IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ニコンの特許一覧

<>
  • 特許-撮像素子および撮像装置 図1
  • 特許-撮像素子および撮像装置 図2
  • 特許-撮像素子および撮像装置 図3
  • 特許-撮像素子および撮像装置 図4
  • 特許-撮像素子および撮像装置 図5
  • 特許-撮像素子および撮像装置 図6
  • 特許-撮像素子および撮像装置 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-07-10
(45)【発行日】2023-07-19
(54)【発明の名称】撮像素子および撮像装置
(51)【国際特許分類】
   H01L 27/146 20060101AFI20230711BHJP
   H04N 25/76 20230101ALI20230711BHJP
   H04N 25/77 20230101ALI20230711BHJP
【FI】
H01L27/146 D
H04N25/76
H04N25/77
【請求項の数】 11
(21)【出願番号】P 2021000247
(22)【出願日】2021-01-04
(62)【分割の表示】P 2018507162の分割
【原出願日】2017-02-27
(65)【公開番号】P2021061438
(43)【公開日】2021-04-15
【審査請求日】2021-01-06
(31)【優先権主張番号】P 2016060001
(32)【優先日】2016-03-24
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004112
【氏名又は名称】株式会社ニコン
(74)【代理人】
【識別番号】100161207
【弁理士】
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100140774
【弁理士】
【氏名又は名称】大浪 一徳
(74)【代理人】
【識別番号】100175824
【弁理士】
【氏名又は名称】小林 淳一
(72)【発明者】
【氏名】松本 繁
【審査官】宮本 博司
(56)【参考文献】
【文献】特開2015-126043(JP,A)
【文献】特開2011-159958(JP,A)
【文献】特開2013-090139(JP,A)
【文献】特開2015-023391(JP,A)
【文献】特開2013-187704(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 27/146
H04N 25/76
H04N 25/77
(57)【特許請求の範囲】
【請求項1】
光を光電変換して電荷を生成する光電変換部を有し、前記光電変換部で生成された電荷に基づく第1信号を出力する画素と、前記第1信号と基準信号とを比較し、前記第1信号を補正するための第2信号と前記基準信号とを比較し、画素毎に設けられる比較部と、を有する第1基板と、
前記第1信号と前記基準信号との比較結果に基づく信号を画素ごとに記憶する第1記憶部と、前記第2信号と前記基準信号との比較結果に基づく信号を画素ごとに記憶する第2記憶部と、を有する第2基板と、
前記第1記憶部に記憶された信号と前記第2記憶部に記憶された信号とに基づいて第3信号の演算を行う演算部と、
前記第1基板と前記第2基板との間に設けられ、前記第1信号を出力するための信号線を有し、前記第1基板に積層される第1配線層と、
前記第1基板と前記第2基板との間に設けられ、第1配線層が有する信号線と電気的に接続される信号線を有し、前記第2基板に積層される第2配線層と、
を備える撮像素子。
【請求項2】
請求項1に記載の撮像素子において、
前記第1記憶部及び前記第2記憶部は、前記画素毎に設けられる撮像素子。
【請求項3】
請求項1または2に記載の撮像素子において、
前記比較部と前記第1記憶部及び前記第2記憶部とは、AD変換部を構成する回路である撮像素子。
【請求項4】
請求項3に記載の撮像素子において、
前記AD変換部は、前記画素毎に設けられる撮像素子。
【請求項5】
請求項1からのいずれか一項に記載の撮像素子において、
前記演算部は、前記第1記憶部に記憶された前記第1信号のデジタル信号と、前記第2記憶部に記憶された前記第2信号のデジタル信号とに基づいて前記第3信号の演算を行う撮像素子。
【請求項6】
請求項1からのいずれか一項に記載の撮像素子において、
前記演算部は、前記第3信号を記憶する記憶部を有する撮像素子。
【請求項7】
請求項1からのいずれか一項に記載の撮像素子において、
前記演算部は、前記画素毎に設けられる撮像素子。
【請求項8】
請求項1からのいずれか一項に記載の撮像素子において、
前記演算部は、第2基板に設けられる撮像素子。
【請求項9】
請求項1からのいずれか一項に記載の撮像素子において、
前記演算部が設けられる第3基板を備える撮像素子。
【請求項10】
請求項に記載の撮像素子において、
前記第2基板は、前記第1基板と前記第3基板との間に設けられる撮像素子。
【請求項11】
請求項1から請求項10までのいずれか一項に記載の撮像素子と、
前記撮像素子から出力された信号に基づいて画像データを生成する生成部と、
を備える撮像装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、撮像素子および撮像装置に関する。
【背景技術】
【0002】
隣接する画素の信号を演算する撮像素子が知られている(特許文献1)。この撮像素子は、画素の信号間の演算前に相関二重サンプリング(CDS;Correlated Double Sampling)を行っていないため、各画素のノイズ信号成分を取り除くことができない。
【先行技術文献】
【特許文献】
【0003】
【文献】日本国特開2001-94888号公報
【発明の概要】
【0004】
本発明の第1の態様によると、撮像素子は、光を光電変換して電荷を生成する光電変換部を有し、前記光電変換部で生成された電荷に基づく第1信号を出力する画素と、前記第1信号と基準信号とを比較し、前記第1信号を補正するための第2信号と前記基準信号とを比較し、画素毎に設けられる比較部と、を有する第1基板と、前記第1信号と基準信号との比較結果に基づく信号を画素ごとに記憶する第1記憶部と、前記第2信号と基準信号との比較結果に基づく信号を画素ごとに記憶する第2記憶部と、を有する第2基板と、前記第1記憶部に記憶された信号と前記第2記憶部に記憶された信号とに基づいて第3信号の演算を行う演算部と、前記第1基板と前記第2基板との間に設けられ、前記第1信号を出力するための信号線を有し、前記第1基板に積層される第1配線層と、前記第1基板と前記第2基板との間に設けられ、第1配線層が有する信号線と電気的に接続される信号線を有し、前記第2基板に積層される第2配線層と、を備える。
本発明の第2の態様によると、撮像装置は、上述の撮像素子と、前記撮像素子から出力された信号に基づいて画像データを生成する生成部と、を備える。
【図面の簡単な説明】
【0005】
図1】第1の実施の形態に係る撮像装置の構成を示すブロック図。
図2】第1の実施の形態に係る撮像素子の断面構造を示す図。
図3】第1の実施の形態に係る撮像素子の構成を示すブロック図。
図4】第1の実施の形態に係る画素の構成を示す回路図。
図5】第1の実施の形態に係る撮像素子の構成の詳細を示すブロック図。
図6】第1の実施の形態に係る撮像素子の動作を示すタイミングチャート。
図7】変形例1に係る撮像素子の構成の詳細を示すブロック図。
【発明を実施するための形態】
【0006】
(第1の実施の形態)
図1は、第1の実施の形態に係る撮像装置の構成を示すブロック図である。撮像装置1は、撮影光学系2、撮像素子3、および制御部4を備える。撮像装置1は、例えばカメラである。撮影光学系2は、撮像素子3上に被写体像を結像する。撮像素子3は、撮影光学系2により形成された被写体像を撮像して画像信号を生成する。撮像素子3は、例えばCMOSイメージセンサである。制御部4は、撮像素子3の動作を制御するための制御信号を撮像素子3に出力する。また、制御部4は、撮像素子3から出力された画像信号に対して各種の画像処理を施し、画像データを生成する画像生成部として機能する。なお、撮影光学系2は、撮像装置1から着脱可能にしてもよい。
【0007】
図2は、第1の実施の形態に係る撮像素子の断面構造を示す図である。図2に示す撮像素子3は、裏面照射型の撮像素子である。撮像素子3は、第1基板111と、第2基板112と、第3基板113と、第4基板114とを備える。第1基板111、第2基板112、第3基板113および第4基板114は、それぞれ半導体基板等により構成される。第1基板111は、第2基板112に積層され、第2基板112は第3基板113に積層され、第3基板113は第4基板114に積層される。白抜き矢印で示す入射光Lは、Z軸プラス方向へ向かって入射する。また、座標軸に示すように、Z軸に直交する紙面左方向をX軸プラス方向、Z軸およびX軸に直交する紙面手前方向をY軸プラス方向とする。
【0008】
撮像素子3は、さらに、マイクロレンズ層101、カラーフィルタ層102、パッシベーション層103を有する。これらのパッシベーション層103、カラーフィルタ層102及びマイクロレンズ層101は、第1基板111に順次積層されている。マイクロレンズ層101は、複数のマイクロレンズMLを有する。マイクロレンズMLは、入射した光を後述する光電変換部12に集光する。カラーフィルタ層102は、複数のカラーフィルタFを有する。パッシベーション層103は、窒化膜や酸化膜で構成される。
【0009】
第1基板111、第2基板112、第3基板113、および第4基板114は、それぞれゲート電極やゲート絶縁膜が設けられる第1面105a、106a、107a、108aと、第1面とは異なる第2面105b、106b、107b、108bとを有する。また、第1面105a、106a、107a、108aには、それぞれトランジスタ等の各種素子が設けられる。第1基板111の第1面105a、第2基板112の第1面106a、第3基板113の第1面107a、および第4基板114の第1面108aには、それぞれ配線層140、141、144、145が積層して設けられる。また、第2基板112の第2面106bおよび第3基板113の第2面107bには、それぞれ基板間接続層142、143が積層して設けられる。配線層140~配線層145は、導体膜(金属膜)および絶縁膜を含む層であり、それぞれ複数の配線やビアなどが配置される。
【0010】
第1基板111の第1面105aの素子および第2基板112の第1面106aの素子は、配線層140、141を介してバンプや電極等の接続部109により電気的に接続され、同様に第3基板113の第1面107aの素子および第4基板114の第1面108aの素子も、配線層144、145を介してバンプや電極等の接続部109により電気的に接続される。また、第2基板112および第3基板113は、基板の第1面から第2面まで貫通する貫通孔120と、第1面から貫通孔120を介して第2面まで配置されるシリコン貫通電極等の複数の貫通電極110を有する。第2基板112の貫通電極110は、第2基板112の第1面106aおよび第2面106bに設けられた回路を互いに接続し、第3基板113の貫通電極110は、第3基板113の第1面107aおよび第2面107bに設けられた回路を互いに接続する。第2基板112の第2面106bに設けられた回路および第3基板113の第2面107bに設けられた回路は、基板間接続層142、143を介してバンプや電極等の接続部109により電気的に接続される。
【0011】
図3は、第1の実施の形態に係る撮像素子の構成を示すブロック図である。第1基板111は、2次元状に配置される複数の画素10と比較部40とを有する。画素10は、図2に示すX軸方向およびY軸方向に複数配置されている。画素10は、後述する光電変換信号およびノイズ信号を比較部40へ出力する。比較部40は、画素10毎に設けられ、コンパレータ回路等により構成される。比較部40は、画素10から出力される光電変換信号およびノイズ信号のそれぞれと基準信号とを比較し、比較結果を第2基板112に出力する。第2基板112は、複数の記憶部50を有する。記憶部50は、画素10毎に設けられ、ラッチ回路等により構成される。記憶部50は、比較部40による比較結果に基づいて、比較部40による比較開始時からの経過時間に応じたカウント値をデジタル信号として記憶する。記憶部50は、光電変換信号に応じたデジタル信号およびノイズ信号に応じたデジタル信号を記憶する。また、記憶部50は、デジタル信号に変換された光電変換信号及びノイズ信号(リセット信号)を蓄積する蓄積部50でもある。後に詳述するように、比較部40と記憶部50とは、光電変換信号およびノイズ信号をデジタル信号に変換する積分型のAD変換部を構成する。記憶部50に記憶されたデジタル信号は、第3基板113を介して第4基板114に出力される。
【0012】
第4基板114は、複数のALU(Arithmetic and Logic Unit)、即ち演算ユニット80を有する。演算ユニット80は、画素10毎に設けられ、光電変換信号のデジタル信号とノイズ信号のデジタル信号との減算による相関二重サンプリング(CDS;Correlated Double Sampling)や画素10毎に生成される信号間の演算等の信号処理を行う。演算ユニット80は、加算回路、減算回路、フリップフロップ回路、およびシフト回路等を含んで構成される。各演算ユニット80は、信号線やスイッチSW等を介して互いに接続される。
【0013】
第3基板113は、演算ユニット80を制御するALU制御部70(以下、制御部70と呼ぶ)を有する。制御部70は、画素10毎に設けられ、第4基板114に配置される演算ユニット80やスイッチSW等に制御信号を出力して、演算ユニット80が行う演算内容等を制御する。例えば、制御部70は所定のスイッチSWをオン制御することによって画素の信号を選択し、この制御部70に対応する演算ユニット80が、選択された複数の画素の信号を演算処理する。なお、第1基板111は、光電変換部12と後述する読み出し部(出力部)とを有する複数の画素10を含む画素基板111でもあり、第2基板112は、蓄積部50(記憶部50)を含む蓄積基板112でもある。また、第4基板114は、演算ユニット80を含む演算基板114でもある。
【0014】
本実施の形態では、各画素10の信号間の演算前に相関二重サンプリングを行う。このため、画素10毎のノイズ信号成分を除去した信号を用いて、任意の画素10の信号間の演算を行うことができる。また、演算ユニット80および制御部70は、それぞれ対応する画素10に積層して設けられる。このため、画素10の開口率が低下することを防ぐことができる。さらに、第3基板113の制御部70は、図2に示すZ軸方向から第4基板114の演算ユニット80に制御信号を供給して演算ユニット80の制御を行う。この結果、撮像素子3のチップ面積を増大させることなく、任意の画素10の信号についての演算を行うことができる。
【0015】
図4は、第1の実施の形態に係る撮像素子の画素の構成を示す回路図である。画素10は、例えばフォトダイオード(PD)等の光電変換部12および読み出し部20を有する。光電変換部12は、入射した光を電荷に変換し、光電変換された電荷を蓄積する機能を有する。読み出し部20は、転送部13と、排出部14と、フローティングディフュージョン(FD)15と、増幅部16と、電流源17とを有する。
【0016】
転送部13は、信号Vtxにより制御され、光電変換部12で光電変換された電荷をフローティングディフュージョン15に転送する。すなわち、転送部13は、光電変換部12およびフローティングディフュージョン15の間に電荷転送路を形成する。フローティングディフュージョン15は電荷を保持(蓄積)する。増幅部16は、フローティングディフュージョン15に保持された電荷による信号を増幅し、信号線18に出力する。図4に示す例では、増幅部16は、ドレイン端子、ゲート端子およびソース端子がそれぞれ、電源VDD、フローティングディフュージョン15および電流源17に接続されるトランジスタM3により構成される。
【0017】
排出部(リセット部)14は、信号Vrstにより制御され、フローティングディフュージョン15の電荷を排出し、フローティングディフュージョン15の電位をリセット電位(基準電位)にリセットする。転送部13および排出部14は、例えば、それぞれトランジスタM1、トランジスタM2により構成される。
【0018】
読み出し部20は、転送部13により光電変換部12からフローティングディフュージョン15に転送された電荷に応じた信号(光電変換信号)と、フローティングディフュージョン15の電位をリセット電位にリセットしたときの信号(ノイズ信号)とを順次、信号線18に読み出す。読み出し部20は、フローティングディフュージョン15に蓄積された電荷に基づく信号を生成し出力する出力部20であり、出力部20は、光電変換信号、ノイズ信号を信号線18に出力する。
【0019】
図5は、第1の実施の形態に係る撮像素子の構成の詳細を示すブロック図である。撮像素子3は、複数の画素10と、画素10毎に設けられる演算部100と、タイミングジェネレータ200と、DA変換部210と、グローバルカウンタ220と、シフトレジスタ230と、VSCAN回路(垂直走査回路)240と、HSCAN回路(水平走査回路)250と、センスアンプ300と、ラインメモリ310と、入出力部320とを有する。演算部100は、アナログ/デジタル変換部(AD変換部)60と、制御部70と、演算ユニット80と、記憶部83と、デマルチプレクサ81と、デマルチプレクサ84と、マルチプレクサ85とを有する。AD変換部60は、比較部40、記憶部50、およびデマルチプレクサ53により構成される。また、記憶部50は、光電変換信号に応じたデジタル信号用の信号用記憶部51と、ノイズ信号に応じたデジタル信号用のノイズ用記憶部52とを有する。信号用記憶部51およびノイズ用記憶部52は、記憶される信号のビット数に対応して複数のラッチ回路から構成される。例えば、信号用記憶部51およびノイズ用記憶部52は各々が12個のラッチ回路から構成され、信号用記憶部51およびノイズ用記憶部52に記憶されるデジタル信号は各々が12ビットのパラレル信号となる。
【0020】
撮像素子3の第1層、すなわち第1基板111には、画素10と、比較部40と、タイミングジェネレータ200の一部とが設けられる。タイミングジェネレータ200は、複数の回路により構成され、第1基板111~第4基板114に分けて配置される。なお、図5においては、第1基板111、第2基板112、第3基板113、および第4基板114をそれぞれ第1層、第2層、第3層および第4層と称している。タイミングジェネレータ200を構成する各回路は、画素10や演算部100が配置される領域の周辺部に配置される。第2層、すなわち第2基板112には、信号用記憶部51と、ノイズ用記憶部52と、デマルチプレクサ53と、DA変換部210と、グローバルカウンタ220と、シフトレジスタ230と、タイミングジェネレータ200の一部とが設けられる。
【0021】
第3基板113には、制御部70と、VSCAN回路240と、HSCAN回路250と、タイミングジェネレータ200の一部とが設けられる。第4基板114には、演算ユニット80と、記憶部83と、デマルチプレクサ81と、デマルチプレクサ84と、マルチプレクサ85と、センスアンプ300と、ラインメモリ310と、入出力部320とが設けられる。また、DA変換部210、グローバルカウンタ220、シフトレジスタ230、VSCAN回路240、HSCAN回路250、センスアンプ300、ラインメモリ310、および入出力部320は、各基板において演算部100が配置される領域の周辺部に配置される。
【0022】
タイミングジェネレータ200は、パルス発生回路等により構成され、撮像装置1の制御部4から出力されるレジスタ設定値に基づいてパルス信号等を生成し、各画素10、DA変換部210、グローバルカウンタ220、シフトレジスタ230、VSCAN回路240、およびHSCAN回路250に出力する。レジスタ設定値は、例えば、シャッター速度(光電変換部の電荷蓄積時間)、ISO感度、画像補正の有無等に応じて設定される。DA変換部210は、タイミングジェネレータ200からのパルス信号に基づき、基準信号として信号レベルが変化するランプ信号を生成する。また、DA変換部210は、画素10毎に設けられる各比較部40に共通に接続され、基準信号を各比較部40に出力する。グローバルカウンタ220は、タイミングジェネレータ200からのパルス信号に基づき、カウント値を示すクロック信号を生成して、信号用記憶部51およびノイズ用記憶部52に出力する。シフトレジスタ230は、タイミングジェネレータ200からのパルス信号に基づき、タイミング信号を生成して信号用記憶部51およびノイズ用記憶部52に出力する。
【0023】
VSCAN回路240およびHSCAN回路250は、タイミングジェネレータ200からの信号に基づいて各制御部70を順次選択し、演算ユニット80で行う演算内容(四則演算)および演算対象となる画素10等を示す信号を各制御部70に出力する。センスアンプ300は、画素10毎の各演算部100が接続される信号線122に接続され、信号線122に入力される信号を増幅して読み出すことで、高速に信号を読み出す。ラインメモリ310には、センスアンプ300により読み出された信号が記憶される。入出力部320は、ラインメモリ310から出力される信号に対して信号のビット幅の調整や同期コードの付加等の信号処理を行い、画像信号として撮像装置1の制御部4に出力する。入出力部320は、例えばLVDSやSLVS等の高速インタフェースに対応した入出力回路等により構成されて信号を高速に伝送する。
【0024】
図6は、第1の実施の形態に係る撮像素子の動作例を示すタイミングチャートである。図6において、横軸は時刻を示している。時刻t1から時刻t2までの期間において、タイミングジェネレータ200には、撮像装置1の制御部4からレジスタ設定が入力される。時刻t2から時刻t3までの期間において、タイミングジェネレータ200は、レジスタ設定値に基づいて各演算ユニット80の演算内容等を示す信号を生成し、VSCAN回路240およびHSCAN回路250等に出力する。時刻t3から時刻t4までの期間において、VSCAN回路240およびHSCAN回路250は、タイミングジェネレータ200により生成された演算内容等を示す信号を、画素10毎に設けられた各制御部70に順次出力する。
【0025】
時刻t10から時刻t11までの期間において、各画素10のノイズ信号が比較部40に出力される。比較部40は、画素10から読み出されたノイズ信号と、DA変換部210により供給される基準信号とを比較して、比較結果をデマルチプレクサ53に出力する。デマルチプレクサ53は、比較部40による比較結果をノイズ用記憶部52に出力する。ノイズ用記憶部52は、比較部40による比較結果とグローバルカウンタ220からのクロック信号とに基づいて、比較部40による比較開始時から比較結果出力時までの経過時間に応じたカウント値をノイズ信号に応じたデジタル信号として記憶する。
【0026】
時刻t11から時刻t12までの期間において、各画素10の光電変換信号が比較部40に出力される。比較部40は、光電変換信号と基準信号とを比較して、比較結果をデマルチプレクサ53に出力する。デマルチプレクサ53は、比較部40による比較結果を信号用記憶部51に出力する。信号用記憶部51は、比較部40による比較結果とクロック信号とに基づいて、比較部40による比較開始時から比較結果出力時までの経過時間に応じたカウント値を光電変換信号に応じたデジタル信号として記憶する。こうして、本実施の形態では、信号用記憶部51およびノイズ用記憶部52には各々12ビットのデジタル信号が記憶される。
【0027】
また、時刻t11から時刻t12までの期間において、ノイズ用記憶部52は、シフトレジスタ230からのタイミング信号に基づき、ノイズ用記憶部52に記憶された12ビットのデジタル信号を1ビットずつ時間的にシフトさせて、図5に示す信号線121に順次出力する。信号線121に出力されるシリアル信号は、デマルチプレクサ81に入力される。デマルチプレクサ81は、ノイズ用記憶部52からのシリアル信号を演算ユニット80に出力する。演算ユニット80は、ノイズ信号に応じたデジタル信号を記憶部83に順次記憶させる。こうして記憶部83は、ノイズ信号に関する12ビットのデジタル信号が記憶される。
【0028】
信号線121は、第2基板112の記憶部50と第4基板114のデマルチプレクサ81とを結ぶ信号線となり、図2に示す貫通電極110やバンプ等を用いた信号線となる。一般的に多数の貫通電極110を狭ピッチで形成することは困難であり、第2基板112から多数のパラレル信号を第4基板114に同時に伝送することは困難となる。本実施の形態では、第2基板112の記憶部50に記憶されたパラレル信号をシリアル信号に変換して、第4基板114に出力する。このため、第2基板112と第4基板114とを結ぶ配線を少なくすることができ、各画素10についてのデジタル信号を同時に出力することができる。また、多数の貫通電極110等を形成してチップ面積が増大することを防ぐことができる。
【0029】
時刻t12から時刻t20までの期間において、信号用記憶部51は、シフトレジスタ230からのタイミング信号に基づき、信号用記憶部51に記憶された光電変換信号に応じたデジタル信号をシリアル信号に変換して、信号線121を介してデマルチプレクサ81に1ビットずつ順次出力する。デマルチプレクサ81は、信号用記憶部51からのシリアル信号を演算ユニット80に出力する。演算ユニット80は、制御部70からの制御信号に基づいて、記憶部83に記憶されたノイズ信号に応じた12ビットのデジタル信号を、1ビットずつデマルチプレクサ84に出力させる。デマルチプレクサ84は、制御部70からの制御信号に基づいて、ノイズ信号に応じたデジタル信号を演算ユニット80に出力(フィードバック)する。
【0030】
演算ユニット80は、信号用記憶部51から1ビットずつ出力される光電変換信号に応じたデジタル信号と、記憶部83から1ビットずつ出力されるノイズ信号に応じたデジタル信号との減算を行って補正信号を生成する。演算ユニット80は、1ビット毎に生成される補正信号を、記憶部83に順次記憶させる。演算ユニット80は、記憶部50に記憶される信号のビット数に応じて複数回の減算を行って、減算結果となる補正信号を記憶部83に順次記憶させる。本実施の形態では、記憶部50を構成する信号用記憶部51およびノイズ用記憶部52には各々12ビットのデジタル信号が記憶されるため、12回の減算処理が行われる。記憶部83には、12ビットのノイズ信号に応じたデジタル信号と、12ビットの補正信号とが記憶されることとなる。このため、記憶部83は、24個のラッチ回路等により構成される。
【0031】
このように、本実施の形態では、光電変換信号のデジタル信号とノイズ信号のデジタル信号との差分処理を行うデジタルCDSを1ビット毎に時分割的に行う。また、演算ユニット80は、画素10毎に設けられており、全ての画素10において同時にデジタルCDSが行われる。デジタルCDS演算を1ビット毎に行うため、第4基板114において、多ビット(例えば12ビット)のフリップフロップ回路等の多数のデジタル回路を配置することを回避できる。この結果、画素10毎の回路数を減らすことができ、チップ面積が増大することを防ぐことができる。
【0032】
時刻t30から時刻t40までの期間において、図5において例えば互いに隣接する領域Aおよび領域Bにそれぞれ配置される2つの画素10に関する補正信号間の演算を行う。即ち、領域Aの記憶部83に記憶された領域Aの画素10の12ビットの補正信号は、1ビットずつデマルチプレクサ84を介して領域Aの演算ユニット80に入力(フィードバック)される。同様に、領域Bの記憶部83に記憶された領域Bの画素10の12ビットの補正信号は、1ビットずつ領域Bのデマルチプレクサ84、領域Bのマルチプレクサ85および領域Aのマルチプレクサ85をそれぞれ介して領域Aの演算ユニット80に入力される。領域Aの演算ユニット80は、こうして入力された領域Aの12ビットの補正信号および領域Bの12ビットの補正信号を1ビットずつ演算する。以下に詳細に説明する。
【0033】
領域Aに配置される演算部100において、領域Aの演算ユニット80は、領域Aの記憶部83に記憶された領域Aの画素10の12ビットの補正信号を、1ビットずつデマルチプレクサ84に出力させる。領域Aのデマルチプレクサ84は、補正信号を領域Aの演算ユニット80に出力(フィードバック)する。また、領域Bに配置される演算部100において、領域Bの演算ユニット80は、領域Bの記憶部83に記憶された領域Bの画素10の補正信号を、1ビットずつデマルチプレクサ84に出力させる。領域Bのデマルチプレクサ84は、補正信号を領域Bのマルチプレクサ85に出力する。
【0034】
画素10毎に設けられる各マルチプレクサ85には、各演算部100が接続される信号線123および信号線124が接続される。信号線123および信号線124は、例えば、第4基板114において行方向および列方向に二次元状に配置され、画素10毎の各演算部100に接続される。マルチプレクサ85は、制御部70により制御され、演算ユニット80の演算対象となる信号を、信号線123および信号線124に入力される補正信号から選択する。領域Bのマルチプレクサ85は、領域Bの画素10の補正信号を、図5に示す信号線123を介して領域Aのマルチプレクサ85に出力する。領域Aのマルチプレクサ85は、領域Bの画素10の補正信号を、信号線124を介して領域Aの演算ユニット80に出力する。領域Aの演算ユニット80には、領域Aの画素10の補正信号および領域Bの画素10の補正信号がそれぞれ1ビット毎に順次入力される。
【0035】
領域Aの演算ユニット80は、領域Aの記憶部83から1ビットずつ出力される補正信号と、領域Bの記憶部83から1ビットずつ出力される補正信号との演算を行って、画素信号を生成する。演算ユニット80は、1ビット毎に生成される画素信号を、記憶部83に順次記憶させる。演算ユニット80は、補正信号のビット数に応じて複数回の演算を行って、演算結果となる画素信号を記憶部83に順次記憶させる。記憶部83には、補正信号間の演算後、12ビットの補正信号と、12ビットの画素信号とが記憶されることとなる。
【0036】
このように、本実施の形態では、各画素10の補正信号間の演算前に、相関二重サンプリングを行って補正信号を生成する。このため、画素10毎のノイズ信号成分を除去した信号を用いて、任意の画素10の補正信号間の演算を行うことができる。また、本実施の形態では、画素10毎に生成される補正信号間の演算を1ビット毎に行う。この結果、第4基板114において、多ビット(例えば12ビット)の四則演算回路や多ビット(例えば12ビット)のフリップフロップ回路等の多ビットのデジタル回路を配置することを回避でき、チップ面積が増大することを防ぐことができる。補正信号間の演算を1ビット毎に行うため、演算ユニット80の回路面積を小さくすることができる。さらに、演算ユニット80は、相関二重サンプリングを行うと共に画素10毎の補正信号間の演算を行う。すなわち、演算ユニット80は、デジタル信号間の減算によって補正信号を生成する補正部と、画素10毎に生成される補正信号間の演算を行う画素間演算部とを兼用する補正・画素間演算部として機能する。このため、補正部および画素間演算部を別々に設ける場合と比較して、チップ面積を低減することができる。
【0037】
本実施の形態では、制御部70が配置される第3基板113とは別の第4基板114を有し、第4基板114に演算ユニット80およびマルチプレクサ85等を配置する。このため、チップ面積を増大させることなく、信号線123および信号線124を二次元状に配置して全ての画素10の演算部100に共通に接続することができる。制御部70から制御信号を出力して演算ユニット80およびマルチプレクサ85等を制御することにより、任意の画素10の補正信号間の演算を行うことができる。隣接する画素間や離れた領域に配置される画素間について演算を行うことができる。また、演算部100が演算を行う他の画素10の補正信号は、ラッチやレジスタ等を介さずに、信号線123および信号線124により直接伝送される。ラッチやレジスタ等を通過するための遅延時間が生じないため、信号を高速に読み出すことができ、任意の画素10間についての演算を高速に行うことができる。
【0038】
時刻t50から時刻t60までの期間において、演算ユニット80は、記憶部83に記憶された画素信号を、デマルチプレクサ84に出力させる。デマルチプレクサ84は、画素信号を信号線122に出力する。センスアンプ300は、信号線122に出力された画素信号を増幅して読み出す。画素10毎に設けられる各演算部100は信号線122に順次信号を出力し、センスアンプ300は信号線122に出力された信号を順次読み出す。
【0039】
時刻t70から時刻t80までの期間において、ラインメモリ310には、センスアンプ300により読み出された画素信号が順次記憶される。入出力部320は、ラインメモリ310から順次出力される信号に対して信号処理を行い、信号処理後の信号を画像信号として出力する。
【0040】
上述した実施の形態によれば、次の作用効果が得られる。
(1)撮像素子3は、光電変換部12を有する複数の画素10と、画素10毎に設けられ、画素10から出力される光電変換信号と画素10から出力されるノイズ信号とによって補正信号を生成し、画素10毎に生成される補正信号間の演算を行う演算部100と、を備える。本実施の形態では、各画素10の信号間の演算前に、相関二重サンプリングを行って補正信号を生成する。このため、画素10毎のノイズ信号成分を除去した信号を用いて、任意の画素10の信号間の演算を行うことができる。
(2)演算部100は、光電変換信号を第1デジタル信号に変換しノイズ信号を第2デジタル信号に変換するAD変換部60と、第1デジタル信号と第2デジタル信号との減算によって補正信号を生成し、画素10毎に生成される補正信号間の演算を行う補正・画素間演算部(演算ユニット80)と、を有する。このようにしたので、補正部および画素間演算部を別々に設ける場合と比較して、画素10毎の周辺回路の面積を低減することができ、チップ面積を低減することができる。
【0041】
(3)光電変換部12は第1基板に配置され、演算部100の少なくとも一部は第2基板に配置される。このようにしたので、画素10の開口率が低下することを防ぐことができる。
(4)AD変換部60は、光電変換信号を第1のビット数の第1デジタル信号に変換し、ノイズ信号を第2のビット数の第2デジタル信号に変換する。このようにしたので、光電変換信号およびノイズ信号の各々をデジタル信号に変換して、記憶部50に記憶させることができる。
(5)演算部100は、第2のビット数の第2デジタル信号を記憶する記憶部83を有する。演算部100は、記憶された第2デジタル信号とAD変換部60から出力される第1デジタル信号との減算を、1ビット毎に行う。本実施の形態では、光電変換信号のデジタル信号とノイズ信号のデジタル信号との差分処理を1ビット毎に行う。このようにしたので、多数のフリップフロップ回路等を画素10毎に設けることを回避でき、チップ面積が増大することを防ぐことができる。
【0042】
(6)演算部100は、画素10毎に生成される補正信号間の演算を、1ビット毎に行う。このようにしたので、各画素10の信号間の演算を行う画素間演算のために多数の四則演算回路やフリップフロップ回路等を設けることを回避でき、チップ面積が増大することを防ぐことができる。
(7)撮像素子3は、複数の演算部100が接続され、演算部100から補正信号が出力される複数の信号線(信号線123および信号線124)を更に備える。演算部100は、演算部100が演算を行う補正信号を複数の信号線に出力された補正信号から選択する第1選択部(マルチプレクサ85)を有する。本実施の形態では、制御部70により演算ユニット80およびマルチプレクサ85を制御して、各画素10の補正信号を選択して読み出す。このため、任意の画素10の補正信号間の演算を行うことができる。
【0043】
(8)撮像素子3は、入射光を光電変換し電荷を生成する光電変換部12及び電荷に基づく信号を生成し出力する出力部20(読み出し部20)とを有する複数の画素10を含む画素基板(第1基板111)と、出力部20の電荷をリセットした後のリセット信号と光電変換部12で生成された電荷に基づく光電変換信号とによって補正信号を生成し、画素10毎に生成される補正信号間の演算を行う演算部(演算ユニット80)を含み、画素基板に積層される演算基板(第4基板114)と、を有する。このようにしたので、画素10毎のノイズ信号成分を除去した信号を用いて、任意の画素10の信号間の演算を行うことができる。また、演算ユニット80がそれぞれ対応する画素10に積層して設けられるため、画素10の開口率が低下することを防ぐことができる。
(9)撮像素子3は、デジタル信号に変換された光電変換信号及びリセット信号とを蓄積する蓄積部(記憶部50)を含む蓄積基板(第2基板112)を有する。蓄積基板は、画素基板と演算基板の間に積層して配置される。このようにしたので、画素10の開口率が低下することを防ぐことができる。
【0044】
次のような変形も本発明の範囲内であり、変形例の一つ、もしくは複数を上述の実施形態と組み合わせることも可能である。
【0045】
(変形例1)
上述した実施の形態では、演算ユニット80がCDS処理を行う補正部と画素間演算を行う画素間演算とに共用される例について説明した。しかし、図7に示すように、CDS処理を行う補正部54を、演算ユニット80とは別に設けるようにしてもよい。この場合、演算ユニット80は、画素間演算部として機能する。補正部54は、信号用記憶部51から出力される光電変換信号によるデジタル信号と、ノイズ用記憶部52から出力されるノイズ信号によるデジタル信号との減算によって補正信号を生成し、デマルチプレクサ81を介して演算ユニット80に出力する。
【0046】
(変形例2)
上述した実施の形態では、画素間演算の結果となる画素信号を、信号線122を介してセンスアンプ300に順次出力する例について説明した。しかし、演算部100は、記憶部83に記憶された補正信号を、画素信号として信号線122を介してセンスアンプ300に出力するようにしてもよい。また、信号用記憶部51に記憶された光電変換信号に応じたデジタル信号、およびノイズ用記憶部52に記憶されたノイズ信号に応じたデジタル信号の各々を、デマルチプレクサ81を介して信号線122に出力するようにしてもよい。
【0047】
(変形例3)
上述した実施の形態では、CDS処理および画素間演算を1ビット毎に時分割的に行う例について説明した。しかし、制御部70により演算ユニット80等を制御して、複数ビット数毎に演算を行うようにしてもよい。例えば、2ビット毎に演算を行うようにしてもよいし、ノイズ用記憶部52に記憶されるデジタル信号のビット数より少ないビット数毎に行うようにしてもよい。
【0048】
(変形例4)
上述した実施の形態では、各画素10の信号間の演算前にデジタルCDSを行う例について説明した。しかし、各画素10の信号間の演算前にアナログCDSを行うようにしてもよい。例えば、AD変換部60において、光電変換信号とノイズ信号との差分処理を行って、信号間の差分に基づくアナログ信号をデジタル信号に変換する。記憶部50には、画素10毎のノイズ信号成分を除去したデジタル信号が記憶される。記憶部50に記憶されたデジタル信号は、演算ユニット80に順次出力される。
【0049】
(変形例5)
上述した実施の形態では、光電変換部12としてフォトダイオードを用いる例について説明した。しかし、光電変換部12として光電変換膜を用いるようにしてもよい。
【0050】
上記では、種々の実施の形態および変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
【0051】
次の優先権基礎出願の開示内容は引用文としてここに組み込まれる。
日本国特許出願2016年第60001号(2016年3月24日出願)
【符号の説明】
【0052】
3 撮像素子、12 光電変換部、10 画素、40 比較部、60 AD変換部、100 演算部
図1
図2
図3
図4
図5
図6
図7