(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-11
(45)【発行日】2023-09-20
(54)【発明の名称】サージ吸収回路
(51)【国際特許分類】
H01L 21/822 20060101AFI20230912BHJP
H01L 27/04 20060101ALI20230912BHJP
H01L 27/06 20060101ALI20230912BHJP
H02H 9/04 20060101ALI20230912BHJP
【FI】
H01L27/04 H
H01L27/06 311C
H02H9/04 B
(21)【出願番号】P 2019063044
(22)【出願日】2019-03-28
【審査請求日】2021-11-25
(73)【特許権者】
【識別番号】308033711
【氏名又は名称】ラピスセミコンダクタ株式会社
(74)【代理人】
【識別番号】110001025
【氏名又は名称】弁理士法人レクスト国際特許事務所
(72)【発明者】
【氏名】渕上 千加志
【審査官】石塚 健太郎
(56)【参考文献】
【文献】特開2006-121007(JP,A)
【文献】特開2016-072349(JP,A)
【文献】特開2009-147040(JP,A)
【文献】米国特許出願公開第2017/0310103(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 27/04
H01L 21/822
H01L 27/06
H02H 9/04
(57)【特許請求の範囲】
【請求項1】
第1の抵抗素子と、
ダイオードからなる第1の回路と、
電源ラインと接地ラインに接続され、前記電源ラインと前記接地ラインの間に発生するサージ電圧が入力されてトリガ電圧を出力するインバータ回路と、
前記トリガ電圧の入力によって前記電源ラインと前記接地ラインの間を短絡するトランジスタと、を備え、
前記第1の抵抗素子は、一端が前記接地ラインに接続され、他端が前記トランジスタのゲートに接続され、
前記第1の回路の前記ダイオードは、アノードが前記インバータ回路の出力端と前記トランジスタのバックゲートの間に接続され、かつカソードが前記接地ラインと前記トランジスタのゲートの間に接続され、
前記トランジスタは、ドレインが前記電源ラインに接続され、ソースが前記接地ラインに接続され、ゲートが前記ダイオードのカソードに接続され、バックゲートが前記インバータ回路の出力端に接続されたサージ吸収回路。
【請求項2】
前記インバータ回路は、1対の相補的トランジスタからなる請求項1に記載のサージ吸収回路。
【請求項3】
前記電源ライン、前記接地ライン及び前記インバータ回路に接続され、互いに直列に接続された第2の抵抗素子とキャパシタを有し、前記インバータ回路に入力電圧を入力する時定数回路をさらに備えた請求項1又は2に記載のサージ吸収回路。
【請求項4】
前記
トランジスタは、前記トリガ電圧をゲート又はバックゲートの入力とするMOSFETである請求項1~3のいずれか1に記載のサージ吸収回路。
【請求項5】
電源ライン及び接地ラインに接続され、互いに直列に接続された抵抗素子とキャパシタを有する時定数回路と、をさらに有する請求項1
又は2に記載のサージ吸収回路。
【請求項6】
前記第1の回路は、直列接続された複数のダイオードを含む請求項1~5のいずれか1に記載のサージ吸収回路。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電源ラインまたはラインに発生するいわゆるESD(静電気放電)などのサージ電圧から半導体集積回路を保護するサージ吸収回路に関する。
【背景技術】
【0002】
大規模集積回路(Large Scale Integrated:以下、LSI)等の半導体集積回路は、微細なトランジスタの集合体であるが故に、静電気放電(Electro Static Discharge:以下、ESD)に曝されるとさまざまな誤作動や破壊が生じる。例えば、一瞬の誤動作から、機能低下や停止に繋がるシリコンの溶融、金属配線の断線などの破壊も生じる。よって、ESDからLSIを保護するESD保護回路としてのサージ吸収回路を搭載する場合がある。
【0003】
【0004】
この公知のESD保護回路においては、互いに直列に接続された抵抗R3とキャパシタC1とを含む時定数回路GCが電源端子VCCQ及び接地端子VSSQに接続されている(例えば特許文献1参照)。
【0005】
キャパシタC1のチャージ電圧は、インバータ回路INV1、INV2の入力端子に供給される。これらのインバータ回路INV1及びINV2の出力端子は、出力線GTDV及びWLDVに接続される。
【0006】
例えば、電源端子VCCQに正のサージ電圧が発生した時、INV1及びINV2にはVCCQから動作電圧が供給され、INV1及びINV2の入力端子には時定数回路により遅れてサージ電圧に対応したハイレベルが入力される。したがって、インバータ回路INV1及びINV2は、電源端子VCCQに正のサージ電圧が発生した時からキャパシタC1のチャージ電圧がインバータ回路INV1及びINV2の論理しきい値電圧に到達するまでの間ハイレベルを維持し、IOセルに分散して設けられたMOSFETQ3がオン状態となってこのサージ電圧が放電される。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
しかしながら、インバータ回路はpチャネル型MOSFET、nチャネル型MOSFETの相補的FET対の複合素子である故、回路面積が大きくなる。それ故、
図1に示した事例の複数のインバータ回路を含むESD保護回路においてはICチップ上に形成されるこのESD保護回路の占有面積が大きくなってしまう。すなわち、回路レイアウト制約やICチップの肥大化などの問題が挙げられる。
【0009】
また、サージ電圧に耐えられる耐圧特性を持つMOSFETは、ゲート抵抗が高くなる。すなわち、MOSFETのドレインにサージ電圧が印加された時、高いゲート抵抗によるスイッチング動作の遅延が生じ、MOSFETが破壊に至る虞がある。
【0010】
本発明は、回路レイアウトの自由度の向上とICチップ縮小化を可能とし、且つ耐久性に秀でたサージ吸収回路を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明に係るサージ吸収回路は、電源ラインと接地ラインの間に生ずるサージ電圧に応答してトリガ電圧を出力する時定数回路及びインバータ回路を含むトリガ回路と、前記トリガ電圧に応答して前記電源ラインと前記接地ラインの間を短絡するバイパス素子と、シャントnMOSFETのスイッチング応答速度を高速化するプルダウン抵抗と、通常動作時にサージ吸収回路外部から接地ラインを経由してサージ吸収回路内部にノイズが流入するのを阻止するダイオードと、を有する。
【発明の効果】
【0012】
本発明に係るサージ吸収回路においては、静電気放電に伴うサージ電圧が電源ラインに印加されると、サージ電圧が時定数回路及びインバータ回路の動作電源電圧端子に印加される。前記時定数回路によりサージ電圧はインバータ回路の入力端子に遅延して印加され、サージ発生とほぼ同時に印加された動作電源電圧との間に電位差が生じる。これによりインバータ回路はオン状態となり、サージ電圧相当のハイレベルのトリガ電圧を出力し、出力されたトリガ電圧はダイオードを介してシャントnMOSFETのゲートに印加される。シャントnMOSFETのゲートにトリガ電圧が印加されることでシャントnMOSFETがオン状態となりドレイン-ソース間が導通状態となる故、静電気放電に伴うサージ電圧はシャントnMOSFETを介して放電される。
【0013】
プルダウン抵抗がシャントnMOSFETのゲートとソース間に並列に接続されているため、シャントnMOSFET素子内のゲートとソース間抵抗及びゲートとソース寄生容量による時定数はプルダウン抵抗により減少する。時定数減少に伴い、シャントnMOSFETのゲート印加電圧の立ち上がりが早くなることでシャントnMOSFETのスイッチング応答速度は高速化され、ドレインとソース間に過電圧が印加される時間が短くなり、アバランシェ破壊を抑制することが可能となる。
【0014】
したがって、サージ吸収回路は電源ラインと接地ラインの間に並列に接続されている他のLSI内部回路を保護することが可能となると共に、サージ吸収回路内のシャントnMOSFETの破壊を抑制することが可能となる。
【図面の簡単な説明】
【0015】
【
図2】実施例1のサージ吸収回路を示す回路図である。
【
図3】インバータ回路を相補的FETで示した回路図である。
【
図4】シャントnMOSFETとこれに寄生するバイポーラトランジスタを示す等価回路図である。
【
図5】実施例2のサージ吸収回路を示す回路図である。
【発明を実施するための形態】
【実施例1】
【0016】
図2は、実施例1のサージ吸収回路10の回路図である。サージ吸収回路10は、抵抗21とキャパシタ22からなる時定数回路20と、時定数回路20の出力に応答してトリガ電圧を出力するインバータ回路30と、を有する。また、サージ吸収回路10は、トリガ電圧に応答してオン状態となり電源ラインVDDと接地ラインVSSの間を短絡するシャントnMOSFET61と、シャントnMOSFET61のスイッチング応答速度を高速化するプルダウン抵抗51と、通常動作時にサージ吸収回路10の外部から接地ラインVSSを経由してサージ吸収回路10内部にノイズが流入するのを阻止するダイオード41と、を有する。
【0017】
サージ吸収回路10は、電源ラインVDDと接地ラインVSSの間に、図示しないLSI内部回路と並列に接続される。サージ吸収回路10は、電源ラインVDDと接地ラインVSSとの間において互いに直列に接続された抵抗21とキャパシタ22とを含む時定数回路20を含んでいる。具体的には、時定数回路20の抵抗21が電源ラインVDDと、キャパシタ22が接地ラインVSSと接続される。
【0018】
インバータ回路30は、入力端子が時定数回路20の抵抗21とキャパシタ22との間に接続された入力端子と、電源ラインVDD及び接地ラインVSSに接続された動作電源電圧端子とを有している。インバータ回路30は、入力端子からの入力信号を反転して出力する。すなわち、入力電圧Vinと動作電源電圧VDDとの電位差がインバータ回路30の閾値電圧を上回る場合(ロウレベル:VDD-Vin>Vth)には、インバータ回路30は動作電源電位VDD(ハイレベル)を出力する。また、入力電圧Vinと動作電源電圧VDDとの電位差がインバータ回路30の閾値電圧未満の場合(ハイレベル:VDD-Vin<Vth)、インバータ回路30は接地電位VSS(ロウレベル)を出力する。
【0019】
ダイオード41は、アノードがインバータ回路30の出力に接続され、カソードが接地ラインVSSに接続されているダイオードである。すなわち、ダイオード41のアノードには、出力Voutが入力される。
【0020】
シャントnMOSFET61は、ドレインが電源ラインVDDと接続され、ソースが接地ラインVSSに接続され、ゲートがダイオード41のカソードに接続され、バックゲートがインバータ回路30の出力に接続されているMOSFETである。すなわち、シャントnMOSFET61のバックゲートにはインバータ回路30の出力Voutが入力され、ゲートにはダイオード41を介したインバータ回路30の出力Voutが入力される。
【0021】
プルダウン抵抗51は、一端がダイオード41のカソード及びシャントnMOSFET61のゲートに接続され、他端が接地ラインVSSに接続されている抵抗である。すなわち、ダイオード41のカソード及びシャントnMOSFET61のゲートは、プルダウン抵抗51を介して接地ラインVSSに接続されている。
【0022】
図3は、
図2におけるインバータ回路30を相補的MOSFETであるpチャネル型MOSFET31とnチャネル型MOSFET32とによって構成した回路図である。インバータ回路30は、pチャネルMOSFET31とnチャネルMOSFET32のドレイン同士が接続されたMOSFET対である。入力端子をpチャネル型MOSFET31とnチャネル型MOSFET32のゲートとし、電源ラインVDD側の動作電源電圧端子をpチャネル型MOSFET31のソースとし、接地ラインVSS側の動作電源電圧端子をnチャネル型MOSFET32のソースとする相補的MOSFETで構成される。インバータ回路30の出力端子は、pチャネル型MOSFET31とnチャネル型MOSFET32の双方のドレインである。
【0023】
インバータ回路30の入力電圧と電源ラインVDD側の動作電源電圧端子に電位差が生じない場合、nチャネル型MOSFET32がオン状態となり、インバータ回路30からは接地電位VSSが出力される。一方、インバータ回路30の入力電圧と電源ラインVDD側の動作電源電圧端子に電位差が生じこの電位差がpチャネル型MOSFET31の閾値電圧を超えた場合、pチャネル型MOSFET31がオン状態となり、インバータ回路30からは電源電位VDDが出力される。
【0024】
次に、上述したサージ吸収回路10の動作について説明する。
【0025】
まず、サージ電圧の生じていない通常動作時、時定数回路20、インバータ回路30の動作電源電圧端子及び入力端子電圧VinにはVDDが印加されており、pチャネル型MOSFET31のソースには電源ライン電位VDDが印加されており、nチャネル型MOSFET32のソースには接地電位VSSが印加されている。したがって、nチャネル型MOSFET32のゲート-ソース間にて電位差が生じる(Vin-VSS>Vth)ため、nチャネル型MOSFET32はオン状態となり、ソース-ドレイン間が導通状態となる。したがって、インバータ回路30の出力端子からはトリガ電圧Vout=VSSが出力される。
【0026】
インバータ回路から出力された電圧Voutは、ダイオード41を介してシャントnMOSFET61のゲートに印加される。通常動作時において、Vout=VSSなので、シャントnMOSFET61はオフ状態となる。すなわち、通常動作時において、インバータ回路30の動作電圧端子と出力端子間及びシャントnMOSFET61のドレインとソース間は非導通状態となり、抵抗21及びキャパシタ22には電流が流れない。したがって、サージ吸収回路10に並列に接続されるLSI内部回路には、通常動作電圧の電源電圧VDDが供給される。
【0027】
また、通常動作時、サージ吸収回路10に並列に接続される被保護回路から接地ラインVSSを経由しサージ吸収回路10に信号ノイズが流入した場合、信号ノイズはダイオード41によりインバータ回路30のバックゲートに印加されない。すなわち、インバータ回路30のセルフターンオンによる誤動作は発生しない。
【0028】
電源ラインVDDに静電気放電が発生した場合、静電気放電に伴うサージ電圧は、時定数回路20と、インバータ回路30のVDD側の動作電源電圧端子と、シャントnMOSFET61のドレインとに印加される。インバータ回路30の入力電圧Vinは、時定数回路20によって遅延したサージ電圧が印加される。Vinのサージ電圧印加の遅延により、pチャネル型MOSFET31のゲートとソース間にて電位差が生じる(サージ電圧-Vin>Vth)。これにより、pチャネル型MOSFET31はオン状態となり、ソースとドレイン間が導通状態となる。したがって、インバータ回路30の出力端子からはトリガ電圧Vout=サージ電圧が出力される。
【0029】
インバータ回路30から出力されたサージ電圧であるトリガ電圧は、シャントnMOSFET61のゲート及びバックゲートに印加され、シャントnMOSFET61はオン状態となる。すなわち、シャントnMOSFET61がオン状態になることで、サージ吸収回路10はシャントnMOSFET61を介してVDD-VSS間が短絡して、サージ電圧は放電される。
【0030】
接地ラインVSSに静電気放電が発生した場合、静電気放電に伴うサージ電圧は、時定数回路20と、インバータ回路30のVSS側の動作電源電圧端子と、シャントnMOSFET61のソースとに印加される。通常動作時においてnチャネル型MOSFET32はオン状態なので、nチャネル型MOSFET32のドレインとソース間はすでに導通状態である。すなわち、インバータ回路30のVSS側の動作電源電圧端子に印加されたサージ電圧は直ちにインバータ回路30の出力端子からトリガ電圧として出力され、シャントnMOSFET61のゲート及びバックゲートに印加される。このトリガ電圧により、シャントnMOSFET61がオン状態になることで、サージ吸収回路10においてシャントnMOSFET61を介してVDDとVSS間が短絡してサージ電圧は放電される。
【0031】
図4は、シャントnMOSFET61における、シャントnMOSFET61素子とこれに寄生するバイポーラトランジスタ62素子を示すnチャネル型MOSFET素子60の等価回路である。このnチャネル型MOSFET素子60は、ゲートGとバックゲートBGにインバータ回路30の出力端子が接続されている。このn型MOSFET60のゲート側(チャネル層側)には、回路図上で表記されるドレインD、ゲートG、ソースS及びバックゲートBGを持つシャントnMOSFET61が構成されており、バックゲート側(ウェル層側)には、ドレインDをコレクタCとし、バックゲートBGをベースBとし、ソースSをエミッタEとする寄生バイポーラトランジスタ62が構成される。シャントnMOSFET61のドレイン及び寄生バイポーラトランジスタ62のコレクタが電源ラインVDDに接続されており、シャントnMOSFET61のソース及び寄生バイポーラトランジスタ62のエミッタが接地ラインVSSに接続される。シャントnMOSFET61のバックゲート及び寄生バイポーラトランジスタ62のベースはインバータ回路30の出力端子と接続されている。
【0032】
サージ電圧印加によりインバータ回路30からトリガ電圧が出力されnチャネル型MOSFET素子60のゲート及びバックゲートに印加される。トリガ電圧の印加によりシャントnMOSFET61はオン状態となり、ドレインからソースへと電流が流れる。また、サージ電圧印加により寄生バイポーラトランジスタ62にもベース電流が供給されオン状態となり、コレクタからエミッタへ電流を流すことが可能となる。したがって、ウェル層側でも電流を流すことができるため、大きな電流を流すことができ、迅速な放電が可能となる。
【0033】
プルダウン抵抗51がシャントnMOSFET61のゲートとソース間に接続されているため、シャントnMOSFET61のゲートとソース間抵抗およびプルダウン抵抗51が並列に接続される構成になる。すなわち、シャントnMOSFET61素子内のゲートとソース間抵抗を低くすることができ、シャントnMOSFET61の寄生容量による時定数を小さくすることが可能となる。そのため、シャントnMOSFET61のスイッチング動作を速くすることができ、サージ発生時にシャントnMOSFET61のドレイン電圧が急峻に立ち上がっても、ゲート印加電圧が素早く追従しシャントnMOSFET61をオン状態にするため、アバランシェ破壊を抑制することが可能となる。
【0034】
シャントnMOSFET61のゲート及びバックゲートにおいて、インバータ回路30から出力されたトリガ電圧がほぼ同時に印加されるため、シャントnMOSFET61のグート-バックゲート間に電位差が生じない。すなわち、シャントnMOSFET61のゲート-バックゲート間を貫通する貫通電流が生じないため、シャントnMOSFET61のゲート酸化膜は破壊され難くなる。
【0035】
サージ電圧が放電され、電源ライン電圧がサージ電圧から電源ライン電圧VDDまで電圧降下することにより、インバータ回路30及びシャントnMOSFET61はオフ状態となり、通常動作状態へ戻る。
【0036】
したがって、サージ電圧が外部と接続された電源ラインVDD及び接地ラインVSSに印加された場合、サージ吸収回路10において、サージ電圧の印加に応答してシャントnMOSFET61のドレインとソース間が導通状態となり、サージ吸収回路10は電源ラインVDDと接地ラインVSSの間で短絡状態となる。これにより、サージ吸収回路10に並列に接続されている他の回路をサージ電圧およびサージ電流から保護する。
【0037】
また、プルダウン抵抗51によりシャントnMOSFET61のスイッチング動作速度の高速化がなされることで、シャントnMOSFET61のアバランシェ破壊を抑制することが可能となる。
【0038】
よって、本発明によれば、サージ吸収回路(ESD保護回路)に形成されるインバータ回路の数量を削減することが可能となる。すなわち、半導体集積回路内に形成されたサージ吸収回路の面積を縮小することが可能となり、回路レイアウトの自由度の向上とICチップ縮小化を可能とする。
【0039】
また、電源ラインと接地ラインの間にサージ電圧が生じても、サージ吸収回路内のシャントnMOSFETが破壊されない耐久性に秀でたサージ吸収回路を提供することが可能となる。
【実施例2】
【0040】
図5は実施例2のサージ吸収回路10Aを示す回路図である。同一導通方向に直列に接続された2個以上の複数のダイオード群42のアノードがインバータ回路30の出力と接続されており、且つ、複数のダイオード群42のカソードがシャントnMOSFET61のバックゲートと接続されている。シャントnMOSFET61のゲートがインバータ回路30の出力に接続されている。
【0041】
ダイオード群42は通常動作時に被保護回路から接地ラインVSSを経由して流入する信号ノイズの電圧レベルに応じて適切な個数(例えば3個)を同一導通方向に直列に接続される。なお、実施例1の回路においても、信号ノイズの電圧レベルに応じてダイオードを複数接続してもよい。
【0042】
実施例2の回路の動作は、上述の実施例1の動作と同様に、電源ラインVDD及び接地ラインVSSに静電気放電が発生した場合、サージ電圧の印加に応答してインバータ回路30及びシャントnMOSFET61はオン状態となり、シャントnMOSFET61のドレインとソース間が導通状態となることで、サージ電圧は放電される。なお、実施例2におけるサージ吸収回路10Aは、前述した実施例1の効果と同様の効果を有する。
【符号の説明】
【0043】
10、10A サージ吸収回路
20 時定数回路
30 インバータ回路
31 pチャネル型MOSFET
32 nチャネル型MOSFET
41、42 ダイオード
51 プルダウン抵抗
60 nチャネル型MOSFET素子
61 シャントnMOSFET
62 寄生バイポーラトランジスタ