近赤外域における遮光領域を含んでもよい。反射層は、上記特性に限らず、所定の波長域の光を遮蔽する仕様に合わせて適宜設計してよい。
【0101】
本フィルタにおいて反射層を備える場合、NIR色素(A)の最大吸収波長λmax(A)の光における透過率が1%以下の反射特性を有するとよい。これにより、本フィルタは、NIR色素(A)の最大吸収波長λmax(A)において、相乗的に、高い遮光性(高OD値)が得られる。
【0102】
本フィルタは反射層を1層有してもよく、2層以上有してもよい。反射層が2層以上で構成される場合、各層は同じでも異なってもよい。反射層が2層以上の構成の場合、一方の層が、少なくとも近赤外光を遮蔽する、特には、上記反射特性を有する近赤外線遮蔽層、もう一方の層が、少なくとも紫外光を遮蔽する紫外線遮蔽層とする組合せでもよい。
【0103】
反射層は、低屈折率の誘電体膜(低屈折率膜)と高屈折率の誘電体膜(高屈折率膜)とを交互に積層した誘電体多層膜から構成される。高屈折率膜の材料としては、Ta、TiO、Nbが挙げられる。このうち、成膜性、屈折率等における再現性、安定性等の点から、TiOが好ましい。低屈折率膜の材料としては、SiO、SiO等が挙げられる。成膜性における再現性、安定性、経済性等の点から、SiOが好ましい。また、反射層の膜厚は、2~10μmが好ましい。
【0104】
(反射防止層)
反射防止層としては、誘電体多層膜や中間屈折率媒体、屈折率が漸次的に変化するモスアイ構造等が挙げられる。中でも高い光利用効率、生産性の観点から誘電体多層膜の使用が好ましい。
【0105】
本フィルタは、NIR色素(A)を含有する吸収層を有することで、近赤外光に対して優れた遮光性を実現できるとともに、高い可視光透過性を実現できる。本フィルタは、例えば、デジタルスチルカメラ等の撮像装置や環境光センサー等に使用できる。
【0106】
本フィルタを用いた撮像装置は、固体撮像素子と、撮像レンズと、本フィルタとを備える。本フィルタは、例えば、撮像レンズと固体撮像素子との間に配置されたり、撮像装置の固体撮像素子、撮像レンズ等に粘着剤層を介して直接貼着されたりして使用できる。
【実施例
【0107】
次に、本発明を実施例によりさらに具体的に説明する。まず、例1および例2において、表1および表2にそれぞれ示すNIR色素(A1-1)およびNIR色素(A2-1)を製造した。さらに、例3および例4において、NIR色素(A)と構造の異なる比較例のNIR色素(Acf1)およびNIR色素(Acf2)を製造した。得られたNIR色素の光学特性を測定し評価した。
【0108】
また、得られたNIR色素を含有する吸収層を有する光学フィルタの実施例(例5)について説明する。
【0109】
なお、以下の各例において、製造したNIR色素の構造は1H NMRにより確認した。また、NIR色素、これを含む吸収層の光学特性の評価には、紫外可視分光光度計((株)日立ハイテクノロジーズ社製、U-4150形)を用いた。
【0110】
[例1]
以下に示す反応経路にしたがい、NIR色素(A1-1)を合成した。
【0111】
【化8】
【0112】
<ステップA1-1-1>
フラスコに2-ブロモチオフェン(2.00g、12.3mmol)、削り状マグネシウム(0.597g、24.6mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(18ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(1.64g、12.3mmol)を窒素雰囲気下で無水トルエン(31ml)に溶解し、ビス-(2-エチルヘキシル)アミン(2.96g、12.3mmol)を加えて、20分間撹拌した。-40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(3.49g、12.3mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(25ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)により中間体A1-1-1(1.00g、収率25%)を得た。
【0113】
<ステップA1-1-2>
フラスコにステップA1-1-1で得られた中間体A1-1-1(1.00g、3.09mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.176g、1.55mmol)を入れ、窒素雰囲気下でノルマルブタノール(8ml)とトルエン(8ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=20:1)によりNIR色素(A1-1)(0.570g、収率51%)を得た。
【0114】
[例2]
以下に示す反応経路にしたがい、NIR色素(A2-1)を合成した。
【0115】
【化9】
【0116】
<ステップA2-1-1>
フラスコにチエノ[3,2-b]チオフェン(4.00g、28.5mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(28.5ml)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(5.08g、28.5mmol)を溶かした無水ジメチルホルムアミド溶液(28.5ml)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体A2-1-1(5.09g、収率81%)を得た。
【0117】
<ステップA2-1-2>
フラスコにステップA2-1-1で得られた中間体A2-1-1(2.00g、9.13mmol)、削り状マグネシウム(0.440g、18.3mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(13ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(0.490g、3.65mmol)を窒素雰囲気下で無水トルエン(18ml)に溶解し、ビス-(2-エチルヘキシル)アミン(0.880g、3.65mmol)を加えて、20分間撹拌した。
【0118】
-40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(2.59g、9.13mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(18ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)により中間体A2-1-2(0.987g、収率28%)を得た。
【0119】
<ステップA2-1-3>
フラスコにステップA2-1-2で得られた中間体A2-1-2(0.411g、1.08mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.0617g、0.541mmol)を入れ、窒素雰囲気下でノルマルブタノール(3ml)とトルエン(3ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:メタノール=50:1)によりNIR色素(A2-1)(0.100g、収率22%)を得た。
【0120】
[例3]
以下に示す反応経路にしたがい、NIR色素(Acf1)を合成した。
【0121】
【化10】
【0122】
<ステップAcf1-1>
フラスコにジチエノ[3,2-b:2’,3’-d]チオフェン(2.00g、10.2mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(10ml)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(1.81g、10.2mmol)を溶かした無水ジメチルホルムアミド溶液(10ml)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ジクロロメタン)により中間体Acf1-1(2.58g、収率92%)を得た。
【0123】
<ステップAcf1-2>
フラスコにステップAcf1-1で得られた中間体Acf1-1(2.57g、9.34mmol)、削り状マグネシウム(0.450g、18.7mmol)を入れ、窒素雰囲気下で無水テトラヒドロフラン(13ml)に溶解した。上記溶液を3時間還流して、-40℃に冷やした。別フラスコにN-クロロスクシンイミド(1.25g、9.34mmol)を窒素雰囲気下で無水トルエン(23ml)に溶解し、ビス-(2-エチルヘキシル)アミン(2.26g、9.34mmol)を加えて、20分間撹拌した。
【0124】
-40℃に冷やした混合溶液にオルトチタン酸テトライソプロピル(2.65g、9.34mmol)を滴下し、5分間撹拌した後、続いてN-クロロスクシンイミドとビス-(2-エチルヘキシル)アミンの混合溶液を滴下した。室温で3時間撹拌し、反応終了後、飽和炭酸カリウム水溶液(18ml)を加えた。続いて酢酸エチルで希釈して濾過して、得られた溶液を酢酸エチルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン:トリエチルアミン=100:3)により中間体Acf1-2(1.02g、収率25%)を得た。
【0125】
<ステップAcf1-2>
フラスコにステップAcf1-2で得られた中間体Acf1-2(1.02g、2.35mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.134g、1.17mmol)を入れ、窒素雰囲気下でノルマルブタノール(6ml)とトルエン(6ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ヘキサン:酢酸エチル:トリエチルアミン=100:1:3)により色素(Acf1)(0.569g、収率51%)を得た。
【0126】
[例4]
以下に示す反応経路にしたがい、NIR色素(Acf2)を合成した。
【0127】
【化11】
【0128】
<ステップAcf2-1>
フラスコに3-ブロモチエノ[3,2-b]チオフェン(3g、13.7mmmol)、[1,1’-ビス(ジフェニルホスフィノ)フェロセン]パラジウム(II)ジクロリド ジクロロメタン付加物(0.0447g、0.0548mmol)を入れ、窒素雰囲気下で0.5Mのイソブチル亜鉛ブロミドのテトラヒドロフロン溶液(41ml、20.6mmol)に溶解して、1昼夜還流撹拌した。反応終了後、飽和塩化アンモニウム水溶液を入れ、ジイソプロピルエーテルで抽出して、有機層を得た。上記有機層を5%の塩酸水溶液で洗い、次いで飽和食塩水で洗って、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体Acf2-1(2.32g、58%)を得た。
【0129】
<ステップAcf2-2>
フラスコにステップAcf2-1で得られた中間体Acf2-1(2.32g、11.8mmol)を入れ、窒素雰囲気下で無水ジメチルホルムアミド(12ml)に溶解した。上記溶液を-15℃に冷やし、N-ブロモスクシンイミド(4.63g、26.0mmol)を溶かした無水ジメチルホルムアミド溶液(12ml)を滴下した。上記混合液を室温で30分間撹拌し、その後60℃で5時間撹拌した。反応終了後、氷水に注ぎ、ジイソプロピルエーテルで抽出した。得られた有機層を飽和食塩水で洗い、溶媒を除去した後、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体Acf2-2(3.55g、収率85%)を得た。
【0130】
<ステップAcf2-3>
フラスコに酢酸パラジウム(II)(0.111g、0.0.494mmol)、ナトリウムターシャリーブトキシド(1.92g、20.0mmol)、トリターシャリーブチルホスフィン(0.200g、0.991mmol)を入れ、窒素雰囲気下で無水トルエン(15ml)に溶解した。上記混合溶液を60℃で10分間撹拌して、室温に戻し、4,4’-ジノルマルオクチルジフェニルアミン(3.94g、10.0mmol)とステップAcf2-2で得られた中間体Acf2-2(3.55g、10.0mmol)を無水トルエン(4ml)で溶解した混合溶液を滴下して、3時間還流撹拌した。反応終了後、濾過して得られた濾液から溶媒を除去し、シリカゲルカラムクロマトグラフィー(ヘキサン)により中間体Acf2-3(1.56g、23%)を得た。
【0131】
<ステップAcf2-4>
フラスコにステップAcf2-3で得られた中間体Acf2-3(1.56g、2.35mmol)、酢酸パラジウム(II)(0.0269g、0.120mmol)、キサントホス(0.102g、0.176mmol)、トリエチルシラン(3.58g、30.8mmol)を入れ、窒素雰囲気下で無水トルエン(23ml)に溶解した。上記混合溶液を7時間還流撹拌した。反応終了後、溶媒を除去して、シリカゲルカラムクロマトグラフィー(ヘキサン)で中間体Acf2-4(1.16g、84%)を得た。
【0132】
<ステップAcf2-5>
フラスコにステップAcf2-4で得られた中間体Acf2-4(1.16g、1.98mmol)、3,4-ジヒドロキシ-3-シクロブテン-1,2-ジオン(0.113g、0.988mmol)を入れ、窒素雰囲気下でノルマルブタノール(5ml)とトルエン(5ml)の混合溶液に溶解した。3時間還流撹拌して、反応終了後、溶媒を除去して、シリカゲルクロマトグラフィー(ジクロロメタン:ヘキサン=2:1)でNIR色素(Acf2)(0.464g、収率37%)を得た。
【0133】
[評価]
(ジクロロメタン中の透過率測定)
上記で得られたNIR色素(A1-1)、(A2-1)、および、NIR色素(Acf1)、(Acf2)をジクロロメタンに溶解して波長400~1000nmの光吸収スペクトルを測定して吸光度曲線から、最大吸収波長λmax(A)DCMを求めた。さらに、ジクロロメタン中の色素濃度を、最大吸収波長λmax(A)DCMでの光の透過率が10%になるように調整した吸光度曲線から、波長418nmの透過率T418(A)DCMおよび波長482nmの透過率T482(A)DCMを求めた。結果を表3に示す。なお、波長418nmと482nmは、測定波長領域でNIR色素(A1-1)とNIR色素(A2-1)の最大吸収波長の次に大きい吸収波長を選び、それぞれ比較した。
【0134】
(樹脂の塗布溶液に対する溶解性)
上記で得られたNIR色素(A1-1)、(A2-1)および、NIR色素(Acf1)、(Acf2)の透明樹脂の塗布溶液に対する溶解性を評価した。
【0135】
すなわち、透明樹脂(ネオプリム(登録商標)C3G30(三菱ガス化学(株)製、商品名、ポリイミド樹脂))をγ-ブチロラクトンとシクロヘキサノンの混合溶液(1:1)に10質量%の濃度で溶解した溶液中に、上記NIR色素を溶解して、樹脂に対する溶解性(質量%)を評価した。結果を表3に示す。
【0136】
【表3】
【0137】
上記評価結果から明らかなように、NIR色素(A1-1)、(A2-1)および、NIR色素(Acf1)、(Acf2)はいずれも近赤外光に対して高い遮光性を有する。また、上記評価結果から、比較例である例3のNIR色素(Acf1)および例4のNIR色素(Acf2)は、可視光透過率および塗布溶液に対する溶解性のいずれかが低いのに比べ、実施例である例1のNIR色素(A1-1)および例2のNIR色素(A2-1)は、可視光透過率が高く、かつ塗布溶液に対して高い溶解性を示すのがわかる。さらに、NIR色素(A1-1)およびNIR色素(A2-1)については、上記試験で得られた塗布溶液を、ガラス板(D263;SCHOTT製、商品名)上に塗布し、乾燥して膜厚1μmの吸収層を得ることができた。
【0138】
[例5]
図7に示す構成の光学フィルタを以下の方法で製造する。
透明基板として、CuO含有フツリン酸ガラス(AGC(株)製、商品名:NF-50GX)からなる厚さ0.21mmのガラス基板または、厚さ0.2mmのガラス基板(D263;SCHOTT製、商品名)を用いる。
【0139】
反射層としては、以下のとおり形成した誘電体多層膜を用いる。誘電体多層膜は、ガラス基板の一方の主面に、蒸着法により、例えばTiO膜とSiO膜を交互に合計42層積層して形成する。反射層の構成は、誘電体多層膜の積層数、TiO膜の膜厚およびSiO膜の膜厚をパラメータとしてシミュレーションし、入射角0度の分光透過率曲線において、波長850~1100nmの光の平均透過率が0.03%となるように設計する。
【0140】
また、ガラス基板の反射層が形成されたのと反対側の主面上に、透明樹脂とNIR色素(A)の1種類または2種類以上を組み合わせて、厚さ約1.0μmの吸収層を形成する。この後、吸収層の表面に、蒸着法により、TiO膜とSiO膜を交互に7層積層して反射防止層を形成し、光学フィルタ(NIRフィルタ)を得る。
【0141】
本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2018年5月29日出願の日本特許出願(特願2018-102387)に基づくものであり、その内容はここに参照として取り込まれる。
【産業上の利用可能性】
【0142】
本発明の近赤外線吸収色素は、近赤外光に対して優れた遮光性を実現できるとともに、溶媒や樹脂に対する高い溶解性を有することから均質な吸収層の形成が可能であり、近赤外光を遮蔽する光学フィルタに適用可能である。本発明の光学フィルタは撮像装置に適用できる。
【符号の説明】
【0143】
10A,10B,10C,10D,10E,10F,10G…光学フィルタ、11,11a,11b…吸収層、12,12a,12b…反射層、13…透明基板、14…反射防止層。
図1
図2
図3
図4
図5
図6
図7