IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立金属株式会社の特許一覧

特許7327003サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法
<>
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図1
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図2
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図3A
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図3B
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図4
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図5A
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図5B
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図5C
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図6
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図7A
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図7B
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図8
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図9
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図10
  • 特許-サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法 図11
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-07
(45)【発行日】2023-08-16
(54)【発明の名称】サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法
(51)【国際特許分類】
   B04C 5/103 20060101AFI20230808BHJP
   H01F 41/02 20060101ALI20230808BHJP
   H01F 1/057 20060101ALI20230808BHJP
【FI】
B04C5/103
H01F41/02 G
H01F1/057 110
H01F1/057 170
【請求項の数】 10
(21)【出願番号】P 2019157688
(22)【出願日】2019-08-30
(65)【公開番号】P2021035657
(43)【公開日】2021-03-04
【審査請求日】2022-07-12
(73)【特許権者】
【識別番号】000005083
【氏名又は名称】株式会社プロテリアル
(74)【代理人】
【識別番号】100101683
【弁理士】
【氏名又は名称】奥田 誠司
(74)【代理人】
【識別番号】100155000
【弁理士】
【氏名又は名称】喜多 修市
(74)【代理人】
【識別番号】100180529
【弁理士】
【氏名又は名称】梶谷 美道
(72)【発明者】
【氏名】森本 仁
【審査官】目代 博茂
(56)【参考文献】
【文献】特開2014-155901(JP,A)
【文献】特開2015-142923(JP,A)
【文献】特開2004-111481(JP,A)
【文献】中国特許出願公開第109622252(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
B04C1/00-11/00
H01F1/00-1/117
H01F41/00-41/04
(57)【特許請求の範囲】
【請求項1】
粉末を運ぶ気流から前記粉末を分離するサイクロン捕集装置であって、
鉛直方向に延びる中心軸を有する円柱状内部空間を規定する上側部分、及び、前記円柱状内部空間に連続する逆円錐状内部空間を規定する下側部分を含むハウジングと、
前記ハウジングに設けられ、前記粉末を運ぶ気流を前記円柱状内部空間及び逆円錐状内部空間に導入して旋回させる入口管と、
前記ハウジングの前記上側部分に設けられ、前記中心軸に沿って前記円柱状内部空間に突出する出口管と、
前記出口管の周囲に前記下側部分に向かって広がる円錐台状の内壁面を有する気流調整装置と、を備
前記気流調整装置は、前記円錐台状の内壁面によって規定される空洞の上面に位置する円形の第1開口部と、前記空洞の底面に位置する円形の第2開口部とを有しており、前記第1開口部の内径は前記出口管の外径に略一致する、サイクロン捕集装置。
【請求項2】
前記気流調整装置の下面の幅をa、上面の幅をbとするとき、a/b≦0.2である、請求項1に記載のサイクロン捕集装置。
【請求項3】
粉末を運ぶ気流から前記粉末を分離するサイクロン捕集装置であって、
鉛直方向に延びる中心軸を有する円柱状内部空間を規定する上側部分、及び、前記円柱状内部空間に連続する逆円錐状内部空間を規定する下側部分を含むハウジングと、
前記ハウジングに設けられ、前記粉末を運ぶ気流を前記円柱状内部空間及び逆円錐状内部空間に導入して旋回させる入口管と、
前記ハウジングの前記上側部分に設けられ、前記中心軸に沿って前記円柱状内部空間に突出する出口管と、
前記出口管の周囲に前記下側部分に向かって広がる円錐台状の内壁面を有する気流調整装置と、を備え
前記入口管は、前記鉛直方向と交差する第1の方向に延びて前記ハウジングに接続されており、前記ハウジングにおける前記入口管の開口領域は、前記気流調整装置によって部分的に塞がれている、サイクロン捕集装置。
【請求項4】
前記ハウジングにおける前記入口管の開口領域を前記第1の方向から見たとき、前記開口領域と前記気流調整装置との重なりの面積は、前記開口領域の面積の50%以下である、請求項3に記載のサイクロン捕集装置。
【請求項5】
前記円錐台状の内壁面の勾配の角度は、30°以上75°以下の範囲にある、請求項1から4のいずれかに記載のサイクロン捕集装置。
【請求項6】
前記気流調整装置の直径をc、前記円柱状内部空間の直径をDとするとき、0.75≦c/Dである、請求項1から5のいずれかに記載のサイクロン捕集装置。
【請求項7】
前記粉末の90質量%以上は、希土類磁石合金の粉末粒子から構成されている、請求項1から6のいずれかに記載のサイクロン捕集装置。
【請求項8】
前記粉末を構成する粒子の比重は、7g/cm以上である、請求項7に記載のサイクロン捕集装置。
【請求項9】
請求項1から8のいずれかに記載のサイクロン捕集装置と、
前記サイクロン捕集装置の入口管に接続されたジェットミル粉砕装置と、
を備える、希土類磁石合金粉砕システム。
【請求項10】
請求項9に記載の希土類磁石合金粉砕システムを用いて実行するR-T-B系焼結磁石の製造方法であって、
ジェットミル粉砕装置により、第1の粒度分布を有するR-T-B系合金の第1の粉末を用意する工程と、
前記R-T-B系合金粉末の第1の粉末を前記サイクロン捕集装置によって気流から分離して、第2の粒度分布を有するR-T-B系合金の第2の粉末を得る工程と、
を含む、R-T-B系焼結磁石の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、サイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法に関する。
【背景技術】
【0002】
R-T-B系焼結磁石(Rは希土類元素のうち少なくとも1種であり、Nd及びPrの少なくとも1種を必ず含み、Tは遷移金属元素のうち少なくとも1種でありFeを必ず含む。Bはホウ素である。)は、RFe14B型結晶構造を有する化合物の主相と、この主相の粒界部分に位置する粒界相及び微量添加元素や不純物の影響により生成する化合物相とから構成されており、永久磁石の中で最も高性能な磁石として知られている。このため、ハードディスクドライブのボイスコイルモータ(VCM)、電気自動車(EV、HV、PHV)用モータ、産業機器用モータなどの各種モータや家電製品など多種多様な用途に用いられている。
【0003】
このようなR-T-B系焼結磁石は、例えば、原料合金粉末を準備する工程、原料合金粉末をプレス成形して粉末成形体を作製する工程、粉末成形体を焼結する工程を経て製造される。原料合金粉末は、例えば、以下の方法で作製される。
【0004】
まず、インゴット法又はストリップキャスト法などの方法によって各種原料金属の溶湯から原料合金を製造する。得られた原料合金を粉砕工程に供し、所定の粒径分布を有する合金粉末を得る。この粉砕工程には、通常、粗粉砕工程と微粉砕工程とが含まれており、前者は、例えば水素脆化現象を利用して、後者は例えば気流式粉砕機(ジェットミル)を用いて行われる。
【0005】
このような粉砕工程によって得られた合金粉末は、サイクロン式捕集装置により固気分離を行いR-T-B系焼結磁石用合金粉末を回収(捕集)する。
【0006】
特許文献1は、遠心力を利用して分級を行うサイクロン式分級装置を開示している。
【先行技術文献】
【特許文献】
【0007】
【文献】特開2014-155901号公報
【発明の概要】
【発明が解決しようとする課題】
【0008】
従来のサイクロン式分級装置は、電子素材の研磨材料の粒度調整、資源リサイクルにおける粉末の分離などの分級に用いられることが多かった。しかし、従来のサイクロン式分級装置をR-T-B系焼結磁石の製造に用いると、R-T-B系焼結磁石用合金粉末の回収(捕集)効率が十分でないことが本発明者の検討によってわかった。
【0009】
本開示の実施形態は、このような課題を解決するサイクロン捕集装置、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法を提供する。
【課題を解決するための手段】
【0010】
本開示のサイクロン捕集装置は、例示的な実施形態において、粉末を運ぶ気流から前記粉末を分離するサイクロン捕集装置であって、鉛直方向に延びる中心軸を有する円柱状内部空間を規定する上側部分、及び、前記円柱状内部空間に連続する逆円錐状内部空間を規定する下側部分を含むハウジングと、前記ハウジングに設けられ、前記粉末を運ぶ気流を前記円柱状内部空間及び逆円錐状内部空間に導入して旋回させる入口管と、前記ハウジングの前記上側部分に設けられ、前記中心軸に沿って前記円柱状内部空間に突出する出口管と、前記出口管の周囲に前記下側部分に向かって広がる円錐台状の内壁面を有する気流調整装置と、を備える。
【0011】
ある実施形態において、前記気流調整装置の下面の幅をa、上面の幅をbとするとき、a/b≦0.2である。
【0012】
ある実施形態において、前記入口管は、前記鉛直方向と交差する第1の方向に延びて前記ハウジングに接続されており、前記ハウジングにおける前記入口管の開口領域は、前記気流調整装置によって部分的に塞がれている。
【0013】
ある実施形態において、前記ハウジングにおける前記入口管の開口領域を前記第1の方向から見たとき、前記開口領域と前記気流調整装置との重なりの面積は、前記開口領域の面積の50%以下である。
【0014】
ある実施形態において、前記円錐台状の内壁面の勾配の角度は、30°以上75°以下の範囲にある。
【0015】
ある実施形態において、前記気流調整装置の直径をc、前記円柱状内部空間の直径をDとするとき、0.75≦c/Dである。
【0016】
ある実施形態において、前記粉末の90質量%以上は、希土類磁石合金の粉末粒子から構成されている。
【0017】
ある実施形態において、前記粉末を構成する粒子の比重は、7g/cm以上である。
【0018】
本開示の希土類磁石合金粉砕システムは、上記いずれかのサイクロン捕集装置と、前記サイクロン捕集装置の入口管に接続されたジェットミル粉砕装置とを備える。
【0019】
本開示のR-T-B系焼結磁石の製造方法は、上記の希土類磁石合金粉砕システムを用いて実行するR-T-B系焼結磁石の製造方法であって、ジェットミル粉砕装置により、第1の粒度分布を有するR-T-B系合金の第1の粉末を用意する工程と、前記R-T-B系合金粉末の第1の粉末を前記サイクロン捕集装置によって気流から分離して、第2の粒度分布を有するR-T-B系合金の第2の粉末を得る工程と、を含む。
【発明の効果】
【0020】
本開示の実施形態によれば、R-T-B系焼結磁石用合金の粉末粒子の捕集に優れ、回収効率を従来よりも向上させ得るサイクロン捕集装置が提供される。また、このサイクロン捕集装置を用いる希土類磁石合金粉砕システム及びR-T-B系焼結磁石の製造方法が提供される。
【図面の簡単な説明】
【0021】
図1図1は、本開示のサイクロン捕集装置100の斜視図である。
図2図2は、本開示のサイクロン捕集装置100の主要部の構成を模式的に示す断面図である。
図3A図3Aは、気流調整装置60の斜視図である。
図3B図3Bは、気流調整装置60の断面図である。
図4図4は、サイクロン捕集装置100に装着された気流調整装置60を模式的に示す断面図である。
図5A図5Aは、従来例におけるサイクロン捕集装置の概略構成を模式的に示すXY面に平行な平面図である。
図5B図5Bは、従来例におけるサイクロン捕集装置の概略構成を模式的に示すXZ面に平行な断面図である。
図5C図5Cは、従来例におけるサイクロン捕集装置の概略構成を模式的に示すYZ面に平行な断面図である。
図6図6は、従来例におけるサイクロン捕集装置の改変例を示すXZ面に平行な断面図である。
図7A図7Aは、本開示のサイクロン捕集装置をXZ面に垂直な方向から見たときの気流の向きを模式的に示す図である。
図7B図7Bは、本開示のサイクロン捕集装置をYZ面に垂直な方向から見たときの気流の向きを模式的に示す図である。
図8図8は、ハウジング10における入口管20の開口領域22を、第1の方向(X軸方向)から見たときの、開口領域22と傾斜面60Sとの重なりを模式的に示す図である。
図9図9は、本実施形態における希土類磁石合金粉砕システム1000の構成例を模式的に示す図である。
図10図10は、実施例(B)、(C)、(D)、(E)における気流調整装置60の構成を模式的に示すXZ面に平行な断面図である。
図11図11は、実施例(B)、(C)、(D)、(E)における気流調整装置60の構成を模式的に示すYZ面に平行な断面図である。
【発明を実施するための形態】
【0022】
本開示の実施形態を説明する前に、本発明者が見出した知見と背景から説明する。
【0023】
R-T-B系焼結磁石の原料合金の微粉砕を気流式粉砕機(ジェットミル)を用いて行うとき、粉砕によって得られた微粉末に含まれる粒子径の大きな粉末粒子は、分級ロータによって分別される。この場合、所定の粒子径(微粉末の中位径)よりも小さな粒子径を有する粒子(以下、単に「微粒子」と称する)は分別されず、最終的に捕集された粉末の一部を構成することになる。
【0024】
ジェットミルによって粉砕され、分級ロータを介してサイクロン捕集装置に投入された粉末粒子は、固気分離の後、下方に位置する回収ケースで回収(捕集)される。しかし、粉末粒子を運ぶ気体の出口(出口管)は、サイクロン捕集装置の上方部にしかないため、固気分離後の気体の流れは、サイクロン槽の中央部において、下降気流から上昇気流に反転する。このとき、反転した上昇気流も下降気流と同様に旋回流である。サイクロン槽の中心軸付近では、このような下降旋回気流と上昇旋回気流が混在するため、固気分離されるべき粉末粒子の一部(特に中位径以下のサイズを有する微粒子)が、回収されずに上昇気流に巻き込まれて出口管から排出されてしまうことがある。R-T-B系焼結磁石の微粒子は、希土類濃度が高いため、微粒子が出口管から排出されることは希土類成分の滅失を引き起こし貴重な希土類元素を無駄にしてしまう。また、所望の原料合金粉末を得るためには、滅失される希土類量を予測してその分、希土類量を多めに原料合金に添加しなければならず、これにより原料費の増大を招く。
【0025】
従来、サイクロン捕集装置内に乱流が発生することを抑制する構造を設ける試みは行われてきた(例えば特許文献1)が、希土類成分の滅失を防止または抑制することは不十分であった。
【0026】
本発明者は、サイクロン捕集装置内の気体の流れを調整することにより、これまでのサイクロン捕集装置によっては回収しきれなかった微粒子の捕集効率を向上させ、特に微粒子に高濃度で含まれる希土類成分の滅失量を低減できることを見出した。本開示の実施形態によれば、ジェットミル装置の後段に接続され、合金粉末から高性能な焼結磁石実現に必要な粒度分布を持つ粉末を高い回収率(回収効率)で得ることのできるサイクロン捕集装置が提供される。なお、本開示における粒度分布は、乾式法によるレーザ回折散乱法を用いて測定した。
【0027】
以下、図面を参照しながら、本開示のサイクロン捕集装置の実施形態を説明する。
【0028】
まず、図1及び図2を参照して、本実施形態におけるサイクロン捕集装置100の概略構成を説明する。図1は、サイクロン捕集装置100の斜視図であり、図2は、サイクロン捕集装置100の主要部の構成を模式的に示す断面図である。図面には、参考のため、互いに直交するX軸、Y軸及びZ軸が模式的に示されている。図1では、Z軸が鉛直方向に平行である。
【0029】
本実施形態におけるサイクロン捕集装置100は、粉末を運ぶ気流から粉末を分離するために使用される。具体的には、R-T-B系焼結磁石用の原料合金が前段のジェットミルで粉砕され、粉砕によって生成された粉末粒子(固体)が、粉砕に利用された気体とともに配管を通って、サイクロン捕集装置100に供給される。本実施形態におけるサイクロン捕集装置100が分離する粉末の95質量%以上は、希土類磁石合金の粉末粒子から構成されていることが好ましく、前記粉末は、希土類磁石合金の粉末粒子のみから構成されていることがさらに好ましい。希土類磁石合金の以外としては、例えば、ステアリン酸や各種酸化物である。また、前記粉末を構成する粒子の比重は、7g/cm以上である。R-T-B系焼結磁石用原料合金は非常に活性であり、酸化しやすい。このため、ジェットミルで使用される気体としては、発熱・発火の危険性の回避、不純物としての酸素含有量を低減させて磁石の高性能化を図るため、窒素、アルゴン、ヘリウムなどの不活性ガスが用いられる。不活性ガス(粉砕ガス)と粉砕された合金粉末との混合物が高速な気流をなして、サイクロン捕集装置100に送られてくる。サイクロン捕集装置100は、これらの粉砕ガスと微粉末とを分離するために利用される。なお、このような固気分離のために、サイクロン捕集装置100を用いず、バッグフィルタを用いることも可能であるが、フィルタの破損による微粉末の大気飛散などが環境面、安全面に与える影響が大きい。本開示の実施形態では、サイクロン捕集装置によって分離された後の気体から、さらにバッグフィルタを併用して微粒子を分離してもよい。
【0030】
図示されているサイクロン捕集装置100は、上側部分10A及び下側部分10Bを含むハウジング(サイクロン槽)10を備えている。ハウジング10の上側部分10Aは、鉛直方向(Z軸方向)に延びる中心軸Cを有する円柱状内部空間S1を規定する。下側部分10Bは、円柱状内部空間S1に連続する逆円錐状内部空間S2を規定する。円柱状内部空間S1は、必ずしも数学的に厳密な意味での円柱形状を有している必要はなく、高さ(鉛直方向における位置)によって内径又は外径が僅かに変化していてもよい。
【0031】
サイクロン捕集装置100は、ハウジング10の上側部分10A又は下側部分10Bに設けられた入口管(インレット)20と、ハウジング10の上側部分10Aに設けられた出口管(アウトレット)30とを備えている。入口管20は、粉末を運ぶ気流を円柱状内部空間S1に導入して旋回させる。もちろん、入口管20から供給される気流は、逆円錐状内部空間S2にも導入されて旋回し得る。
【0032】
ハウジング10の上側部分10Aは、図2に示すように、円柱状内部空間S1の上端を規定する天板10Tを有している。出口管30の一部は、天板10Tから中心軸Cに沿ってハウジング10の内部に突出している。出口管30の突出部は、中心軸Cに沿って長さMを有している。
【0033】
図示されている例において、入口管20は、円筒形状を有しているが、本開示の実施形態は、この例に限定されない。後述する実施形態では、入口管20は、ハウジング10に結合される位置において、矩形の断面を有している。入口管20の形状及び断面積は、中を流れる気体の速度を高めるように変化していてもよい。図2に示される例では、入口管20がハウジング10の結合される位置においてZ軸方向のサイズWの開口領域22を有している。
【0034】
本開示の実施形態において、最も特徴的な点のひとつは、図1及び図2に示されるように、出口管30の周囲に下側部分10Bに向かって広がる円錐台状の内壁面を規定する軸対称の傾斜面60Sを備えていることにある。下側部分10Bに向かって広がる円錐台状の内壁面(軸対称の傾斜面60S)は、入口管20から流れ込む固気混合流体の旋回流を、いったんは上方に向かわせた後、なだらかに下方へ誘導する気流調整装置60の表面である。以下、気流調整装置60の構成例を説明する。
【0035】
図3A及び図3Bは、それぞれ、気流調整装置60の斜視図及び断面図である。気流調整装置60は、出口管30を通す円錐台状の空洞(貫通孔)60Wを有しており、その内壁面が傾斜面60Sを規定している。円錐台状の空洞60Wは、円錐台の上面に位置する円形の第1開口部OP1から円錐台の底面に位置する第2開口部OP2まで広がっている。第1開口部OP1の形状及びサイズは、出口管30の構造及び大きさによって規定され、第2開口部OP2の形状及びサイズは、ハウジング10の構造及び大きさによって規定される。図示される例において、出口管30は、円筒形状を有しているため、第1開口部OP1は円形であり、その内径は出口管30の外径に略一致するように設定されている。第1開口部OP1の形状及びサイズは、出口管30を通すことが可能な形状及びサイズであればよい。気流調整装置60の機能は、その傾斜面60Sの働きによって定まるため、気流調整装置60の内部の構造には、高い設計の自由度がある。
【0036】
本発明者の検討によると、下側部分10Bに向かって広がる円錐台状の内壁面(軸対称の傾斜面60S)は、中心軸を含む断面における気流調整装置60の形状パラメータを所定の範囲に設定することが好ましいことがわかった。以下において、まず、形状パラメータを説明する。
【0037】
図3Bに示すように、気流調整装置60は、概略的には、高さLの円錐台状の空洞60Wを有している。気流調整装置60の下面の幅をa(第2開口部OP2の外周から、下面の外周までの最短距離)、上面の幅をb(第1開口部OP1の外周から、上面の外周までの最短距離)、気流調整装置60の直径をc、第1開口部OP1の直径周囲をd1、第2開口部OP2の直径をd2とすると、b=(c-d1)/2、及び、a=(c-d2)/2が成立する。また、本開示の実施形態では、傾斜面60Sを形成するように、0≦a<bの関係が満足する。後述するように、a/b≦0.2である場合に特に微粒子に高濃度で含まれる希土類成分の滅失量を低減することができ、回収効率を向上させることができる。好ましくは、a/b≦0.1である。より希土類成分の滅失量を低減することができる。aは0であっても(尖っていても)よい。
【0038】
図4に示すように、気流調整装置60は、その上面がハウジング10の天板10Tに接触するか、対向するようにハウジング10の内部に装着される。図4では、ハウジング10の上側部分10Aの内径D及び傾斜面60Sの傾斜角αが記載されている。傾斜角αは、傾斜面60Sの勾配の角度(逆テーパ角)に相当する。後述するように、30°≦α≦75°が好ましく、40°≦α≦70℃以下がさらに好ましい。また、0.75≦c/Dが好ましく、0.9≦c/Dがさらに好ましい。
【0039】
気流調整装置60は、典型的には図3Aに示すように傾斜面60Sを内周面に有する円筒形状であるが、傾斜面60Sのみ(中空円錐台状)であってもよい。出口管30の周囲に下側部分10Bに向かって広がる円錐台状の内壁面(軸対称の傾斜面60S)を有していれば(好ましくは上述した形状パラメータを有していれば)、その他の部分(傾斜面60S以外の部分)における気流調整装置60の形状は特に問わない。
【0040】
次に、このような構造を有する気流調整装置60の機能を説明する。
【0041】
まず、比較のため、気流調整装置60を備えていないサイクロン捕集装置について説明する。
【0042】
図5A図5B、及び図5Cは、それぞれ、従来例におけるサイクロン捕集装置の概略構成を模式的に示すXY面に平行な平面図、XZ面に平行な断面図、及びYZ面に平行な断面図である。これらの図面において、入口管20から装置内に流入してきた粉砕ガスと粉末粒子の混合体(固気混合流体)は、円筒形の旋回槽(ハウジング10)の内面に沿って旋回流を形成する。出口管30の出口が入口管20よりも下方にあるため、固気混合流体は旋回しながら旋回槽の下方に向かい、遠心力によって微粉末と粉砕ガスに分級される。ほとんどの微粉末は下方の粉末回収槽で回収されるが、前述したように、粉砕ガスと不可避的に分離できなかった微粒子は、出口管30から外部へ排出される。
【0043】
下方に配置されている粉末回収槽にできるだけ多くの微粉末を回収するためには、「遠心力による分級を強化するために固気混合ガスの流速を高める」ことと、「固気混合ガスの旋回流を現状よりも下方向きへ誘導する」ことが有効であると考えられる。固気混合ガスの流速を高めるためには、単純に粉砕ガスの流量を増加することで達成できるが、粉砕槽ならびに旋回槽内の槽内圧力を上昇し、圧損が大きくなる。このため、粉砕設備への負荷が増大するため、その効果は見込めるものの、実際的には望ましくはない。また、同一流量下で入口管20の断面積を減少させると、固気混合流体の流速を高めることが可能であるが、配管及び旋回槽の設計を適切に実施しないと、圧損が増加する。
【0044】
旋回流を下方向きへ誘導するためには、図6に示すように、入口管20をX軸方向から下方に傾斜させ、旋回槽の下方へ気流を噴出させてもよい。しかし、図6に矢印で示すように、固気混合流体は、旋回槽の内壁面に衝突した後、上方へも反射するため、旋回槽内に乱流を引き起こす可能性があり、望ましくはない。
【0045】
図7A及び図7Bは、本開示における気流調整装置60の傾斜面60Sが、入口管20から流れ込む固気混合流体の旋回流を下方へ誘導する様子を模式的に示す図である。図7Aは、XZ面に垂直な方向から視たときの気流を模式的に示す図であり、図7Bは、YZ面に垂直な方向から視たときの気流を模式的に示す図である。
【0046】
図7Aの例において、入口管20は、鉛直方向(Z軸に平行)と交差する第1の方向(X軸方向)に延びてハウジング10に接続されている。図7Bに示されるように、ハウジング10における入口管20の開口領域22は、例えば矩形の形状を有している。図7Bの例において、この開口領域22は、気流調整装置60によって部分的に塞がれている。言い換えると、開口領域22を第1の方向(X軸方向)から見たとき、開口領域22は気流調整装置60と部分的に重なり合っている。このため、入口管20の開口領域22から流れ込む固気混合流体の流路は、気流調整装置60の存在によって狭窄される。その結果、より固気混合流体の流速は上昇する。そして、固気混合流体の流れの方向はなだらかな傾斜面60Sに沿って旋回しながら下方に誘導される。
【0047】
図8は、ハウジング10における入口管20の開口領域22を、第1の方向(X軸方向)から見たときの、開口領域22と気流調整装置60との重なりを模式的に示す図である。重なりの面積が開口領域22に占める割合を「狭窄比率」を呼ぶことにする。狭窄比率を「e」とするとき、発明者の検討によると、0≦e≦50%である場合が好ましく、気流調整装置60の傾斜面60Sによる気流規制の効果が顕著に発揮される。また、0<e≦50%の場合に、狭窄効果による流速向上の効果がより顕著に発揮され得る。
【0048】
このように、本開示のサイクロン捕集装置によれば、出口管30の周囲に逆テーパ形状を有する気流調整装置60を設けることにより、入口管20から流入直後の流路を狭めて流速を高め、かつ、逆テーパ形状を形成する傾斜面で旋回槽下部へ気流の方向を矯正することを可能とする。また、気流調整装置60が、気流旋回の中心軸に関して軸対称な円錐台状の内壁面を有するため、乱流が生じにくいという効果も得られる。
【0049】
なお、ハウジング10に対する入口管20及び出口管30の配置、長さ、形状は、図示されている例に限定されない。ハウジング10の内部空間S1、S2には、入口管20から噴き出す気体によって高速の気流が形成される。図1に示した例では、入口管20がハウジング10の上側部分10Aに接続されているが、ハウジング10の下側部分10Bに接続されていてもよい。入口管20がハウジング10の上側部分10A及び下側部分10Bのいずれに接続される場合でも図示されている例のように、出口管30の下端は、入口管20の下端よりも、低い位置にあることが好ましい。出口管30の周囲に備えられた気流調整装置60による下方に気流を誘導する効果がより顕著に発揮され得る。
【0050】
ハウジング10、入口管20、出口管30、及び気流調整装置60には、希土類合金の粉末が衝突しても研削されにくいように、ニッケル又はクロムのめっき処理を施したり、ニッケル、クロム、ホウ素などの合金やジルコニアなどのセラミックスの溶射を行ったりすることもある。
【0051】
図1には、旋回しながら下降する気流が破線で模式的に表されている。また、旋回しながら上昇する気流が一点鎖線で示されている。サイクロン捕集装置100の基本的な作用として、入口管20から加速された固気混合流体がサイクロン捕集装置100の内部に流入すると、軸対称形の内部空間(S1、S2)において高速の旋回流が形成される。気流に運ばれる粉末の粒子は、旋回運動に伴う遠心力及び重力により、ハウジング10の内壁に衝突しながら下降していく。ハウジング10の下側部分10Bが逆円錐状に狭く絞られた構造を有しているため、ハウジング10の下部へ固気混合流体が向かうにつれ、さらに旋回流が加速する。このため、相対的に細かい微粒子も遠心力によって旋回流の外側に追いやられ、内部空間S1、S2の中央部で気体が出口管30の方向へ逆流上昇する気流が発生し得る。この気流は、粉末粒子が非常に高い割合で除去された状態で中央付近を旋回しながら上昇し、出口管30を通って外部に吐き出されるため、固気分離を行うことが可能になる。ハウジング10の下端には、排出口40を介して粉末捕集器などの装置又は容器が接続され、随時、ハウジング10の下端に集まった粉末が捕集される。
【0052】
こうして、ハウジング10の内部空間S1、S2は、遠心分離室として機能し、モータなどの機械的な装置を必要としない固気分離が実現する。なお、遠心力及び粉末粒子の自重を利用して分級を行うため、微粒子の一部は上昇気流又は乱流に乗って出口管30から排出されてしまうことがあるが、本開示の実施形態では、気流調整装置60が気流を傾斜した曲面に沿って、なだらかに下方に向けるため、このような微粒子の排出量を精密に制御し、粒度分布の調整及び回収率向上を実現することができる。出口管30の後段には、配管を介して不図示のバックフィルタ装置を接続してもよい。バックフィルタ装置は、サイクロン捕集装置100から排出された気流中に僅かに含まれ得る微粒子を気流から分離する。
【0053】
従来、ジェットミル粉砕及びサイクロン捕集が、主に医薬品、セラミックス粉末、カーボントナーなどの製造分野で利用され、サイクロンでの固気分離を行うとき、遠心力が小さく、回収率が低かった。
【0054】
本発明者は、上記の構成を採用することにより、サイクロン装置内部に導入された固気混合流体の流れを下方に向け、微粒子の排出を抑制することが可能になることを見出した。本実施形態によれば、回収される粉末のうち、特に中位径以下のサイズを有する、希土類含有量の多い微粒子の回収量を高めることが可能となる。
【0055】
以下、本実施形態におけるサイクロン捕集装置100を用いる希土類磁石合金粉砕システム及びR-T-B系焼結磁石の製造方法の実施形態を説明する。
【0056】
図9は、本実施形態における希土類磁石合金粉砕システム1000の構成例を模式的に示す図である。この例において、希土類磁石合金粉砕システム1000は、本開示の実施形態に係るサイクロン捕集装置100と、サイクロン捕集装置100の入口管20に接続されたジェットミル粉砕装置200と、サイクロン捕集装置100の出口管30に接続されたバックフィルタ装置300とを備えている。
【0057】
ジェットミル粉砕装置200は、不図示の原料タンクから原料投入パイプ34を介して被粉砕物の供給を受ける。原料投入パイプには複数のバルブが設けられ、バルブの開閉によってジェットミル粉砕装置200の内部圧力が適切に維持される。ジェットミル粉砕装置200の内部に導入された被粉砕物は、不図示のノズル口からの不活性ガスの高速噴射によって被粉砕物同士の相互衝突や粉砕を効率的に進行させるために設置された衝突板との衝突によって細かく粉砕される。このようにして微粉砕された粉末粒子は上昇気流に乗って上部の排出口からサイクロン捕集装置100の入口管20に導かれる。粉砕が不十分な粗い粒子は、中位径以上の粗粒子の分級するために設置された分級ロータにより分別され、ジェットミル粉砕装置200の内部に残り、さらに衝突による粉砕処理工程を受けることになる。この粗粒子の分級については分級ロータを用いても良いし、旋回流による遠心分離を用いても良い。こうして、ジェットミル粉砕装置200に投入された被粉砕物は、例えば中位径が3~5μm程度の粒度分布を持つ微粉末(第1の粒度分布を有するR-T-B系合金の第1の粉末)に粉砕されてからサイクロン捕集装置100に移動することになる。
【0058】
サイクロン捕集装置100では、入口管20を通って内部に供給された粉末及び気体の混合物から粉末と気体の分離を行う。具体的には、気体から分離された粉末(第2の粒度分布を有するR-T-B系合金の第2の粉末)は、排出口40を介して粉末捕集器50で回収する。なお、本開示の実施形態において、第2の粉末における第2の粒度分布と、第1の粉末における第1の粒度分布とは、ほぼ同じ粒度分布となり得る。気体は出口管30を介してバックフィルタ装置300に供給される。バックフィルタ装置300では、不可避的に含まれ得る僅かな微粒子が回収され、清浄な気体が排気口32から外部に放出される。粉末捕集器50で回収した粉末は、磁場中プレス成型、焼結工程など、公知の製造工程を経て、焼結磁石の製造に用いられる。
【0059】
本実施形態における希土類磁石合金粉砕システム1000では、気流調整装置60の寸法を変更することなどにより、サイクロン捕集装置100の内部における微粒子の挙動を制御することも可能になる。このような調整は、気流調整装置60を脱着自在とし、必要に応じて用意された様々な形態の傾斜面60Sを有する気流調整装置60を付け替えることでも対応できる。このような気流調整装置60を備えることより、出口管30を通って最終的な粉末から排除される微粒子の割合を低減し、回収効率を高めることが可能になる。
【0060】
なお、本開示の実施形態では、ジェットミル粉砕装置200とサイクロン捕集装置100との間に中位径以下の微粒子を分級するための分級ロータを設ける必要はないが、粒度分布の更なる調整を目的として分級ロータを設けてもよい。
【0061】
(実施例)
水素吸蔵粉砕法により、Nd+Pr:32mass%、B:0.95mass%、残部Feである希土類磁石合金の粗粉砕粉を準備した。具体的には、ストリップキャスト法によって合金を作製した。その後、水素吸蔵法を用いた粗粉砕を行い、ジェットミル粉砕前の粗粉末を準備した。なお、Co、Al、Cu、Ga、Ti、Zr、Mnなどの微量添加元素が合計で約3mass%添加されている。この合金の密度を測定した結果、7.55g/cmであった。
【0062】
まず、純度99.9%以上の窒素ガスを用い、ガス中の酸素含有量を0.4mass%以下となる条件のもとで、平均粒度が3~4μmになるようにジェットミル粉砕を行い第1の粉末を得た。次に前記第1の粉末をサイクロン捕集装置に供給して気体から分離された第2の粉末を得た。第1の粉末のサイクロン捕集装置への供給は、ジェッミル粉砕ガス(窒素)を用いた。ただし粉砕ガスは不活性ガスであればよくアルゴンやヘリウムでもよい。ジェットミル粉砕ガスの圧力は、0.5MPa、流量は1000L/minであった。
【0063】
また、サイクロン捕集装置に気流調整装置を備えない場合(試料No.A)と種々の気流調整装置を備えた場合(試料No.B~E)のいずれも実施した。各実施例は、気流調整装置60以外の部分では共通の構成を備えている。本実施例のサイクロン分級装置における入口管20の寸法は、横20mm、縦50mmであり断面積は1000mmであった。また旋回槽(ハウジング)の内径は、Φ95.6mm、出口管30の内径は、Φ35.7mm、出口管30の長さ(図2のMに相当)は75mmであった。図10及び図11に試料No.B~Eにおける気流調整装置60の構成を模式的に示す。図10は、XZ面に平行な断面図、図11は、YZ面に平行な断面図に相当する。
【0064】
表1に試料No.B~Eにおける気流調整装置60の構成を規定するパラメータの値を示す。
【0065】
また、表2に各試料における希土類成分(本実施例ではNdとPr)の滅失量と、気流調整装置を備えていない試料No.Aに対する改善量を示す。なお、滅失量は、サイクロン捕集装置に投入した希土類量(Nd+Pr:32mass%)と捕集後の各試料(試料No.A~E)における希土類量(Nd+Pr量)との差(mass%)であり、改善量は、試料No.Aの滅失量と試料No.B~Eの滅失量との差(mass%)である。
【0066】
【表1】
【0067】
【表2】
【0068】
表1及び表2に示すように、本開示の実施形態である試料No.D及びEは、気流調整装置を備えていない試料No.Aと比較して、希土類成分(本実施例ではNdとPr)の滅失量が少なく、試料No.Aに対する改善量も多く、回収効率を従来よりも大幅に向上させている。これに対して、気流調整装置を備えていても、本開示の規定からはずれている(下側部分10Bに向かって広がる円錐台形状の内壁面を有していない)試料No.B及びCは、本発明例と比較して希土類成分の滅失量が多く改善量も少ない。
【0069】
サイクロン捕集装置によって回収された試料No.A~Eの粉末(第2の粉末)の粒度分布をレーザ回折式粒度分布測定装置によって測定した。そして各粉末について、面積相当径として10%粒径(X10)、16%粒径(X16)、50%粒径(X50)、84%粒径(X84)、90%粒径(X90)、97%粒径(X97)を算出した。結果を表3に示す
【0070】
【表3】
【0071】
表3に示すように、X10(10%粒径)は比較例よりも本発明例の方がいずれも小さい。X10が小さいということは、粉末中の微粒子が多くなっていることを意味している。さらに、X16(16%粒径)においても同様である。このことから、特に微粒子に高濃度に含まれる希土類成分の滅失量を低減できていることがわかる。さらに本発明例(試料No.D及びE)を比較したところ、以下のことがわかった。
【0072】
狭窄比率eが大きくなると(試料No.E→D)、表3に示すように粒度分布が小粒径側になっている(より希土類成分の滅失量を低減できている)。さらに、希土類元素の滅失量を低減する効果は、傾斜角αが約46.0°(試料No.D)で最も顕著である。発明者の検討の結果、希土類元素の滅失量を低減する効果は、傾斜角αが30°以上75°以下で発現し、40°以上70°以下で高まる。なお、狭窄比率eは、0.2%以上20%以下であることが望ましいこともわかった。さらに、a/bが0.2を超えるとこの効果が小さくなる傾向が表れるため、a/bは0.2以下であることが好ましく、0.1以下であることがよりこの好ましい。また同様に、c/Dが0.75未満になると、この効果が小さくなる傾向が表れるため、c/Dは0.75以上であることが好ましく、0.9以上であることがさらに好ましい。
【0073】
これらの実施例から、気流調整装置60がサイクロン捕集装置の回収効率を向上させていると認められる。このような回収効率の向上は、生産歩留を高め、コスト合理化につながる。また、出口管30から排出され、廃却又はリサイクル処理せざるを得なかった粉末の量を抑制することができるため、省資源にも寄与する。
【産業上の利用可能性】
【0074】
本開示のサイクロン捕集装置は、ジェットミルと組み言わせて利用され、希土類磁石合金粉砕システム、及びR-T-B系焼結磁石の製造方法に用いられる。
【符号の説明】
【0075】
10・・・ハウジング、10A・・・ハウジングの上側部分、10B・・・ハウジングの下側部分、20・・・入口管、30・・・出口管、100・・・サイクロン捕集装置、S1・・・円柱状内部空間、S2・・・逆円錐状内部空間
図1
図2
図3A
図3B
図4
図5A
図5B
図5C
図6
図7A
図7B
図8
図9
図10
図11