IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 太陽ホールディングス株式会社の特許一覧

特許7339799硬化性組成物、ドライフィルム、硬化物および電子部品
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-08-29
(45)【発行日】2023-09-06
(54)【発明の名称】硬化性組成物、ドライフィルム、硬化物および電子部品
(51)【国際特許分類】
   C08F 299/02 20060101AFI20230830BHJP
   C08L 71/12 20060101ALI20230830BHJP
   C08L 1/02 20060101ALI20230830BHJP
   C08J 5/24 20060101ALI20230830BHJP
   C08J 5/18 20060101ALI20230830BHJP
   B32B 27/00 20060101ALI20230830BHJP
   C08G 65/44 20060101ALI20230830BHJP
【FI】
C08F299/02
C08L71/12
C08L1/02
C08J5/24 CEZ
C08J5/18
B32B27/00 103
C08G65/44
【請求項の数】 5
(21)【出願番号】P 2019132317
(22)【出願日】2019-07-17
(65)【公開番号】P2020094171
(43)【公開日】2020-06-18
【審査請求日】2022-07-15
(31)【優先権主張番号】P 2018231211
(32)【優先日】2018-12-10
(33)【優先権主張国・地域又は機関】JP
【新規性喪失の例外の表示】特許法第30条第2項適用 (1)公益社団法人 高分子学会 高分子学会予稿集 68巻1号[2019]令和1年5月14日発行 (2)学会の開催日:令和1年5月30日 第68回高分子学会年次大会
(73)【特許権者】
【識別番号】591021305
【氏名又は名称】太陽ホールディングス株式会社
(74)【代理人】
【識別番号】100105315
【弁理士】
【氏名又は名称】伊藤 温
(72)【発明者】
【氏名】松村 聡子
(72)【発明者】
【氏名】増田 俊明
(72)【発明者】
【氏名】能坂 麻美
(72)【発明者】
【氏名】石川 信広
【審査官】内田 靖恵
(56)【参考文献】
【文献】中国特許出願公開第109553954(CN,A)
【文献】特開平01-308451(JP,A)
【文献】特開2012-201767(JP,A)
【文献】特開2019-014865(JP,A)
【文献】特許第6419276(JP,B2)
【文献】特開2006-057079(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 71/12
C08L 1/02
C08G 65/44
C08F290
C08F299
(57)【特許請求の範囲】
【請求項1】
少なくとも条件1を満たすフェノール類を含む原料フェノール類からなるポリフェニレンエーテルと、
セルロースナノファイバーと、
を含有し、
前記ポリフェニレンエーテルの一部または全部が、
少なくとも下記条件1および下記条件2をいずれも満たすフェノール類(A)、または、少なくとも下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含む原料フェノール類からなるポリフェニレンエーテルである
ことを特徴とする硬化性組成物。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、不飽和炭素結合を含む炭化水素基を有する
【請求項2】
請求項に記載の硬化性組成物を基材に塗布して得られることを特徴とするドライフィルムまたはプリプレグ。
【請求項3】
請求項に記載の硬化性組成物を硬化して得られることを特徴とする硬化物。
【請求項4】
請求項に記載の硬化物を含むことを特徴とする積層板。
【請求項5】
請求項に記載の硬化物を有することを特徴とする電子部品。

【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品に関する。
【背景技術】
【0002】
第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等などの普及により通信機器の信号の高周波化が進んできた。
【0003】
しかし、配線板材料として従来のエポキシ樹脂などの使用では比誘電率(Dk)や誘電正接(Df)が十分に低くないために、周波数が高くなるほど誘電損失に由来する伝送損失の増大が起こり、信号の減衰や発熱などの問題が生じていた。そのため、低誘電特性にすぐれたポリフェニレンエーテルが使用されてきたが、ポリフェニレンエーテルは熱可塑性樹脂であるために耐熱性の問題があった。
【0004】
その問題を解決するための手段として非特許文献1には、ポリフェニレンエーテルの分子内にアリル基を導入させて、熱硬化性樹脂とすることが提案されている。
【先行技術文献】
【非特許文献】
【0005】
【文献】J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5278-5282.
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、ポリフェニレンエーテルは可溶する溶媒が限られており、非特許文献1の手法で得られたポリフェニレンエーテルも、クロロホルムやトルエン等の非常に毒性が高い溶媒にしか溶解しない。そのため、樹脂ワニスの取り扱いや、配線板用途のような塗膜化して硬化させる工程における溶媒暴露の管理が難しいという問題があった。
【0007】
さらに、電子部品用の絶縁膜においては、例えば、硬化膜としての取扱い性が低下したり、冷熱サイクル後にクラックが発生する等の問題を防止するために、引張特性に優れることが求められている。また、この冷熱サイクルに対応するために、熱膨張率の低い硬化膜が求められることがある。
【0008】
そこで本発明の目的は、低誘電特性を維持しつつも、種々の溶媒(毒性の高い有機溶媒以外の有機溶媒、例えばシクロヘキサノン)にも可溶であり、硬化して得られた膜が優れた引張特性および低い熱膨張率を有する、硬化性組成物を提供することを課題とする。
【課題を解決するための手段】
【0009】
本発明者らは、上記目的の実現に向け鋭意検討した結果、特定のフェノール類を原料とたポリフェニレンエーテルと、特定の成分とを含む硬化性組成物を使用することにより、上記課題を解決可能なことを見出し、本発明を完成させるに至った。
【0010】
すなわち、本発明は、少なくとも条件1を満たすフェノール類を含む原料フェノール類からなるポリフェニレンエーテルと、
セルロースナノファイバーと、
を含有することを特徴とする硬化性組成物を提供する。
(条件1)
オルト位およびパラ位に水素原子を有する
【0011】
本発明は、好ましくは、少なくとも条件1を満たすフェノール類を含む原料フェノール類からなり、コンフォメーションプロットで算出された傾きが0.6未満であるポリフェニレンエーテルと、
セルロースナノファイバーと、
を含有することを特徴とする硬化性組成物を提供する。
(条件1)
オルト位およびパラ位に水素原子を有する
【0012】
前記ポリフェニレンエーテルの一部または全部が、
少なくとも下記条件1および下記条件2をいずれも満たすフェノール類(A)、または、少なくとも下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含む原料フェノール類からなるポリフェニレンエーテルであってもよい。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
【0013】
また、本発明は、前記硬化性組成物を基材に塗布して得られることを特徴とするドライフィルムまたはプリプレグを提供する。
【0014】
また、本発明は、前記硬化性組成物を硬化して得られることを特徴とする硬化物を提供する。
【0015】
また、本発明は、前記硬化物を含むことを特徴とする積層板を提供する。
【0016】
また、本発明は、前記硬化物を有することを特徴とする電子部品を提供する。
【発明の効果】
【0017】
本発明によれば、低誘電特性を維持しつつも、種々の溶媒(毒性の高い有機溶媒以外の有機溶媒、例えばシクロヘキサノン)にも可溶であり、硬化して得られた膜が優れた引張特性および低い熱膨張率を有する、硬化性組成物を提供することが可能となる。
【発明を実施するための形態】
【0019】
なお、説明した化合物に異性体が存在する場合、特に断らない限り、存在し得る全ての異性体が本発明において使用可能である。
【0020】
また、本発明において、「不飽和炭素結合」は、特に断らない限り、エチレン性またはアセチレン性の炭素間多重結合(二重結合または三重結合)を示す。
【0021】
本発明において、原料フェノール類の説明を行う際に「オルト位」や「パラ位」等と表現した場合、特に断りがない限り、フェノール性水酸基の位置を基準(イプソ位)とする。
【0022】
本発明において、単に「オルト位」等と表現した場合、「オルト位の少なくとも一方」等を示す。従って、特に矛盾が生じない限り、単に「オルト位」とした場合、オルト位のどちらか一方を示すと解釈してもよいし、オルト位の両方を示すと解釈してもよい。
【0023】
本発明において、ポリフェニレンエーテル(PPE)の原料として用いられ、ポリフェニレンエーテルの構成単位になり得るフェノール類を総称して、「原料フェノール類」とする。
【0024】
以下、本発明の硬化性組成物(単に組成物とも表現する)について説明する。
【0025】
(ポリフェニレンエーテル)
本発明の硬化性組成物は、所定ポリフェニレンエーテルを含有する。
【0026】
所定ポリフェニレンエーテルは、下記条件1を満たすフェノール類を必須成分として含む原料フェノール類を酸化重合させて得られるものである。
(条件1)
オルト位およびパラ位に水素原子を有する。
【0027】
条件1を満たすフェノール類{例えば、後述するフェノール類(A)およびフェノール類(B)}は、オルト位に水素原子を有するため、フェノール類と酸化重合される際に、イプソ位、パラ位のみならず、オルト位においてもエーテル結合が形成され得るため、分岐鎖状の構造を形成することが可能となる。
【0028】
条件1を満たさないフェノール類{例えば、後述するフェノール類(C)およびフェノール類(D)}は、酸化重合される際には、イプソ位およびパラ位においてエーテル結合が形成され、直鎖状に重合されていく。
【0029】
このように、所定ポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐することとなる。ポリフェニレンエーテルは、例えば、骨格中に少なくとも式(i)で示されるような分岐構造を有するポリフェニレンエーテルである化合物と考えられる。
【0030】
【化1】
【0031】
式(i)中、R~Rは、水素原子、または炭素数1~15(好ましくは、炭素数1~12)の炭化水素基である。
【0032】
本発明の効果を阻害しない範囲内で、原料フェノール類は、条件1を満たさないその他のフェノール類を含んでいてもよい。
【0033】
その他のフェノール類としては、例えば、後述するフェノール類(C)およびフェノール類(D)、パラ位に水素原子を有しないフェノール類が挙げられる。ポリフェニレンエーテルの高分子量化のために、原料フェノール類として、フェノール類(C)およびフェノール類(D)をさらに含むことが好ましい。
【0034】
特に好ましい所定ポリフェニレンエーテルは、少なくとも下記条件1および下記条件2をいずれも満たすフェノール類(A)、または、少なくとも下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含む原料フェノール類からなるポリフェニレンエーテルである。下記する通り、好ましいポリフェニレンエーテルは側鎖に不飽和炭素結合を有する。硬化する際に、この不飽和炭素結合によって3次元的な架橋が可能となる。その結果、耐溶剤性に非常に優れる。
【0035】
具体的には、前記ポリフェニレンエーテルは、
(形態1)少なくとも、下記条件1および下記条件2をいずれも満たすフェノール類(A)必須成分として含む原料フェノール類、または、
(形態2)少なくとも、下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)との混合物を必須成分として含む原料フェノール類、
を酸化重合させて得られるものである。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
【0036】
条件2を満たすフェノール類{例えば、フェノール類(A)およびフェノール類(C)}は、少なくとも不飽和炭素結合を含む炭化水素基を有する。従って、条件2を満たすフェノール類を原料として合成されるポリフェニレンエーテルは、不飽和炭素結合を含む炭化水素基を官能基として有することで、架橋性を有することとなる。
【0037】
このように、好ましい所定ポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐することとなる。ポリフェニレンエーテルは、例えば、骨格中に少なくとも式(i)で示されるような分岐構造を有するポリフェニレンエーテルであり、少なくとも一つの不飽和炭素結合を含む炭化水素基を官能基として有する化合物と考えられる。すなわち、上記式(i)中のR~Rの少なくとも一つが、不飽和炭素結合を有する炭化水素基である。
【0038】
次に、上記形態1は、原料フェノール類として、さらにフェノール類(B)および/またはフェノール類(C)を含む形態であってもよい。また、上記形態2は、原料フェノール類として、さらにフェノール類(A)を含む形態であってもよい。
【0039】
所定ポリフェニレンエーテルは、上記形態2であることか、上記形態1においてフェノール類(B)および/またはフェノール類(C)を更なる必須成分として含む形態であることが好ましい。
【0040】
また、本発明の効果を阻害しない範囲内で、原料フェノール類は、その他のフェノール類を含んでいてもよい。
【0041】
その他のフェノール類としては、例えば、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有しないフェノール類であるフェノール類(D)が挙げられる。
【0042】
上記形態1および上記形態2のいずれにおいても、ポリフェニレンエーテルの高分子量化のために、原料フェノール類として、フェノール類(D)をさらに含むことが好ましい。
【0043】
ポリフェニレンエーテルは、上記形態2において、原料フェノール類として、フェノール類(D)をさらに含む形態であることがもっとも好ましい。
【0044】
さらに、上記形態2においては、工業的・経済的な観点から、フェノール類(B)が、o-クレゾール、2-フェニルフェノール、2-ドデシルフェノールおよびフェノールの少なくともいずれか1種であり、フェノール類(C)が、2-アリル-6-メチルフェノールであることが好ましい。
【0045】
以下、フェノール類(A)~(D)に関してより詳細に説明する。
【0046】
フェノール類(A)は、上述のように、条件1および条件2のいずれも満たすフェノール類、即ち、オルト位およびパラ位に水素原子を有し、不飽和炭素結合を含む官能基を有するフェノール類であり、好ましくは下記式(1)で示されるフェノール類(a)である。
【0047】
【化2】
【0048】
式(1)中、R~Rは、水素原子、または炭素数1~15の炭化水素基である。ただし、R~Rの少なくとも一つが、不飽和炭素結合を有する炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0049】
式(1)で示されるフェノール類(a)としては、o-ビニルフェノール、m-ビニルフェノール、o-アリルフェノール、m-アリルフェノール、3-ビニル-6-メチルフェノール、3-ビニル-6-エチルフェノール、3-ビニル-5-メチルフェノール、3-ビニル-5-エチルフェノール、3-アリル-6-メチルフェノール、3-アリル-6-エチルフェノール、3-アリル-5-メチルフェノール、3-アリル-5-エチルフェノール等が例示できる。式(1)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0050】
フェノール類(B)は、上述のように、条件1を満たし、条件2を満たさないフェノール類、即ち、オルト位およびパラ位に水素原子を有し、不飽和炭素結合を含む官能基を有しないフェノール類であり、好ましくは下記式(2)で示されるフェノール類(b)である。
【0051】
【化3】
【0052】
式(2)中、R~Rは、水素原子、または炭素数1~15の炭化水素基である。ただし、R~Rは、不飽和炭素結合を有しない。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0053】
式(2)で示されるフェノール類(b)としては、フェノール、o-クレゾール、m-クレゾール、o-エチルフェノール、m-エチルフェノール、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、o-tert-ブチルフェノール、m-tert-ブチルフェノール、o-フェニルフェノール、m-フェニルフェノール、2-ドデシルフェノール、等が例示できる。式(2)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0054】
フェノール類(C)は、上述のように、条件1を満たさず、条件2を満たすフェノール類、即ち、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有するフェノール類であり、好ましくは下記式(3)で示されるフェノール類(c)である。
【0055】
【化4】
【0056】
式(3)中、RおよびR10は、炭素数1~15の炭化水素基であり、RおよびRは、水素原子、または炭素数1~15の炭化水素基である。ただし、R~R10の少なくとも一つが、不飽和炭素結合を有する炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0057】
式(3)で示されるフェノール類(c)としては、2-アリル-6-メチルフェノール、2-アリル-6-エチルフェノール、2-アリル-6-フェニルフェノール、2-アリル-6-スチリルフェノール、2,6-ジビニルフェノール、2,6-ジアリルフェノール、2,6-ジイソプロペニルフェノール、2,6-ジブテニルフェノール、2,6-ジイソブテニルフェノール、2,6-ジイソペンテニルフェノール、2-メチル-6-スチリルフェノール、2-ビニル-6-メチルフェノール、2-ビニル-6-エチルフェノール等が例示できる。式(3)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0058】
フェノール類(D)は、上述のように、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有しないフェノール類であり、好ましくは下記式(4)で示されるフェノール類(d)である。
【0059】
【化5】
【0060】
式(4)中、R11およびR14は、不飽和炭素結合を有しない炭素数1~15の炭化水素基であり、R12およびR13は、水素原子、または不飽和炭素結合を有しない炭素数1~15の炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0061】
式(4)で示されるフェノール類(d)としては、2,6-ジメチルフェノール、2,3,6-トリメチルフェノール、2-メチル-6-エチルフェノール、2-エチル-6-n-プロピルフェノール、2-メチル-6-n-ブチルフェノール、2-メチル-6-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ジトリルフェノール等が例示できる。式(4)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0062】
ここで、本発明において、炭化水素基としては、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルキニル基などが挙げられ、好ましくはアルキル基、アリール基、アルケニル基である。不飽和炭素結合を有する炭化水素基としては、アルケニル基、アルキニル基などが挙げられる。なお、これらの炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
【0063】
さらに、その他のフェノール類として、パラ位に水素原子を有しないフェノール類等を含んでいてもよい。
【0064】
原料フェノール類の合計に対する条件1を満たすフェノール類の割合が、1~50mol%であることが好ましい。
【0065】
条件2を満たすフェノール類を使用しなくてもよいが、使用する場合、原料フェノール類の合計に対する条件2を満たすフェノール類の割合が0.5~99mol%であることが好ましく、1~99mol%であることがより好ましい。
【0066】
以上説明したような原料フェノール類を公知慣用の方法にて酸化重合させて得られるポリフェニレンエーテルは、数平均分子量が2,000~30,000であることが好ましい。5,000~30,000であることがより好ましく、8,000~30,000であることが更に好ましく、8,000~25,000であることが特に好ましい。さらに、ポリフェニレンエーテルは、多分散指数(PDI:重量平均分子量/数平均分子量)が、1.5~20であることが好ましい。
【0067】
本発明において、数平均分子量および重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定を行い、標準ポリスチレンを用いて作成した検量線により換算したものである。
【0068】
所定ポリフェニレンエーテル1gは、25℃で、好ましくは100gのシクロヘキサノンに対して(より好ましくは、100gの、シクロヘキサノン、DMFおよびPMAに対して)可溶である。なお、ポリフェニレンエーテル1gが100gの溶剤(例えば、シクロヘキサノン)に対して可溶とは、ポリフェニレンエーテル1gと溶剤100gとを混合したときに、濁りおよび沈殿が目視で確認できないことを示す。所定ポリフェニレンエーテルは、25℃で、100gのシクロヘキサノンに対して、1g以上可溶であることがより好ましい。
【0069】
ここで、ポリフェニレンエーテルの分岐構造(分岐の度合い)は、以下の分析手順に基づいて確認することができる。
【0070】
<分析手順>
ポリフェニレンエーテルのクロロホルム溶液を、0.1、0.15、0.2、0.25mg/mLの間隔で調製後、0.5mL/minで送液しながら屈折率差と濃度のグラフを作成し、傾きから屈折率増分dn/dcを計算する。次に、下記装置運転条件にて、絶対分子量を測定する。RI検出器のクロマトグラムとMALS検出器のクロマトグラムを参考に、分子量と回転半径の対数グラフ(コンフォメーションプロット)から、最小二乗法による回帰直線を求め、その傾きを算出する。
【0071】
<測定条件>
装置名 :HLC8320GPC
移動相 :クロロホルム
カラム :TOSOH TSKguardcolumnHHR-H
+TSKgelGMHHR-H(2本)
+TSKgelG2500HHR
流速 :0.6mL/min.
検出器 :DAWN HELEOS(MALS検出器)
+Optilab rEX(RI検出器、波長254nm)
試料濃度 :0.5mg/mL
試料溶媒 :移動相と同じ。試料5mgを移動相10mLで溶解
注入量 :200μL
フィルター :0.45μm
STD試薬 :標準ポリスチレン Mw 37,900
STD濃度 :1.5mg/mL
STD溶媒 :移動相と同じ。試料15mgを移動相10mLで溶解
分析時間 :100min
【0072】
絶対分子量が同じ樹脂において、高分子鎖の分岐が進行しているものほど重心から各セグメントまでの距離(回転半径)は小さくなる。そのため、GPC-MALSにより得られる絶対分子量と回転半径の対数プロットの傾きは、分岐の程度を示し、傾きが小さいほど分岐が進行していることを意味する。本発明においては、上記コンフォメーションプロットで算出された傾きが小さいほどポリフェニレンエーテルの分岐が多いことを示し、この傾きが大きいほどポリフェニレンエーテルの分岐が少ないことを示す。
【0073】
ポリフェニレンエーテルにおいて、上記傾きは、例えば、0.6未満であり、0.55以下、0.50以下、0.45以下、又は、0.40以下であることが好ましい。上記傾きがこの範囲である場合、ポリフェニレンエーテルが十分な分岐を有していると考えられる。なお、上記傾きの下限としては特に限定されないが、例えば、0.05以上、0.10以上、0.15以上、又は、0.20以上である。
【0074】
なお、コンフォメーションプロットの傾きは、ポリフェニレンエーテルの合成の際の、温度、触媒量、攪拌速度、反応時間、酸素供給量、溶媒量を変更することで調整可能である。より具体的には、温度を高める、触媒量を増やす、攪拌速度を速める、反応時間を長くする、酸素供給量を増やす、及び/又は、溶媒量を少なくすることで、コンフォメーションプロットの傾きが低くなる(ポリフェニレンエーテルがより分岐し易くなる)傾向となる。
【0075】
所定ポリフェニレンエーテルは、原料フェノール類として特定のものを使用すること以外は、従来公知のポリフェニレンエーテルの合成方法(重合条件、触媒の有無および触媒の種類等)を適用して製造することが可能である。
【0076】
所定ポリフェニレンエーテルの含有量は、後述する他の成分を除いた残部である。これら他の成分の含有量に依存するが、典型的には、組成物の固形分全量基準で、20~60質量%である。
【0077】
なお、組成物の固形分とは、溶媒(特に有機溶媒)以外の組成物を構成する成分、またはその質量や体積を意味する。
【0078】
所定ポリフェニレンエーテルは、分岐構造を有することで種々の溶剤への溶解性、組成物の他の成分との相溶性が向上する。このため組成物の各成分が均一に溶解ないし分散し、各成分が架橋した硬化物を得ることが可能となる。この硬化物は耐溶剤性が極めて優れている。
【0079】
(セルロースナノファイバー)
本発明の硬化性組成物は、セルロースナノファイバーを含む。
【0080】
セルロースナノファイバーの数平均繊維径(D)は、1nm~1000nm、1nm~200nm、1nm~100nm、1.5nm~50nmまたは2nm~30nmが好ましい。
【0081】
セルロースナノファイバーの数平均繊維長(L)は、600nm以下が好ましく、50nm~600nmがより好ましい。
【0082】
セルロースナノファイバーのアスペクト比は、1~250が好ましく、5~230がより好ましい。
【0083】
セルロースナノファイバーの数平均繊維径(D)、数平均繊維長(L)、アスペクト比は以下の手法に基づいて求められる。
【0084】
セルロースナノファイバーに水を加えて、その濃度が0.0001質量%の分散液を調製する。この分散液をマイカ(雲母)上に滴下して乾燥したものを観察試料として、原子間力顕微鏡(AFM、Nanoscope III Tapping mode AFM、Digital instrument社製、プローブはナノセンサーズ社製Point Probe(NCH)を使用)を用いて、観察試料中のセルロースナノファイバーの繊維高さを測定する。その際、セルロースナノファイバーが確認できる顕微鏡画像において、セルロースナノファイバーを5本以上抽出し、それらの繊維高さから平均繊維径(D)を算出する。また、繊維方向の距離より、平均繊維長(L)を算出する。アスペクト比は、数平均繊維径(D)に対する数平均繊維長(L)の比、すなわちL/Dとして算出される。
【0085】
セルロースナノファイバーは水酸基やそれが酸化されて生じたカルボキシ基を有する。樹脂との相溶性を高める目的で、これら水酸基やカルボキシ基が後述するように化学修飾されていることが好ましい。
【0086】
セルロースナノファイバーの原材料および調製方法は特に制限はなく、周知のものが使用可能である。例えば以下の方法を挙げることができる。
【0087】
セルロースナノファイバーの原材料としては、木材や麻、竹、綿、ジュート、ケナフ、ビート、農産物残廃物、布等の天然植物繊維原料から得られるパルプ、レーヨンやセロファン等の再生セルロース繊維等を用いることができる。なかでもパルプが好適である。パルプとしては、植物原料を化学的若しくは機械的に、または、両者を併用してパルプ化することにより得られるクラフトパルプや亜硫酸パルプ等のケミカルパルプ、セミケミカルパルプ、ケミグランドパルプ、ケミメカニカルパルプ、サーモメカニカルパルプ、ケミサーモメカニカルパルプ、リファイナーメカニカルパルプ、砕木パルプおよびこれらの植物繊維を主成分とする脱墨古紙パルプ、雑誌古紙パルプ、段ボール古紙パルプなどを用いることができる。なかでも、繊維の強度が強い針葉樹由来の各種クラフトパルプ、例えば、針葉樹未漂白クラフトパルプ、針葉樹酸素晒し未漂白クラフトパルプ、針葉樹漂白クラフトパルプが特に好適である。
【0088】
上記原材料はセルロース、ヘミセルロースおよびリグニンから主として構成される。このうちリグニンの含有量は通常0~40質量%、特には0~10質量%である。これらの原材料については、必要に応じ、リグニンの除去ないし漂白処理を行って、リグニン量の調整を行うことができる。なお、リグニン含有量の測定は、Klason法により行うことができる。
【0089】
植物の細胞壁の中では、セルロース分子が単分子ではなく規則的に凝集して数十本集まった結晶性を有するミクロフィブリル(セルロースナノファイバー)を形成しており、これが植物の基本骨格物質となっている。よって、上記原材料からセルロースナノファイバーを製造するためには、上記原材料に対し、叩解ないし粉砕処理、高温高圧水蒸気処理、リン酸塩等による処理、N-オキシル化合物を酸化触媒としてセルロース繊維を酸化する処理等を施すことにより、その繊維をナノサイズまで解きほぐす方法を用いることができる。
【0090】
上記のうち叩解ないし粉砕処理は、上記パルプ等の原材料に対し直接力を加えて、機械的に叩解ないし粉砕を行い、繊維を解きほぐすことで、セルロースナノファイバーを得る方法である。より具体的には、例えば、パルプ等を高圧ホモジナイザー等により機械的に処理して、繊維径0.1~10μm程度に解きほぐしたセルロース繊維を0.1~3質量%程度の水懸濁液とし、さらに、これをグラインダー等で繰り返し磨砕ないし融砕処理することにより、繊維径10~100nm程度のセルロースナノファイバーを得ることができる。
【0091】
上記磨砕ないし融砕処理は、例えば、栗田機械製作所製グラインダー「ピュアファインミル」等を用いて行うことができる。このグラインダーは、上下2枚のグラインダーの間隙を原料が通過するときに発生する衝撃、遠心力および剪断力により、原料を超微粒子に粉砕する石臼式粉砕機であり、剪断、磨砕、微粒化、分散、乳化およびフィブリル化を同時に行うことができるものである。また、上記磨砕ないし融砕処理は、増幸産業(株)製超微粒磨砕機「スーパーマスコロイダー」を用いて行うこともできる。スーパーマスコロイダーは、単なる粉砕の域を超えて融けるように感じるほどの超微粒化を可能にした磨砕機である。スーパーマスコロイダーは、間隔を自由に調整できる上下2枚の無気孔砥石によって構成された石臼形式の超微粒磨砕機であり、上部砥石は固定であり、下部砥石が高速回転する。ホッパーに投入された原料は遠心力によって上下砥石の間隙に送り込まれ、そこで生じる強大な圧縮、剪断および転がり摩擦力などにより、原材料は次第にすり潰されて、超微粒化される。
【0092】
また、上記高温高圧水蒸気処理は、上記パルプ等の原材料を高温高圧水蒸気に曝すことによって繊維を解きほぐすことで、セルロースナノファイバーを得る方法である。
【0093】
さらに、上記リン酸塩等による処理は、上記パルプ等の原材料の表面をリン酸エステル化することにより、セルロース繊維間の結合力を弱め、次いで、リファイナー処理を行うことにより、繊維を解きほぐし、セルロースナノファイバーを得る処理法である。例えば、上記パルプ等の原材料を50質量%の尿素および32質量%のリン酸を含む溶液に浸漬して、60℃で溶液をセルロース繊維間に十分に染み込ませた後、180℃で加熱してリン酸化を進め、これを水洗した後、3質量%の塩酸水溶液中、60℃で2時間、加水分解処理をして、再度水洗を行い、さらにその後、3質量%の炭酸ナトリウム水溶液中において、室温で20分間程処理することでリン酸化を完了させ、この処理物をリファイナーで解繊することにより、セルロースナノファイバーを得ることができる。
【0094】
そして、上記N-オキシル化合物を酸化触媒としてセルロース繊維を酸化する処理は、上記パルプ等の原材料を酸化させた後、微細化することによりセルロースナノファイバーを得る方法である。
【0095】
まず、天然セルロース繊維を、絶対乾燥基準で約10~1000倍量(質量基準)の水中に、ミキサー等を用いて分散させることにより、水分散液を調製する。上記セルロースナノファイバーの原料となる天然セルロース繊維としては、例えば、針葉樹系パルプや広葉樹系パルプ等の木材パルプ、麦わらパルプやバガスパルプ等の非木材系パルプ、コットンリントやコットンリンター等の綿系パルプ、バクテリアセルロース等を挙げることができる。これらは、1種を単独で用いても、2種以上を適宜組み合わせて用いてもよい。また、これら天然セルロース繊維には、あらかじめ表面積を大きくするために叩解等の処理を施しておいてもよい。
【0096】
次に、上記水分散液中で、N-オキシル化合物を酸化触媒として用いて、天然セルロース繊維の酸化処理を行う。かかるN-オキシル化合物としては、例えば、TEMPO(2,2,6,6-テトラメチルピペリジン-N-オキシル)の他、4-カルボキシ-TEMPO、4-アセトアミド-TEMPO、4-アミノ-TEMPO、4-ジメチルアミノ-TEMPO、4-フォスフォノオキシ-TEMPO、4-ヒドロキシTEMPO、4-オキシTEMPO、4-メトキシTEMPO、4-(2-ブロモアセトアミド)-TEMPO、2-アザアダマンタンN-オキシル等の、C4位に各種の官能基を有するTEMPO誘導体等を用いることができる。これらN-オキシル化合物の添加量としては、触媒量で十分であり、通常、天然セルロース繊維に対し、絶対乾燥基準で0.1~10質量%となる範囲とすることができる。
【0097】
上記天然セルロース繊維の酸化処理においては、酸化剤と共酸化剤とを併用する。酸化剤としては、例えば、亜ハロゲン酸、次亜ハロゲン酸および過ハロゲン酸並びにそれらの塩、過酸化水素、過有機酸を挙げることができ、中でも、次亜塩素酸ナトリウムや次亜臭素酸ナトリウム等のアルカリ金属次亜ハロゲン酸塩が好適である。また、共酸化剤としては、例えば、臭化ナトリウム等の臭化アルカリ金属を用いることができる。酸化剤の使用量は、通常、天然セルロース繊維に対し、絶対乾燥基準で約1~100質量%となる範囲であり、共酸化剤の使用量は、通常、天然セルロース繊維に対し、絶対乾燥基準で約1~30質量%となる範囲である。
【0098】
上記天然セルロース繊維の酸化処理の際には、水分散液のpHを9~12の範囲で維持することが、酸化反応を効率よく進行させる観点から好ましい。また、酸化処理の際の水分散液の温度は、1~50℃の範囲で任意に設定することができ、温度制御なしで、室温においても反応可能である。反応時間としては、1~240分間の範囲とすることができる。なお、水分散液には、天然セルロース繊維の内部まで薬剤を浸透させて、より多くのカルボキシル基を繊維表面に導入するために、浸透剤を添加することもできる。浸透剤としては、カルボン酸塩、硫酸エステル塩、スルホン酸塩、リン酸エステル塩等のアニオン系界面活性剤や、ポリエチレングルコール型、多価アルコール型等の非イオン界面活性剤などが挙げられる。
【0099】
上記天然セルロース繊維の酸化処理の後には、微細化を行うに先立って、水分散液中に含まれる未反応の酸化剤や各種副生成物等の不純物を除去する精製処理を行うことが好ましい。具体的には例えば、酸化処理された天然セルロース繊維の水洗および濾過を繰り返し行う手法を用いることができる。精製処理後に得られる天然セルロース繊維は、通常、適量の水が含浸された状態で微細化処理に供されるが、必要に応じ、乾燥処理を行って、繊維状または粉末状としてもよい。
【0100】
次に、天然セルロース処理の微細化は、所望に応じ精製処理された天然セルロース繊維を、水等の溶媒中に分散させた状態で行う。微細化処理において使用する分散媒としての溶媒は、通常は水が好ましいが、所望に応じ、アルコール類(メタノール、エタノール、イソプロパノール、イソブタノール、sec-ブタノール、tert-ブタノール、メチルセロソルブ、エチルセロソルブ、エチレングリコール、グリセリン等)やエーテル類(エチレングリコールジメチルエーテル、1,4-ジオキサン、テトラヒドロフラン等)、ケトン類(アセトン、メチルエチルケトン、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、ジメチルスルホキシド等)等の水に可溶な有機溶媒を使用してもよく、これらの混合物を用いることもできる。これら溶媒の分散液中の天然セルロース繊維の固形分濃度は、好適には、50質量%以下とする。天然セルロース繊維の固形分濃度が50質量%を超えると、分散に極めて高いエネルギーを必要とするため好ましくない。天然セルロース処理の微細化は、低圧ホモジナイザー、高圧ホモジナイザー、グラインダー、カッターミル、ボールミル、ジェットミル、叩解機、離解機、短軸押出機、2軸押出機、超音波攪拌機、家庭用ジューサーミキサー等の分散装置を使用して行うことができる。
【0101】
微細化処理により得られるセルロースナノファイバーは、所望に応じ、固形分濃度を調整した懸濁液状、または、乾燥させた粉末状とすることができる。ここで、懸濁液状にする場合には、分散媒として水のみを使用してもよく、水と他の有機溶媒、例えば、エタノール等のアルコール類や、界面活性剤、酸、塩基等との混合溶媒を使用してもよい。
【0102】
上記天然セルロース繊維の酸化処理および微細化処理により、セルロース分子の構成単位のC6位の水酸基がアルデヒド基を経由してカルボキシル基へと選択的に酸化され、かかるカルボキシル基の含有量が0.1~3mmol/gであるセルロース分子からなる、上記所定の数平均繊維径を有する高結晶性のセルロースナノファイバーを得ることができる。この高結晶性のセルロースナノファイバーは、セルロースI型結晶構造を有している。これは、かかるセルロースナノファイバーが、I型結晶構造を有する天然由来のセルロース分子が表面酸化され微細化されたものであることを意味している。すなわち、天然セルロース繊維は、その生合成の過程において生産されるミクロフィブリルと呼ばれる微細な繊維が多束化して高次な固体構造を構築しており、そのミクロフィブリル間の強い凝集力(表面間の水素結合)を、酸化処理によるアルデヒド基またはカルボキシル基の導入によって弱め、さらに、微細化処理を経ることで、セルロースナノファイバーが得られる。酸化処理の条件を調整することにより、カルボキシル基の含有量を増減させて、極性を変化させたり、カルボキシル基の静電反発や微細化処理により、セルロースナノファイバーの平均繊維径や平均繊維長、平均アスペクト比等を制御することができる。
【0103】
上記天然セルロース繊維がI型結晶構造であることは、その広角X線回折像の測定により得られる回折プロファイルにおいて、2θ=14~17°付近と2θ=22~23°付近の二つの位置に典型的なピークをもつことから同定することができる。また、セルロースナノファイバーのセルロース分子中にカルボキシル基が導入されていることは、水分を完全に除去したサンプルにおいて、全反射式赤外分光スペクトル(ATR)においてカルボニル基に起因する吸収(1608cm-1付近)が存在することにより確認することができる。カルボキシル基(COOH)の場合には、上記の測定において1730cm-1に吸収が存在する。
【0104】
なお、酸化処理後の天然セルロース繊維にはハロゲン原子が付着または結合しているため、このような残留ハロゲン原子を除去する目的で、脱ハロゲン処理を行うこともできる。脱ハロゲン処理は、過酸化水素溶液やオゾン溶液に酸化処理後の天然セルロース繊維を浸漬することにより、行うことができる。
【0105】
具体的には、例えば、酸化処理後の天然セルロース繊維を、濃度が0.1~100g/Lの過酸化水素溶液に、浴比1:5~1:100程度、好ましくは1:10~1:60程度(質量比)の条件で浸漬する。この場合の過酸化水素溶液の濃度は、好適には1~50g/Lであり、より好適には5~20g/Lである。また、過酸化水素溶液のpHは、好適には8~11であり、より好適には9.5~10.7である。
【0106】
なお、水分散液に含まれるセルロースナノファイバーの質量に対するセルロース中のカルボキシル基の量[mmol/g]は、以下の手法により評価することができる。すなわち、あらかじめ乾燥質量を精秤したセルロースナノファイバー試料の0.5~1質量%水分散液を60ml調製し、0.1Mの塩酸水溶液によってpHを約2.5とした後、0.05Mの水酸化ナトリウム水溶液をpHが約11になるまで滴下して、電気伝導度を測定する。電気伝導度の変化が緩やかな弱酸の中和段階において消費された水酸化ナトリウム量(V)から、下記式を用いて官能基量を決定することができる。この官能基量が、カルボキシル基の量を示す。
官能基量[mmol/g]=V[ml]×0.05/セルロースナノファイバー試料[g]
【0107】
また、本発明において用いるセルロースナノファイバーは、化学修飾および/または物理修飾して、機能性を高めたものであってもよい。
【0108】
化学修飾としては、アセタール化、アセチル化、シアノエチル化、エーテル化、イソシアネート化等により官能基を付加させたり、シリケートやチタネート等の無機物を化学反応やゾルゲル法等によって複合化させたり、または被覆させるなどの方法で行うことができる。化学修飾の方法としては、例えば、シート状に成形したセルロースナノファイバーを無水酢酸中に浸漬して加熱する方法が挙げられる。また、N-オキシル化合物を酸化触媒としてセルロース繊維を酸化する処理にて得られたセルロースナノファイバーは、分子中のカルボキシル基にアミン化合物や第4級アンモニウム化合物等をイオン結合やアミド結合で修飾させる方法が挙げられる。
【0109】
物理修飾の方法としては、例えば、化学蒸着法(CVD法)、無電解めっきや電解めっき等のめっき法等により、被覆させる方法が挙げられる。これらの修飾は、上記処理前であっても、処理後であってもよい。
【0110】
(エラストマー)
本発明の硬化性組成物は、エラストマーを含んでもよい。エラストマーを含むことで硬化物の引張特性が向上する。
【0111】
エラストマーは、熱硬化性エラストマーと熱可塑性エラストマーとに大別される。
【0112】
熱硬化性エラストマーとしては、例えばポリイソプレンゴム、ポリブタジエンゴム、スチレン-ブタジエンゴム、ポリクロロプレンゴム、ニトリルゴム、エチレン-プロピレンゴム等のジエン系合成ゴム、エチレン-プロピレンゴム、ブチルゴム、アクリルゴム、ポリウレタンゴム、フッ素ゴム、シリコーンゴム、エピクロルヒドリンゴム等の非ジエン系合成ゴム、および天然ゴム等を挙げることができる。
【0113】
熱可塑性エラストマーとしては、例えばスチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマーが挙げられる。ポリフェニレンエーテルとの相溶性および誘電特性の高さから特にスチレン系エラストマーが好ましい。
【0114】
スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロックコポリマー等のスチレン-ブタジエン共重合体;スチレン-イソプレン-スチレンブロックコポリマー等のスチレン-イソプレン共重合体;スチレン-エチレン-ブチレン-スチレンブロックコポリマー、スチレン-エチレン-プロピレン-スチレンブロックコポリマーなどが挙げられる。加えて、これらの共重合体の水添物が挙げられる。
【0115】
スチレン系エラストマーにおけるスチレンブロックの含有比率は、20~70mol%であることが好ましい。
【0116】
ここでスチレン系エラストマーの原料モノマーとしては、スチレンだけでなく、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体が含まれる。
【0117】
本発明に係るエラストマーの重量平均分子量は、1,000~300,000または2,000~150,000としてもよい。重量平均分子量が前記下限値以上であると低熱膨張性に優れ、前記上限値以下であると他の成分との相溶性に優れる。
【0118】
本発明に係るエラストマーの配合量は、ポリフェニレンエーテル100質量部に対して50~200質量部としてもよい。あるいは、エラストマーの配合量は、組成物の固形分全量基準で、5~30質量%としてもよい。上記範囲内の場合、良好な硬化性、成形性、耐薬品性をバランスよく実現できる。
【0119】
(シリカ)
本発明の硬化性組成物は、シリカを含んでもよい。組成物にシリカを配合することで、組成物の製膜性を向上させることができる。さらには得られる硬化物に難燃性を付与することができる。
【0120】
シリカの平均粒径は、好ましくは0.02~10μm、より好ましくは0.02~3μmである。ここで平均粒径は、市販のレーザー回折・散乱式粒度分布測定装置を用いて、レーザー回折・散乱法による粒度分布の測定値から、累積分布によるメディアン径(d50、体積基準)として求めることができる。
【0121】
異なる平均粒径のシリカを併用することも可能である。シリカの高充填化を図る観点から、例えば平均粒径1μm以上のシリカとともに、平均粒径1μm未満のナノオーダーの微小のシリカを併用してもよい。
【0122】
シリカはカップリング剤により表面処理が施されていてもよい。表面をシランカップリング剤で処理することで、ポリフェニレンエーテルとの分散性を向上させることができる。また有機溶媒との親和性も向上させることができる。
【0123】
シランカップリング剤としては、例えば、エポキシシランカップリング剤、メルカプトシランカップリング剤、ビニルシランカップリング剤などを用いることができる。エポキシシランカップリング剤としては、例えば、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシランなどを用いることができる。メルカプトシランカップリング剤としては、例えば、γ-メルカプトプロピルトリエトキシシランなどを用いることができる。ビニルシランカップリング剤としては、例えば、ビニルトリエトキシシランなどを用いることができる。
【0124】
シランカップリング剤の使用量は、例えば、シリカ100質量部に対して0.1~5質量部、0.5~3質量部としてもよい。
【0125】
シリカの配合量は、ポリフェニレンエーテル100質量部に対して50~100質量部としてもよい。あるいは、シリカの配合量は、組成物の固形分全量基準で、10~30質量%としてもよい。
【0126】
硬化性組成物は、過酸化物を含んでもよい。また硬化性組成物は、架橋型硬化剤を含んでもよい。また、硬化性組成物は、本発明の効果を阻害しない範囲内で、その他の成分を含んでいてもよい。
【0127】
過酸化物は、好ましいポリフェニレンエーテルに含まれる不飽和炭素結合を開き、架橋反応を促進する作用を有する。
【0128】
過酸化物としては、メチルエチルケトンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトパーオキサイド、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ブテン、アセチルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、m-トルイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t-ブチレンパーオキシベンゾエート、ジ-t-ブチルパーオキサイド、t-ブチルペルオキシイソプロピルモノカーボネート、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、等があげられる。過酸化物は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0129】
過酸化物としては、これらの中でも、取り扱いの容易さと反応性の観点から、1分間半減期温度が130℃から180℃のものが望ましい。このような過酸化物は、反応開始温度が比較的に高いため、乾燥時など硬化が必要でない時点での硬化を促進し難く、ポリフェニレンエーテル樹脂組成物の保存性を貶めず、また、揮発性が低いため乾燥時や保存時に揮発せず、安定性が良好である。
【0130】
過酸化物の添加量は、過酸化物の総量で、硬化性組成物の固形分100質量部に対し、0.01~20質量部とするのが好ましく、0.05~10質量部とするのがより好ましく、0.1~10質量部とするのが特に好ましい。過酸化物の総量をこの範囲とすることで、低温での効果を十分なものとしつつ、塗膜化した際の膜質の劣化を防止することができる。
【0131】
また、必要に応じてアゾビスイソブチロニトリル、アゾビスイソバレロニトリル等のアゾ化合物やジクミル、2,3-ジフェニルブタン等のラジカル開始剤を含有してもよい。
【0132】
架橋型硬化剤は、好ましいポリフェニレンエーテルに含まれる不飽和炭素結合と反応し、3次元架橋を形成するものである。
【0133】
架橋型硬化剤としては、ポリフェニレンエーテルとの相溶性が良好なものが用いられるが、ジビニルベンゼンやジビニルナフタレンやジビニルビフェニルなどの多官能ビニル化合物;フェノールとビニルベンジルクロライドの反応から合成されるビニルベンジルエーテル系化合物;スチレンモノマー,フェノールとアリルクロライドの反応から合成されるアリルエーテル系化合物;さらにトリアルケニルイソシアヌレートなどが良好である。架橋型硬化剤としては、ポリフェニレンエーテルとの相溶性が特に良好なトリアルケニルイソシアヌレートが好ましく、なかでも具体的にはトリアリルイソシアヌレート(以下、TAIC(登録商標))やトリアリルシアヌレート(以下TAC)が好ましい。これらは、低誘電特性を示し、かつ耐熱性を高めることができる。特にTAIC(登録商標)は、ポリフェニレンエーテルとの相溶性に優れるので好ましい。
【0134】
また、架橋型硬化剤としては、(メタ)アクリレート化合物(メタクリレート化合物およびアクリレート化合物)を用いてもよい。特に、3~5官能の(メタ)アクリレート化合物を使用するのが好ましい。3~5官能のメタクリレート化合物としては、トリメチロールプロパントリメタクリレート等を用いることができ、一方、3~5官能のアクリレート化合物としては、トリメチロールプロパントリアクリレート等を用いることができる。これらの架橋剤を用いると耐熱性を高めることができる。架橋型硬化剤は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0135】
好ましい所定ポリフェニレンエーテルは不飽和炭素結合を有する炭化水素基を含むので、特に架橋型硬化剤と硬化させることにより誘電特性に優れた硬化物を得ることができる。
【0136】
ポリフェニレンエーテルと架橋型硬化剤の配合比率は、質量部で20:80~90:10で含有することが好ましく、30:70~90:10で含有することがより好ましい。ポリフェニレンエーテルの配合量が20質量部以上であると適度な強靭性が得られ、90質量部以下であると耐熱性に優れる。
【0137】
本発明の組成物は、熱硬化触媒を含んでもよい。
【0138】
熱硬化触媒としては、
イミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、4-フェニルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-(2-シアノエチル)-2-エチル-4-メチルイミダゾール等のイミダゾール誘導体;
ジシアンジアミド、ベンジルジメチルアミン、4-(ジメチルアミノ)-N,N-ジメチルベンジルアミン、4-メトキシ-N,N-ジメチルベンジルアミン、4-メチル-N,N-ジメチルベンジルアミン等のアミン化合物、アジピン酸ジヒドラジド、セバシン酸ジヒドラジド等のヒドラジン化合物;
グアナミン、アセトグアナミン、ベンゾグアナミン、メラミン、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン、2-ビニル-2,4-ジアミノ-S-トリアジン、2-ビニル-4,6-ジアミノ-S-トリアジン・イソシアヌル酸付加物、2,4-ジアミノ-6-メタクリロイルオキシエチル-S-トリアジン・イソシアヌル酸付加物等のS-トリアジン誘導体;
トリフェニルホスフィン等のリン化合物等;が挙げられる。
【0139】
この中でも、硬化物が200℃以上の温度に晒されても黄変を防止することができるためトリフェニルホスフィンが好ましい。
【0140】
硬化性組成物は、通常、ポリフェニレンエーテルが溶媒(溶剤)に溶解した状態で提供または使用される。本発明のポリフェニレンエーテルは、従来のポリフェニレンエーテルに比べて溶剤に対する溶解性が高いため、硬化性組成物の用途に応じて、使用する溶剤の選択肢を幅広いものとすることができる。
【0141】
本発明の硬化性組成物に使用可能な溶剤の一例としては、クロロホルム、塩化メチレン、トルエン等の従来使用可能な溶媒の他、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)、メチルエチルケトン、酢酸エチル、等の比較的安全性の高い溶媒等が挙げられる。溶媒は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0142】
硬化性組成物中の溶媒の含有量は特に限定されず、硬化性組成物の用途に応じて適宜調整可能である。
【0143】
硬化性組成物は、本発明の効果を阻害しない範囲内で、本発明のポリフェニレンエーテル以外の樹脂やその他の添加剤等の公知慣用の原料を含んでいてもよい。例えば、シリカ以外の無機フィラーや、リン原子を含まない難燃剤などを含んでいてもよい。
【0144】
なお、このような硬化性組成物は、各原料を混合および分散することにより得られる。本発明の組成物は、種々の溶媒にも可溶なポリフェニレンエーテルを含む組成物であって、低誘電正接化を実現し、優れた引張特性および低い熱膨張率を有する硬化物を得るのに好適なため、様々な用途に適用することができる。
【0145】
<硬化物>
硬化物は、上述した硬化性組成物を硬化することで得られる。
【0146】
硬化性組成物から硬化物を得るための方法は、特に限定されるものではなく、硬化性組成物の組成に応じて適宜変更可能である。一例として、上述したような基材上に硬化性組成物の塗工(例えば、アプリケーター等による塗工)を行う工程を実施した後、必要に応じて硬化性組成物を乾燥させる乾燥工程を実施し、加熱(例えば、イナートガスオーブン、ホットプレート、真空オーブン、真空プレス機等による加熱)によりポリフェニレンエーテルを熱架橋させる熱硬化工程を実施すればよい。なお、各工程における実施の条件(例えば、塗工厚、乾燥温度および時間、加熱温度および時間等)は、硬化性組成物の組成や用途等に応じて適宜変更すればよい。
【0147】
<ドライフィルム、プリプレグ>
本発明のドライフィルムまたはプリプレグは、上述した硬化性組成物を基材に塗布して得られるものである。
【0148】
ここで基材とは、銅箔等の金属箔、ポリイミドフィルム、ポリエステルフィルム、ポリエチレンナフタレート(PEN)フィルム等のフィルム、ガラスクロス、アラミド繊維等の繊維が挙げられる。
【0149】
ドライフィルムは、例えば、ポリエチレンテレフタレートフィルム上に硬化性組成物を塗布乾燥させ、必要に応じてポリプロピレンフィルムを積層することにより得られる。
【0150】
プリプレグは、例えば、ガラスクロスに硬化性組成物を含浸乾燥させることにより得られる。
【0151】
<積層板>
本発明においては、上述のプリプレグを用いて積層板を作製することができる。
【0152】
詳しく説明すると、本発明のプリプレグを一枚または複数枚重ね、さらにその上下の両面または片面に銅箔等の金属箔を重ねて、その積層体を加熱加圧成形することにより、積層一体化された両面に金属箔または片面に金属箔を有する積層板を作製することができる。
【0153】
<電子部品>
このような硬化物は、優れた誘電特性や耐熱性を有するため、電子部品用等に使用可能である。
【0154】
硬化物を有する電子部品としては、特に限定されないが、好ましくは、第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等が挙げられる。
【実施例
【0155】
実施例および比較例により、本発明の硬化性組成物についてより詳細に説明するが、本発明はこれらには何ら限定されない。
【0156】
<<セルロースナノファイバー有機溶媒分散液の調製>>
以下の通りに実施例および比較例用の分散液を調製した。
【0157】
<酸化パルプの調製>
(酸化パルプ1)
針葉樹の漂白クラフトパルプ(フレッチャー チャレンジ カナダ社製、商品名「Machenzie」、CSF650ml)を天然セルロース繊維として用いた。TEMPOとしては、市販品(ALDRICH社製、Free radical、98質量%)を用いた。次亜塩素酸ナトリウムとしては、市販品(和光純薬工業社製)を用いた。臭化ナトリウムとしては、市販品(和光純薬工業社製)を用いた。
【0158】
(酸化パルプ2)
使用する原料をユーカリ由来の広葉樹漂白クラフトパルプ(CENIBRA社製)に変更した以外は、酸化パルプ1と同様の手法を用いることで固形分30.4%の酸化パルプを得た。
【0159】
<セルロースナノファイバー水分散液の調製>
(調製例1)
酸化パルプ1を1.18gとイオン交換水34.8gを高圧ホモジナイザーを用いて150MPaで微細化処理を10回行い、カルボキシル基含有セルロースナノファイバー水分散液(固形分濃度5.0質量%)を得た。
このセルロースナノファイバーの平均繊維径は2.7nm、平均繊維長は578nm、平均アスペクト比は214、カルボキシル基含有量は1.4mmol/gであった。
【0160】
(調製例2)
105.3gの酸化パルプ1を、1000gのイオン交換水で希釈し、濃塩酸を346g加えて、酸化パルプ固形分濃度2.34wt%、塩酸濃度2.5Mの分散液に調製し、3分間還流させた。得られた酸化パルプを十分に洗浄し、固形分41%の酸加水分解TEMPO酸化パルプを得た。その後、酸化パルプ0.88gとイオン交換水35.12gを高圧ホモジナイザーを用いて150MPaで微細化処理を10回行い、カルボキシル基含有セルロースナノファイバー水分散液(固形分濃度5.0質量%)を得た。
このセルロースナノファイバーの平均繊維径は2.9nm、平均繊維長は491nm、平均アスペクト比は169、カルボキシル基含有量は1.4mmol/gであった。
【0161】
(調製例3)
酸化パルプ2を用い、還流時間を10分に変更した以外は調製例2と同様の方法でカルボキシル基含有セルロースナノファイバー水分散液(固形分濃度5.0質量%)を得た。
このセルロースナノファイバーの平均繊維径は4.6nm、平均繊維長は331nm、平均アスペクト比は72、カルボキシル基含有量は1.4mmol/gであった。
【0162】
<セルロースナノファイバー有機溶媒分散液の調製>
(CNF-1)
マグネティックスターラー、攪拌子を備えたビーカーに、調製例2で得られたセルロースナノファイバー水分散液40g(固形分濃度5.0質量%)を仕込んだ。続いて、アニリンを、セルロースナノファイバーのカルボキシル基1molに対してアミノ基1.2molに相当する量、4-メチルモルホリン0.34g、縮合剤であるDMT-MMを1.98g仕込み、シクロヘキサノン300g中に溶解させた。反応液を室温(25℃)で14時間反応させた。反応終了後ろ過し、エタノールにて洗浄、DMT-MM塩を除去し、シクロヘキサノンで洗浄及び溶媒置換することで、セルロースナノファイバーに、芳香族炭化水素基がアミド結合を介して連結したセルロースナノファイバーシクロヘキサノン分散液を得た。得られたセルロースナノファイバーシクロヘキサノン分散液の固形分濃度は5.0質量%であった。
【0163】
(CNF-2)
マグネティックスターラー、攪拌子を備えたビーカーに、調製例2で得られたセルロースナノファイバー水分散液35g(固形分濃度5質量%)を仕込んだ。続いて、テトラブチルアンモニウムヒドロキシドを、セルロースナノファイバーのカルボキシル基1molに対してアミノ基1molに相当する量を仕込み、シクロヘキサノン300gで溶解させた。反応液を室温(25℃)で1時間反応させた。反応終了後ろ過し、シクロヘキサノンで洗浄することで、セルロースナノファイバーに、アミン塩が結合したセルロースナノファイバーを得た。これをシクロヘキサノンに再度分散させた。得られた、セルロースナノファイバーシクロヘキサノン分散液の固形分濃度は4.0質量%であった。
【0164】
(CNF-3)
セルロースナノファイバーとして、調製例2で得られたセルロースナノファイバーを調製例1で得られたセルロースナノファイバーに代えた以外は、CNF-1と同様にしてセルロースナノファイバーシクロヘキサノン分散液(固形分2.2質量%)を得た。
【0165】
(CNF-4)
セルロースナノファイバーとして、調製例2で得られたセルロースナノファイバーを調製例3で得られたセルロースナノファイバーに代えた以外は、CNF-1と同様にしてセルロースナノファイバーシクロヘキサノン分散液(固形分12.0質量%)を得た。
【0166】
(CNF-5)
シクロヘキサノンをクロロホルムに代えた以外は、CNF-1と同様にしてセルロースナノファイバークロロホルム分散液(固形分4.0質量%)を得た。
【0167】
<<PPEの調製>>
以下の通りに実施例、参考例および比較例用のPPE樹脂を調製した。
【0168】
<PPE-1>
3Lの二つ口ナスフラスコに、ジ-μ-ヒドロキソ-ビス[(N,N,N’,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)5.3gと、テトラメチルエチレンジアミン(TMEDA)5.7mLを加えて十分に溶解させ、10ml/minにて酸素を供給した。原料フェノール類であるо-クレゾール10.1g、2-アリル-6-メチルフェノール13.8g、2,6-ジメチルフェノール91.1gをトルエン1.5Lに溶解させ600rpmの回転速度で原料溶液を調製した。この原料溶液をフラスコに滴下し、攪拌しながら40℃で6時間反応させた。反応終了後、メタノール20L:濃塩酸22mLの混合液で再沈殿させてろ過にて取り出し、80℃で24時間乾燥させPPE-1を得た。PPE-1は、シクロヘキサノン、N,N-ジメチルホルムアミド(DMF)、プロピレングリコールモノメチルエーテルアセテート(PMA)等の種々の有機溶媒に可溶であった。PPE-1の数平均分子量は12,700、重量平均分子量は77,470であった。PPE-1は分岐PPEである。
【0169】
PPE-1のコンフォメーションプロットの傾きは0.32であった。
【0170】
<PPE-2>
原料フェノール類であるо-クレゾール21.6g、2,6-ジメチルフェノール97.7gをトルエン1.5Lに溶解させた原料溶液を使用した以外はPPE-1と同様の合成方法でPPE-2を得た。PPE-2は、シクロヘキサノン、N,N-ジメチルホルムアミド(DMF)、プロピレングリコールモノメチルエーテルアセテート(PMA)等の種々の有機溶媒に可溶であった。PPE-2の数平均分子量は13,100、重量平均分子量は70,300であった。PPE-2は分岐PPEである。
【0171】
PPE-2のコンフォメーションプロットの傾きは0.33であった。
【0172】
<PPE-3>
原料フェノール類である2-アリル-6-メチルフェノール13.8g、2,6-ジメチルフェノール103gをトルエン0.38Lに溶解させた原料溶液を使用した以外はPPE-1と同様の合成方法でPPE-3を得た。PPE-3は、シクロヘキサノンに可溶ではなく、クロロホルムには可溶であった。PPE-3の数平均分子量は19,000、重量平均分子量は39,900であった。PPE-3は非分岐PPEである。
【0173】
PPE-3のコンフォメーションプロットの傾きは、0.61であった。
【0174】
<<樹脂組成物ワニスの作製の調製>>
以下の通りに実施例、参考例および比較例の樹脂組成物ワニスを調製した。
【0175】
<実施例1の樹脂組成物ワニスの作製>
前記PPE-1を14.2質量部、エラストマー(旭化成株式会社製:商品名「H1051」)を6.6質量部、CNF-1を10.7質量部に、溶剤としてシクロヘキサノンを100質量部加えて40℃にて30分混合、攪拌して完全に溶解させた。これによって得たPPE樹脂溶液に、架橋型硬化剤としてTAIC(三菱ケミカル株式会社製)を14.2質量部、球状シリカ(アドマテックス株式会社製:商品名「SC2500-SVJ」)53.7質量部を添加してこれを混合した後、三本ロールミルで分散させた。最後に、硬化触媒であるα,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン(日本油脂株式会社製:商品名「パーブチルP」)を0.6質量部配合し、混合した後、三本ロールミルで分散させた。こうして実施例1の樹脂組成物のワニスを得た。
【0176】
<実施例2の樹脂組成物ワニスの作製>
10.7質量部のCNF-1を13.4質量部のCNF-2に変更し、シクロヘキサノンの量を97質量部に変更したこと以外は実施例1と同じ操作を行い、実施例2の樹脂組成物のワニスを得た。
【0177】
<実施例3の樹脂組成物ワニスの作製>
10.7質量部のCNF-1を24.3質量部のCNF-3に変更し、シクロヘキサノンの量を86質量部に変更したこと以外は実施例1と同じ操作を行い、実施例3の樹脂組成物のワニスを得た。
【0178】
<実施例4の樹脂組成物ワニスの作製>
PPE-1をPPE-2に変更し、10.7質量部のCNF-1を4.4質量部のCNF-4に変更し、シクロヘキサノンの量を106質量部に変更した以外は実施例1と同じ操作を行い、実施例4の樹脂組成物のワニスを得た。
【0179】
<参考例1の樹脂組成物ワニスの作製>
CNFを配合せず、シクロヘキサノンの量を90質量部に変更したこと以外は実施例1と同じ操作を行い、参考例1の樹脂組成物のワニスを得た。
【0180】
<比較例1の樹脂組成物ワニスの作製>
PPE-1(分岐PPE)をPPE-3(非分岐PPE)に変更し、CNF-2(シクロヘキサノン分散液)をCNF-5(クロロホルム分散液)に変更し、溶剤としてクロロホルムを使用したこと以外は実施例2と同じ操作を行い、比較例1の樹脂組成物のワニスを得た。
【0181】
実施例、参考例及び比較例の組成を表1に示す。また以下の評価方法によって各組成物ワニスおよびそれから得られた硬化膜を評価した。その結果を併せて表1に示す。
【0182】
【表1】
【0183】
<<評価>>
各組成物ワニスから得られた硬化膜を評価する際には、以下の手順で硬化膜を作製した。
【0184】
(硬化膜の作製)
厚さ18μm銅箔のシャイン面に、得られた樹脂組成物のワニスを、硬化物の厚みが50μmになるようにアプリケーターで塗布した。次に、熱風式循環式乾燥炉で90℃30分乾燥させた。その後、イナートオーブンを用いて窒素を完全に充満させて200℃まで昇温後、60分硬化させた。その後、銅箔をエッチングし硬化物(硬化膜)を得た。
【0185】
<相溶性>
樹脂ワニスを銅箔に塗布した際に、斑(ワニスの不均一さに起因する色ムラ)がないものを「○」、斑があるものを「×」と評価した。
【0186】
<保存安定性>
V型粘度計を用いて樹脂ワニス5gの粘度を測定後、攪拌子を備えたサンプル瓶に入れ、室温下で一週間攪拌し、再び粘度測定を行った。攪拌による粘度の増加百分率を算出した。
増加百分率が3%未満のものを「◎」、3%以上10%以下のものを「○」、10%を超えるものを「×」と評価した。
【0187】
<熱膨張率>
作製した硬化膜を長さ3cm、幅0.3cm、厚み50μmに切り出し、ティー・エイ・インスツルメント社製TMA(Thermomechanical Analysis)Q400を用いて、引張モードで、チャック間16mm、荷重30mN、窒素雰囲気下、20~250℃まで5℃/分で昇温し、次いで、250~20℃まで5℃/分で降温して測定した。降温時における100℃から50℃の平均熱膨張率を求めた。
【0188】
<誘電特性>
誘電特性である比誘電率Dkおよび誘電正接Dfは、以下の方法に従って測定した。
硬化膜を長さ80mm、幅45mm、厚み50μmに切断したものを試験片としてSPDR(Split Post Dielectric Resonator)共振器法により測定した。測定器には、キーサイトテクノロジー合同会社製のベクトル型ネットワークアナライザE5071C、SPDR共振器、計算プログラムはQWED社製のものを用いた。条件は、周波数10GHz、測定温度25℃とした。
【0189】
<引張特性>
硬化膜を長さ8cm、幅0.5cm、厚み50μmに切り出し、引張破断伸びを下記条件にて測定した。
[測定条件]
試験機:引張試験機EZ-SX(株式会社島津製作所製)
チャック間距離:50mm
試験速度:1mm/min
伸び計算:(引張移動量/チャック間距離)×100