IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日産化学工業株式会社の特許一覧

特許7351295液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-09-19
(45)【発行日】2023-09-27
(54)【発明の名称】液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子
(51)【国際特許分類】
   G02F 1/1337 20060101AFI20230920BHJP
   C08G 73/10 20060101ALI20230920BHJP
【FI】
G02F1/1337 525
C08G73/10
【請求項の数】 9
(21)【出願番号】P 2020513258
(86)(22)【出願日】2019-04-08
(86)【国際出願番号】 JP2019015341
(87)【国際公開番号】W WO2019198671
(87)【国際公開日】2019-10-17
【審査請求日】2022-03-22
(31)【優先権主張番号】P 2018074928
(32)【優先日】2018-04-09
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003986
【氏名又は名称】日産化学株式会社
(74)【代理人】
【識別番号】110000095
【氏名又は名称】弁理士法人T.S.パートナーズ
(74)【代理人】
【識別番号】100082887
【弁理士】
【氏名又は名称】小川 利春
(74)【代理人】
【識別番号】100181331
【弁理士】
【氏名又は名称】金 鎭文
(74)【代理人】
【識別番号】100183597
【弁理士】
【氏名又は名称】比企野 健
(74)【代理人】
【識別番号】100161997
【弁理士】
【氏名又は名称】横井 大一郎
(74)【代理人】
【識別番号】100090918
【弁理士】
【氏名又は名称】泉名 謙治
(72)【発明者】
【氏名】仲井 崇
(72)【発明者】
【氏名】須賀 貴裕
(72)【発明者】
【氏名】宮本 泰宏
(72)【発明者】
【氏名】巴 幸司
【審査官】磯崎 忠昭
(56)【参考文献】
【文献】国際公開第2018/043326(WO,A1)
【文献】国際公開第2018/062437(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/1337
C08G 73/10
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表される構造を有し、かつ下記式(2-1)、式(2-2)、又は式(2-3)で表されるジアミンとテトラカルボン酸二無水物との重縮合物であるポリイミド前駆体及びそのイミド化物であるポリイミドからなる群から選ばれる少なくとも1種の重合体と、有機溶媒と、を含有することを特徴とする液晶配向剤。
【化1】
(Rは、水素、炭素数1~4を有する、アルキル基、アルケニル基、アルコキシ基、フルオロアルキル基、フルオロアルケニル基若しくはフルオロアルコキシ基を表し、2つのRは、同じでも異なっていてもよいが、それらの少なくとも1つは水素ではない。*は他の基に結合する部位を示す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
【化2】
(Rの定義は、上記式(1)と同じであり、Rは、単結合又は下記式(3)で表される構造を表し、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。
【化3】
(Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONR-、及び-NRCO-から選ばれる2価の有機基を表し、kは1~5の整数を表す。Rは水素又は一価の有機基を表し、l、mは1~5の整数を表す。*は式(2-1)~式(2-3)中のベンゼン環と結合する部位を表し、*は式(2-1)~式(2-3)中のアミノ基と結合する部位を表す。))
【請求項2】
前記の式(1)、式(2-1)、式(2-2)、及び式(2-3)におけるRが水素又はメチル基である、請求項1に記載の液晶配向剤。
【請求項3】
前記ポリイミド前駆体が下記式(4)で表される構造単位を有する、請求項1又は2に記載の液晶配向剤。
【化4】
(Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは前記式(1)で表わされる構造を有し、かつ前記式(2-1)、式(2-2)、又は式(2-3)で表されるジアミンに由来する2価の有機基であり、Rは水素原子又は炭素数1~5のアルキル基である。)
【請求項4】
前記式(4)中、Xが下記の(A-1)~(A-21)からなる群から選ばれる少なくとも1種である、請求項3に記載の液晶配向剤。
【化5】
【化6】
【請求項5】
前記式(4)で表される構造単位を有する重合体が、液晶配向剤に含有される全重合体に対して10モル%以上含有される、請求項3又は4に記載の液晶配向剤。
【請求項6】
前記有機溶媒が、4-ヒドロキシ-4-メチル-2-ペンタノン及びジエチレングリコールジエチルエーテルからなる群から選ばれる少なくとも1種を含有する、請求項1~5のいずれか1項に記載の液晶配向剤。
【請求項7】
請求項1~のいずれか1項に記載の液晶配向剤から得られる液晶配向膜。
【請求項8】
請求項7に記載の液晶配向膜を具備する液晶表示素子。
【請求項9】
液晶表示素子が横電界駆動方式である請求項8に記載の液晶表示素子。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、新規な重合体を使用する液晶配向剤、液晶配向膜及びそれを用いた液晶表示素子に関する。
【背景技術】
【0002】
液晶表示素子は、パソコン、携帯電話、スマートフォン、テレビ等の表示部として幅広く用いられている。液晶表示素子は、例えば、素子基板とカラーフィルタ基板との間に挟持された液晶層、液晶層に電界を印加する画素電極及び共通電極、液晶層の液晶分子の配向性を制御する配向膜、画素電極に供給される電気信号をスイッチングする薄膜トランジスタ(TFT)等を備えている。液晶分子の駆動方式としては、TN方式、VA方式等の縦電界方式や、IPS方式、FFS方式等の横電界方式が知られている。基板の片側のみに電極を形成させ、基板と平行方向に電界を印加する横電界方式では、従来の上下基板に形成された電極に電圧を印加して液晶を駆動させる縦電界方式と比べ、広い視野角特性を有し、また高品位な表示が可能な液晶表示素子として知られている。
【0003】
横電界方式の液晶セルは視野角特性に優れているものの、基板内に形成される電極部分が少ないために、電圧保持率が低いと液晶に十分な電圧がかからず表示コントラストが低下する。また、液晶配向の安定性が小さいと、液晶を長時間駆動させた際に液晶が初期の状態に戻らなくなり、コントラスト低下や残像の原因となるため、液晶配向の安定性が重要である。更に、静電気が液晶セル内に蓄積されやすく、駆動によって生じる正負非対称電圧の印加によっても液晶セル内に電荷が蓄積され、これらの蓄積された電荷が液晶配向の乱れや残像として表示に影響を与え、液晶素子の表示品位を著しく低下させる。
近年、高コントラストの要求に伴うHDR(High Dynamic Range)の導入によって従来よりも高輝度のバックライトが適用されるようになってきた。
【0004】
特許文献1には特定の構造および化合物を含む液晶配向剤が開示されているがバックライトに対する耐性に関する記述はない。また、特許文献2、3には特定構造を含む液晶配向剤が開示されており、VHR(Voltage Holding Ratio)のバックライト耐性に関して記述があるが、蓄積電荷の言及はなく、従来の技術ではこれらの要求特性を十分に満足することは難しかった。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開公報WO2016/063834号パンフレット
【文献】国際公開公報WO2014/104015号パンフレット
【文献】国際公開公報WO2015/119168号パンフレット
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明は、蓄積電荷の緩和が早く、バックライトが照射されても電荷の蓄積量が変化しにくい液晶配向膜を得ることができる液晶配向剤、液晶配向膜、及び液晶表示素子を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題を解決するために鋭意検討を行った結果、液晶配向剤に含まれる重合体中に特定構造を導入することで種々の特性が同時に改善されることを見出し、本発明を完成した。
本発明は、かかる知見に基づくものであり、下記を要旨とするものである。
下記式(1)の構造を有するジアミンから得られる重合体と、有機溶媒とを含有することを特徴とする液晶配向剤。
【化1】
(Rは、水素、炭素数1~4を有する、アルキル基、アルケニル基、アルコキシ基、フルオロアルキル基、フルオロアルケニル基若しくはフルオロアルコキシ基を表し、2つのRは、同じでも異なっていてもよいが、それらの少なくとも1つは水素ではない。*は他の基に結合する部位を示す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。)
【発明の効果】
【0008】
本発明によれば、蓄積電荷の緩和が早く、バックライトが照射されても電荷の蓄積量が変化しにくい液晶配向膜を得ることができる液晶配向剤、液晶配向膜、及び液晶表示素子が得られる。
【発明を実施するための形態】
【0009】
<特定ジアミン>
本発明の液晶配向剤は、下記式(1)で表される構造を有するジアミン(以下、特定ジアミンともいう。)から得られる新規な重合体を含有する液晶配向剤である。
【化2】
【0010】
上記式(1)中、Rは上記で定義したとおりであるが、炭素数1~5を有するアルキルが好ましく、特にメチル基が好ましい。
式(1)におけるベンゼン環と窒素原子との結合は、立体障害の点から、式(1-1)のように結合していることが好ましい。
【化3】
【0011】
上記特定ジアミンは、例えば、下記式(1-2)で表すことができ、特に、下記式(1-3)で表されるジアミンが好ましく、更には、式(1-4)で表されるジアミンがより好ましい。
【化4】
【0012】
の定義は前記式(1)の場合と同じであり、Q、Qは、それぞれ独立して、単結合又は2価の有機基であり、すなわち、QとQとは互いに異なる構造であってもよい。また、式(1-4)における2つのQは互いに異なる構造であってもよい。更に、ベンゼン環の任意の水素原子は、上記式(1)の場合と同様に、一価の有機基で置換されていてもよい。
【0013】
上記特定ジアミンの好ましい例としては、下記式(2-1)、(2-2)、又は(2-3)で表わされるジアミンを挙げることができる。
【化5】
【0014】
上記式中、Rの定義は、上記式(1)と同じであり、Rは、単結合又は以下の式(3)で表される構造であり、nは1~3の整数を表す。ベンゼン環の任意の水素原子は一価の有機基で置換されていてもよい。
【化6】
【0015】
上記式中、Rは、単結合、-O-、-COO-、-OCO-、-(CH-、-O(CHO-、-CONR-、及び-NRCO-から選ばれる2価の有機基を表しkは1~5の整数を表す。なお、Rは水素又は一価の有機基を表し、l、mは1~5の整数を表す。かかる一価の有機基としては炭素数1~3のアルキル基が好ましい。*は式(2-1)~式(2-3)中のベンゼン環と結合する部位を表し、*は式(2-1)~式(2-3)中のアミノ基と結合する部位を表す。
【0016】
具体例としては以下が例示できるが、これらに限定されない。なかでも、蓄積電荷の緩和の点から、式(2-1-1)~式(2-1-6)、式(2-1-15)、式(2-1-16)が好ましく、溶解性との両立の観点から式(2-1-1)、式(2-1-2)、式(2-1-15)、式(2-1-16)が特に好ましい。
【0017】
【化7】
【0018】
<特定ジアミンの合成方法>
以下に、特定ジアミンを得る方法について、下記式(2-1-1)のジアミンを例に説明する。
【化8】
【0019】
本発明の特定ジアミンを合成する方法は特に限定されないが、例えば、上記式(2-1-1)のジアミンの前駆体であるジニトロ化合物(2-1-N)を合成し、そのニトロ基を還元する方法が挙げられる。
【化9】
【0020】
上記還元反応に用いられる触媒は、市販品として入手できる活性炭担持金属が好ましく、例えば、パラジウム-活性炭、白金-活性炭、ロジウム-活性炭などが挙げられる。触媒は、水酸化パラジウム、酸化白金、ラネーニッケルなど、必ずしも活性炭担持型の金属触媒でなくてもよい。一般的に広く使用されているパラジウム-活性炭が、良好な結果が得られるので好ましい。
【0021】
上記還元反応をより効果的に進行させるため、活性炭の共存下で反応を実施することもある。この時、使用する活性炭の量は特に限定されないが、ジニトロ化合物X1に対して1~30質量%の範囲が好ましく、10~20質量%がより好ましい。同様な理由により、加圧下で反応を実施する場合もある。この場合、ベンゼン核の還元を避けるため、20気圧までの加圧範囲が好ましく、より好ましくは10気圧までの範囲で反応を実施する。
【0022】
溶媒は、各原料と反応しない溶媒であれば、制限なく使用することができる。例えば、非プロトン性極性有機溶媒(ジメチルホルムアミド(DMF)、ジメチルスルキシド(DMSO)、ジメチルアセテート(DMAc)、N-メチルピロリドン(NMP)など)、エーテル類(ジエチルエーテル(EtO)、ジイソプロピル(i-PrO)、テトラブチルメチルエーテル(TBME)、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン(THF)、ジオキサンなど);脂肪族炭化水素類(ペンタン、へキサン、ヘプタン、石油エーテルなど);芳香族炭化水素類(ベンゼン、トルエン、キシレン、メシチレン、クロロベンゼン、ジクロロベンゼン、ニトロベンゼン、テトラリンなど);ハロゲン系炭化水素類(クロロホルム、ジクロロメタン、四塩化炭素、ジクロロエタンなど);低級脂肪酸エステル類(酢酸メチル、酢酸エチル、酢酸ブチル、プロピオン酸メチル等);ニトリル類(アセトニトリル、プロピオニトリル、ブチロニトリル等);などが使用できる。
【0023】
これらの溶媒は、反応の起こり易さなどを考慮して適宜選択することができ、1種単独で又は2種以上混合して用いることができる。必要に応じて、適当な脱水剤や乾燥剤を用いて溶媒を乾燥し、非水溶媒として用いることもできる。
溶媒の使用量(反応濃度)は特に限定されないが、ジニトロ化合物に対し、通常、0.1~10質量倍であり、好ましくは0.5~30質量倍であり、さらに好ましくは1~10質量倍である。反応温度は特に限定されないが、通常、-100℃から使用する溶媒の沸点までの範囲であり、好ましくは、-50~150℃である。反応時間は、通常、0.05~350時間であり、好ましくは0.5~100時間である。
【0024】
ジニトロ化合物(2-1-N)は、例えば、4-ブロモニトロベンゼンと、対応するアミンとを用い、下記の反応式に従って、公知の反応で合成することができる。
【化10】
【0025】
<特定重合体>
本発明の液晶配向剤に含有される重合体は、上記特定ジアミンを用いて得られる重合体である。具体例としては、ポリアミック酸、ポリアミック酸エステル、ポリイミド、ポリウレア、ポリアミドなどが挙げられるが、液晶配向剤としての使用の観点から、下記式(4)で表される構造単位を有するポリイミド前駆体、及び/又はそのイミド化物であるポリイミドから選ばれる少なくとも1種の重合体(以下、特定重合体ともいう。)がより好ましい。
【化11】
【0026】
上記式中、Xはテトラカルボン酸誘導体に由来する4価の有機基であり、Yは特定ジアミンに由来する2価の有機基である。Rは水素原子又は炭素数1~5のアルキル基である。Rは、加熱によるイミド化のしやすさの点から、水素原子、メチル基又はエチル基が好ましい。
【0027】
上記Xは、重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に2種類以上あってもよい。
の具体例を示すならば、国際公開公報2015/119168の13頁~14頁に掲載される、式(X-1)~(X-46)の構造などが挙げられる。
【0028】
以下に、好ましいXである(A-1)~(A-21)を示すが、これらに限定されるものではない。
【化12】
【0029】
【化13】
【0030】
上記のうち、(A-1)、(A-2)は膜硬度の更なる向上という観点から特に好ましく、(A-4)は蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(A-15)~(A-17)などは、液晶配向性と蓄積電荷の緩和速度の更なる向上という観点から特に好ましい。
【0031】
<その他の構造単位>
上記ポリイミド前駆体は、式(4)で表される構造単位に加え、下記式(5)で表される構造単位を有していても良い。
【化14】
【0032】
は、前記式(4)におけるXの定義と同じである。Xの具体例としては、好ましい例も含めて式(4)のXで例示したのと同じものを挙げることができる。Rは、いずれも、前記式(4)におけるRの定義と同じである。Rは水素原子又は炭素数1~4のアルキル基を表す。また、2つあるRの少なくとも一方は水素原子であることが好ましい。
【0033】
また、Yは、式(1)で表される構造を主鎖方向に含まないジアミンに由来する二価の有機基であり、その構造は特に限定されない。Yは重合体の溶媒への溶解性や液晶配向剤の塗布性、液晶配向膜とした場合における液晶の配向性、電圧保持率、蓄積電荷など、必要とされる特性の程度に応じて適宜選択され、同一重合体中に2種類以上が混在していてもよい。
【0034】
の具体例を示すならば、国際公開公報2015/119168の4頁に掲載される式(2)の構造、及び、8頁~12頁に掲載される、式(Y-1)~(Y-97)、(Y-101)~(Y-118)の構造;国際公開公報2013/008906の6頁に掲載される、式(2)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/122413の8頁に掲載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2015/060360の8頁に掲載される式(3)の構造;日本国公開特許公報2012-173514の8頁に記載される式(1)からアミノ基を2つ除いた二価の有機基;国際公開公報2010-050523の9頁に掲載される式(A)~(F)からアミノ基を2つ除いた二価の有機基、などが挙げられる。
【0035】
以下に、Yの好ましい構造である、式(B-1)~式(B-20)を示すが、本発明はこれらに限定されるものではない。
【化15】
【0036】
【化16】
【0037】
【化17】
【0038】
【化18】
【0039】
上記の構造のうち、(B-28)、(B-29)は、膜硬度の更なる向上という観点から特に好ましく、(B-1)~(B-3)は、液晶配向性の更なる向上という観点から特に好ましく、(B-14)~(B-18)、(B-27)は、蓄積電荷の緩和速度の更なる向上という観点から特に好ましく、(B-26)は、電圧保持率の更なる向上という観点から好ましい。
【0040】
上記ポリイミド前駆体が、式(4)で表される構造単位のほかに、式(5)で表される構造単位を含む場合、式(4)で表される構造単位は、式(4)と式(5)の合計に対して10モル%以上であることが好ましく、より好ましくは20モル%以上であり、特に好ましくは30モル%以上である。
本発明に用いるポリイミド前駆体の分子量は、重量平均分子量(Mw)で2,000~500,000が好ましく、より好ましくは5,000~300,000であり、さらに好ましくは、10,000~100,000である。
【0041】
<ポリイミド>
特定重合体のうちのポリイミドは、式(4)、式(5)で表されるポリイミド前駆体を閉環させて得られる。この場合のイミド化率は必ずしも100%である必要はなく、用途や目的に応じて任意に調整できる。
ポリイミド前駆体をイミド化させる方法としては、既知の方法が使用できる。ポリイミド前駆体の溶液に、塩基性触媒を添加する化学的イミド化が簡便である。化学的イミド化は、比較的低温でイミド化反応が進行し、イミド化の課程で重合体の分子量低下が起こりにくいので好ましい。
【0042】
化学的イミド化は、ポリイミド前駆体を、有機溶媒中において、塩基性触媒の存在下で撹拌することにより行うことができる。有機溶媒としては、前述した重合反応時に用いる溶媒を使用することができる。塩基性触媒としては、ピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミン、トリオクチルアミン等を挙げることができる。中でもトリエチルアミンは反応を進行させるのに充分な塩基性を持つので好ましい。
イミド化反応を行うときの温度は、-20~140℃、好ましくは0~100℃であり、好ましくは反応時間は1~100時間で行うことができる。塩基性触媒の量は、アミック酸エステル基の0.5~30モル倍、好ましくは2~20モル倍である。得られる重合体のイミド化率は、触媒量、温度、反応時間等を調節することで制御することができる。イミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
【0043】
ポリイミド前駆体のイミド化反応後の溶液には、添加した触媒等が残存しているので、以下に述べる手段により、得られたイミド化重合体を回収し、有機溶媒で再溶解して、本発明の液晶配向剤とすることが好ましい。
上記のようにして得られるポリイミドの溶液は、よく撹拌させながら貧溶媒に注入することで、重合体を析出させることができる。析出を数回行い、貧溶媒で洗浄後、常温あるいは加熱乾燥して、精製されたポリイミドの粉末を得ることができる。
貧溶媒としては、特に限定されないが、メタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン等が挙げられる。
【0044】
<液晶配向剤>
本発明の液晶配向剤は、特定重合体を含有するが、異なる構造の特定重合体を2種以上含有していてもよい。また、特定重合体に加えて、その他の重合体を含有していてもよい。その他の重合体の種類としては、ポリアミック酸、ポリイミド、ポリアミック酸エステル、ポリエステル、ポリアミド、ポリウレア、ポリオルガノシロキサン、セルロース誘導体、ポリアセタール、ポリスチレンまたはその誘導体、ポリ(スチレン-フェニルマレイミド)誘導体、ポリ(メタ)アクリレートなどを挙げることができる。また、上記式(5)で表されるポリイミド前駆体及び/又は該ポリイミド前駆体をイミド化したポリイミドから選ばれるポリイミドなどを含有していてもよい。
【0045】
本発明の液晶配向剤がその他の重合体を含有する場合、全重合体成分に対する特定重合体の割合は5質量%以上が好ましく、より好ましくは5~95質量%が挙げられる。
液晶配向剤は、液晶配向膜を作製するために用いられるものであり、均一な薄膜を形成させるという観点から、一般的には塗布液の形態をとる。本発明の液晶配向剤においても前記した重合体成分と、この重合体成分を溶解させる有機溶媒とを含有する塗布液であることが好ましい。その際、液晶配向剤中の重合体の濃度は、形成させようとする塗膜の厚みの設定によって適宜変更することができる。均一で欠陥のない塗膜を形成させるという点からは、1質量%以上であることが好ましく、溶液の保存安定性の点からは、10質量%以下とすることが好ましい。特に好ましい重合体の濃度は、2~8質量%である。
【0046】
液晶配向剤に含有される有機溶媒は、重合体成分が均一に溶解するものであれば特に限定されない。その具体例を挙げるならば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、ジメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、メチルエチルケトン、シクロヘキサノン、シクロペンタノンなどを挙げることができる。なかでも、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、又はγ-ブチロラクトンを用いることが好ましい。
【0047】
また、液晶配向剤に含有される有機溶媒は、上記のような溶媒に加えて液晶配向剤を塗布する際の塗布性や塗膜の表面平滑性を向上させる溶媒を併用した混合溶媒を使用することが一般的であり、本発明の液晶配向剤においてもこのような混合溶媒は好適に用いられる。併用する有機溶媒の具体例を下記に挙げるが、これらの例に限定されない。
例えば、エタノール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、1-ペンタノール、2-ペンタノール、3-ペンタノール、2-メチル-1-ブタノール、イソペンチルアルコール、tert-ペンチルアルコール、3-メチル-2-ブタノール、ネオペンチルアルコール、1-ヘキサノール、2-メチル-1-ペンタノール、2-メチル-2-ペンタノール、2-エチル-1-ブタノール、1-ヘプタノール、2-ヘプタノール、3-ヘプタノール、1-オクタノール、2-オクタノール、2-エチル-1-ヘキサノール、シクロヘキサノール、1-メチルシクロヘキサノール、2-メチルシクロヘキサノール、3-メチルシクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、1,3-プロパンジオール、1,2-ブタンジオール、1,3-ブタンジオール、1,4-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2-エチル-1,3-ヘキサンジオール、ジプロピルエーテル、ジブチルエーテル、ジヘキシルエーテル、ジオキサン、エチレングリコールジメチルエーテル、エチレングリコールジエチルエーテル、エチレングリコールジブチルエーテル、1,2-ブトキシエタン、ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、ジエチレングリコールメチルエチルエーテル、ジエチレングリコールジブチルエーテル、2-ペンタノン、3-ペンタノン、2-ヘキサノン、2-ヘプタノン、4-ヘプタノン、3-エトキシブチルアセタート、1-メチルペンチルアセタート、2-エチルブチルアセタート、2-エチルヘキシルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、プロピレンカーボネート、エチレンカーボネート、2-(メトキシメトキシ)エタノール、エチレングリコールモノブチルエーテル、エチレングリコールモノイソアミルエーテル、エチレングリコールモノヘキシルエーテル、2-(ヘキシルオキシ)エタノール、フルフリルアルコール、ジエチレングリコール、プロピレングリコール、プロピレングリコールモノブチルエーテル、1-(ブトキシエトキシ)プロパノール、プロピレングリコールモノメチルエーテルアセタート、ジプロピレングリコール、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールジメチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテルアセタート、エチレングリコールモノエチルエーテルアセタート、エチレングリコールモノブチルエーテルアセタート、エチレングリコールモノアセタート、エチレングリコールジアセタート、ジエチレングリコールモノエチルエーテルアセタート、ジエチレングリコールモノブチルエーテルアセタート、2-(2-エトキシエトキシ)エチルアセタート、ジエチレングリコールアセタート、トリエチレングリコール、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステル、乳酸イソアミルエステル、下記式[D-1]~[D-3]で表される溶媒などを挙げることができる。
【0048】
【化19】
【0049】
式[D-1]中、Dは炭素数1~3のアルキル基を示し、式[D-2]中、Dは炭素数1~3のアルキル基を示し、式[D-3]中、Dは炭素数1~4のアルキル基を示す。なかでも、1-ヘキサノール、シクロヘキサノール、1,2-エタンジオール、1,2-プロパンジオール、プロピレングリコールモノブチルエーテル、ジエチレングリコールジエチルエーテル、4-ヒドロキシ-4-メチル-2-ペンタノン、エチレングリコールモノブチルエーテル又はジプロピレングリコールジメチルエーテルが好ましい。このような溶媒の種類及び含有量は、液晶配向剤の塗布装置、塗布条件、塗布環境などに応じて適宜選択される。
【0050】
本発明の液晶配向剤は、重合体成分及び有機溶媒以外の成分を追加的に含有しても良い。このような追加成分としては、液晶配向膜と基板との密着性や液晶配向膜とシール材との密着性を高めるための密着助剤、液晶配向膜の強度を高めるための架橋剤、液晶配向膜の誘電率や電気抵抗を調整するための誘電体や導電物質などが挙げられる。これら追加成分の具体例としては、液晶配向剤に関する公知の文献に種々開示されているとおりであるが、その一例を示すなら、国際公開公報2015/060357号の53頁[0105]~55頁[0116]に開示されている成分などが挙げられる。
【0051】
<液晶配向膜>
本発明の液晶配向膜は、上記本発明の液晶配向剤から得られる。液晶配向剤から液晶配向膜を得る方法の一例を挙げるなら、塗布液形態の液晶配向剤を基板に塗布し、乾燥し、焼成して得られた膜に対してラビング処理法又は光配向処理法で配向処理を施す方法が挙げられる。
液晶配向剤を塗布する基板としては、透明性の高い基板であれば特に限定されず、ガラス基板、窒化珪素基板、アクリル基板やポリカーボネート基板などのプラスチック基板等を用いることもできる。その際、液晶を駆動させるためのITO電極などが形成された基板を用いると、プロセスの簡素化の点から好ましい。また、反射型の液晶表示素子では、片側の基板のみにならば、シリコンウエハーなどの不透明な物でも使用でき、この場合の電極にはアルミニウムなどの光を反射する材料も使用できる。
【0052】
液晶配向剤の塗布方法は、特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェット法などが一般的である。その他の塗布方法としては、ディップ法、ロールコータ法、スリットコータ法、スピンナー法、スプレー法などがあり、目的に応じてこれらを用いてもよい。
液晶配向剤を基板上に塗布した後は、ホットプレート、熱循環型オーブン、IR(赤外線)型オーブンなどの加熱手段により、溶媒を蒸発させ、焼成する。液晶配向剤を塗布した後の乾燥、焼成工程は、任意の温度と時間を選択することができる。通常は、含有される溶媒を十分に除去するために、50~120℃で1~10分焼成し、その後、150~300℃で、5~120分焼成する条件が挙げられる。
【0053】
焼成後の液晶配向膜の厚みは、特に限定されないが、薄すぎると液晶表示素子の信頼性が低下する場合があるので、5~300nmであることが好ましく、10~200nmがより好ましい。
本発明の液晶配向膜は、IPS方式やFFS方式などの横電界方式の液晶表示素子の液晶配向膜として好適であり、特に、FFS方式の液晶表示素子の液晶配向膜として有用である。
【0054】
<液晶表示素子>
本発明の液晶表示素子は、上記液晶配向剤から得られる液晶配向膜付きの基板を得た後、既知の方法で液晶セルを作製し、該液晶セルを使用して素子としたものである。
液晶セルの作製方法の一例として、パッシブマトリクス構造の液晶表示素子を例にとり説明する。なお、画像表示を構成する各画素部分にTFT(Thin Film Transistor)などのスイッチング素子が設けられたアクティブマトリクス構え造の液晶表示素子であってもよい。
【0055】
具体的には、透明なガラス製の基板を準備し、一方の基板の上にコモン電極を、他方の基板の上にセグメント電極を設ける。これらの電極は、例えばITO電極とすることができ、所望の画像表示ができるようパターニングされている。次いで、各基板の上に、コモン電極とセグメント電極を被覆するようにして絶縁膜を設ける。絶縁膜は、例えば、ゾル-ゲル法によって形成されたSiO-TiOからなる膜とすることができる。次に、前記のような条件で、各基板の上に液晶配向膜を形成する。
【0056】
次いで、液晶配向膜を形成した2枚の基板のうちの一方の基板上の所定の場所に例えば紫外線硬化性のシール材を配置し、さらに液晶配向膜面上の所定の数カ所に液晶を配置した後、液晶配向膜が対向するように他方の基板を貼り合わせて圧着することにより液晶を液晶配向膜前面に押し広げた後、基板の全面に紫外線を照射してシール材を硬化することで液晶セルを得る。
または、基板の上に液晶配向膜を形成した後の工程として、一方の基板上の所定の場所にシール材を配置する際に、外部から液晶を充填可能な開口部を設けておき、液晶を配置しないで基板を貼り合わせた後、シール材に設けた開口部を通じて液晶セル内に液晶材料を注入し、次いで、この開口部を接着剤で封止して液晶セルを得る。液晶材料の注入には、真空注入法でもよいし、大気中で毛細管現象を利用した方法でもよい。
【0057】
上記のいずれの方法においても、液晶セル内に液晶材料が充填される空間を確保する為に、一方の基板上に柱状の突起を設けるか、一方の基板上にスペーサーを散布するか、シール材にスペーサーを混入するか、又はこれらを組み合わせるなどの手段を取ることが好ましい。
上記の液晶材料としては、ネマチック液晶、及びスメクチック液晶などを挙げることができ、その中でもネマチック液晶が好ましく、ポジ型液晶材料やネガ型液晶材料のいずれを用いてもよい。次に、偏光板の設置を行う。具体的には、2枚の基板の液晶層とは反対側の面に一対の偏光板を貼り付けることが好ましい。
【0058】
なお、本発明の液晶配向膜及び液晶表示素子は、本発明の液晶配向剤を用いている限り上記の記載に限定されるものでは無く、その他の公知の手法で作製されたものであっても良い。液晶配向剤から液晶表示素子を得るまでの工程は、例えば、日本特開2015-135393号公報)の17頁の段落0074~19頁の段落0081などに開示されている。
【実施例
【0059】
以下に、本発明について実施例等を挙げて具体的に説明するが、本発明は、これらの実施例に限定されるものではない。
なお、化合物、溶媒の略号は、以下のとおりである。
NMP:N-メチル-2-ピロリドン、 GBL:γ-ブチロラクトン、
BCS:ブチルセロソルブ、 DA-1~DA-9:下記構造式の化合物、
CA-1、CA-2:下記構造式の化合物、
AD-1:3-グリシドキシプロピルトリエトキシシラン
AD-2、AD-3:下記構造式の化合物
【0060】
【化20】
【0061】
【化21】
【0062】
<粘度>
重合体溶液の粘度は、E型粘度計TVE-22H(東機産業社製)を用い、サンプル量1.1mL、コーンロータTE-1(1°34’、R24)で、温度25℃で測定した。
【0063】
<イミド化率の測定>
ポリイミドのイミド化率は次のようにして測定した。ポリイミド粉末30mgをNMR(核磁気共鳴)サンプル管(NMRサンプリングチューブスタンダード,φ5、草野科学社製)に入れ、重水素化ジメチルスルホキシド(DMSO-d6,0.05質量%TMS(テトラメチルシラン)混合品を0.53ml添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定機(JNW-ECA500、日本電子データム社製)にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、9.5ppm~10.0ppm付近に現れるアミド酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。
イミド化率(%)=(1-α・x/y)×100
上記式において、xはアミド酸のNH基由来のプロトンピーク積算値であり、yは基準プロトンのピーク積算値であり、αはポリアミド酸(イミド化率が0%)の場合におけるアミド酸のNH基プロトン1個に対する基準プロトンの個数割合である。
【0064】
(合成例1)
【化22】
【0065】
化合物[1]の合成
テトラヒドロフラン(500g)及びジメチルホルムアミド(125g)中、DA-1(50.0g、234mmol)を仕込み、氷冷下で無水トリフルオロ酢酸(103g)を1時間かけて滴下した。滴下終了後、室温にて30分撹拌した。テトラヒドロフランの大半を減圧留去した後、酢酸エチル(300mL)を加え、飽和炭酸水素ナトリウム水溶液(250mL)で3回分液洗浄し、飽和食塩水(250mL)で洗浄後、硫酸ナトリウムで脱水し、濾液を濃縮することで化合物[1]を得た(収量:76.5g、収率:81%、青白色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):11.16(s, 2H), 7.57(d, 4H, J = 9.2 Hz), 7.04(d, 4H, J = 9.2 Hz), 3.26(s, 3H).
【0066】
化合物[2]の合成
アセトニトリル(300g)中、化合物[1](76.5g、189mmol)、炭酸カリウム(78.4g)、及びヨウ化メチル(80.5g)を加え、室温で68時間撹拌した。結晶を濾過により濾別し、濾物を乾燥させることで、化合物[2]を得た(収量:83.3g、粗収率:102%、青白色結晶)。化合物[2]を粗体のまま次工程を実施した。
1H-NMR(400MHz, DMSO-d6, δppm):7.35(d, 4H, J = 8.8 Hz), 7.09(d, 4H, J = 8.8 Hz), 3.32(s, 3H), 3.27(s, 6H).
【0067】
化合物[3]の合成
メタノール(416g)及び純水(208g)中、化合物[2](83.3g)、炭酸カリウム(52.2g)を加え、70℃で2時間撹拌した。メタノールを7割程減圧留去したのち、純水(300g)、及び酢酸エチル(400g)を加え、有機層を分液抽出した。純水(200g)で分液洗浄し、硫酸ナトリウムで脱水後、濾液を濃縮することで粗体を得た。粗体に対し、イソプロピルアルコール(168g)を加え、75℃で全溶解させた後、冷却し、濾過し、濾物を乾燥させることで、化合物[3]を得た(収量:27.0g、収率:59%(化合物[1]を基準として)、灰色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):6.69(d, 4H, J = 8.8 Hz), 6.45(d, 4H, J = 8.8 Hz), 5.22-5.19(m, 2H), 3.02(s, 3H), 2.62(d, 6H, J = 5.2Hz).
【0068】
化合物[4]の合成
NMP(350g)中、化合物[3](35.0g)、4-ブロモニトロベンゼン(61.5g)、リン酸カリウム(92.3g)、酢酸パラジウム(0.65g)、及びビス[2-(ジフェニルホスフィノ)フェニル]エーテル(1.56g)を加え、100℃で2時間撹拌した。反応液を冷却した後、純水(1400g)中に流し入れ、室温で撹拌後、濾過した。濾物を純水(175g)と酢酸エチル(350g)の混合溶媒でスラリー洗浄し、濾別した後、メタノール(350g)でスラリー洗浄し、濾過し、濾物を乾燥させることで粗体を得た。この粗体に対し、ジメチルホルムアミド(235g)を加え、100℃で撹拌した後、メタノール(336g)を加え、冷却、濾過、濾物を乾燥させた。再度ジメチルホルムアミド(230g)を加えて100℃で撹拌し、熱時濾過した濾液にメタノール(336g)を加え、冷却、濾過した。濾物をメタノール(200g)でスラリー洗浄し、乾燥させることで化合物[4]を得た(収量:56.7g、収率:81%、黄土色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):8.06(d, 4H, J = 9.6 Hz), 7.25(d, 4H, J = 8.8 Hz), 7.17(d, 4H, J = 8.8 Hz), 6.76(d, 4H, J = 9.6 Hz), 3.37(s, 6H), 3.34(s, 3H).
【0069】
[DA-2]の合成
ジメチルホルムアミド(360g)中、化合物[4](36.0g、74.5mmol)と5%パラジウムカーボン(3.6g)を仕込み、オートクレーブ中、0.4MPa水素雰囲気下、40℃で12時間撹拌した。80℃で触媒を熱時濾過した後、減圧濃縮により内部総重量を189gとした。100℃で全溶解させた後、メタノール(220g)を加えて結晶を析出させ、室温条件下で撹拌後、ろ過、乾燥することで化合物[DA-2]を得た(収量:23.5g、収率:74%、薄茶色結晶)。
1H-NMR(400MHz, DMSO-d6, δppm):6.77(d, 4H, J = 8.8 Hz), 6.74(d, 4H, J = 9.2 Hz), 6.62(d, 4H, J = 9.2 Hz), 6.54(d, 4H, J = 8.8 Hz), 4.88(br, 4H), 3.08(s, 3H), 3.07(s, 6H).
【0070】
(合成例2)
撹拌装置及び窒素導入管付きの50mLのナスフラスコに、DA-2を2.03g(4.8mmol)、DA-3を0.96g(4.8mmol)、及びDA-4を0.72g(2.4mmol)量り取り、NMPを35.0g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を3.22g(10.9mmol)添加し、さらにNMPを15.0g加え、窒素雰囲気下70℃で11時間撹拌してポリマー溶液A-1(粘度:390mPa・s)を得た。
【0071】
(合成例3)
撹拌装置及び窒素導入管付きの50mLのナスフラスコに、DA-1を1.02g(4.8mmol)、DA-3を0.96g(4.8mmol)、及びDA-4を0.72g(2.4mmol)量り取り、NMPを30.5g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を3.39g(11.5mmol)添加し、さらにNMPを13.1g加え、窒素雰囲気下70℃で5時間撹拌してポリマー溶液B-1(粘度:420mPa・s)を得た。
【0072】
(合成例4)
撹拌装置及び窒素導入管付きの100mLのナスフラスコに、DA-3を1.67g(8.4mmol)、DA-4を1.25g(4.2mmol)、及びDA-5を3.54g(5.24mmol)量り取り、NMPを63.3g加え、窒素を送りながら撹拌して溶解させた。このジアミン溶液を水冷下で撹拌しながら、CA-1を5.98g(20.3mmol)添加し、さらにNMPを27.1g加え、窒素雰囲気下70℃で10時間撹拌してポリマー溶液B-2(粘度:500mPa・s)を得た。
【0073】
(合成例5)
撹拌装置及び窒素導入管付きの3L四つ口フラスコに、DA-6を17.3g(159mmol)、DA-7を58.6g(240mmol)、DA-8を76.8g(240mmol)及びジアミンDA-9を54.6g(160mmol)量り取り、NMPを2458g加えて、窒素を送りながら撹拌し溶解させた。このジアミン溶液を撹拌しながら、CA-2を171g(764mmol)添加し、更に、固形分濃度が12質量%になるようにNMPを加え、40℃で20時間撹拌して、ポリアミック酸の溶液(粘度:426mPa・s)を得た。
このポリアミック酸溶液を2250g分取し、NMPを750g加えた後、無水酢酸を171g、及びピリジンを35.4g加え、55℃で3時間反応させた。この反応溶液をメタノール9620gに注ぎ、生成した沈殿物を濾別した。この沈殿物をメタノールで洗浄し、60℃で減圧乾燥しポリイミドの粉末を得た。このポリイミドのイミド化率は66%であった。得られたポリイミド粉末120gにNMPを440g、GBLを440g加えて70℃にて20hr攪拌して溶解させポリマー溶液C-1を得た。
【0074】
(実施例1,2)及び(比較例1,2)
合成例2~5で得られたポリマー溶液を、下記の表1に示される、ポリマー1及びポリマー2の比率になるように混合して得られる溶液に対して、NMP、GBL、BCS、AD-1を1重量%含むGBL溶液、AD-2を10重量%含むNMP溶液、及びAD-3を、下記の表1に示す組成になるように、攪拌しながら加え、更に室温で2時間撹拌することにより実施例1、2及び比較例1、2の液晶配向剤を得た。
【0075】
【表1】
【0076】
上記で得られた液晶配向剤を用いて以下に示す手順でFFS駆動液晶セルを作製し、DC蓄積量のバックライトエージング耐性を評価した。
[FFS駆動液晶セルの構成]
フリンジフィールドスィッチング(Fringe Field Switching:FFS)モード用の液晶セルは、面形状の共通電極-絶縁層-櫛歯形状の画素電極からなるFOP(Finger on Plate)電極層が表面に形成されている第1のガラス基板と、表面に高さ4μmの柱状スペーサーを有し裏面に帯電防止の為のITO膜が形成されている第2のガラス基板とを、一組とした。上記の画素電極は、中央部分が内角160°で屈曲した幅3μmの電極要素が6μmの間隔を開けて平行になるように複数配列された櫛歯形状を有しており、1つの画素は、複数の電極要素の屈曲部を結ぶ線を境に第1領域と第2領域を有している。
なお、第1のガラス基板に形成する液晶配向膜は、画素屈曲部の内角を等分する方向と液晶の配向方向とが直交するように配向処理し、第2のガラス基板に形成する液晶配向膜は、液晶セルを作製した時に第1の基板上の液晶の配向方向と第2の基板上の液晶の配向方向とが一致するように配向処理する。
【0077】
[液晶セルの作製]
上記一組のガラス基板それぞれの表面に、孔径1.0μmのフィルターで濾過した液晶配向剤をスピンコート塗布にて塗布し80℃のホットプレート上で2分間乾燥させた。その後、塗膜面に偏光板を介して消光比26:1の直線偏光した波長254nmの紫外線を所定量照射し、次いで230℃の熱風循環式オーブンで30分間焼成を行い、膜厚100nmの液晶配向膜付き基板を得た。
次に、上記一組の液晶配向膜付きガラス基板の一方にシール剤を印刷し、もう一方の基板を液晶配向膜面が向き合うように貼り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-3019(メルク社製)を注入し、注入口を封止して、FFS駆動液晶セルを得た。その後、得られた液晶セルを120℃で1時間加熱し、一晩放置してから残像特性の評価を実施した。
この液晶セルは液晶の配向に欠陥がなく、液晶配向状態は良好であった。
【0078】
[DC蓄積量のバックライトエージング耐性]
上記液晶セルを偏光軸が直交するように配置された2枚の偏光板の間に設置し、画素電極と対向電極とを短絡して同電位にした状態で、2枚の偏光板の下からLEDバックライトを照射しておき、2枚の偏光板の上で測定するLEDバックライト透過光の輝度が最小となるように、液晶セルの角度を調節した。
次にこの液晶セルに周波数30Hzの交流電圧を印加しながらV-Tカーブ(電圧-透過率曲線)を測定し、相対透過率が23%または100%となる交流電圧を駆動電圧として算出した。液晶セルを60℃に昇温し、周波数1kHzで20mVの矩形波を30分間印加した。
その後相対透過率が100%となる交流駆動を30分間印加し、その間3分毎に最小オフセット電圧値を測定しながら、測定開始から30分後までの変化量を初期DC蓄積量として算出した。
【0079】
さらに、LEDバックライトパネルの上に24時間放置し、上記と同じ要領で最小オフセット電圧値を測定しエージング後DC蓄積量とした。かかる蓄積量と初期のDC蓄積量の差分が小さい程バックライトエージング耐性が良好である。
上記実施例1、2及び比較例1、2の各液晶配向剤を使用する液晶表示素子について、上記の通り実施したDC蓄積量の評価結果を下記表2に示す。
【0080】
【表2】
【0081】
本発明の実施例1、2の液晶配向剤を使用する液晶表示素子は、バックライト照射によるDC蓄積量の変化が小さくバックライトエージング耐性が良好であることが判る。
【0082】
なお、2018年4月9日に出願された日本特許出願2018-074928号の明細書、特許請求の範囲、図面、及び要約書の全内容をここに引用し、本発明の明細書の開示として、取り入れるものである。