(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-08
(45)【発行日】2023-09-19
(54)【発明の名称】荷電粒子線装置および試料観察方法
(51)【国際特許分類】
H01J 37/22 20060101AFI20230911BHJP
H01J 37/20 20060101ALI20230911BHJP
【FI】
H01J37/22 502H
H01J37/20 A
(21)【出願番号】P 2022529983
(86)(22)【出願日】2020-06-12
(86)【国際出願番号】 JP2020023151
(87)【国際公開番号】W WO2021250879
(87)【国際公開日】2021-12-16
【審査請求日】2022-11-29
(73)【特許権者】
【識別番号】501387839
【氏名又は名称】株式会社日立ハイテク
(74)【代理人】
【識別番号】110000350
【氏名又は名称】ポレール弁理士法人
(72)【発明者】
【氏名】関 勇介
(72)【発明者】
【氏名】中村 光宏
(72)【発明者】
【氏名】田沼 圭亮
【審査官】大門 清
(56)【参考文献】
【文献】特開2012-142211(JP,A)
【文献】特開2014-203733(JP,A)
【文献】国際公開第2018/193605(WO,A1)
【文献】国際公開第2020/084729(WO,A1)
【文献】国際公開第2019/244468(WO,A1)
【文献】特開2016-72184(JP,A)
【文献】特開2006-153837(JP,A)
【文献】特開2019-204757(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/22
H01J 37/20
(57)【特許請求の範囲】
【請求項1】
荷電粒子光学系と、
ステージと、
前記荷電粒子光学系からの荷電粒子線が照射される導電層と、前記導電層が積層された第1の絶縁層と、前記第1の絶縁層と対向する第2の絶縁層とを有し、前記ステージ上に載置され、前記第1の絶縁層と前記第2の絶縁層との間に試料を保持する試料チャンバと、
前記試料チャンバの前記導電層に荷電粒子線が照射されることにより、前記第1の絶縁層と前記試料との界面に現れる電位変化を増幅し、測定信号として出力する増幅器と、
前記荷電粒子光学系及び前記ステージを制御するとともに、前記増幅器からの測定信号を画像データに変換し、前記画像データを逆畳込演算フィルタにより補正して補正画像データを生成する主制御部と、
観察像表示部と前記主制御部において用いられる逆畳込演算フィルタの設定情報を表示するフィルタ調整部とを備える表示部と、
前記補正画像データを前記観察像表示部に表示するとともに、前記フィルタ調整部に表示される逆畳込演算フィルタの設定情報が変更された場合には、変更された設定情報に応じて前記主制御部において用いられる逆畳込演算フィルタを調整する情報処理装置とを有し、
前記情報処理装置は、フィルタのタップと各タップに対して与えられるフィルタ係数との関係であるフィルタ関数を複数登録しており、前記フィルタ調整部においていずれかの前記フィルタ関数が選択され、選択された前記フィルタ関数についてのパラメータが調整されることにより、フィルタ設定データを生成し、
前記主制御部は、前記フィルタ設定データにより前記画像データを補正する逆畳込演算フィルタを設定する荷電粒子線装置。
【請求項2】
請求項1において、
前記主制御部において用いられる逆畳込演算フィルタが調整されると、調整された逆畳込演算フィルタにより補正された前記補正画像データが前記観察像表示部に表示される荷電粒子線装置。
【請求項3】
請求項1において、
前記試料チャンバの前記第2の絶縁層の近傍に配置される電極と、
前記電極を基準電位として前記試料チャンバの前記導電層に所定のバイアス電圧を印加するバイアス電源とを有し、
前記増幅器は、前記試料チャンバの前記導電層に荷電粒子線が照射されることにより前記電極に流れる電流を増幅し、電圧信号に変換して前記測定信号として出力する荷電粒子線装置。
【請求項5】
請求項1において、
前記情報処理装置は、前記情報処理装置によってパラメータが調整された逆畳込演算フィルタの情報を保存する荷電粒子線装置。
【請求項6】
請求項5において、
前記情報処理装置は、保存された逆畳込演算フィルタの情報が読み出され、そのパラメータが調整されることにより、新たなフィルタ設定データを生成し、
前記主制御部は、前記新たなフィルタ設定データにより前記画像データを補正する逆畳込演算フィルタを設定する荷電粒子線装置。
【請求項7】
請求項1において、
前記情報処理装置は、前記画像データ及び/または前記補正画像データと前記画像データの取得時に前記主制御部において用いられた逆畳込演算フィルタの情報とを関連付けて保存する荷電粒子線装置。
【請求項8】
請求項7において、
前記画像データは動画データであり、前記補正画像データは補正動画データであって、
前記情報処理装置は、前記動画データ及び/または前記補正動画データと、前記動画データまたは前記補正動画データと時間同期させた、前記動画データの取得時に前記主制御部において用いられた逆畳込演算フィルタの情報を関連付けて保存する荷電粒子線装置。
【請求項9】
荷電粒子光学系とステージとを有する荷電粒子線装置を用いた試料観察方法であって、
導電層と、前記導電層が積層された第1の絶縁層と、前記第1の絶縁層と対向する第2の絶縁層とを有し、前記第1の絶縁層と前記第2の絶縁層との間に試料を保持する試料チャンバを前記ステージ上に載置し、
前記荷電粒子光学系からの荷電粒子線を前記試料チャンバの前記導電層上で走査し、前記導電層に荷電粒子線が照射されることによって前記第1の絶縁層と前記試料との界面に現れる電位変化を、増幅器によって増幅して測定信号として出力し、
前記増幅器からの測定信号を画像データに変換し、
前記画像データを逆畳込演算フィルタにより補正して補正画像データを生成し、
観察像である前記画像データまたは前記補正画像データと、前記観察像に用いられた逆畳込演算フィルタの設定情報を表示部に表示し、
前記表示部の逆畳込演算フィルタの設定情報が変更されることにより、前記補正画像データの生成に用いられる逆畳込演算フィルタが調整され、
前記表示部に表示され、変更可能な逆畳込演算フィルタの設定情報は、フィルタのタップと各タップに対して与えられるフィルタ係数との関係であるフィルタ関数と前記フィルタ関数についてのパラメータを含む試料観察方法。
【請求項10】
請求項9において、
前記荷電粒子線装置は、前記試料チャンバの前記第2の絶縁層の近傍に配置される電極と、前記電極を基準電位として前記試料チャンバの前記導電層に所定のバイアス電圧を印加するバイアス電源とを有し、
前記増幅器は、前記試料チャンバの前記導電層に荷電粒子線が照射されることにより前記電極に流れる電流を増幅し、電圧信号に変換して前記測定信号として出力する試料観察方法。
【請求項12】
請求項9において、
さらに、前記画像データ及び/または前記補正画像データと前記画像データの取得時に用いられた逆畳込演算フィルタの情報とを関連付けて保存する試料観察方法。
【請求項13】
請求項12において、
前記画像データは動画データであり、前記補正画像データは補正動画データであって、
前記動画データ及び/または前記補正動画データと、前記動画データまたは前記補正動画データと時間同期させた、前記動画データの取得時に用いられた逆畳込演算フィルタの情報を関連付けて保存する試料観察方法。
【請求項14】
請求項9において、
前記試料は生物試料を含む試料観察方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、荷電粒子線装置および試料観察方法に関する。より詳細には、生物試料を生きたままの状態で観察することも可能な誘電率顕微法観察可能な荷電粒子線装置、それを用いた試料観察方法に関する。
【背景技術】
【0002】
荷電粒子線装置の一つである走査電子顕微鏡(SEM:Scanning Electron Microscope)は、金属やセラミックスなどの材料試料だけでなく、生物試料を高分解能で観察するツールとしてもニーズが広がっている。特許文献1には、生物試料に対して、染色処理や固定化処理を施すことなく、例えば水溶液中の生物試料を生きたままの状態で非侵襲に観察可能な誘電率顕微法を可能とする荷電粒子線装置が開示されている。
【0003】
一方、荷電粒子線装置において、荷電粒子線を高速に走査させた場合、信号検出系の周波数帯域制限によって検出信号が劣化することがあることが知られている。具体的には、検出器の応答速度が遅い場合に電子線を高速に走査させると、走査方向に像が流れ、ぶれたような像となり観察が不可能となる。そのため、特許文献2では、検出系の帯域幅を超える速度で走査した場合の画像の劣化関数から補正1次元フィルタを算出して補正することにより、スループットを落とすことなく画像の劣化を補正してリアルタイム観察を可能とする。
【先行技術文献】
【特許文献】
【0004】
【文献】国際公開第2020/084729号
【文献】特開2011-165450号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
特許文献1に開示される誘電率顕微法により、生きたままの生物試料が変化していく様子をリアルタイムに観察するといったニーズに応えることが期待される。しかしながら、誘電率顕微法では、信号の検出原理上、得られる信号が非常に小さいため、高い増幅率の増幅回路が必要である。一般に、増幅器の増幅率と周波数特性はトレードオフの関係にあるため、画像を取得するための荷電粒子線の走査が遅い場合は高分解能像を取得可能であるが、荷電粒子線の走査が速い場合には像流れしてしまい、観察が不可能となってしまう。このため、誘電率顕微法観察においても、観察視野の探索や、生物試料、たとえば細胞の時間変化の観察といった速い走査速度での観察が望まれる場合には、荷電粒子線の走査速度が増幅器の帯域幅を超えてしまうことが多く、画像の補正処理が必要である。
【0006】
特許文献2の荷電粒子線装置では、試料に荷電粒子線が照射されることにより放出される電子を検出する。このような検出器の場合、画像の劣化関数は荷電粒子線の走査速度と検出器(増幅器を含む)の応答速度との関係によって定まる。このため、観察に用いる荷電粒子線の走査速度と検出器の応答特性との組み合わせに応じ補正1次元フィルタをあらかじめ準備しておき、観察条件に応じて補正1次元フィルタを選択し、重み付けを設定することで、ユーザは容易に適切な画像の劣化補正を実現できる。
【0007】
ところが、誘電率顕微法の場合、画像の劣化が試料を保持する試料チャンバの状態、あるいは試料の状態によって影響を受け、さらに、観察対象が生物試料のような場合には特に、観察中における試料の経時変化によっても影響を受けることが明らかになった。
【0008】
本発明は、誘電率顕微法観察において、荷電粒子線の走査速度にかかわらず、像流れを抑えて観察を可能とすることを課題とする。
【課題を解決するための手段】
【0009】
本発明の一実施の形態である荷電粒子線装置は、荷電粒子光学系と、ステージと、荷電粒子光学系からの荷電粒子線が照射される導電層と、導電層が積層された第1の絶縁層と、第1の絶縁層と対向する第2の絶縁層とを有し、ステージ上に載置され、第1の絶縁層と第2の絶縁層との間に試料を保持する試料チャンバと、試料チャンバの導電層に荷電粒子線が照射されることにより、第1の絶縁層と試料との界面に現れる電位変化を増幅し、測定信号として出力する増幅器と、荷電粒子光学系及びステージを制御するとともに、増幅器からの測定信号を画像データに変換し、画像データを逆畳込演算フィルタにより補正して補正画像データを生成する主制御部と、情報処理装置と、観察像表示部と主制御部において用いられる逆畳込演算フィルタの設定情報を表示するフィルタ調整部とを備える表示部とを有し、情報処理装置は、補正画像データを観察像表示部に表示するとともに、フィルタ調整部に表示される逆畳込演算フィルタの設定情報が変更された場合には、変更された設定情報に応じて主制御部において用いられる逆畳込演算フィルタを調整する。
【発明の効果】
【0010】
走査速度にかかわらず、像流れの抑制された観察像を得ることができる。これにより、観察視野探索の高速化や、試料の変化に追従したリアルタイム観察が容易に可能となる。
【0011】
その他の課題と新規な特徴は、本明細書の記述および添付図面から明らかになるであろう。
【図面の簡単な説明】
【0012】
【
図2】試料チャンバの構造と誘電率顕微法の原理について説明するための図である。
【
図3】測定信号を表示部に画像として表示する機能ブロックである。
【
図4】像流れを補正しながら誘電率顕微法観察を行うフローチャートである。
【
図5】フィルタを設定するためのユーザインタフェースであるフィルタ設定画面の例である。
【
図7】基本フィルタ関数の一例と、調整可能なパラメータの例である。
【
図8】取得した画像データの保存方法の一例を説明する図である。
【発明を実施するための形態】
【0013】
以下、本発明の実施の形態を、図面を用いて説明する。
【0014】
図1は、本実施例の誘電率顕微法観察を行う荷電粒子線装置の一例を示す構成図である。荷電粒子線装置の例としてSEMを示している。荷電粒子線装置の筐体101には、主要な構成として、観察対象である試料200に対して電子線を照射する電子光学系、試料200を保持する試料チャンバ120が載置される3次元的に移動可能なステージ130などが設けられている。電子光学系は、電子銃110と、電子銃110から放出された電子線111を集束し、微小スポットとして試料に向けて照射するコンデンサレンズ112および対物レンズ114と、電子線111を2次元的に走査する偏向器113とを含む。試料200は液状、あるいはゲル状といった流動性を有する試料であるため、試料チャンバ120によって保持された状態で、ステージ130上に載置される。電子光学系を構成する各光学要素やステージ130は、主制御部142によって制御される。
【0015】
試料チャンバ120の構造、誘電率顕微法観察の原理については、
図2を用いて後述するが、試料200に向けて電子線111が照射されることによって、電極125には電流が流れる。電極125に流れる電流は、増幅器141によって増幅され、測定信号として主制御部142に入力される。主制御部142は、試料チャンバ120への電子線111の照射位置ごとに増幅器141から出力された測定信号を、その強度に応じた画素階調データに変換し、電子線の偏向速度によって1フレーム走査の完了ごと、あるいは1ライン走査の完了ごと、あるいは1画素走査の完了ごとに画像データとしてコンピュータ(情報処理装置)143に出力する。コンピュータ143は、画像データを表示部144に表示する。また、コンピュータ143には入力部145が接続され、荷電粒子線装置に対する設定や指示がユーザによって入力されると、コンピュータ143から主制御部142に入力に応じた指令がなされる。
【0016】
図2を用いて、試料チャンバ120の構造と誘電率顕微法の原理について説明する。
図2にその断面が示される試料チャンバ120は、第1の絶縁層121と第2の絶縁層122との間に試料200を挟み込むことによって試料200を保持している。第1の絶縁層121は、電子線111の照射面側に配置され、荷電粒子線装置の筐体101内の真空から試料200を隔離する役割を果たす。第1の絶縁層121及び第2の絶縁層122は、それぞれ外枠部123及び外枠部124によって支持されることにより、その強度が保持されている。また、外枠部123及び外枠部124のそれぞれには、対向する位置に窓部が設けられており、窓部の底においては、絶縁層は外枠部によって支持されていない。さらに、電子線111の照射面側には、第1の絶縁層121及び外枠部123を覆うように導電層211が設けられている。試料チャンバ120における外枠部の窓部の底が試料200の観察領域212となる。観察領域212において、導電層211に電子線111が照射されることにより、第2の絶縁層122に近接して配置されている電極125に流れる電流が検出される。
【0017】
電子線が通過する荷電粒子線装置の筐体101内は真空状態とされる必要がある一方、液体を含む試料200を真空にさらすことはできない。このため、
図2の例では中間層210を設け、第1の絶縁層121と第2の絶縁層122との間に保持された試料200を真空から隔離している。なお、試料200が真空から隔離されれば、試料チャンバ120に中間層210を設ける必要はない。例えば、中間層210を設けない状態で、図示しない真空隔壁によって、試料200の周囲を大気圧もしくは筐体101よりも低い真空度に保持することによって、試料200を真空から隔離してもよい。ただし、電子線111が試料チャンバ120の導電層211に照射可能なように、真空隔壁の上面(電子線111の照射面側)において、観察領域212に対向する部分は開口されている必要がある。
【0018】
上述のように、観察領域212において、第2の絶縁層122は外雰囲気に曝露され、その近傍に電極125が配置されている。なお、観察領域212において第2の絶縁層122が曝露される外雰囲気は、筐体101と同一の真空雰囲気であってもよいし、大気圧もしくは筐体101よりも低い真空度であってもよい。これは、試料200を真空から隔離する方法次第であって、どちらであってもかまわない。
【0019】
試料チャンバ120は、試料200に電界を発生させる機構を備えている。具体的には、導電層211にバイアス電圧を印加するバイアス電源230を備える。一方、対向する電極125には、バイアス電圧に対する基準電位が印加される。また、電極125はステージ130と電気的に絶縁されている。
【0020】
続いて、誘電率顕微法の原理について説明する。本実施例の誘電率顕微法観察にあたっては、電子線111の加速電圧は第1の絶縁層121をほぼ透過しないように設定されることが好ましい。試料チャンバ120に電子線111が照射されると、第1の絶縁層121内部の電子線散乱領域220において、正のキャリア221と負のキャリア222とが発生する。前述したバイアス電圧によって、正のキャリア221は導電層211側、負のキャリア222は試料200側に移動する。試料200の液体が水である場合、水分子そのものは分極しているため、第1の絶縁層121の試料200との界面が負に帯電することによって、水分子の電気双極子が電位勾配に添って配列する。この電気双極子配列により、対向する第2の絶縁層122にも電荷が生じる。この電荷により第2の絶縁層122に生じた電位信号が、電極125により検出される。
【0021】
ここで、試料200が水にタンパク質複合体とみなせる細胞201を分散させたものであるとして、観察領域212における第1の絶縁層121と試料200との界面に沿った第1の絶縁層121内の2次元の電界強度分布に着目する。試料200と第1の絶縁層121との界面付近に細胞201が付着している領域では、細胞内の電界強度が高くなる分、界面直上の第1の絶縁層121内の電界強度は相対的に低くなる。これに対して、試料200と第1の絶縁層121との界面付近に細胞がない領域では、界面直上の第1の絶縁層121内の電界強度は相対的に高くなる。このように、観察領域212における第1の絶縁層121内の試料200との界面に沿った2次元の電界強度分布は、試料200内の誘電率の分布を反映したものとなる。具体的には、水の誘電率が約80であるのに対し、タンパク質の誘電率は2~3であるため、水の部分の電位勾配すなわち電界強度は細胞の部分のそれに比べて緩やかになる。
【0022】
要約すると、第1の絶縁層121内の試料200との界面に沿った2次元の電界強度分布により第1の絶縁層121内の電子線散乱領域220において発生した正のキャリア221と負のキャリア222の移動度が変わり、これにより、第2の絶縁層122の電荷量が変わる。この第2の絶縁層122に生じた電位信号の大きさを捉えることで、電子線111の照射位置における試料200の誘電率を捉えることができる。電子線111を走査させることにより、試料200の誘電率の分布により電極125に流れる電流が変化し、この変化をコントラストとして画像化する。
【0023】
なお、第1の絶縁層121および導電層211の厚さは均一にされている。したがって、入射した電子線111の散乱領域220の深さは走査領域によらず一様であり、散乱領域220内の一次電子のエネルギー分布も走査領域によらず一様である。これにより、第1の絶縁層121内で生成される正のキャリア221と負のキャリア222の数も、走査領域によらず一様とすることができる。
【0024】
図3は、増幅器141からの測定信号を表示部144に画像として表示する機能ブロックである。増幅器141は、電極125で検出した電流の増幅と電圧信号への変換を行い、測定信号として主制御部142に出力する。主制御部142は、増幅器141から入力される電圧信号を、その強度に応じた画素階調データに変換する。前述のように、変換された画素階調データ(画像データ)はコンピュータ143に出力され、表示部144に表示される。さらに、主制御部142はフィルタ302を備える。フィルタ302は、取得された画像データに像流れが生じている場合に、画素階調データに対して逆畳込演算を行い、像流れを補正するフィルタである。
【0025】
上述のように、特許文献2に開示される二次信号検出器は、試料から真空空間中に放出された信号電子を検出するため、観察対象である試料や試料の保持構造が画像の劣化に影響を与えることはない。これに対して、本実施例の誘電率顕微法においては
図2を用いて説明したように、第1の絶縁層121に生じた電界が、試料に含まれる水分子の電気双極子を配列させることによって第2の絶縁層122に伝搬され、第2の絶縁層122に生じた電位変化を電極125で検出するため、試料チャンバ120の構造や試料200の状態も検出系の検出速度に影響する。
【0026】
例えば、試料チャンバ120は、第1の絶縁層121を含む積層体と第2の絶縁層122を含む積層体とを、試料200を挟み込んで組み立てることで形成する。このため、挟み込む試料200の量によって試料200の厚み、すなわち第1の絶縁層121と第2の絶縁層122との間隔が変わる。同じ試料を同じ走査速度で観察していても、試料の厚みが異なれば、電極125に現れる電流変化の速度は異なる。また、試料チャンバ120の観察領域212において、試料200は上下の薄膜によってのみ保持されているため、筐体101を真空引きする過程において、試料200を保持する薄膜層にたわみが生じる場合がある。
【0027】
また、試料200の状態も検出速度に影響する。例えば、試料200が水に細胞201を分散させたものであるとすれば、細胞201の濃度、分布状態によって、電極125に現れる電流変化の速度は異なる。さらに、試料200は流動性を有するので、観察中における細胞201の試料200中の移動といったような経時変化によっても、電極125に現れる電流変化の速度は変動する。
【0028】
このように、増幅器141そのものの回路特性は観察ごとに不変であるとしても、試料チャンバ120を含めた検出系における応答特性は、試料チャンバ120の組み立て、気圧差による薄膜層のたわみ具合といった試料チャンバ120の特性や、試料200の濃度のような試料の状態、さらに観察中における試料状態の経時変化、といった影響を受けて観察ごとに異なる。したがって、荷電粒子線の走査速度と増幅器141の回路特性といった数値化されたパラメータからだけでは適切な補正処理を行うフィルタを選択することができない。
【0029】
そこで、本実施例においては、フィルタ302として使用するフィルタ関数、およびそのパラメータを入力部145からユーザが設定可能に構成されている。例えば、増幅器141からの測定信号に基づき表示部144に表示される画像に像流れが生じている場合、ユーザは所定のユーザインタフェース上で、フィルタ302を調整することができる。これにより、ユーザは、表示部144に表示される画像を確認しながら、都度、フィルタ302を調整することで、荷電粒子線の走査速度、あるいは試料の経時変化にかかわらず、像流れのない画像を観察することができる。また、フィルタ302の調整は、任意のタイミングで可能であるので、例えば、生きたままの生物試料が変化していく様子もリアルタイムに観察可能となる。
【0030】
図4に、本実施例の荷電粒子線装置により、像流れを補正しながら誘電率顕微法観察を行うフローチャートを示す。開始後、ユーザは、ユーザインタフェースあるいは入力部145により、観察対象の視野に移動し(S401)、倍率の設定(S402)と走査速度の設定(S403)を行い、得られる画像を確認する(S404)。この時、ユーザは、像流れ量を確認し(S405)、最小でないと判断する場合は、ユーザインタフェース上から適切なフィルタ関数の選択とパラメータ調整を行う(S406)。表示部には、フィルタ302(逆畳込演算フィルタ)によって像流れが補正された画像が表示されるので、補正像を観察しながらフィルタ関数の選択とパラメータ調整(S406)を行うことによって、適正なフィルタを設定することができる。これにより、観察視野の探索を高速に行ったり、試料の状態が急に変化しても追従して観察を継続したりすることができる。補正により像流れが最小になった状態で、撮像あるいはライブ観察を行う(S407)。撮像は、静止画の撮像、動画の撮像のいずれもありうる。
【0031】
なお、手順S401、S402、S403の実施順は順不同である。いずれかの条件を変更すると、適切なフィルタが変化する。これは、荷電粒子線の走査速度を変更すれば画像の劣化具合が変化するのは上述のとおりであり、また、流動性を有する試料は一般にその状態が均一ではないので、走査範囲が異なれば、試料状態も異なり、その結果、画像の劣化具合も変化するためである。
【0032】
図5に、フィルタを設定するためのユーザインタフェースを示す。表示部144に表示されるフィルタ設定画面500は、SEM像表示部501とフィルタ調整部502とを備える。SEM像表示部501には、フィルタ302による補正処理前後のSEM像を表示することができる。なお、フィルタ調整後には、フィルタ補正処理後のSEM像のみを表示するように切り替えられるようにしてもよい。SEM像表示部501に表示されるSEM像に像流れが認められる場合、ユーザは設定画面500のフィルタ調整部502でフィルタ関数の選択やパラメータの調整を行い、像流れを補正することができる。SEM像を観察しながら補正を行うことにより、像流れ量が変化する要因の多い誘電率顕微法において、良好な画像を得ることが可能となる。
【0033】
図6は、フィルタ調整部502の表示例である。フィルタ調整部502は、フィルタ関数を示すフィルタ関数表示部601と、あらかじめ記憶した複数の基本フィルタ関数から適用する基本フィルタ関数を選択するフィルタ選択部602と、現在のフィルタを記憶するフィルタ保存部603と、保存されたフィルタを読み出すフィルタ参照部604と、選択された基本フィルタ関数または読み出したフィルタのパラメータを調整するパラメータ調整部605と、を備える。本実施例では、フィルタ関数とそのパラメータによって補正に用いる逆畳込演算フィルタを設定することができるので、これらをフィルタの設定情報と呼ぶ。フィルタ保存部603により、実観察において調整したフィルタの設定情報をユーザが保存可能とすることにより、同様の試料について繰り返し観察を行うような場合に、基本フィルタ関数から調整してフィルタを設定するよりも簡単にパラメータ調整が行えることが期待される。パラメータ調整部605は、調整対象のフィルタ(関数)について少なくとも1つのパラメータを調整することができる。調整可能なパラメータの数は、選択した基本フィルタ関数によって数が異なっていてもよい。調整可能なパラメータ数の少ない基本フィルタ関数を選択することで、より簡便にフィルタの調整を行うことができ、調整可能なパラメータ数の多い基本フィルタ関数を選択することで、より高精度なフィルタの調整を行うことができる。
【0034】
また、試料の観察中においては、フィルタ調整部502にはSEM像表示部501に表示されている画像を取得するために用いているフィルタの設定情報が表示されるようにする。これにより、ユーザは得られる観察画像とそのときのフィルタの設定情報とを一見して把握することができる。ユーザは任意のタイミングでフィルタの設定情報の変更が可能であり、それにより、調整されたフィルタにより補正された補正画像をSEM像表示部501により、確認することができる。
【0035】
フィルタのタップと各タップに対して与えられるフィルタ係数との関係をフィルタ関数と呼ぶ。本実施例は、画像鮮鋭化手法として知られる逆畳込演算(デコンボリューション)を行うためのフィルタをいくつか基本フィルタ関数として事前登録しておき、いずれかの基本フィルタ関数を選択し、そのパラメータを調整して像流れを低減するフィルタを設定する。
図7に、基本フィルタ関数の一例と、調整可能なパラメータの例を示す。基本フィルタ関数701は、
図7に示すSin波に限られず、矩形波、三角波、台形波などが考えられ、波数は1つ以上が考えられる。また、調整可能なパラメータは、開始点オフセット702、波の振幅703、波の幅704である。例えば、波の幅704についてはこの例では1波長分の幅に対して調整可能としているが、例えば、1つの波を分割し、例えば半波長ごとに調整可能としてもよい。なお、これらのパラメータは必ずしも独立ではなく、逆畳込演算フィルタとして機能するためにフィルタ関数が満たすべき条件が存在するので、ユーザがいずれかのパラメータを調整することによって、他のパラメータの値も調整される場合がある。例えば、ユーザが幅パラメータ704を調整すると、フィルタ関数が再計算されることにより、振幅パラメータ703も調整後の幅パラメータ704に応じた値に調整される。
【0036】
図8に、取得した画像データの保存方法の一例について示す。上述のように、ユーザは、フィルタ調整部502からフィルタ関数の選択、フィルタの呼び出し、パラメータの調整を行うことができる。フィルタ設定部801は、入力部145からユーザが入力した情報にしたがって、所望のフィルタとなるようにフィルタ302を設定する。例えば、フィルタ302はFPGAで実現されるデジタルフィルタとして実装され、フィルタ設定部801からのフィルタ設定データにより、各タップのフィルタ係数が設定される。ユーザは、表示部144に表示される補正画像から像流れが抑えられていると判断すれば、画像をストレージ802に保存する。このとき、ストレージ802にはフィルタ302による補正前の画像データ811(raw画像データという)、フィルタ302により補正を行った補正画像データ812、フィルタ設定部801がフィルタ302に設定に用いたフィルタ設定データ813を関連付けて保存する。なお、raw画像データ811と補正画像データ812のいずれか一方を保存するようにしてもよい。
【0037】
これにより、ライブ観察においては観察に要する時間を短くするために、表示部144で試料の像が視認できる程度まで補正し、後処理によりSEM像を高精度化するといった観察方法が可能になる。
【0038】
動画を撮像する場合においても、raw動画データ、補正動画データ、動画データ(補正前後のどちらの動画データであってもよい)と時間同期させたフィルタ設定データを関連付けて保存する。この場合も、raw動画データと補正動画データのいずれか一方を保存するようにしてもよい。時間同期するタイミングは一定時間ごとでも、ユーザ任意のタイミングごとであってもよい。短い時間で経時変化する試料についての観察の場合、フィルタ設定データの取得周期を早めることで、試料状態の変化に追従可能である。
【0039】
なお、ここでは画像に関連付けてフィルタ設定データ813を保存する例を示したが、フィルタの設定情報を用いてもよい。すなわち、画像データと関連付けて保存するフィルタの情報は、補正画像に適用したフィルタが再現できればよい。これは、
図6において説明したフィルタの設定情報を保存する場合も同様であって、本実施例においてはフィルタの設定情報を保存する例を示したが、これに代えて対応するフィルタ設定データを保存してもよい。また、画像データとの関連付けの方法も任意であって、画像または動画データのファイル名に付帯して保存してもかまわない。
【0040】
以上、本発明を実施例に即して説明したが、本発明は実施例として開示した内容に限定されるものではない。例えば、試料チャンバの構造と誘電率顕微法の原理について
図2を用いて説明したが、
図2に示した検出系の構成は誘電率顕微法の一構成例に過ぎない。例えば、特許文献1に複数の検出系の構成例が例示されているように、荷電粒子光学系からの荷電粒子線が照射される導電層と、導電層が積層された第1の絶縁層と、第1の絶縁層と対向する第2の絶縁層とを有し、第1の絶縁層と第2の絶縁層との間に試料を保持する試料チャンバを用い、試料チャンバの導電層に荷電粒子線が照射することによって現れる第1の絶縁層と試料との界面に現れる電位変化を増幅して検出する検出系を有するものであれば、検出系の構成にかかわらず、本発明の適用が可能である。
【符号の説明】
【0041】
101:筐体、110:電子銃、111:電子線、112:コンデンサレンズ、113:偏向器、114:対物レンズ、120:試料チャンバ、121:第1の絶縁層、122:第2の絶縁層、123,124:外枠部、125:電極、130:ステージ、141:増幅器、142:主制御部、143:コンピュータ、144:表示部、145:入力部、200:試料、201:細胞、210:中間層、211:導電層、212:観察領域、220:電子線散乱領域、221:正のキャリア、222:負のキャリア、230:バイアス電源、302:フィルタ、500:フィルタ設定画面、501:SEM像表示部、502:フィルタ調整部、601:フィルタ関数表示部、602:フィルタ選択部、603:フィルタ保存部、604:フィルタ参照部、605:パラメータ調整部、701:基本フィルタ関数、702:開始点オフセットパラメータ、703:振幅パラメータ、704:幅パラメータ、801:フィルタ設定部、802:ストレージ、811:raw画像データ、812:補正画像データ、813:フィルタ設定データ。