IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日立化成株式会社の特許一覧

特許7342875含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
<>
  • 特許-含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体 図1
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-04
(45)【発行日】2023-09-12
(54)【発明の名称】含フッ素エーテル化合物、磁気記録媒体用潤滑剤および磁気記録媒体
(51)【国際特許分類】
   C07D 333/16 20060101AFI20230905BHJP
   C08G 65/334 20060101ALI20230905BHJP
   C10M 107/46 20060101ALI20230905BHJP
   C10M 107/38 20060101ALN20230905BHJP
   C10N 30/06 20060101ALN20230905BHJP
   C10N 30/00 20060101ALN20230905BHJP
   C10N 40/18 20060101ALN20230905BHJP
   C10N 20/04 20060101ALN20230905BHJP
【FI】
C07D333/16 CSP
C08G65/334
C10M107/46
C10M107/38
C10N30:06
C10N30:00 Z
C10N40:18
C10N20:04
【請求項の数】 9
(21)【出願番号】P 2020546838
(86)(22)【出願日】2019-08-28
(86)【国際出願番号】 JP2019033700
(87)【国際公開番号】W WO2020054420
(87)【国際公開日】2020-03-19
【審査請求日】2022-05-24
(31)【優先権主張番号】P 2018170365
(32)【優先日】2018-09-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】株式会社レゾナック
(74)【代理人】
【識別番号】100141139
【弁理士】
【氏名又は名称】及川 周
(74)【代理人】
【識別番号】100163496
【弁理士】
【氏名又は名称】荒 則彦
(74)【代理人】
【識別番号】100134359
【弁理士】
【氏名又は名称】勝俣 智夫
(74)【代理人】
【識別番号】100137017
【弁理士】
【氏名又は名称】眞島 竜一郎
(72)【発明者】
【氏名】柳生 大輔
(72)【発明者】
【氏名】福本 直也
(72)【発明者】
【氏名】加藤 剛
(72)【発明者】
【氏名】室伏 克己
【審査官】土橋 敬介
(56)【参考文献】
【文献】国際公開第2018/139174(WO,A1)
【文献】特許第7177782(JP,B2)
【文献】特許第7149947(JP,B2)
(58)【調査した分野】(Int.Cl.,DB名)
C07D
C08G
C10M
C10N
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
-R-CH-R-CH-R (1)
(式(1)中、Rは下記式(2)で表される。Rは下記式(3)で表される。Rはパーフルオロポリエーテル鎖である。RはR-R-と異なる有機末端基であって、下記式(4-1)~(4-4)のいずれかの末端基である。)
【化1】
(式(2)中、rは1~3の整数を表す。)
(式(3)中、wは2または3を表す。)
【化2】
(式(4-1)中、p1は1~2の整数を表し、p2は1~5の整数を表す。)
(式(4-2)中、sは2~5の整数を表す。)
(式(4-3)中、tは1~5の整数を表す。)
(式(4-4)中、qは2~5の整数を表す。)
【請求項2】
前記式(1)におけるRが、下記式(5)で表されることを特徴とする請求項1に記載の含フッ素エーテル化合物。
【化3】
(式(5)中、m、nは平均重合度を示し、mは1~30を表し、nは0~30を表す。)
【請求項3】
前記式(1)におけるRが、下記式(6)または下記式(7)で表されることを特徴とする請求項1に記載の含フッ素エーテル化合物。
【化4】
(式(6)中、uは平均重合度であり、1~30を表す。)
(式(7)中、vは平均重合度であり、1~30を表す。)
【請求項4】
含フッ素エーテル化合物の構造が下記式(8)で表されることを特徴とする請求項1または請求項2に記載の含フッ素エーテル化合物。
【化5】

(式(8)中、x、yは平均重合度であり、それぞれ1~20を表す。zは1または2を表し、wは2または3を表し、rは1~3の整数を表す。)
【請求項5】
前記rが2であることを特徴とする請求項1~請求項4のいずれか一項に記載の含フッ素エーテル化合物。
【請求項6】
数平均分子量が500~10000の範囲内である請求項1~請求項5のいずれか一項に記載の含フッ素エーテル化合物。
【請求項7】
請求項1~請求項6のいずれか一項に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
【請求項8】
基板上に、少なくとも磁性層と保護層と潤滑層が順次設けられた磁気記録媒体であって、前記潤滑層は、請求項1~請求項6のいずれか一項に記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
【請求項9】
前記潤滑層の平均膜厚が0.5nm~2nmである請求項8に記載の磁気記録媒体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気記録媒体の潤滑剤用途に好適な含フッ素エーテル化合物、それを含む磁気記録媒体用潤滑剤および磁気記録媒体に関する。
本出願は、2018年9月12日に日本に出願された特願2018-170365に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
近年、情報処理の大容量化に伴い、各種の情報記録技術が開発されている。特に、高記録密度に適した磁気記録媒体の開発が進められている。
従来、磁気記録媒体では、基板上に形成された磁気記録層の上に、磁気記録媒体の耐久性および信頼性を確保するために、保護層と潤滑層とを設けている。特に最表面に配置される潤滑層には、長期安定性、化学物質耐性(シロキサンなどのコンタミネーションを防ぐ)、耐摩耗性等の様々な特性が要求されている。
【0003】
従来、磁気記録媒体用の潤滑剤として、CFを含む繰り返し構造を有するフッ素系ポリマーの末端に、水酸基等の極性基を有する化合物を含有するものが提案されている(例えば、特許文献1~3参照)。
例えば、特許文献1には、両方の末端部分に複数の水酸基を有し、該水酸基間の最短距離が3原子以上離れている置換基が配置された化合物が開示されている。
また、特許文献2には、片方の末端に芳香族を有し、他方の末端に水酸基を有するフルオロポリエーテル化合物が開示されている。
また、特許文献3には、パーフルオロポリエーテル主鎖を有し、分子の末端に芳香族基と水酸基を有し、芳香族基と水酸基はそれぞれ異なる炭素原子と結合している化合物が開示されている。
【0004】
また、特許文献4には、パーフルオロポリエーテル鎖の一端に、二重結合または三重結合を少なくとも一つ有する有機基を含む末端基を、エーテル性酸素によって結合する2価の連結基を介して配置し、パーフルオロポリエーテル鎖の他端に、2つまたは3つの極性基を含み、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している末端基を配置した含フッ素エーテル化合物が開示されている。
【0005】
近年、書込み素子(DFH素子)の内部に、薄膜抵抗体からなるヒータが備えられている磁気ヘッドが、一般的に用いられている。このような磁気ヘッドでは、ヒータを発熱させて、書込み素子の先端部を熱膨張により突出させることで、書込み素子をディスク(磁気記録媒体)の表面により一層接近させている。
【0006】
この技術において、書込み素子の先端部が熱膨張して、ディスク表面に接触(タッチダウン)するまでに必要なヒータ電力(単位mW)は、タッチダウンパワー(TDp)と呼ばれている。TDpが大きいほど、言い換えると熱膨張による書込み素子の先端部の突き出し量が大きいほど、磁気ヘッドがディスク表面に近づくことができる。その結果、磁気ヘッドと磁気記録媒体の磁性層との間の磁気スペーシングを低減でき、磁気記録媒体の記録容量を向上できる。
【先行技術文献】
【特許文献】
【0007】
【文献】特許第4632144号公報
【文献】特許第5909837号公報
【文献】特許第5465454号公報
【文献】国際公開第2017/154403号
【発明の概要】
【発明が解決しようとする課題】
【0008】
近年、磁気記録媒体の急速な情報記録密度向上に伴い、磁気ヘッドと磁気記録媒体の磁性層との間の磁気スペーシングの低減が求められている。このため、磁気ヘッドと磁気記録媒体の磁性層との間に存在する潤滑層においては、より一層の薄膜化が要求されている。
【0009】
また、磁気記録媒体の用途の多様化などにより、磁気記録媒体に求められる環境耐性は非常に厳しいものになってきている。このため、磁気記録媒体の信頼性に大きな影響を及ぼす潤滑層には、より一層、耐摩耗性および化学物質耐性を向上させることが求められている。
しかし、一般的に潤滑層の厚みを薄くすると、潤滑層の被覆性が低下して、潤滑層の化学物質耐性および耐摩耗性が悪化する。したがって、潤滑層において、化学物質耐性および耐摩耗性の確保と、薄膜化(磁気スペーシングの低減)とを両立することは、困難であった。
【0010】
また、磁気スペーシングを低減するために、タッチダウンパワー(TDp)を大きくすることが要求されている。TDpを大きくするには、磁気記録媒体の表面を平滑面とすることが重要である。このため、磁気記録媒体の最表面に配置される潤滑層において、表面凹凸を抑制することが要求されている。
【0011】
本発明は、上記事情を鑑みてなされたものであり、厚みが薄くても優れた化学物質耐性および耐摩耗性を有し、表面凹凸の抑制された潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として好適に用いることが出来る含フッ素エーテル化合物を提供することを課題とする。
また、本発明は、本発明の含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を提供することを課題とする。
また、本発明は、本発明の含フッ素エーテル化合物を含む潤滑層を有する優れた信頼性および耐久性を有する磁気記録媒体を提供することを課題とする。
【課題を解決するための手段】
【0012】
本発明者は、上記課題を解決するために、鋭意研究を重ねた。
その結果、特定の分子構造を有する含フッ素エーテル化合物を含む磁気記録媒体用潤滑剤を用いることで、厚みが薄くても、優れた化学物質耐性および耐摩耗性を有し、表面凹凸の抑制された潤滑層を形成できることを見出し、本発明を想到した。
すなわち、本発明は以下の事項に関する。
【0013】
[1] 下記式(1)で表されることを特徴とする含フッ素エーテル化合物。
-R-CH-R-CH-R (1)
(式(1)中、Rは下記式(2)で表される。Rは下記式(3)で表される。Rはパーフルオロポリエーテル鎖である。RはR-R-と異なる有機末端基であって、2個または3個の極性基を含み、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している末端基である。)
【0014】
【化1】
(式(2)中、rは1~3の整数を表す。)
(式(3)中、wは2または3を表す。)
【0015】
[2] 前記式(1)におけるRの極性基が全て水酸基である[1]に記載の含フッ素エーテル化合物。
[3] 前記式(1)におけるRは下記式(4-1)~(4-4)のいずれかの末端基である[1]または[2]に記載の含フッ素エーテル化合物。
【0016】
【化2】
(式(4-1)中、p1は1~2の整数を表し、p2は1~5の整数を表す。)
(式(4-2)中、sは2~5の整数を表す。)
(式(4-3)中、tは1~5の整数を表す。)
(式(4-4)中、qは2~5の整数を表す。)
【0017】
[4] 前記式(1)におけるRが、下記式(5)で表されることを特徴とする[1]~[3]のいずれかに記載の含フッ素エーテル化合物。
【0018】
【化3】
(式(5)中、m、nは平均重合度を示し、mは1~30を表し、nは0~30を表す。)
【0019】
[5] 前記式(1)におけるRが、下記式(6)または下記式(7)で表されることを特徴とする[1]~[3]のいずれかに記載の含フッ素エーテル化合物。
【0020】
【化4】
(式(6)中、uは平均重合度であり、1~30を表す。)
(式(7)中、vは平均重合度であり、1~30を表す。)
【0021】
[6] 含フッ素エーテル化合物の構造が下記式(8)で表されることを特徴とする[1]~[4]のいずれかに記載の含フッ素エーテル化合物。
【0022】
【化5】
(式(8)中、x、yは平均重合度であり、それぞれ1~20を表す。zは1または2を表し、wは2または3を表し、rは1~3の整数を表す。)
【0023】
[7] 前記rが2であることを特徴とする[1]~[6]のいずれかに記載の含フッ素エーテル化合物。
[8] 数平均分子量が500~10000の範囲内である[1]~[7]のいずれかに記載の含フッ素エーテル化合物。
【0024】
[9] [1]~[8]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体用潤滑剤。
[10] 基板上に、少なくとも磁性層と保護層と潤滑層が順次設けられた磁気記録媒体であって、前記潤滑層は、[1]~[8]のいずれかに記載の含フッ素エーテル化合物を含むことを特徴とする磁気記録媒体。
[11] 前記潤滑層の平均膜厚が0.5nm~2nmである[10]に記載の磁気記録媒体。
【発明の効果】
【0025】
本発明の含フッ素エーテル化合物は、上記式(1)で表される化合物であり、磁気記録媒体用潤滑剤の材料として好適である。
本発明の磁気記録媒体用潤滑剤は、本発明の含フッ素エーテル化合物を含む。このため、厚みが薄くても優れた化学物質耐性および耐摩耗性を有し、表面凹凸の抑制された潤滑層を形成できる。したがって、本発明の磁気記録媒体用潤滑剤を用いることにより、潤滑層のより一層の薄膜化を図ることができ、潤滑層の設けられた磁気記録媒体の磁気スペーシング低減に寄与できる。
本発明の磁気記録媒体は、優れた化学物質耐性および耐摩耗性を有する潤滑層が設けられている。このため、優れた信頼性および耐久性を有する。
【図面の簡単な説明】
【0026】
図1】本発明の磁気記録媒体の一実施形態を示した概略断面図である。
【発明を実施するための形態】
【0027】
本発明者は、上記課題を解決するために、潤滑層に含まれる含フッ素エーテル化合物の分子構造と、保護層との関係に着目し、以下に示すように、鋭意研究を重ねた。
【0028】
潤滑層に含まれる含フッ素エーテル化合物の分子構造は、潤滑層の膜厚、付着特性、耐摩耗性および化学物質耐性に大きな影響を及ぼす。
従来、保護層に対する付着特性の良好な潤滑層を得るために、潤滑剤として、分子中に水酸基などの極性基を含むパーフルオロポリエーテル系化合物(以下、「PFPE系化合物」という場合がある。)が用いられている。しかしながら、分子中に複数の極性基を有するPFPE系化合物を含む潤滑層であっても、保護層に対する潤滑層の付着性(密着性)が十分に得られない場合があった。
【0029】
本発明者が、鋭意検討した結果、複数の極性基を有するPFPE系化合物を含む潤滑層であっても、PFPE系化合物中の極性基が、保護層上の活性点との結合に有効に関与していないと、保護層との付着性が十分に得られないことが分かった。
潤滑層と保護層との付着性が不十分であると、潤滑層が嵩高いものとなり、均一な膜厚の潤滑層が得られにくい。それは、潤滑層に含まれるPFPE系化合物同士が凝集したり、分子の末端などPFPE系化合物分子の一部が保護層表面から浮き上がったりすることで、潤滑層の表面に分子レベルでの凹凸が形成されるためである。また、表面の凹凸が大きい潤滑層では、十分な被覆率を確保して、良好な化学物質耐性および耐摩耗性が得られるようにするには、膜厚を十分に厚くしなければならない。このことから、従来の技術では、潤滑層のさらなる薄膜化は困難であった。
【0030】
さらに、本発明者が、鋭意検討した結果、潤滑層に含まれるPFPE系化合物中に、保護層上の活性点との結合に関与していない極性基が多く存在すると、以下に示す傾向があることが分かった。コンタミネーションの誘引が生じやすくなって化学物質耐性が不足したり、潤滑剤が異物(スメア)として磁気ヘッドに付着するピックアップが生じやすくなったりする。
【0031】
そこで、本発明者は、含フッ素エーテル化合物中の複数の極性基と、保護層上の活性点との結合を促進すべく、含フッ素エーテル化合物の分子構造に着目して、検討を重ねた。その結果、以下の(1)~(3)を満たす含フッ素エーテル化合物とする必要があることが分かった。
(1)エーテル結合(-O-)を用いて連結された鎖状構造を含むことにより含フッ素エーテル化合物の分子構造に適度な柔軟性を付与する。
(2)含フッ素エーテル化合物中に含まれる複数の極性基同士間の距離を適正にする。
(3)含フッ素エーテル化合物中に含まれる複数の極性基のうち、少なくとも一部を水酸基にする。
【0032】
具体的には、パーフルオロポリエーテル鎖の第1端部と第2端部の両方に、2個または3個の極性基を含み、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している基を配置した。さらに、第1端部に配置した基において、極性基を水酸基にするとともに、連結基をメチレン基(-CH-)とエーテル結合(-O-)とを有するものとした。
【0033】
このような含フッ素エーテル化合物を含む潤滑層は、潤滑層に含まれる含フッ素エーテル化合物中の複数の極性基と、保護層上の活性点とが結合しやすいため、保護層との付着性が良好である。したがって、この潤滑層は、表面が凹凸の抑制された平滑面であり、被覆率が高く、均一な膜厚を有し、化学物質耐性が良好で、ピックアップが生じにくい。よって、上記の含フッ素エーテル化合物を含む潤滑層は、さらなる薄膜化が可能であり、タッチダウンパワー(TDp)を大きくでき、磁気スペーシングの低減に寄与できる。
【0034】
さらに、本発明者は、含フッ素エーテル化合物を含む潤滑層の耐摩耗性を向上させるべく、鋭意検討した。その結果、上記の含フッ素エーテル化合物におけるパーフルオロポリエーテル鎖の第1端部の末端にチオフェンアルキル基を配置すればよいことを見出した。
この含フッ素エーテル化合物では、第1端部の末端に配置されたチオフェンアルキル基に含まれるチオフェン環が、五員環でπ電子過剰系であるため、例えば、六員環であるベンゼン環を含む場合と比較して電子密度が高くなっている。このため、これを含む潤滑層では、チオフェンアルキル基の分子間相互作用、および/またはチオフェンアルキル基と保護層との相互作用が強力となる。その結果、チオフェンアルキル基に含まれるチオフェン環による耐摩耗性を向上させる機能が、効果的に得られるものと推定される。
本発明者は、これらの知見に基づいて、本発明を完成するに至った。
【0035】
以下、本発明の含フッ素エーテル化合物、磁気記録媒体用潤滑剤(以下、「潤滑剤」と略記する場合がある。)および磁気記録媒体について詳細に説明する。なお、本発明は、以下に示す実施形態のみに限定されるものではない。
【0036】
[含フッ素エーテル化合物]
本実施形態の含フッ素エーテル化合物は、下記式(1)で表される。
-R-CH-R-CH-R (1)
(式(1)中、Rは下記式(2)で表される。Rは下記式(3)で表される。Rはパーフルオロポリエーテル鎖である。RはR-R-と異なる有機末端基であって、2個または3個の極性基を含み、各極性基がそれぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している末端基である。)
【0037】
【化6】
(式(2)中、rは1~3の整数を表す。)
(式(3)中、wは2または3を表す。)
【0038】
本実施形態の含フッ素エーテル化合物は、式(1)に示すように、Rで表されるパーフルオロポリエーテル鎖(以下「PFPE鎖」と略記する場合がある。)を有している。PFPE鎖は、含フッ素エーテル化合物を含む潤滑剤を保護層上に塗布して潤滑層を形成した場合に、保護層の表面を被覆するとともに、潤滑層に潤滑性を付与して磁気ヘッドと保護層との摩擦力を低減させる。
【0039】
また、式(1)に示すように、Rで表されるPFPE鎖の第1端部には、メチレン基と式(3)で表されるRを介して、式(2)で表されるチオフェンアルキル基(R)が配置されている。チオフェンアルキル基は、本実施形態の含フッ素エーテル化合物を含む潤滑層における耐摩耗性を向上させる。
したがって、本実施形態の含フッ素エーテル化合物を含む潤滑層は、例えば、チオフェンアルキル基に代えて、水酸基が配置された含フッ素エーテル化合物を含む潤滑層と比較して、優れた耐摩耗性が得られる。
【0040】
式(1)で表される含フッ素エーテル化合物において、式(2)で表されるチオフェンアルキル基(R)中のアルキレン基は、メチレン基、エチレン基、プロピレン基から選ばれる基である。R中のアルキレン基は、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。アルキレン基がエチレン基またはプロピレン基である場合、メチレン基である場合と比較して、酸塩基に対する安定性が高い含フッ素エーテル化合物となる。このため、アルキレン基は、エチレン基またはプロピレン基であることが好ましい。また、式(1)で表される含フッ素エーテル化合物は、式(2)中のrが3以下であるので、チオフェン環とRとの距離が近い。このため、含フッ素エーテル化合物を含む潤滑層において、Rに含まれる水酸基による保護層との密着性向上効果が十分に発揮される。その結果、含フッ素エーテル化合物中のチオフェンアルキル基と保護層とが近接しやすく、チオフェンアルキル基による耐摩耗性向上効果が効果的に得られる。アルキレン基としては、安定性が高く、耐摩耗性に優れる潤滑層を形成できる含フッ素エーテル化合物となるため、エチレン基である(式(2)中のrが2である。)ことが最も好ましい。
アルキレン基は、チオフェンアルキル基の有するチオフェン環の2位に結合されていてもよいし、3位に結合されていても良い。
【0041】
また、Rで表されるPFPE鎖の第1端部に結合されたRは、繰り返し数2または3の二価の連結基である。Rは、式(3)で表されるように、水酸基(-OH)を2個または3個含む。Rでは、水酸基の結合している2個または3個の炭素原子同士が、メチレン基(-CH-)とエーテル結合(-O-)とからなる連結基を介して結合している。このため、R中に含まれる2個または3個の水酸基は、水酸基同士の間の距離が適正となっている。しかも、Rは、式(3)で表されるように、繰り返し単位の両端にエーテル性酸素原子を有する。このことにより、Rは、式(1)で示される含フッ素エーテル化合物の分子構造に適度な柔軟性を付与している。これらのことから、本実施形態の含フッ素エーテル化合物を含む潤滑層を保護層上に形成した場合、R中の2個または3個の水酸基が、保護層上の活性点と潤滑層との結合に関与しやすい。よって、本実施形態の含フッ素エーテル化合物を含む潤滑層は、保護層に対する優れた付着性(密着性)を有する。
【0042】
式(1)で表される含フッ素エーテル化合物において、Rは下記式(3)で表される連結基であり、式(3)中、wは2または3を表す。式(3)においてwが2または3であると、式(3)で表される連結基中の水酸基の数が適正となり、含フッ素エーテル化合物を含む潤滑剤が、保護層との密着性に優れ、被覆率の高い潤滑層を形成できるものとなる。式(3)におけるwは2であることが好ましい。また、式(3)においてwが2または3であると、水酸基の数が多すぎることによって、含フッ素エーテル化合物の極性が高くなりすぎることがない。よって、含フッ素エーテル化合物の極性が高すぎるために、含フッ素エーテル化合物を含む潤滑層が異物(スメア)として磁気ヘッドに付着することを防止でき、ピックアップを抑制できる。
【0043】
また、式(1)のRで表されるPFPE鎖のRと反対側の端部(第2端部)には、メチレン基を介してRで表される有機末端基が配置されている。Rで表される有機末端基は、2個または3個の極性基を含む。Rで表される有機末端基に含まれる2個または3個の極性基は、本実施形態の含フッ素エーテル化合物を含む潤滑層において、潤滑層と保護層とを密着させて、化学物質耐性および耐摩耗性を向上させるとともに、ピックアップを抑制する。
【0044】
また、Rで表される有機末端基に含まれる2個または3個の極性基は、それぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している。このため、R中に含まれる2個または3個の極性基は、極性基同士の間の距離が適正となる。その結果、Rで表される末端基を有する含フッ素エーテル化合物は、例えば、Rで表される末端基に含まれる極性基の結合している炭素原子のうち、少なくとも一部同士が結合しているフッ素エーテル化合物と比較して、凝集しにくい。よって、式(1)で示される含フッ素エーテル化合物を含む潤滑層では、保護層に密着(吸着)せずに存在している含フッ素エーテル化合物が凝集して、異物(スメア)として磁気ヘッドに付着することを防止でき、ピックアップが抑制される。また、含フッ素エーテル化合物同士が凝集しにくいため、潤滑層中の含フッ素エーテル化合物が、保護層上で面方向に広がって均一に延在した状態で配置されやすい。このことから、本実施形態の含フッ素エーテル化合物を含む潤滑剤は、厚みが薄くても、高い被覆率で保護層の表面を被覆でき、優れた化学物質耐性および耐摩耗性を有する潤滑層を形成できると推定される。よって、本実施形態の含フッ素エーテル化合物を含む潤滑剤は、潤滑層の薄膜化(磁気スペーシングの低減)に寄与する。
【0045】
式(1)で表される含フッ素エーテル化合物において、Rは、R-Rと異なる有機末端基である。Rで表される末端基は、本実施形態の含フッ素エーテル化合物を含む潤滑剤の塗布される保護層と、潤滑剤を塗布して形成した潤滑層との密着性に寄与する。Rに含まれる極性基の数が2個または3個であるため、含フッ素エーテル化合物を含む潤滑剤は、保護層との密着性に優れ、被覆率の高い潤滑層を形成できる。Rに含まれる極性基の数は、3個であることが好ましい。Rに含まれる極性基の数が多すぎると、含フッ素エーテル化合物の極性が高くなりすぎて、含フッ素エーテル化合物を含む潤滑層が異物(スメア)として磁気ヘッドに付着するピックアップが発生しやすくなる。本実施形態では、Rに含まれる極性基の数が2個または3個である。このため、含フッ素エーテル化合物の極性が高すぎることによるピックアップの発生を抑制できる。
式(1)におけるRは、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。
【0046】
における極性基としては、例えば、水酸基(-OH)、アミノ基(-NH)、カルボキシル基(-COOH)およびメルカプト基(-SH)などが挙げられる。なお、エーテル結合(-O-)は、Rにおける極性基には含まれない。上記の極性基中でも特に、極性基が水酸基であることが好ましい。Rで表される有機末端基に含まれる2個または3個の極性基は、それぞれ異なる極性基を組み合わせてもよいが、全て水酸基であることが好ましい。水酸基は、保護層、とりわけ炭素系の材料で形成された保護層との相互作用が大きい。したがって、極性基が全て水酸基であると、含フッ素エーテル化合物を含む潤滑層が、保護層との密着性が高いものとなる。
【0047】
式(1)におけるRは、下記式(4-1)~(4-4)のいずれかの末端基であることが好ましい。このようなRは、本実施形態の含フッ素エーテル化合物を含む潤滑剤の塗布される保護層と、潤滑剤を塗布して形成した潤滑層との高い密着性および被覆率に寄与する。
【0048】
【化7】
(式(4-1)中、p1は1~2の整数を表し、p2は1~5の整数を表す。)
【0049】
式(4-1)において、p1は1~2の整数であり、2であることが好ましい。
式(4-1)において、p2は1~5の整数である。p2が1~5の整数である場合、式(4-1)で表される末端基中の水酸基間の距離が適正となる。したがって、p2が1~5の整数である場合、保護層との密着性に優れ、被覆率の高い潤滑層を形成できる含フッ素エーテル化合物となる。p2は、保護層との密着性の観点から、1~2であることが好ましく、1であることが最も好ましい。
【0050】
【化8】
(式(4-2)中、sは2~5の整数を表す。)
【0051】
式(4-2)において、sは2~5の整数である。この場合、R側の水酸基と末端の水酸基との間の距離が適正となる。したがって、sが2~5の整数である場合、保護層との密着性に優れ、被覆率の高い潤滑層を形成できる含フッ素エーテル化合物となる。sは、保護層との密着性の観点から、2または3であることが好ましく、2であることが最も好ましい。
【0052】
【化9】
(式(4-3)中、tは1~5の整数を表す。)
【0053】
式(4-3)において、tは1~5の整数である。この場合、R側の水酸基と末端の水酸基との間の距離が適正となる。したがって、tが1~5の整数である場合、保護層との密着性に優れ、被覆率の高い潤滑層を形成できる含フッ素エーテル化合物となる。tは、保護層との密着性の観点から、1または2であることが好ましく、1であることが最も好ましい。
【0054】
【化10】
(式(4-4)中、qは2~5の整数を表す。)
【0055】
式(4-4)において、qは2~5の整数である。この場合、R側の水酸基と末端の水酸基との間の距離が適正となる。したがって、qが2~5の整数である場合、保護層との密着性に優れ、被覆率の高い潤滑層を形成できる含フッ素エーテル化合物となる。qは、保護層との密着性の観点から、2または3であることが好ましく、2であることが最も好ましい。
【0056】
また、式(1)で表される本実施形態の含フッ素エーテル化合物は、PFPE鎖(R)の両末端にそれぞれ異なる末端基(R-R-、-R)が結合した非対称の化合物である。両末端にそれぞれ異なる末端基が結合している化合物では、分子末端にそれぞれ結合された異なる機能を有する基(R-R-、-R)の相乗効果によって、両末端に同じ末端基が結合している化合物と比較して、優れた化学物質耐性および耐摩耗性が得られる。
【0057】
特に、本実施形態の含フッ素エーテル化合物では、Rで表されるチオフェンアルキル基が、水酸基(-OH)を2個または3個含むRに結合されている。このため、本実施形態の含フッ素エーテル化合物を含む潤滑層では、Rに含まれる水酸基による保護層との密着性向上効果によって、チオフェンアルキル基と保護層とが近接しやすい。よって、本実施形態の含フッ素エーテル化合物を含む潤滑層では、チオフェンアルキル基による耐摩耗性を向上させる機能が効果的に働く。
【0058】
また、本実施形態の含フッ素エーテル化合物では、Rに含まれる適正な距離で配置された2個または3個の水酸基と、Rに含まれる適正な距離で配置された2個または3個の極性基が、それぞれメチレン基(-CH-)を介してRの両末端にバランス良く配置されている。このことから、本実施形態の含フッ素エーテル化合物を含む潤滑層は、保護層との付着性(密着性)に優れ、高い被覆率で保護層の表面を被覆できる。そのため、本実施形態の含フッ素エーテル化合物を含む潤滑層は、耐摩耗性および化学物質耐性が良好で、さらなる薄膜化が可能であり、磁気記録媒体における磁気スペーシングの低減に寄与できる。
【0059】
式(1)中、Rはパーフルオロポリエーテル鎖(PFPE鎖)である。Rは、特に限定されるものではなく、含フッ素エーテル化合物を含む潤滑剤に求められる性能などに応じて適宜選択できる。
式(1)においてRは、下記式(5)で表されるPFPE鎖であることが好ましい。Rが式(5)で表されるPFPE鎖であると、含フッ素エーテル化合物の合成が容易であり、好ましい。
【0060】
【化11】
(式(5)中、m、nは平均重合度を示し、mは1~30を表し、nは0~30を表す。)
【0061】
式(5)において、繰り返し単位である(CF-CF-O)と(CF-O)との配列順序には、特に制限はない。式(5)において平均重合度を示す(CF-CF-O)の数mと(CF-O)の数nは同じであってもよいし、異なっていてもよい。式(5)は、モノマー単位(CF-CF-O)と(CF-O)とからなるランダム共重合体、ブロック共重合体、交互共重合体のいずれかを含むものであってもよい。
【0062】
式(1)におけるRが式(5)である場合、平均重合度を示すmは1~30であり、1~20であることが好ましく、さらに1~15であることが好ましい。式(1)においてRが式(5)である場合、平均重合度を示すnは0~30であり、1~20であることが好ましく、さらに1~15であることが好ましい。また、nが0の場合、mは1~17であることが好ましい。
【0063】
式(1)においてRは、下記式(6)または下記式(7)であってもよい。
【0064】
【化12】
(式(6)中、uは平均重合度であり、1~30を表す。)
【0065】
式(6)において、uが1~30である場合、本実施形態の含フッ素エーテル化合物の数平均分子量が好ましい範囲になりやすい。uは3~20であることが好ましく、4~10であることがより好ましい。
【0066】
【化13】
(式(7)中、vは平均重合度であり、1~30を表す。)
【0067】
式(7)において、vが1~30である場合、本実施形態の含フッ素エーテル化合物の数平均分子量が好ましい範囲になりやすい。vは3~20であることが好ましく、4~10であることがより好ましい。
【0068】
式(1)におけるRが、式(5)~式(7)のいずれかである場合、含フッ素エーテル化合物の合成が容易であり好ましい。また、式(1)におけるRが、式(5)~式(7)のいずれかである場合、パーフルオロポリエーテル鎖中の炭素原子数に対する酸素原子数(エーテル結合(-O-)数)の割合と、パーフルオロポリエーテル鎖中の酸素原子の配置が適正となる。このため、適度な硬さを有する含フッ素エーテル化合物となる。よって、保護層上に塗布された含フッ素エーテル化合物が、保護層上で凝集しにくく、より一層厚みの薄い潤滑層を十分な被覆率で形成できる。
特に、式(1)におけるRが式(5)である場合、原料入手が容易であるため、より好ましい。
【0069】
式(1)で表される含フッ素エーテル化合物は、下記式(8)で表される化合物であることが好ましい。式(8)で表される含フッ素エーテル化合物は、原料が入手しやすく、容易に合成できる。
【0070】
【化14】
(式(8)中、x、yは平均重合度であり、それぞれ1~20を表す。zは1または2を表し、wは2または3を表し、rは1~3を表す。)
【0071】
式(8)における平均重合度を示すx、yはそれぞれ、1~20であり、1~15であることが好ましい。
式(8)におけるzは1または2を表し、2であることが好ましい。
式(8)におけるwは2または3を表し、2であることが好ましい。
式(8)におけるチオフェンアルキル基中のアルキレン基は、メチレン基、エチレン基、プロピレン基から選ばれるアルキレン基であり、エチレン基であることが好ましい。チオフェンアルキル基中のアルキレン基は、チオフェンアルキル基の有するチオフェン環の2位に結合されていてもよいし、3位に結合されていても良い。
【0072】
式(1)で表される含フッ素エーテル化合物は、具体的には下記式(A)~(L)で表されるいずれかの化合物であることが好ましい。なお、式(A)~(L)中のm、nで示される繰り返し数は、平均値を示す値であるため、必ずしも整数とはならない。
【0073】
式(A)~(E)で表される化合物は、いずれもRは式(2)で表される。Rは式(3)で表され、R中のwが2である。Rが式(5)である。Rが式(4-1)であり、式(4-1)中のp1が1であり、p2が1である。
式(A)で表される化合物は、R中のアルキレン基がメチレン基であり、Rの有するチオフェン環の2位に結合されている。
式(B)で表される化合物は、R中のアルキレン基がエチレン基であり、Rの有するチオフェン環の2位に結合されている。
【0074】
式(C)で表される化合物は、R中のアルキレン基がプロピレン基であり、Rの有するチオフェン環の2位に結合されている。
式(D)で表される化合物は、R中のアルキレン基がメチレン基であり、Rの有するチオフェン環の3位に結合されている。
式(E)で表される化合物は、R中のアルキレン基がエチレン基であり、Rの有するチオフェン環の3位に結合されている。
【0075】
式(F)(G)で表される化合物は、Rは式(2)で表され、R中のアルキレン基がエチレン基であり、Rの有するチオフェン環の2位に結合されている。Rは式(3)で表される。Rが式(5)である。Rが式(4-1)であり、式(4-1)中のp1が2であり、p2が1である。
式(F)で表される化合物は、R中のwが2である。
式(G)で表される化合物は、R中のwが3である。
【0076】
式(H)~(J)で表される化合物は、いずれもRは式(2)で表され、R中のアルキレン基がエチレン基であり、Rの有するチオフェン環の2位に結合されている。Rは式(3)で表され、R中のwが2である。Rが式(5)である。
式(H)で表される化合物は、Rが式(4-4)であり、式(4-4)中のqが2である。
式(I)で表される化合物は、Rが式(4-2)であり、式(4-2)中のsが2である。
式(J)で表される化合物は、Rが式(4-3)であり、式(4-3)中のtが1である。
【0077】
式(K)(L)で表される化合物は、いずれもRは式(2)で表され、R中のアルキレン基がエチレン基であり、Rの有するチオフェン環の2位に結合されている。Rは式(3)で表され、R中のwが2である。Rが式(4-1)であり、式(4-1)中のp1が1であり、p2が1である。
式(K)で表される化合物は、Rが式(7)である。
式(L)で表される化合物は、Rが式(5)であり、nが0である。
【0078】
【化15】
(式(A)中、m、nは平均重合度を示し、mは1~30であり、nは1~30である。)
(式(B)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(C)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(D)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(E)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(F)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
【0079】
【化16】
(式(G)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(H)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(I)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(J)中、m、nは平均重合度を示し、mは1~20であり、nは1~20である。)
(式(K)中、vは平均重合度を示し、vは1~20である。)
(式(L)中、mは平均重合度を示し、mは1~20である。)
【0080】
式(1)で表わされる化合物が上記式(A)~(L)で表されるいずれかの化合物であると、原料が入手しやすい。しかも、式(A)~(L)で表されるいずれかの化合物であると、厚みが薄くても、より一層優れた化学物質耐性および耐摩耗性が得られる潤滑層を形成できるため好ましい。
【0081】
本実施形態の含フッ素エーテル化合物は、数平均分子量(Mn)が500~10000の範囲内であることが好ましく、700~7000の範囲内であることがより好ましく、800~4000の範囲内であることが特に好ましい。数平均分子量が500以上であると、本実施形態の含フッ素エーテル化合物を含む潤滑剤が蒸散しにくいものとなる。したがって、数平均分子量が500以上であると、潤滑剤が蒸散して磁気ヘッドに移着することを防止できる。また、数平均分子量が10000以下であると、含フッ素エーテル化合物の粘度が適正なものとなる。したがって、数平均分子量が10000以下であると、これを含む潤滑剤を塗布することによって、容易に厚みの薄い潤滑層を形成できる。含フッ素エーテル化合物の数平均分子量は、潤滑剤に適用した場合に扱いやすい粘度となるため、4000以下であることがより好ましい。
【0082】
含フッ素エーテル化合物の数平均分子量(Mn)は、ブルカー・バイオスピン社製AVANCEIII-400によるH-NMRおよび19F-NMRによって測定された値である。具体的には、19F-NMRによって測定された積分値よりPFPE鎖の繰り返し単位数を算出し、数平均分子量を求めた。NMR(核磁気共鳴)の測定において、試料を重アセトン溶媒(基準物質としてヘキサフルオロベンゼン添加)へ希釈し、測定に使用した。19F-NMRケミカルシフトの基準は、ヘキサフルオロベンゼンのピークを-164.7ppmとした。H-NMRケミカルシフトの基準は、アセトンのピークを2.05ppmとした。
【0083】
「製造方法」
本実施形態の含フッ素エーテル化合物の製造方法は、特に限定されるものではなく、従来公知の製造方法を用いて製造できる。本実施形態の含フッ素エーテル化合物は、例えば、以下に示す製造方法を用いて製造できる。
まず、式(1)におけるRに対応するパーフルオロポリエーテル主鎖を有し、分子両末端にそれぞれヒドロキシメチル基(-CHOH)が配置されたフッ素系化合物を用意する。
【0084】
次いで、前記フッ素系化合物の一方の末端に配置されたヒドロキシメチル基の水酸基を、式(1)におけるR-R-からなる基に置換する(第1反応)。その後、他方の末端に配置されたヒドロキシメチル基の水酸基を、式(1)における-Rからなる末端基に置換する(第2反応)。
第1反応および第2反応は、従来公知の方法を用いて行うことができ、式(1)におけるR、R、Rの種類などに応じて適宜決定できる。また、第1反応と第2反応のうち、どちらの反応を先に行ってもよい。
【0085】
本実施形態の含フッ素エーテル化合物は、上記式(1)で表される化合物である。したがって、これを含む潤滑剤を用いて保護層上に潤滑層を形成すると、式(1)においてRで表されるPFPE鎖によって、保護層の表面が被覆される。それとともに、磁気ヘッドと保護層との摩擦力が低減される。また、本実施形態の含フッ素エーテル化合物を含む潤滑剤を用いて形成した潤滑層では、Rで表されるチオフェンアルキル基の分子間相互作用および/またはチオフェンアルキル基と保護層との相互作用により、優れた耐摩耗性が得られる。
【0086】
また、本実施形態の含フッ素エーテル化合物を含む潤滑剤は、Rで表される連結基に含まれる2個または3個の水酸基と保護層との結合によって、保護層上に密着される。それとともに、Rで表される末端基に含まれる2個または3個の極性基と保護層との結合によって、保護層上に密着される。
また、本実施形態の含フッ素エーテル化合物を含む潤滑剤では、Rで表される連結基に含まれる2個または3個の水酸基が、それぞれ異なる炭素原子に結合し、前記水酸基の結合している炭素原子同士が、メチレン基(-CH-)とエーテル結合(-O-)とからなる連結基を介して結合している。しかも、Rで表される末端基に含まれる2個または3個の極性基は、それぞれ異なる炭素原子に結合し、前記極性基の結合している炭素原子同士が、極性基の結合していない炭素原子を含む連結基を介して結合している。このため、本実施形態の含フッ素エーテル化合物を含む潤滑剤では、含フッ素エーテル化合物中の複数の極性基と、保護層上の活性点とが結合しやすく、含フッ素エーテル化合物同士が凝集しにくく、厚みが薄くても、高い被覆率で保護層の表面を被覆できる。
【0087】
[磁気記録媒体用潤滑剤]
本実施形態の磁気記録媒体用潤滑剤は、式(1)で表される含フッ素エーテル化合物を含む。
本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むことによる特性を損なわない範囲内であれば、潤滑剤の材料として使用されている公知の材料を、必要に応じて混合して用いることができる。
【0088】
公知の材料の具体例としては、例えば、FOMBLIN(登録商標) ZDIAC、FOMBLIN ZDEAL、FOMBLIN AM-2001(以上、Solvay Solexis社製)、Moresco A20H(Moresco社製)などが挙げられる。本実施形態の潤滑剤と混合して用いる公知の材料は、数平均分子量が1000~10000であることが好ましい。
【0089】
本実施形態の潤滑剤が、式(1)で表される含フッ素エーテル化合物の他の材料を含む場合、本実施形態の潤滑剤中の式(1)で表される含フッ素エーテル化合物の含有量が50質量%以上であることが好ましく、70質量%以上であることがより好ましい。式(1)で表される含フッ素エーテル化合物の含有量は、80質量%以上であってもよいし、90質量%以上であってもよい。
【0090】
本実施形態の潤滑剤は、式(1)で表される含フッ素エーテル化合物を含むため、厚みを薄くしても、高い被覆率で保護層の表面を被覆でき、優れた化学物質耐性および耐摩耗性を有し、表面凹凸の抑制された潤滑層が得られる。
【0091】
[磁気記録媒体]
本実施形態の磁気記録媒体は、基板上に、少なくとも磁性層と保護層と潤滑層が順次設けられたものである。
本実施形態の磁気記録媒体では、基板と磁性層との間に、必要に応じて1層または2層以上の下地層を設けることができる。また、下地層と基板との間に付着層および/または軟磁性層を設けることもできる。
【0092】
図1は、本発明の磁気記録媒体の一実施形態を示した概略断面図である。
本実施形態の磁気記録媒体10は、基板11上に、付着層12と、軟磁性層13と、第1下地層14と、第2下地層15と、磁性層16と、保護層17と、潤滑層18とが順次設けられた構造をなしている。
【0093】
「基板」
基板11としては、例えば、AlもしくはAl合金などの金属または合金材料からなる基体上に、NiPまたはNiP合金からなる膜が形成された非磁性基板等を用いることができる。
また、基板11としては、ガラス、セラミックス、シリコン、シリコンカーバイド、カーボン、樹脂などの非金属材料からなる非磁性基板を用いてもよいし、これらの非金属材料からなる基体上にNiPまたはNiP合金の膜を形成した非磁性基板を用いてもよい。
【0094】
ガラス基板は剛性があり、平滑性に優れるので、高記録密度化に好適である。ガラス基板としては、例えばアルミノシリケートガラス基板が挙げられ、特に化学強化されたアルミノシリケートガラス基板が好適である。
基板11の主表面の粗さは、Rmaxが6nm以下、及びRaが0.6nm以下の超平滑であることが好ましい。なお、ここでいう表面粗さRmax、Raは、JIS B0601の規定に基づくものである。
【0095】
「付着層」
付着層12は、基板11と、付着層12上に設けられる軟磁性層13とを接して配置した場合に生じる、基板11の腐食の進行を防止する。
付着層12の材料は、例えば、Cr、Cr合金、Ti、Ti合金、CrTi、NiAl、AlRu合金等から適宜選択できる。付着層12は、例えば、スパッタリング法により形成できる。
【0096】
「軟磁性層」
軟磁性層13は、第1軟磁性膜と、Ru膜からなる中間層と、第2軟磁性膜とが順に積層された構造を有していることが好ましい。すなわち、軟磁性層13は、2層の軟磁性膜の間にRu膜からなる中間層を挟み込むことによって、中間層の上下の軟磁性膜がアンチ・フェロ・カップリング(AFC)結合した構造を有していることが好ましい。
【0097】
第1軟磁性膜および第2軟磁性膜の材料としては、CoZrTa合金、CoFe合金などが挙げられる。
第1軟磁性膜および第2軟磁性膜に使用されるCoFe合金には、Zr、Ta、Nbの何れかを添加することが好ましい。これにより、第1軟磁性膜および第2軟磁性膜の非晶質化が促進され、第1下地層(シード層)の配向性を向上させることが可能になる。それとともに、磁気ヘッドの浮上量を低減することが可能となる。
軟磁性層13は、例えば、スパッタリング法により形成できる。
【0098】
「第1下地層」
第1下地層14は、その上に設けられる第2下地層15および磁性層16の配向および結晶サイズを制御するための層である。
第1下地層14としては、例えば、Cr層、Ta層、Ru層、あるいはCrMo合金層,CoW合金層,CrW合金層,CrV合金層,CrTi合金層などが挙げられる。
第1下地層14は、例えば、スパッタリング法により形成できる。
【0099】
「第2下地層」
第2下地層15は、磁性層16の配向が良好になるように制御する層である。第2下地層15は、RuまたはRu合金からなる層であることが好ましい。
第2下地層15は、1層からなる層であってもよいし、複数層から構成されていてもよい。第2下地層15が複数層からなる場合、全ての層が同じ材料から構成されていてもよいし、少なくとも一層が異なる材料から構成されていてもよい。
第2下地層15は、例えば、スパッタリング法により形成できる。
【0100】
「磁性層」
磁性層16は、磁化容易軸が基板面に対して垂直または水平方向を向いた磁性膜からなる。磁性層16は、CoとPtを含む層であり、さらにSNR特性を改善するために、酸化物や、Cr、B、Cu、Ta、Zr等を含む層であってもよい。
磁性層16に含有される酸化物としては、SiO、SiO、Cr、CoO、Ta、TiO等が挙げられる。
【0101】
磁性層16は、1層から構成されていてもよいし、組成の異なる材料からなる複数の磁性層から構成されていてもよい。
例えば、磁性層16が、下から順に積層された第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層は、Co、Cr、Ptを含み、さらに酸化物を含んだ材料からなるグラニュラー構造であることが好ましい。第1磁性層に含有される酸化物としては、例えば、Cr、Si、Ta、Al、Ti、Mg、Co等の酸化物を用いることが好ましい。その中でも、特に、TiO、Cr、SiO等を好適に用いることができる。また、第1磁性層は、酸化物を2種類以上添加した複合酸化物からなることが好ましい。その中でも、特に、Cr-SiO、Cr-TiO、SiO-TiO等を好適に用いることができる。
【0102】
第1磁性層は、Co、Cr、Pt、酸化物の他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Reの中から選ばれる1種類以上の元素を含むことができる。
第2磁性層には、第1磁性層と同様の材料を用いることができる。第2磁性層は、グラニュラー構造であることが好ましい。
【0103】
第3磁性層は、Co、Cr、Ptを含み、酸化物を含まない材料からなる非グラニュラー構造であることが好ましい。第3磁性層は、Co、Cr、Ptの他に、B、Ta、Mo、Cu、Nd、W、Nb、Sm、Tb、Ru、Re、Mnの中から選ばれる1種類以上の元素を含むことができる。
【0104】
磁性層16が複数の磁性層で形成されている場合、隣接する磁性層の間には、非磁性層を設けることが好ましい。磁性層16が、第1磁性層と第2磁性層と第3磁性層の3層からなる場合、第1磁性層と第2磁性層との間と、第2磁性層と第3磁性層との間に、非磁性層を設けることが好ましい。
【0105】
磁性層16の隣接する磁性層間に設けられる非磁性層は、例えば、Ru、Ru合金、CoCr合金、CoCrX1合金(X1は、Pt、Ta、Zr、Re,Ru、Cu、Nb、Ni、Mn、Ge、Si、O、N、W、Mo、Ti、V、Bの中から選ばれる1種または2種以上の元素を表す。)等を好適に用いることができる。
【0106】
磁性層16の隣接する磁性層間に設けられる非磁性層には、酸化物、金属窒化物、または金属炭化物を含んだ合金材料を使用することが好ましい。具体的には、酸化物として、例えば、SiO、Al、Ta、Cr、MgO、Y、TiO等を用いることができる。金属窒化物として、例えば、AlN、Si、TaN、CrN等を用いることができる。金属炭化物として、例えば、TaC、BC、SiC等を用いることができる。
非磁性層は、例えば、スパッタリング法により形成できる。
【0107】
磁性層16は、より高い記録密度を実現するために、磁化容易軸が基板面に対して垂直方向を向いた垂直磁気記録の磁性層であることが好ましい。磁性層16は、面内磁気記録であってもよい。
磁性層16は、蒸着法、イオンビームスパッタ法、マグネトロンスパッタ法等、従来の公知のいかなる方法によって形成してもよい。磁性層16は、通常、スパッタリング法により形成される。
【0108】
「保護層」
保護層17は、磁性層16を保護する。保護層17は、一層から構成されていてもよいし、複数層から構成されていてもよい。保護層17の材料としては、炭素、窒素を含む炭素、炭化ケイ素などが挙げられる。
保護層17としては、炭素系保護層を好ましく用いることができ、特にアモルファス炭素保護層が好ましい。保護層17が炭素系保護層であると、潤滑層18中の含フッ素エーテル化合物に含まれる極性基(特に水酸基)との相互作用が一層高まるため、好ましい。
【0109】
炭素系保護層と潤滑層18との付着力は、炭素系保護層を水素化炭素および/または窒素化炭素とし、炭素系保護層中の水素含有量および/または窒素含有量を調節することにより制御可能である。
炭素系保護層中の水素含有量は、水素前方散乱法(HFS)で測定したときに3~20原子%であることが好ましい。また、炭素系保護層中の窒素含有量は、X線光電子分光分析法(XPS)で測定したときに、4~12原子%であることが好ましい。
【0110】
炭素系保護層に含まれる水素および/または窒素は、炭素系保護層全体に均一に含有される必要はない。炭素系保護層は、例えば、保護層17の潤滑層18側に窒素を含有させ、保護層17の磁性層16側に水素を含有させた組成傾斜層とすることが好適である。この場合、磁性層16および潤滑層18と、炭素系保護層との付着力が、より一層向上する。
【0111】
保護層17の膜厚は、1nm~7nmとするのがよい。保護層17の膜厚が1nm以上であると、保護層17としての性能が充分に得られる。保護層17の膜厚が7nm以下であると、保護層17の薄膜化の観点から好ましい。
【0112】
保護層17の成膜方法としては、炭素を含むターゲット材を用いるスパッタ法や、エチレンやトルエン等の炭化水素原料を用いるCVD(化学蒸着法)法、IBD(イオンビーム蒸着)法等を用いることができる。
保護層17として炭素系保護層を形成する場合、例えばDCマグネトロンスパッタリング法により成膜することができる。特に、保護層17として炭素系保護層を形成する場合、プラズマCVD法により、アモルファス炭素保護層を成膜することが好ましい。プラズマCVD法により成膜したアモルファス炭素保護層は、表面が均一で、粗さが小さいものとなる。
【0113】
「潤滑層」
潤滑層18は、磁気記録媒体10の汚染を防止する。また、潤滑層18は、磁気記録媒体10上を摺動する磁気記録再生装置の磁気ヘッドの摩擦力を低減させて、磁気記録媒体10の耐久性を向上させる。
潤滑層18は、図1に示すように、保護層17上に接して形成されている。潤滑層18は、上述の含フッ素エーテル化合物を含む。
【0114】
潤滑層18は、潤滑層18の下に配置されている保護層17が、炭素系保護層である場合、特に、保護層17と高い結合力で結合される。その結果、潤滑層18の厚みが薄くても、高い被覆率で保護層17の表面が被覆された磁気記録媒体10が得られやすくなり、磁気記録媒体10の表面の汚染を効果的に防止できる。
【0115】
潤滑層18の平均膜厚は、0.5nm(5Å)~3nm(30Å)であることが好ましく、0.5nm(5Å)~2nm(20Å)であることがより好ましい。潤滑層18の平均膜厚が0.5nm以上であると、潤滑層18がアイランド状または網目状とならずに均一の膜厚で形成される。このため、潤滑層18によって、保護層17の表面を高い被覆率で被覆できる。また、潤滑層18の平均膜厚を3nm以下にすることで、潤滑層18を充分に薄膜化でき、磁気ヘッドの浮上量を十分小さくできる。
【0116】
保護層17の表面が潤滑層18によって十分に高い被覆率で被覆されていない場合、磁気記録媒体10の表面に吸着した環境物質が、潤滑層18の隙間を通り抜けて、潤滑層18の下に侵入する。潤滑層18の下層に侵入した環境物質は、保護層17と吸着、結合し汚染物質を生成する。そして、磁気記録再生の際に、この汚染物質(凝集成分)がスメアとして磁気ヘッドに付着(転写)して、磁気ヘッドを破損したり、磁気記録再生装置の磁気記録再生特性を低下させたりする。
【0117】
汚染物質を生成させる環境物質としては、例えば、シロキサン化合物(環状シロキサン、直鎖シロキサン)、イオン性不純物、オクタコサン等の比較的分子量の高い炭化水素、フタル酸ジオクチル等の可塑剤等が挙げられる。イオン性不純物に含まれる金属イオンとしては、例えば、ナトリウムイオン、カリウムイオン等を挙げることができる。イオン性不純物に含まれる無機イオンとしては、例えば、塩素イオン、臭素イオン、硝酸イオン、硫酸イオン、アンモニウムイオン等を挙げることができる。イオン性不純物に含まれる有機物イオンとしては、例えば、シュウ酸イオン、蟻酸イオン等を挙げることができる。
【0118】
「潤滑層の形成方法」
潤滑層18を形成する方法としては、例えば、基板11上に保護層17までの各層が形成された製造途中の磁気記録媒体を用意し、保護層17上に潤滑層形成用溶液を塗布し、乾燥させる方法が挙げられる。
【0119】
潤滑層形成用溶液は、上述の実施形態の磁気記録媒体用潤滑剤を必要に応じて、溶媒に分散溶解させ、塗布方法に適した粘度および濃度とすることにより得られる。
潤滑層形成用溶液に用いられる溶媒としては、例えば、バートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)等のフッ素系溶媒等が挙げられる。
【0120】
潤滑層形成用溶液の塗布方法は、特に限定されないが、例えば、スピンコート法、スプレイ法、ペーパーコート法、ディップ法等が挙げられる。
ディップ法を用いる場合、例えば、以下に示す方法を用いることができる。まず、ディップコート装置の浸漬槽に入れられた潤滑層形成用溶液中に、保護層17までの各層が形成された基板11を浸漬する。次いで、浸漬槽から基板11を所定の速度で引き上げる。このことにより、潤滑層形成用溶液を基板11の保護層17上の表面に塗布する。
ディップ法を用いることで、潤滑層形成用溶液を保護層17の表面に均一に塗布することができ、保護層17上に均一な膜厚で潤滑層18を形成できる。
【0121】
本実施形態においては、潤滑層18を形成した基板11に熱処理を施すことが好ましい。熱処理を施すことにより、潤滑層18と保護層17との密着性が向上し、潤滑層18と保護層17との付着力が向上する。
熱処理温度は100~180℃とすることが好ましい。熱処理温度が100℃以上であると、潤滑層18と保護層17との密着性を向上させる効果が十分に得られる。また、熱処理温度を180℃以下にすることで、潤滑層18の熱分解を防止できる。熱処理時間は10~120分とすることが好ましい。
【0122】
本実施形態においては、潤滑層18の保護層17に対する付着力をより一層向上させるために、熱処理前もしくは熱処理後の基板11の潤滑層18に、紫外線(UV)を照射する処理を行ってもよい。
【0123】
本実施形態の磁気記録媒体10は、基板11上に、少なくとも磁性層16と、保護層17と、潤滑層18とが順次設けられたものである。本実施形態の磁気記録媒体10では、保護層17上に接して上述の含フッ素エーテル化合物を含む潤滑層18が形成されている。この潤滑層18は、表面凹凸が抑制され、優れた化学物質耐性および耐摩耗性を有し、さらなる薄膜化が可能である。よって、本実施形態の磁気記録媒体10は、磁気スペーシングの低減に寄与できる。このため、本実施形態の磁気記録媒体10は、特にLUL方式(Load Unload方式)の磁気ディスク装置に搭載される磁気ディスクとして好適である。
【実施例
【0124】
以下、実施例および比較例により本発明をさらに具体的に説明する。なお、本発明は、以下の実施例のみに限定されない。
【0125】
[実施例1]
以下に示す方法により、上記式(A)で表される化合物(式(A)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
【0126】
まず、下記式(12)で表される化合物を、以下に示す方法により合成した。2-チオフェンメタノールとエピブロモヒドリンとを反応させて、下記式(11)で表される化合物を合成した。得られた化合物(11)を加水分解し、得られた化合物の1級水酸基をt-ブチルジメチルシリル基で保護した。その後、2級水酸基をメトキシメチル基で保護し、得られた化合物からt-ブチルジメチルシリル基を除去した。最後に、生成した1級水酸基に、エピブロモヒドリンを反応させて化合物(12)を合成した。
【0127】
【化17】
【0128】
また、エチレングリコールtert-ブチルエーテルとエピブロモヒドリンを反応させて、下記式(13)で表される化合物を合成した。
【0129】
【化18】
【0130】
窒素ガス雰囲気下、200mLナスフラスコに、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表されるフルオロポリエーテル(数平均分子量1000、分子量分布1.1)(40.0g)と、上記式(12)で表される化合物(6.92g)と、t-BuOH(ターシャリーブチルアルコール)(40.0mL)とを仕込み、室温で均一になるまで撹拌した。さらに、上記のナスフラスコに、t-BuOK(カリウムターシャリーブトキシド)(1.35g)を加え、70℃に加熱し、8時間撹拌して反応させた。
【0131】
その後、得られた反応生成物を25℃に冷却し、水を加え、さらに三井デュポンフロロケミカル社製バートレルXF(以下、バートレルXF)を加えて有機層を抽出し、水洗した。有機層に、無水硫酸ナトリウムを加えて脱水し、乾燥剤を濾別後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製し、下記式(14)で表される化合物(17.4g)を得た。
【0132】
【化19】
(式(14)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)
【0133】
窒素ガス雰囲気下、200mLナスフラスコに、上記式(14)で表される化合物(17.4g)と、上記式(13)で表される化合物(2.67g)と、t-BuOH(ターシャリーブチルアルコール)(65.0mL)とを仕込み、室温で均一になるまで撹拌した。さらに、上記のナスフラスコに、t-BuOK(カリウムターシャリーブトキシド)(0.235g)を加え、70℃に加熱し、16時間撹拌して反応させた。
【0134】
その後、得られた反応生成物を25℃に冷却し、水を加え、さらにバートレルXFを加えて有機層を抽出し、水洗した。有機層に、無水硫酸ナトリウムを加えて脱水し、乾燥剤を濾別後、濾液を濃縮した。
得られた残渣に室温で、水(3.3mL)とトリフルオロ酢酸(21.5mL)を加え、室温で6時間攪拌した。水およびトリフルオロ酢酸を35℃以下で留去し、得られた残渣に5%重曹水(100mL)を加え、バートレルXFで抽出し、有機層を水洗し、濃縮した。
【0135】
得られた残渣にメタノール(56mL)と1mol/L水酸化ナトリウム水溶液(56mL)とを加え、室温で1時間攪拌した。メタノールを留去後、バートレルXFを加えて有機層を抽出し、水洗した。有機層に、無水硫酸ナトリウムを加えて脱水し、乾燥剤を濾別後、濾液を濃縮した。残渣をシリカゲルカラムクロマトグラフィーによって精製し、化合物(A)を11.0g得た。
【0136】
得られた化合物(A)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.44-3.78(17H)、3.85-4.20(12H)、6.90(2H)、7.23(1H)
19F-NMR(acetone-d):δ[ppm]=-51.99~-55.72(9F)、-78.48(2F)、-80.66(2F)、-89.16~-91.14(18F)
【0137】
[実施例2]
以下に示す方法により、上記式(B)で表される化合物(式(B)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
まず、下記式(16)で表される化合物を、以下に示す方法により合成した。2-チオフェンエタノールとエピブロモヒドリンとを反応させて、下記式(15)で表される化合物を合成した。得られた化合物(15)を加水分解し、得られた化合物の1級水酸基をt-ブチルジメチルシリル基で保護した。その後、2級水酸基をメトキシメチル基で保護し、得られた化合物からt-ブチルジメチルシリル基を除去した。最後に、生成した1級水酸基に、エピブロモヒドリンを反応させて化合物(16)を合成した。
【0138】
【化20】
【0139】
そして、実施例1において用いた式(12)で表される化合物の代わりに式(16)で表される化合物を7.26g用いたこと以外は、実施例1と同様な操作を行い、化合物(B)を11.2g得た。
【0140】
得られた化合物(B)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.07(2H)、3.44-3.78(19H)、3.85-4.20(10H)、6.90(2H)、7.23(1H)
【0141】
[実施例3]
以下に示す方法により、上記式(C)で表される化合物(式(C)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
まず、下記式(18)で表される化合物を、以下に示す方法により合成した。2-チオフェンプロパノールとエピブロモヒドリンとを反応させて、下記式(17)で表される化合物を合成した。得られた化合物(17)を加水分解し、得られた化合物の1級水酸基をt-ブチルジメチルシリル基で保護した。その後、2級水酸基をメトキシメチル基で保護し、得られた化合物からt-ブチルジメチルシリル基を除去した。最後に、生成した1級水酸基に、エピブロモヒドリンを反応させて化合物(18)を合成した。
【0142】
【化21】
【0143】
そして、実施例1において用いた式(12)で表される化合物の代わりに式(18)で表される化合物を7.59g用いたこと以外は、実施例1と同様な操作を行い、化合物(C)を11.9g得た。
【0144】
得られた化合物(C)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.95(2H)、2.91(2H)、3.44-3.78(19H)、3.85-4.20(10H)、6.90(2H)、7.23(1H)
【0145】
[実施例4]
以下に示す方法により、上記式(D)で表される化合物(式(D)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
まず、下記式(20)で表される化合物を、以下に示す方法により合成した。3-チオフェンメタノールとエピブロモヒドリンとを反応させて、下記式(19)で表される化合物を合成した。得られた化合物(19)を加水分解し、得られた化合物の1級水酸基をt-ブチルジメチルシリル基で保護した。その後、2級水酸基をメトキシメチル基で保護し、得られた化合物からt-ブチルジメチルシリル基を除去した。最後に、生成した1級水酸基に、エピブロモヒドリンを反応させて化合物(20)を合成した。
【0146】
【化22】
【0147】
そして、実施例1において用いた式(12)で表される化合物の代わりに式(20)で表される化合物を6.92g用いたこと以外は、実施例1と同様な操作を行い、化合物(D)を11.3g得た。
【0148】
得られた化合物(D)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.44-3.78(17H)、3.85-4.20(12H)、7.05(2H)、7.43(1H)
【0149】
[実施例5]
以下に示す方法により、上記式(E)で表される化合物(式(E)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
まず、下記式(22)で表される化合物を、以下に示す方法により合成した。3-チオフェンエタノールとエピブロモヒドリンを反応させて、下記式(21)で表される化合物を合成した。得られた化合物(21)を加水分解し、得られた化合物の1級水酸基をt-ブチルジメチルシリル基で保護した。その後、2級水酸基をメトキシメチル基で保護し、得られた化合物からt-ブチルジメチルシリル基を除去した。最後に、生成した1級水酸基に、エピブロモヒドリンを反応させて化合物(22)を合成した。
【0150】
【化23】
【0151】
そして、実施例1において用いた式(12)で表される化合物の代わりに式(22)で表される化合物を7.26g用いたこと以外は、実施例1と同様な操作を行い、化合物(E)を11.5g得た。
【0152】
得られた化合物(E)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=2.94(2H)、3.44-3.78(19H)、3.85-4.20(10H)、7.05(2H)、7.43(1H)
【0153】
[実施例6]
以下に示す方法により、上記式(F)で表される化合物(式(F)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
【0154】
まず、エチレングリコールtert-ブチルエーテルとアリルグリシジルエーテルとの反応物を酸化して、下記式(23)で表される化合物を合成した。
そして、実施例2において用いた式(13)で表される化合物の代わりに式(23)で表される化合物を3.81g用いたこと以外は、実施例2と同様な操作を行い、化合物(F)を12.5g得た。
【0155】
【化24】
【0156】
得られた化合物(F)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.07(2H)、3.44-3.78(23H)、3.85-4.20(12H)、6.90(2H)、7.23(1H)
【0157】
[実施例7]
以下に示す方法により、上記式(G)で表される化合物(式(G)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
まず、下記式(24)で表される化合物を、以下に示す方法により合成した。上記式(16)で示される化合物を加水分解し、得られた化合物の1級水酸基をt-ブチルジメチルシリル基で保護した。その後、二か所ある2級水酸基をメトキシメチル基でそれぞれ保護し、得られた化合物からt-ブチルジメチルシリル基を除去した。最後に、生成した1級水酸基に、エピブロモヒドリンを反応させて化合物(24)を合成した。
【0158】
【化25】
【0159】
そして、実施例1において用いた式(12)で表される化合物の代わりに式(24)で表される化合物を10.1g使用し、実施例1において用いた式(13)で表される化合物の代わりに式(23)で表される化合物を3.81g使用した以外は、実施例1と同様な操作を行い、化合物(G)を12.9g得た。
【0160】
得られた化合物(G)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.07(2H)、3.44-3.78(27H)、3.85-4.20(14H)、6.90(2H)、7.23(1H)
【0161】
[実施例8]
以下に示す方法により、上記式(H)で表される化合物(式(H)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
まず、プロパンジオールtert-ブチルエーテルとエピブロモヒドリンを反応させて、下記式(25)で表される化合物を合成した。
【0162】
【化26】
【0163】
そして、実施例2において用いた式(13)で表される化合物の代わりに式(25)で表される化合物を2.89g用いたこと以外は、実施例2と同様な操作を行い、化合物(H)を11.8g得た。
【0164】
得られた化合物(H)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.83(2H)、3.07(2H)、3.44-3.78(19H)、3.85-4.20(10H)、6.90(2H)、7.23(1H)
【0165】
[実施例9]
以下に示す方法により、上記式(I)で表される化合物(式(I)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
2,2,3,3-テトラフルオロ-1,4-ブタンジオールと3,4-ジヒドロ-2H-ピランとを反応させて、片側の水酸基をテトラヒドロピラニル基で保護した後、エピブロモヒドリンを反応させて、下記式(26)で表される化合物を合成した。
そして、実施例2において用いた式(13)で表される化合物の代わりに式(26)で表される化合物を4.64g用いたこと以外は、実施例2と同様な操作を行い、化合物(I)を12.9g得た。
【0166】
【化27】
【0167】
得られた化合物(I)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.07(2H)、3.44-3.78(15H)、3.85-4.20(14H)、6.90(2H)、7.23(1H)
【0168】
[実施例10]
以下に示す方法により、上記式(J)で表される化合物(式(J)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)を得た。
3-ブテン-1-オールと3,4-ジヒドロ-2H-ピランとを反応させて、水酸基をテトラヒドロピラニル基で保護した後、メタクロロ過安息香酸を用いて酸化することにより、下記式(27)で表される化合物を合成した。
【0169】
【化28】
【0170】
そして、実施例2において用いた式(13)で表される化合物の代わりに式(27)で表される化合物を2.64g用いたこと以外は、実施例2と同様な操作を行い、化合物(J)を11.2g得た。
【0171】
得られた化合物(J)のH-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=1.68(2H)、3.07(2H)、3.44-3.78(16H)、3.85-4.20(9H)、6.90(2H)、7.23(1H)
【0172】
[実施例11]
以下に示す方法により、上記式(K)で表される化合物(式(K)中、平均重合度を示すvは4.5である。)を得た。
【0173】
実施例2における、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表されるフルオロポリエーテル(数平均分子量1000、分子量分布1.1)の代わりに、HOCHCFCFO(CFCFCFO)CFCFCHOH(式中、平均重合度を示すjは4.5である。)で表されるフルオロポリエーテル40.0gを用いたこと以外は、実施例2と同様の操作を行い、化合物(K)を10.1g得た。
【0174】
得られた化合物(K)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.08(2H)、3.44-3.80(19H)、3.85-4.20(10H)、6.93(2H)、7.26(1H)
19F-NMR(acetone-d):δ[ppm]=-83.70(18F)、-86.55(4F)、-124.21(4F)、-129.73(9F)
【0175】
[実施例12]
以下に示す方法により、上記式(L)で表される化合物(式(L)中、平均重合度を示すmは7である。)を得た。
【0176】
実施例2における、HOCHCFO(CFCFO)(CFO)CFCHOH(式中、平均重合度を示すhは4.5であり、平均重合度を示すiは4.5である。)で表されるフルオロポリエーテル(数平均分子量1000、分子量分布1.1)の代わりに、HOCHCFO(CFCFO)CFCHOH(式中、平均重合度を示すkは7である。)で表されるフルオロポリエーテル40.0gを用いたこと以外は、実施例2と同様の操作を行い、化合物(L)を10.1g得た。
【0177】
得られた化合物(L)のH-NMRおよび19F-NMR測定を行い、以下の結果により構造を同定した。
H-NMR(acetone-d):δ[ppm]=3.04(2H)、3.40-3.79(19H)、3.85-4.25(10H)、6.92(2H)、7.21(1H)
19F-NMR(acetone-d):δ[ppm]=-78.57(4F)、-89.24~―89.57(28F)
【0178】
[比較例1]
下記式(AA)で表される化合物を特許文献4に記載の方法で合成した。
【0179】
【化29】
(式(AA)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)
【0180】
[比較例2]
下記式(AB)で表される化合物を特許文献4に記載の方法で合成した。
【0181】
【化30】
(式(AB)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。Meはメチル基である。)
【0182】
[比較例3]
下記式(AC)で表される化合物を特許文献4に記載の方法で合成した。
【0183】
【化31】
(式(AC)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。Meはメチル基である。)
【0184】
[比較例4]
下記式(AD)で表される化合物を特許文献4に記載の方法で合成した。
【0185】
【化32】
(式(AD)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。Meはメチル基である。)
【0186】
[比較例5]
下記式(AE)で表される化合物を特許文献4に記載の方法で合成した。
【0187】
【化33】
(式(AE)中、平均重合度を示すmは4.5であり、平均重合度を示すnは4.5である。)
【0188】
このようにして得られた実施例1~12および比較例1~5の化合物の数平均分子量を、上述したH-NMRおよび19F-NMRの測定により求めた。その結果を表1に示す。なお、化合物の原料として用いたフルオロポリエーテルの分子量分布、化合物を合成する際の操作の差異などによって、合成した化合物の数平均分子量の値には1~5程度のばらつきが存在しているものと推定される。
【0189】
【表1】
【0190】
次に、以下に示す方法により、実施例1~12および比較例1~5で得られた化合物を用いて潤滑層形成用溶液を調製した。そして、得られた潤滑層形成用溶液を用いて、以下に示す方法により、磁気記録媒体の潤滑層を形成し、実施例1~12および比較例1~5の磁気記録媒体を得た。
【0191】
「潤滑層形成用溶液」
実施例1~12および比較例1~5で得られた化合物を、それぞれフッ素系溶媒であるバートレル(登録商標)XF(商品名、三井デュポンフロロケミカル社製)に溶解し、保護層上に塗布した時の膜厚が8.5Å~10ÅになるようにバートレルXFで希釈し、化合物の濃度が0.001質量%~0.01質量%である潤滑層形成用溶液とした。
【0192】
「磁気記録媒体」
直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けた磁気記録媒体を用意した。保護層は、炭素からなるものとした。
保護層までの各層の形成された磁気記録媒体の保護層上に、実施例1~12および比較例1~5の潤滑層形成用溶液を、ディップ法により塗布した。
その後、潤滑層形成用溶液を塗布した磁気記録媒体を、120℃の恒温槽に入れ、10分間加熱する熱処理を行った。このことにより、保護層上に潤滑層を形成し、磁気記録媒体を得た。
【0193】
(膜厚測定)
得られた実施例1~12および比較例1~5の磁気記録媒体の有する潤滑層の膜厚を、それぞれ以下に示す方法により測定した。
FT-IR(商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いて、潤滑層のC-F振動伸縮におけるピーク高さを測定した。次いで、以下に示す方法により算出した相関式を用いて、潤滑層のC-F振動伸縮におけるピーク高さの測定値から、潤滑層の膜厚を算出した。その結果を表1に示す。
【0194】
(相関式の算出方法)
直径65mmの基板上に、付着層と軟磁性層と第1下地層と第2下地層と磁性層と保護層とを順次設けたディスクの表面に、6~20Å(2Å刻み)の膜厚でそれぞれ潤滑層を形成した。
その後、潤滑層を形成した各ディスクについて、エリプソメータを用いて、潤滑層を形成していないディスク表面からの膜厚増加分を測定し、潤滑層の膜厚とした。また、潤滑層を形成した各ディスクについて、FT-IR(商品名:Nicolet iS50、Thermo Fisher Scientific社製)を用いてC-F振動伸縮におけるピーク高さを測定した。
そして、FT-IRにより得たピーク高さと、エリプソメータを用いて得た潤滑層の膜厚との相関式を求めた。
【0195】
なお、潤滑層に含まれる含フッ素エーテル化合物の主鎖は、主にCとFで形成されている。しかし、含フッ素エーテル化合物の種類ごとに1分子中のC-Fの密度が違う。よって、FT-IRを用いて得たC-F振動伸縮におけるピーク高さが同じ含フッ素エーテル化合物であっても、これを用いて形成した潤滑層の膜厚は同じでない可能性がある。
【0196】
また、実施例1~12および比較例1~5の磁気記録媒体に対して、以下に示す方法により耐摩耗性試験、化学物質耐性試験およびタッチダウンパワー測定を行なった。その結果を表1に示す。
【0197】
(耐摩耗性試験)
ピンオンディスク型摩擦摩耗試験機を用い、接触子としての直径2mmのアルミナの球を、荷重40gf、摺動速度0.25m/secで、磁気記録媒体の潤滑層上で摺動させ、潤滑層の表面の摩擦係数を測定した。そして、潤滑層の表面の摩擦係数が急激に増大するまでの摺動時間を測定した。摩擦係数が急激に増大するまでの摺動時間は、各磁気記録媒体の潤滑層について4回ずつ測定し、その平均値(時間)を潤滑剤塗膜の耐摩耗性の指標とした。
【0198】
なお、摩擦係数が急激に増大するまでの時間は、以下に示す理由により、潤滑層の耐摩耗性の指標として用いることができる。磁気記録媒体の潤滑層は、磁気記録媒体を使用することにより摩耗が進行し、摩耗により潤滑層が無くなると、接触子と保護層とが直接接触して、摩擦係数が急激に増大するためである。
【0199】
(化学物質耐性試験)
以下に示す評価手法により、高温環境下において汚染物質を生成させる環境物質による磁気記録媒体の汚染を調べた。なお、以下に示す評価手法では、環境物質としてSiイオンを用い、環境物質によって生成された磁気記録媒体を汚染する汚染物質の量としてSi吸着量を測定した。
【0200】
具体的には、評価対象である磁気記録媒体を、温度85℃、湿度0%の高温環境下で、シロキサン系Siゴムの存在下に240時間保持した。次に、磁気記録媒体の表面に存在するSi吸着量を、二次イオン質量分析法(SIMS)を用いて分析測定し、Siイオンによる汚染の程度をSi吸着量として評価した。Si吸着量の評価は、比較例5の結果を1.00としたときの数値を用いて評価した。その結果を表1に示す。
【0201】
(タッチダウンパワー測定)
磁気ヘッドと磁気ディスクの記録層との距離である磁気スペーシングの評価指標として、タッチダウンパワー(TDp)を測定した。TDpの測定は、書込みテスター(DFHテスター)を用いて、以下の通り実施した。
【0202】
評価対象である磁気記録媒体を5400rpmで回転させ、中心から半径18mmの位置に書込み素子(DFH素子)を対向させて配置した。その後、DFH素子のヒータ電力を徐々に上昇させ、ヒータの発熱によりDFH素子を熱膨張させた。そして、DFH素子の熱膨張により突出したDFH素子の先端が、磁気記録媒体の潤滑層と接触した時点でのヒータ電力をTDp(単位mW)として測定した。
なお、DFH素子の先端と、磁気記録媒体の潤滑層とが接触したことは、アコースティックエミッション(AE)センサにより検出した。
【0203】
一般的に、潤滑層の厚みが薄くなると、書込み素子(DFH素子)が磁気記録媒体(潤滑層)の表面に接触するのに要するTDpが大きくなる。一方、TDpは、磁気記録媒体(潤滑層)の表面に凹凸が存在していると小さくなる。
表1に示す潤滑層の膜厚は、FT-IRを用いて算出した値であり、平均膜厚である。したがって、表1に示す潤滑層の膜厚が同じであっても、潤滑層の表面に存在する凹凸の有無によって潤滑層の最大厚みが異なっていれば、TDpは異なる値となる。
【0204】
表1に示すように、実施例1~12の磁気記録媒体は、比較例1~5の磁気記録媒体と比較して、摩擦係数が急激に増大するまでの摺動時間が長く、耐摩耗性が良好であった。
また、表1に示すように、実施例1~12の磁気記録媒体では、比較例1~5の磁気記録媒体と比較して、Si吸着量が少なく、膜厚が薄くても高温環境下において環境物質によって汚染されにくいことが明らかになった。
また、表1に示すように、実施例1~12の磁気記録媒体では、比較例1~5の磁気記録媒体と比較して、タッチダウンパワー(TDp)が大きく、磁気スペーシングを低減できることが明らかになった。
【0205】
より詳細には、比較例1では、パーフルオロポリエーテル鎖とチオフェンアルキル基との間に存在する水酸基の数が1つである化合物を用いたため、耐摩耗性、化学物質耐性が不十分であり、タッチダウンパワーが小さくなった。
また、比較例2~4では、チオフェンアルキル基が配置されておらず、パーフルオロポリエーテル鎖の一方の末端に存在する水酸基の数が1つである化合物を用いたため、耐摩耗性、化学物質耐性が不十分であり、タッチダウンパワーが小さくなった。
また、比較例5では、チオフェンアルキル基が配置されていない化合物を用いたため、耐摩耗性、化学物質耐性が不十分であり、タッチダウンパワーが小さくなった。
【0206】
表1に示した効果は、実施例1~12の磁気記録媒体では、潤滑層が式(1)で表される化合物を含むため、保護層との密着性が良好で、表面凹凸の抑制された被覆率の高い潤滑層が形成されていることにより得られるものと推定される。
【産業上の利用可能性】
【0207】
薄膜化して、磁気スペーシングを低減しても、優れた耐摩耗性および化学物質耐性を有する潤滑層を形成でき、磁気記録媒体用潤滑剤の材料として、好適に用いることが出来る含フッ素エーテル化合物を提供する。
【符号の説明】
【0208】
10・・・磁気記録媒体、11・・・基板、12・・・付着層、13・・・軟磁性層、14・・・第1下地層、15・・・第2下地層、16・・・磁性層、17・・・保護層、18・・・潤滑層。
図1