IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越化学工業株式会社の特許一覧

特許7368324ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法
<>
  • 特許-ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 図1
  • 特許-ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法 図2
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-16
(45)【発行日】2023-10-24
(54)【発明の名称】ケイ素含有レジスト下層膜形成用組成物及びパターン形成方法
(51)【国際特許分類】
   G03F 7/11 20060101AFI20231017BHJP
   G03F 7/32 20060101ALI20231017BHJP
   G03F 7/40 20060101ALI20231017BHJP
   C08G 77/14 20060101ALI20231017BHJP
   G03F 7/20 20060101ALI20231017BHJP
【FI】
G03F7/11 503
G03F7/32
G03F7/40 521
C08G77/14
G03F7/20 521
【請求項の数】 10
(21)【出願番号】P 2020103314
(22)【出願日】2020-06-15
(65)【公開番号】P2021018426
(43)【公開日】2021-02-15
【審査請求日】2022-05-20
(31)【優先権主張番号】P 2019135144
(32)【優先日】2019-07-23
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000002060
【氏名又は名称】信越化学工業株式会社
(74)【代理人】
【識別番号】100102532
【弁理士】
【氏名又は名称】好宮 幹夫
(74)【代理人】
【識別番号】100194881
【弁理士】
【氏名又は名称】小林 俊弘
(72)【発明者】
【氏名】荻原 勤
(72)【発明者】
【氏名】美谷島 祐介
(72)【発明者】
【氏名】金山 昌広
【審査官】長田 守夫
(56)【参考文献】
【文献】特開2012-237975(JP,A)
【文献】特開2019-38764(JP,A)
【文献】特開2005-70154(JP,A)
【文献】米国特許出願公開第2011/0269078(US,A1)
【文献】特開2020-118960(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G03F 7/004-7/04
G03F 7/06
G03F 7/075-7/115
G03F 7/16-7/20
G03F 7/32
G03F 7/40
G03C 3/00
C08G 77/14
(57)【特許請求の範囲】
【請求項1】
下記一般式(Sx-1)で表される繰返し単位、下記一般式(Sx-2)で表される繰返し単位、及び下記一般式(Sx-3)で表される部分構造のいずれか一つ以上を含有する熱硬化性ケイ素含有材料と下記一般式(P-0)で示される化合物を含むケイ素含有レジスト下層膜形成用組成物。
【化1】
(式中、Rは1個以上のシラノール基、水酸基もしくはカルボキシル基を持つ有機基、または、酸、熱のいずれかまたは両方の作用により保護基が脱離して1個以上のシラノール基、水酸基もしくはカルボキシル基を発生する有機基である。R、Rはそれぞれ独立にRと同じか、水素原子又は炭素数1~30の1価の置換基である。)
【化2】
(式(P-0)中、R100は1個以上のフッ素原子で置換された2価の有機基、R101及びR102はそれぞれ独立にヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の1価炭化水素基を示す。R103はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。また、R101とR102、あるいはR101とR103は互いに結合して式中の硫黄原子と共に環を形成してもよい。L104は単結合又はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。)
【請求項2】
更に架橋触媒を含むものであることを特徴とする請求項1に記載のケイ素含有レジスト下層膜形成用組成物。
【請求項3】
前記架橋触媒が、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩もしくはこれらを構造の一部として有するポリシロキサン、またはアルカリ金属塩であることを特徴とする請求項2に記載のケイ素含有レジスト下層膜形成用組成物。
【請求項4】
更に、酸分解性置換基を有する含窒素化合物を含むものであることを特徴とする請求項1から請求項3のいずれか1項に記載のケイ素含有レジスト下層膜形成用組成物。
【請求項5】
前記一般式(Sx-1)~(Sx-3)中のR が、下記式から選択されるものであることを特徴とする請求項1から請求項4のいずれか1項に記載のケイ素含有レジスト下層膜形成用組成物。
【化3】
【化4】
【化5】
【化6】
(式中において、(Si)はSiとの結合箇所を示す。)
【請求項6】
被加工体上に塗布型有機下層膜材料を用いて有機下層膜を形成し、該有機下層膜の上に請求項1から請求項のいずれか1項に記載のケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜を形成し、該ケイ素含有レジスト下層膜上に化学増幅型レジスト組成物を用いてフォトレジスト膜を形成し、加熱処理後に前記フォトレジスト膜を露光し、有機溶剤現像液を用いて前記フォトレジスト膜の未露光部を溶解させることによりネガ型パターンを形成し、該パターンが形成されたフォトレジスト膜をマスクにして前記ケイ素含有レジスト下層膜にドライエッチングでパターン転写し、該パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機下層膜をドライエッチングでパターン転写し、さらに該パターンが転写された有機下層膜をマスクにして前記被加工体にドライエッチングでパターンを転写することを特徴とするパターン形成方法。
【請求項7】
被加工体上に炭素を主成分とする有機ハードマスクをCVD法で形成し、該有機ハードマスクの上に請求項1から請求項のいずれか1項に記載のケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜を形成し、該ケイ素含有レジスト下層膜上に化学増幅型レジスト組成物を用いてフォトレジスト膜を形成し、加熱処理後に前記フォトレジスト膜を露光し、有機溶剤現像液を用いて前記フォトレジスト膜の未露光部を溶解させることによりネガ型パターンを形成し、該パターンが形成されたフォトレジスト膜をマスクにして前記ケイ素含有レジスト下層膜にドライエッチングでパターン転写し、該パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機ハードマスクをドライエッチングでパターン転写し、さらに該パターンが転写された有機ハードマスクをマスクにして前記被加工体にドライエッチングでパターンを転写することを特徴とするパターン形成方法。
【請求項8】
前記フォトレジスト膜のパターン形成は、波長が10nm以上300nm以下の光リソグラフィー、電子線による直接描画、ナノインプリンティングまたはこれらの組合せによるパターン形成であることを特徴とする請求項または請求項に記載のパターン形成方法。
【請求項9】
前記被加工体が、半導体装置基板、金属膜、合金膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜または金属酸化窒化膜であることを特徴とする請求項から請求項のいずれか1項に記載のパターン形成方法。
【請求項10】
前記被加工体を構成する金属がケイ素、ガリウム、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、銀、金、インジウム、ヒ素、パラジウム、タンタル、イリジウム、アルミニウム、鉄、モリブデン、コバルトまたはこれらの合金であることを特徴とする請求項から請求項のいずれか1項に記載のパターン形成方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ケイ素含有レジスト下層膜形成用組成物およびこれを用いたパターン形成方法に関するものである。
【背景技術】
【0002】
大規模集積回路(LSI)の高集積化と高速度化に伴い、パターンルールの微細化が求められている中、現在汎用技術として用いられている化学増幅レジストを用いた光リソグラフィーにおいては、用いられる光源に対して如何により微細かつ高精度なパターン加工を行うかについて種々の技術開発が行われている。
【0003】
一方で、微細化の進行と共に光の回折現象は物理的な限界に近づいており、それに伴いパターン形成に適用される露光光のコントラストが低下してきている。このような物理的な限界は、ポジ型レジスト膜においては溶解コントラストの低下を招いており、これによりホールパターンやトレンチパターンの解像性やフォーカスマージンの劣化が発生している。このような限界状態におけるパターン形成性能の劣化を防ぐための技術として、レジスト膜の溶解コントラストを向上させる必要がある。化学増幅型レジストにおいては、溶解コントラストの向上の方法として光酸発生剤から発生した酸の増殖機構を利用して高感度化し、露光光のコントラスト低下の影響を最小化する試みが行われている。
【0004】
このような状況下、有機溶剤現像は微細パターン形成技術の一つとして注目されている。例えば、ポジティブトーンでは達成できない非常に微細なホールパターンをネガティブトーンの露光で解像するために、解像性の高いポジ型レジスト組成物を用いた有機溶剤現像でネガパターンを形成することが可能である。更に、アルカリ現像と有機溶剤現像の2回の現像を組み合わせることにより、2倍の解像力を得る検討も進められている。有機溶剤によるネガティブトーン現像用のArFレジスト組成物としては、従来型のポジ型ArFレジスト組成物を用いることができ、例えば特許文献1~3にパターン形成方法が示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2008-281974号公報
【文献】特開2008-281980号公報
【文献】特開2009-53657号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明者らは、これまでポジ型レジストの有機溶剤現像によるネガティブトーンパターン形成に好適なケイ素含有レジスト下層膜として、例えば、特開2012-194216号公報、特開2012-237975号公報、特開2013-33187号公報、特開2013-41140号公報、特開2013-114059公報、特開2013-167669号公報、特開2013-166812号公報、特開2013-224279号公報などを提供してきた。しかしながら、最近のパターン形成においては、より高精度なエッジラフネス(LWR)及びホールパターンの寸法均一性(CDU)が求められている。
【0007】
本発明は前記事情に鑑みなされたもので、LWRやCDUに優れたレジストパターンを形成することができるケイ素含有レジスト下層膜形成用組成物、及びこの組成物を用いるパターン形成方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
上記課題を解決するために、本発明では、下記一般式(Sx-1)で表される繰返し単位、下記一般式(Sx-2)で表される繰返し単位、及び下記一般式(Sx-3)で表される部分構造のいずれか一つ以上を含有する熱硬化性ケイ素含有材料と下記一般式(P-0)で示される化合物を含むケイ素含有レジスト下層膜形成用組成物を提供する。
【化1】
(式中、Rは1個以上のシラノール基、水酸基もしくはカルボキシル基を持つ有機基、または、酸、熱のいずれかまたは両方の作用により保護基が脱離して1個以上のシラノール基、水酸基もしくはカルボキシル基を発生する有機基である。R、Rはそれぞれ独立にRと同じか、水素原子又は炭素数1~30の1価の置換基である。)
【化2】
(式(P-0)中、R100は1個以上のフッ素原子で置換された2価の有機基、R101及びR102はそれぞれ独立にヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の1価炭化水素基を示す。R103はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。また、R101とR102、あるいはR101とR103は互いに結合して式中の硫黄原子と共に環を形成してもよい。L104は単結合又はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。)
【0009】
このようなケイ素含有レジスト下層膜形成用組成物であれば、LWRやCDUに優れたレジストパターンを形成することができる。
【0010】
上記ケイ素含有レジスト下層膜形成用組成物は、更に架橋触媒を含むことができる。
【0011】
このようなケイ素含有レジスト下層膜形成用組成物であれば、熱硬化性ポリシロキサンが硬化する際に架橋触媒がシロキサン結合の形成を促進することが可能であるため、高密度に架橋したケイ素含有レジスト下層膜を形成することができる。
【0012】
この場合、前記架橋触媒が、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩もしくはこれらを構造の一部として有するポリシロキサン、またはアルカリ金属塩であることができる。
【0013】
このような架橋触媒を本発明の熱硬化性ケイ素含有材料と組み合わせることで、LWRやCDUにより優れたレジストパターンを形成することができる。
【0014】
上記ケイ素含有レジスト下層膜形成用組成物は、更に、酸分解性置換基を有する含窒素化合物を含むことができる。
【0015】
このようなケイ素含有レジスト下層膜形成用組成物であれば、前記含窒素化合物を含有することで、過剰に存在する酸を失活させることが可能であり、これにより上層レジストへの酸拡散が抑制され、LWRやCDUにより一層優れる上層レジストパターンの形成が可能になる。
【0016】
また、本発明は、被加工体上に塗布型有機下層膜材料を用いて有機下層膜を形成し、該有機下層膜の上に上記ケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜を形成し、該ケイ素含有レジスト下層膜上に化学増幅型レジスト組成物を用いてフォトレジスト膜を形成し、加熱処理後に前記フォトレジスト膜を露光し、有機溶剤現像液を用いて前記フォトレジスト膜の未露光部を溶解させることによりネガ型パターンを形成し、該パターンが形成されたフォトレジスト膜をマスクにして前記ケイ素含有レジスト下層膜にドライエッチングでパターン転写し、該パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機下層膜をドライエッチングでパターン転写し、さらに該パターンが転写された有機下層膜をマスクにして前記被加工体にドライエッチングでパターンを転写することを特徴とするパターン形成方法を提供する。
【0017】
本発明のケイ素含有レジスト下層膜形成用組成物を用いると、LWRやCDUが良好な上層レジストパターンを形成できるだけでなく、これにより形成されたケイ素含有レジスト下層膜が、上層レジスト(フォトレジスト膜)及び有機下層膜とのドライエッチング選択性に優れるため、歩留まり良く半導体装置用のパターンを基板に形成することが出来る。
【0018】
また、本発明は、被加工体上に炭素を主成分とする有機ハードマスクをCVD法で形成し、該有機ハードマスクの上に上記ケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜を形成し、該ケイ素含有レジスト下層膜上に化学増幅型レジスト組成物を用いてフォトレジスト膜を形成し、加熱処理後に前記フォトレジスト膜を露光し、有機溶剤現像液を用いて前記フォトレジスト膜の未露光部を溶解させることによりネガ型パターンを形成し、該パターンが形成されたフォトレジスト膜をマスクにして前記ケイ素含有レジスト下層膜にドライエッチングでパターン転写し、該パターンが転写されたケイ素含有レジスト下層膜をマスクにして有機ハードマスクをドライエッチングでパターン転写し、さらに該パターンが転写された有機ハードマスクをマスクにして前記被加工体にドライエッチングでパターンを転写することを特徴とするパターン形成方法も提供する。
【0019】
本発明のケイ素含有レジスト下層膜形成用組成物を用いると、LWRやCDUが良好な上層レジストパターンを形成できるだけでなく、これにより形成されたケイ素含有レジスト下層膜が、上層レジスト(フォトレジスト膜)及び有機ハードマスクとのドライエッチング選択性に優れるため、歩留まり良く半導体装置用のパターンを基板に形成することが出来る。
【0020】
上記パターン形成方法において、フォトレジスト膜のパターン形成は、波長が10nm以上300nm以下の光リソグラフィー、電子線による直接描画、ナノインプリンティングまたはこれらの組合せによるパターン形成であることができる。
【0021】
フォトレジスト膜に合わせた条件によるパターン形成の後、必要に応じて処理を行うことで、好適なネガ型のレジストパターンを得ることができる。
【0022】
また、上記パターン形成方法において、被加工体が、半導体装置基板、金属膜、合金膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜または金属酸化窒化膜であることができる。
【0023】
本発明のパターン形成方法は、上記被加工体に有機下層膜又は有機ハードマスクを形成する場合に、サイズ変換差を生じることなく精度の高いパターンを基板(膜)上に形成できる。
【0024】
また、上記パターン形成方法において、被加工体を構成する金属がケイ素、ガリウム、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、銀、金、インジウム、ヒ素、パラジウム、タンタル、イリジウム、アルミニウム、鉄、モリブデン、コバルトまたはこれらの合金であることができる。
【0025】
このような金属で構成される被加工体を用いると、精度よくエッチング加工することにより、被加工体にネガ型パターンを高い精度で転写することができる。
【発明の効果】
【0026】
本発明のベタイン型酸発生剤を含有したケイ素含有レジスト下層膜形成用組成物は、LWRやCDUに優れる上層のレジストパターンの形成が可能になるだけでなく、有機材料(有機下層膜、有機ハードマスク)との間で高いエッチング選択性が得られることから、形成されたフォトレジストパターンを、ケイ素含有レジスト下層膜、有機下層膜またはCVD有機ハードマスクへと順にドライエッチングプロセスを用いて転写可能である。特に、微細化が進んでいる近年の半導体装置製造プロセスでは、多重露光プロセスが多用されており、現像後のパターンにおけるLWRやCDUはデバイス性能への影響が大きい。そのため、LWRやCDU性能の向上は重要である。本発明のケイ素含有レジスト下層膜形成用組成物を用いるとLWRやCDUに優れた上層レジストパターンを形成可能である。また本発明のケイ素含有レジスト下層膜形成用組成物はドライエッチング選択比が良好であるため、当該ケイ素含有レジスト下層膜をドライエッチングマスクとして使用しても、ドライエッチング中の上層レジストパターンの変形を抑え、優れたLWRやCDUを維持したまま基板に高い精度で転写することができる。
【図面の簡単な説明】
【0027】
図1】本発明のパターン形成方法を示すフロー図である。
図2】本発明の他のパターン形成方法を示すフロー図である。
【発明を実施するための形態】
【0028】
本発明は、露光後に酸と熱のいずれか又は両方によって脱保護反応を行い、有機溶剤現像によって未露光部分が溶解し露光部分が溶解しないネガティブトーンパターンを形成するレジスト材料に対して好適な下層膜形成用組成物およびこれを用いたパターン形成に関するものである。
【0029】
上述のように、LWRやCDUに優れる上層のレジストパターンの形成が可能になるレジスト下層膜形成用組成物の開発が求められていた。
【0030】
本発明者らは、前記目的を達成するため鋭意検討を重ねた結果、シラノール基、水酸基若しくはカルボキシル基を有する有機基、又は、酸、熱のいずれかまたは両方の作用によりシラノール基、水酸基若しくはカルボキシル基を発生する有機基を有する熱硬化性ケイ素含有材料と、1分子内にアニオン部位とカチオン部位を有するベタイン型化合物を含有するケイ素含有レジスト下層膜形成用組成物から形成されるレジスト下層膜は、上層のレジストパターンに接する部分の該下層膜表面の接触角を低くすることで良好なパターン密着性を持ち、更に前記ベタイン型化合物由来の発生酸の拡散距離が小さいため、上層レジストのLWR及びCDUが改善できることを見出し、本発明を完成するに至った。
【0031】
即ち、本発明は、下記一般式(Sx-1)で表される繰返し単位、下記一般式(Sx-2)で表される繰返し単位、及び下記一般式(Sx-3)で表される部分構造のいずれか一つ以上を含有する熱硬化性ケイ素含有材料と下記一般式(P-0)で示される化合物を含むケイ素含有レジスト下層膜形成用組成物である。
【化3】
(式中、Rは1個以上のシラノール基、水酸基もしくはカルボキシル基を持つ有機基、または、酸、熱のいずれかまたは両方の作用により保護基が脱離して1個以上のシラノール基、水酸基もしくはカルボキシル基を発生する有機基である。R、Rはそれぞれ独立にRと同じか、水素原子又は炭素数1~30の1価の置換基である。R100は1個以上のフッ素原子で置換された2価の有機基、R101及びR102はそれぞれ独立にヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の1価炭化水素基を示す。R103はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。また、R101とR102、あるいはR101とR103は互いに結合して式中の硫黄原子と共に環を形成してもよい。L104は単結合又はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。)
【0032】
溶剤現像で得られるネガティブトーンパターンでは、露光で発生した酸によりパターンを形成する樹脂中の酸不安定基が外れ、当該樹脂中にはカルボキシル基やフェノール水酸基などの親水性基の量が多くなる。この結果、パターン表面は親水性になり水に対する接触角は小さくなる。このようなネガティブトーンパターンの性質に対応して、本発明者らは露光部において上層レジスト中で発生した酸の効果で下層膜表面の水に対する接触角を小さくし、ネガティブトーンパターンとの密着性に好適な下層膜を提供した。しかしながら、近年の微細パターンでは上層レジストにおいても、LWRやCDUの改善のため、一分子中にカチオンとアニオン構造を有する、即ちベタイン構造の光酸発生剤の適用が知られている(特開2014-225005号公報)。この構造の特徴として、酸発生時は分子間で塩化合物を形成しており、見掛け上巨大な化合物となっている可能性がある。その結果、発生酸の拡散も小さくなる挙動が推測される。そのため、近年の上層レジストにおいては、発生酸の拡散が小さいため、下層膜表面への作用も小さくなり、その結果、接触角変化に与える影響も少なくなり、ネガティブトーンパターンの密着性が劣化している。そこで、ネガティブトーンパターンの密着性を保持するため、下層膜中に光酸発生剤を添加する方法もあるが、従来の光酸発生剤では発生酸の拡散が大きいため、その発生酸が上層レジストに拡散し上層レジストのLWRやCDUの劣化を引き起こす。そこで、下層膜表面の接触角を下げるために添加する光酸発生剤も発生酸の拡散の小さな光酸発生剤を用いることで、ネガティブトーンパターンとの密着性とLWRやCDUを同時に改善することが可能であり、非常に有用であるといえる。
【0033】
本発明のケイ素含有レジスト下層膜形成用組成物が架橋触媒を含む場合、架橋触媒は、熱硬化性ポリシロキサンが硬化する際にシロキサン結合の形成を促進することが可能で、高密度に架橋したケイ素含有レジスト下層膜を形成することが可能である。これにより、本発明の酸発生剤から発生した酸の拡散が小さくなるだけでなく、酸で分解される置換基を有する含窒素化合物を含有することで、過剰に存在する酸を失活させることが可能であり、これにより上層レジストへの酸拡散が抑制され、LWRやCDUに優れる上層レジストパターンの形成が可能になる。
【0034】
また、本発明のケイ素含有レジスト下層膜形成用組成物は、LWRやCDUが良好な上層レジストパターンが形成可能なだけでなく、上層レジストと下層有機膜またはCVDカーボン膜とのドライエッチング選択性に優れるため、歩留まり良く半導体装置用のパターンを基板に形成することが出来る。
【0035】
以下、本発明について詳細に説明するが、本発明はこれらに限定されるものではない。
【0036】
[ケイ素含有レジスト下層膜形成用組成物]
本発明のケイ素含有レジスト下層膜形成用組成物は、上記一般式(Sx-1)で表される繰返し単位、一般式(Sx-2)で表される繰返し単位、及び一般式(Sx-3)で表される部分構造のいずれか一つ以上を含有する熱硬化性ケイ素含有材料と一般式(P-0)で示される化合物を必須成分として含むケイ素含有レジスト下層膜形成用組成物である。前記組成物は、必要に応じて、架橋触媒、酸分解性置換基を有する含窒素化合物などのその他の成分を含むことができる。以下、これら成分について説明する。
【0037】
[熱硬化性ケイ素含有材料]
本発明の熱硬化性ケイ素含有材料(Sx)は、下記一般式(Sx-1)で表される繰返し単位、下記一般式(Sx-2)で表される繰返し単位、及び下記一般式(Sx-3)で表される部分構造のいずれか一つ以上を含有する。
【化4】
(式中、Rは1個以上のシラノール基、水酸基もしくはカルボキシル基を持つ有機基、または、酸、熱のいずれかまたは両方の作用により保護基が脱離して1個以上のシラノール基、水酸基もしくはカルボキシル基を発生する有機基である。R、Rはそれぞれ独立にRと同じか、水素原子又は炭素数1~30の1価の置換基である。)
【0038】
上記Rは、1個以上のシラノール基、水酸基もしくはカルボキシル基を持つ有機基であるか、または、酸、熱のいずれかまたは両方の作用により保護基が脱離して1個以上の前記基を発生する有機基であれば特に限定されない。
このような熱硬化性ケイ素含有材料(Sx)のR1として、以下のものを例示することが出来る。なお、下記式中において、(Si)はSiとの結合箇所を示すために記載した(以下において同様)。
【0039】
【化5】
【0040】
【化6】
【0041】
【化7】
【0042】
【化8】
【0043】
本発明の構造を形成するための原料として使用される加水分解性モノマー(Sm)としては、上記構造をケイ素上に有し、他方加水分解性基として1個、2個または3個の塩素、臭素、ヨウ素、アセトキシ基、メトキシ基、エトキシ基、プロポキシ基またはブトキシ基等と、存在する場合、R、Rとして水素原子又は炭素数1~30の1価の有機基を含んでいるものを1種又は2種以上組み合わせて使用できる。
【0044】
上記R、Rで表される有機基の例として、それぞれ同じでも異なってもよい、メチル、エチル、ビニル、プロピル、シクロプロピル、ブチル、シクロブチル、ペンチル、シクロペンチル、ヘキシル、シクロヘキシル、シクロヘキセニル、シクロペンチルメチル、ヘプチル、シクロヘキシルメチル、シクロヘキセニルメチル、ビシクロ[2,2,1]ヘプチル、オクチル、シクロオクチル、シクロヘキシルエチル、デシル、アダマンチル、ドデシル、フェニル、ベンジル、フェネチル、ナフチル、アントラニルなどを例示することが出来る。
【0045】
上記R、Rで表される別の有機基の例として、炭素-酸素単結合又は炭素-酸素二重結合を1以上有する有機基を挙げることができる。具体的には、エーテル結合、エステル結合、アルコキシ基、ヒドロキシ基などからなる群から選択される1以上の基を有する有機基である。この例として次の一般式(Sm-R)で示されるものを挙げることができる。
【0046】
(P-Q-(Sv1-Q-)-(T)v2-Q-(Sv3-Q
(Sm-R)
(一般式(Sm-R)中、Pは水素原子、環状エーテル基、ヒドロキシル基、炭素数1~4のアルコキシ基、炭素数1~6のアルキルカルボニルオキシ基、または炭素数1~6のアルキルカルボニル基であり、Q、Q、Q、及びQは各々独立して-C(2q-p)-(式中、Pは上記と同様であり、pは0~3の整数であり、qは0~10の整数(但し、q=0は単結合であることを示す。)である。)、uは0~3の整数であり、SとSは各々独立して-O-、-CO-、-OCO-、-COO-または-OCOO-を表す。v1、v2、及びv3は、各々独立して0または1を表す。これらとともに、Tは炭素以外の2価の原子、脂環、芳香環または複素環からなる2価の基である。)
Tとして、酸素原子等のヘテロ原子を含んでもよい脂環、芳香環または複素環の例を以下に示す。TにおいてQとQと結合する位置は、特に限定されないが、立体的な要因による反応性や反応に用いる市販試薬の入手性等を考慮して適宜選択できる。
【0047】
【化9】
【0048】
一般式(Sm-R)中の炭素-酸素単結合又は炭素-酸素二重結合を1以上有する有機基の好ましい例として、以下のものが挙げられる。
【0049】
【化10】
【0050】
【化11】
【0051】
また、R、Rの有機基の例として、ケイ素-ケイ素結合を含む有機基を用いることもできる。具体的には下記のものを挙げることができる。
【0052】
【化12】
【0053】
更に、R、Rの有機基の例として、フッ素原子を有する有機基を用いることもできる。具体的には特開2012-53253号公報の(0059)段落から(0065)段落に示されているケイ素化合物から得られる有機基を挙げることができる。
【0054】
上記の加水分解性モノマー(Sm)は、上記部分構造中(Si)で示されているケイ素上に加水分解性基として1個、2個または3個の塩素、臭素、ヨウ素、アセトキシ基、メトキシ基、エトキシ基、プロポキシ基またはブトキシ基等が結合している。
【0055】
さらに、以下の加水分解性モノマー(Sm)を含んだ混合物を加水分解縮合することにより本発明のケイ素含有材料(Sx)を製造出来る。
【0056】
加水分解性モノマー(Sm)として具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトライソプロポキシシラン、トリメトキシシラン、トリエトキシシラン、トリプロポキシシラン、トリイソプロポキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリプロポキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリプロポキシシラン、エチルトリイソプロポキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリプロポキシシラン、プロピルトリイソプロポキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、イソプロピルトリプロポキシシラン、イソプロピルトリイソプロポキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、ブチルトリプロポキシシラン、ブチルトリイソプロポキシシラン、sec-ブチルトリメトキシシラン、sec-ブチルトリエトキシシラン、sec-ブチルトリプロポキシシラン、sec-ブチルトリイソプロポキシシラン、t-ブチルトリメトキシシラン、t-ブチルトリエトキシシラン、t-ブチルトリプロポキシシラン、t-ブチルトリイソプロポキシシラン、シクロプロピルトリメトキシシラン、シクロプロピルトリエトキシシラン、シクロプロピルトリプロポキシシラン、シクロプロピルトリイソプロポキシシラン、シクロブチルトリメトキシシラン、シクロブチルトリエトキシシラン、シクロブチルトリプロポキシシラン、シクロブチルトリイソプロポキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロペンチルトリプロポキシシラン、シクロペンチルトリイソプロポキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、シクロヘキシルトリプロポキシシラン、シクロヘキシルトリイソプロポキシシラン、シクロヘキセニルトリメトキシシラン、シクロヘキセニルトリエトキシシラン、シクロヘキセニルトリプロポキシシラン、シクロヘキセニルトリイソプロポキシシラン、シクロヘキセニルエチルトリメトキシシラン、シクロヘキセニルエチルトリエトキシシラン、シクロヘキセニルエチルトリプロポキシシラン、シクロヘキセニルエチルトリイソプロポキシシラン、シクロオクチルトリメトキシシラン、シクロオクチルトリエトキシシラン、シクロオクチルトリプロポキシシラン、シクロオクチルトリイソプロポキシシラン、シクロペンタジエニルプロピルトリメトキシシラン、シクロペンタジエニルプロピルトリエトキシシラン、シクロペンタジエニルプロピルトリプロポキシシラン、シクロペンタジエニルプロピルトリイソプロポキシシラン、ビシクロヘプテニルトリメトキシシラン、ビシクロヘプテニルトリエトキシシラン、ビシクロヘプテニルトリプロポキシシラン、ビシクロヘプテニルトリイソプロポキシシラン、ビシクロヘプチルトリメトキシシラン、ビシクロヘプチルトリエトキシシラン、ビシクロヘプチルトリプロポキシシラン、ビシクロヘプチルトリイソプロポキシシラン、アダマンチルトリメトキシシラン、アダマンチルトリエトキシシラン、アダマンチルトリプロポキシシラン、アダマンチルトリイソプロポキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、フェニルトリプロポキシシラン、フェニルトリイソプロポキシシラン、ベンジルトリメトキシシラン、ベンジルトリエトキシシラン、ベンジルトリプロポキシシラン、ベンジルトリイソプロポキシシラン、アニシルトリメトキシシラン、アニシルトリエトキシシラン、アニシルトリプロポキシシラン、アニシルトリイソプロポキシシラン、トリルトリメトキシシラン、トリルトリエトキシシラン、トリルトリプロポキシシラン、トリルトリイソプロポキシシラン、フェネチルトリメトキシシラン、フェネチルトリエトキシシラン、フェネチルトリプロポキシシラン、フェネチルトリイソプロポキシシラン、ナフチルトリメトキシシラン、ナフチルトリエトキシシラン、ナフチルトリプロポキシシラン、ナフチルトリイソプロポキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジメチルジプロポキシシラン、ジメチルジイソプロポキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジエチルジプロポキシシラン、ジエチルジイソプロポキシシラン、ジプロピルジメトキシシラン、ジプロピルジエトキシシラン、ジプロピルジプロポキシシラン、ジプロピルジイソプロポキシシラン、ジイソプロピルジメトキシシラン、ジイソプロピルジエトキシシラン、ジイソプロピルジプロポキシシラン、ジイソプロピルジイソプロポキシシラン、ジブチルジメトキシシラン、ジブチルジエトキシシラン、ジブチルジプロポキシシラン、ジブチルジイソプロポキシシラン、ジsec-ブチルジメトキシシラン、ジsec-ブチルジエトキシシラン、ジsec-ブチルジプロポキシシラン、ジsec-ブチルジイソプロポキシシラン、ジt-ブチルジメトキシシラン、ジt-ブチルジエトキシシラン、ジt-ブチルジプロポキシシラン、ジt-ブチルジイソプロポキシシラン、ジシクロプロピルジメトキシシラン、ジシクロプロピルジエトキシシラン、ジシクロプロピルジプロポキシシラン、ジシクロプロピルジイソプロポキシシラン、ジシクロブチルジメトキシシラン、ジシクロブチルジエトキシシラン、ジシクロブチルジプロポキシシラン、ジシクロブチルジイソプロポキシシラン、ジシクロペンチルジメトキシシラン、ジシクロペンチルジエトキシシラン、ジシクロペンチルジプロポキシシラン、ジシクロペンチルジイソプロポキシシラン、ジシクロヘキシルジメトキシシラン、ジシクロヘキシルジエトキシシラン、ジシクロヘキシルジプロポキシシラン、ジシクロヘキシルジイソプロポキシシラン、ジシクロヘキセニルジメトキシシラン、ジシクロヘキセニルジエトキシシラン、ジシクロヘキセニルジプロポキシシラン、ジシクロヘキセニルジイソプロポキシシラン、ジシクロヘキセニルエチルジメトキシシラン、ジシクロヘキセニルエチルジエトキシシラン、ジシクロヘキセニルエチルジプロポキシシラン、ジシクロヘキセニルエチルジイソプロポキシシラン、ジシクロオクチルジメトキシシラン、ジシクロオクチルジエトキシシラン、ジシクロオクチルジプロポキシシラン、ジシクロオクチルジイソプロポキシシラン、ジシクロペンタジエニルプロピルジメトキシシラン、ジシクロペンタジエニルプロピルジエトキシシラン、ジシクロペンタジエニルプロピルジプロポキシシラン、ジシクロペンタジエニルプロピルジイソプロポキシシラン、ビス(ビシクロヘプテニル)ジメトキシシラン、ビス(ビシクロヘプテニル)ジエトキシシラン、ビス(ビシクロヘプテニル)ジプロポキシシラン、ビス(ビシクロヘプテニル)ジイソプロポキシシラン、ビス(ビシクロヘプチル)ジメトキシシラン、ビス(ビシクロヘプチル)ジエトキシシラン、ビス(ビシクロヘプチル)ジプロポキシシラン、ビス(ビシクロヘプチル)ジイソプロポキシシラン、ジアダマンチルジメトキシシラン、ジアダマンチルジエトキシシラン、ジアダマンチルジプロポキシシラン、ジアダマンチルジイソプロポキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、ジフェニルジプロポキシシラン、ジフェニルジイソプロポキシシラン、トリメチルメトキシシラン、トリメチルエトキシシラン、ジメチルエチルメトキシシラン、ジメチルエチルエトキシシラン、ジメチルフェニルメトキシシラン、ジメチルフェニルエトキシシラン、ジメチルベンジルメトキシシラン、ジメチルベンジルエトキシシラン、ジメチルフェネチルメトキシシラン、ジメチルフェネチルエトキシシラン等を例示できる。
【0057】
上記化合物として、好ましくは、テトラメトキシシラン、テトラエトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソプロピルトリメトキシシラン、イソプロピルトリエトキシシラン、ブチルトリメトキシシラン、ブチルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、シクロペンチルトリメトキシシラン、シクロペンチルトリエトキシシラン、シクロヘキシルトリメトキシシラン、シクロヘキシルトリエトキシシラン、シクロヘキセニルトリメトキシシラン、シクロヘキセニルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、ベンジルトリメトキシシラン、ベンジルトリエトキシシラン、フェネチルトリメトキシシラン、フェネチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジプロピルジメトキシシラン、ジブチルジメトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシラン、トリメチルメトキシシラン、ジメチルエチルメトキシシラン、ジメチルフェニルメトキシシラン、ジメチルベンジルメトキシシラン、ジメチルフェネチルメトキシシラン等を例示出来る。
【0058】
〔熱硬化性ケイ素含有材料(Sx)の合成方法〕
(合成方法1:酸触媒)
本発明の熱硬化性ケイ素含有材料(Sx:以下、熱硬化性ポリシロキサンともいう)は、加水分解性モノマー(Sm)の1種または2種以上の混合物(以下、単に「モノマー」ともいう)を酸触媒の存在下、加水分解縮合を行うことで製造することができる。
【0059】
このとき使用される酸触媒は、ギ酸、酢酸、シュウ酸、マレイン酸、メタンスルホン酸、ベンゼンスルホン酸、トルエンスルホン酸などの有機酸、フッ酸、塩酸、臭化水素酸、硫酸、硝酸、過塩素酸、リン酸などの無機酸を挙げることができる。触媒の使用量は、モノマー1モルに対して1×10-6~10モル、好ましくは1×10-5~5モル、より好ましくは1×10-4~1モルである。
【0060】
これらのモノマーから加水分解縮合により熱硬化性ポリシロキサンを得るときの水の量は、モノマーに結合している加水分解性置換基1モル当たり0.01~100モル、より好ましくは0.05~50モル、更に好ましくは0.1~30モルを添加することが好ましい。100モル以下であれば、反応に使用する装置が小さくなり経済的になる。
【0061】
操作方法として、触媒水溶液にモノマーを添加して加水分解縮合反応を開始させる。このとき、触媒水溶液に有機溶剤を加えてもよいし、モノマーを有機溶剤で希釈しておいてもよいし、両方行ってもよい。反応温度は0~100℃、好ましくは5~80℃である。モノマーの滴下時に5~80℃に温度を保ち、その後20~80℃で熟成させる方法が好ましい。
【0062】
触媒水溶液に加えることのできる、又はモノマーを希釈することのできる有機溶剤としては、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アセトン、アセトニトリル、テトラヒドロフラン、トルエン、ヘキサン、酢酸エチル、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン、メチルアミルケトン、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸tert-ブチル、プロピオン酸t-ブチル、プロピレングリコールモノt-ブチルエーテルアセテート、γ-ブチロラクトン、アセトニトリル、テトラヒドロフラン等及びこれらの混合物等が好ましい。
【0063】
これらの溶剤の中で好ましいものは水溶性のものである。例えば、メタノール、エタノール、1-プロパノール、2-プロパノール等のアルコール類、エチレングリコール、プロピレングリコール等の多価アルコール、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル等の多価アルコール縮合物誘導体、アセトン、アセトニトリル、テトラヒドロフラン等を挙げることができる。この中で特に好ましいのは、沸点が100℃以下のものである。
【0064】
尚、有機溶剤の使用量は、モノマー1モルに対して0~1,000ml、特に0~500mlが好ましい。有機溶剤の使用量が少なくなると反応容器が小さくなり経済的である。
【0065】
その後、必要であれば触媒の中和反応を行い、反応混合物水溶液を得る。このとき、中和に使用することのできるアルカリ性物質の量は、触媒で使用された酸に対して0.1~2当量が好ましい。このアルカリ性物質は水中でアルカリ性を示すものであれば、任意の物質でよい。
【0066】
続いて、反応混合物から加水分解縮合反応で生成したアルコールなどの副生物を減圧除去等で取り除くことが好ましい。このとき反応混合物を加熱する温度は、添加した有機溶剤と反応で発生したアルコールなどの種類によるが、好ましくは0~100℃、より好ましくは10~90℃、更に好ましくは15~80℃である。またこのときの減圧度は、除去すべき有機溶剤及びアルコールなどの種類、排気装置、凝縮装置及び加熱温度により異なるが、好ましくは大気圧以下、より好ましくは絶対圧で80kPa以下、更に好ましくは絶対圧で50kPa以下である。この際除去されるアルコール量を正確に知ることは難しいが、生成したアルコールなどのおよそ80質量%以上が除かれることが望ましい。
【0067】
次に、反応混合物から加水分解縮合に使用した酸触媒を除去してもよい。酸触媒を除去する方法として、水と熱硬化性ポリシロキサン溶液を混合し、熱硬化性ポリシロキサンを有機溶剤で抽出する。このとき使用する有機溶剤としては、熱硬化性ポリシロキサンを溶解でき、水と混合させると2層分離するものが好ましい。例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アセトン、テトラヒドロフラン、トルエン、ヘキサン、酢酸エチル、シクロヘキサノン、メチルアミルケトン、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸t-ブチル、プロピオン酸t-ブチル、プロピレングリコールモノt-ブチルエーテルアセテート、γ-ブチロラクトン、メチルイソブチルケトン、シクロペンチルメチルエーテル等及びこれらの混合物を挙げることができる。
【0068】
更に、水溶性有機溶剤と水難溶性有機溶剤の混合物を使用することも可能である。例えばメタノール-酢酸エチル混合物、エタノール-酢酸エチル混合物、1-プロパノール-酢酸エチル混合物、2-プロパノール-酢酸エチル混合物、ブタンジオールモノメチルエーテル-酢酸エチル混合物、プロピレングリコールモノメチルエーテル-酢酸エチル混合物、エチレングリコールモノメチルエーテル-酢酸エチル混合物、ブタンジオールモノエチルエーテル-酢酸エチル混合物、プロピレングリコールモノエチルエーテル-酢酸エチル混合物、エチレングリコールモノエチルエーテル-酢酸エチル混合物、ブタンジオールモノプロピルエーテル-酢酸エチル混合物、プロピレングリコールモノプロピルエーテル-酢酸エチル混合物、エチレングリコールモノプロピルエーテル-酢酸エチル混合物、メタノール-メチルイソブチルケトン混合物、エタノール-メチルイソブチルケトン混合物、1-プロパノール-メチルイソブチルケトン混合物、2-プロパノール-メチルイソブチルケトン混合物、プロピレングリコールモノメチルエーテル-メチルイソブチルケトン混合物、エチレングリコールモノメチルエーテル-メチルイソブチルケトン混合物、プロピレングリコールモノエチルエーテル-メチルイソブチルケトン混合物、エチレングリコールモノエチルエーテル-メチルイソブチルケトン混合物、プロピレングリコールモノプロピルエーテル-メチルイソブチルケトン混合物、エチレングリコールモノプロピルエーテル-メチルイソブチルケトン混合物、メタノール-シクロペンチルメチルエーテル混合物、エタノール-シクロペンチルメチルエーテル混合物、1-プロパノール-シクロペンチルメチルエーテル混合物、2-プロパノール-シクロペンチルメチルエーテル混合物、プロピレングリコールモノメチルエーテル-シクロペンチルメチルエーテル混合物、エチレングリコールモノメチルエーテル-シクロペンチルメチルエーテル混合物、プロピレングリコールモノエチルエーテル-シクロペンチルメチルエーテル混合物、エチレングリコールモノエチルエーテル-シクロペンチルメチルエーテル混合物、プロピレングリコールモノプロピルエーテル-シクロペンチルメチルエーテル混合物、エチレングリコールモノプロピルエーテル-シクロペンチルメチルエーテル混合物、メタノール-プロピレングリコールメチルエーテルアセテート混合物、エタノール-プロピレングリコールメチルエーテルアセテート混合物、1-プロパノール-プロピレングリコールメチルエーテルアセテート混合物、2-プロパノール-プロピレングリコールメチルエーテルアセテート混合物、プロピレングリコールモノメチルエーテル-プロピレングリコールメチルエーテルアセテート混合物、エチレングリコールモノメチルエーテル-プロピレングリコールメチルエーテルアセテート混合物、プロピレングリコールモノエチルエーテル-プロピレングリコールメチルエーテルアセテート混合物、エチレングリコールモノエチルエーテル-プロピレングリコールメチルエーテルアセテート混合物、プロピレングリコールモノプロピルエーテル-プロピレングリコールメチルエーテルアセテート混合物、エチレングリコールモノプロピルエーテル-プロピレングリコールメチルエーテルアセテート混合物等が好ましいが、組み合わせはこれらに限定されることはない。
【0069】
尚、水溶性有機溶剤と水難溶性有機溶剤との混合割合は、適宜選定されるが、水難溶性有機溶剤100質量部に対して、水溶性有機溶剤0.1~1,000質量部、好ましくは1~500質量部、更に好ましくは2~100質量部である。
【0070】
続いて、中性水で洗浄してもよい。この水は、通常脱イオン水や超純水と呼ばれているものを使用すればよい。この水の量は、熱硬化性ポリシロキサン溶液1Lに対して、0.01~100L、好ましくは0.05~50L、より好ましくは0.1~5Lである。この洗浄の方法は、両方を同一の容器にいれ掻き混ぜた後、静置して水層を分離すればよい。洗浄回数は、1回以上あればよいが、10回以上洗浄しても洗浄しただけの効果は得られないため、好ましくは1~5回程度である。
【0071】
その他に酸触媒を除去する方法として、イオン交換樹脂による方法や、エチレンオキサイド、プロピレンオキサイド等のエポキシ化合物で中和したのち除去する方法を挙げることができる。これらの方法は、反応に使用された酸触媒に合わせて適宜選択することができる。
【0072】
このときの水洗操作により、熱硬化性ポリシロキサンの一部が水層に逃げ、実質的に分画操作と同等の効果が得られている場合があるため、水洗回数や洗浄水の量は触媒除去効果と分画効果を鑑みて適宜選択すればよい。
【0073】
酸触媒が残留している熱硬化性ポリシロキサン溶液及び酸触媒が除去された熱硬化性ポリシロキサン溶液、いずれの場合においても、最終的な溶剤を加え、減圧で溶剤交換することで所望の熱硬化性ポリシロキサン溶液を得る。このときの溶剤交換の温度は、除去すべき反応溶剤や抽出溶剤の種類によるが、好ましくは0~100℃、より好ましくは10~90℃、更に好ましくは15~80℃である。またこのときの減圧度は、除去すべき抽出溶剤の種類、排気装置、凝縮装置及び加熱温度により異なるが、好ましくは大気圧以下、より好ましくは絶対圧で80kPa以下、更に好ましくは絶対圧で50kPa以下である。
【0074】
このとき、溶剤が変わることにより熱硬化性ポリシロキサンが不安定になる場合がある。これは最終的な溶剤と熱硬化性ポリシロキサンとの相性により発生するが、これを防止するため、安定剤として、特開2009-126940号公報(0181)~(0182)段落に記載されている環状エーテルを置換基として有する1価又は2価以上のアルコールを加えてもよい。加える量としては溶剤交換前の溶液中の熱硬化性ポリシロキサン100質量部に対して0~25質量部、好ましくは0~15質量部、より好ましくは0~5質量部であるが、添加する場合は0.5質量部以上が好ましい。溶剤交換前の溶液に必要であれば、環状エーテルを置換基として有する1価又は2価以上のアルコールを添加して溶剤交換操作を行えばよい。
【0075】
熱硬化性ポリシロキサンは、ある濃度以上に濃縮すると更に縮合反応が進行し、有機溶剤に対して再溶解不可能な状態に変化してしまう恐れがあるため、適度な濃度の溶液状態にしておくことが好ましい。また、あまり薄すぎると、溶剤の量が過大となるため、適度な濃度の溶液状態にしておくことが経済的で好ましい。このときの濃度としては、0.1~20質量%が好ましい。
【0076】
熱硬化性ポリシロキサン溶液に加える最終的な溶剤として好ましいものはアルコール系溶剤であり、特に好ましいものはエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ブタンジオールなどのモノアルキルエーテル誘導体である。具体的には、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、ジアセトンアルコール等が好ましい。
【0077】
これらの溶剤が主成分であれば、補助溶剤として、非アルコール系溶剤を添加する事も可能である。この補助溶剤としては、アセトン、テトラヒドロフラン、トルエン、ヘキサン、酢酸エチル、シクロヘキサノン、メチルアミルケトン、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸t-ブチル、プロピオン酸t-ブチル、プロピレングリコールモノt-ブチルエーテルアセテート、γ-ブチロラクトン、メチルイソブチルケトン、シクロペンチルメチルエーテルなどを例示できる。
【0078】
また、酸触媒を用いた別の反応操作としては、モノマー又はモノマーの有機溶液に、水又は含水有機溶剤を添加し、加水分解反応を開始させる。このとき触媒はモノマー又はモノマーの有機溶液に添加してもよいし、水又は含水有機溶剤に添加しておいてもよい。反応温度は0~100℃、好ましくは10~80℃である。水の滴下時に10~50℃に加熱し、その後20~80℃に昇温させて熟成させる方法が好ましい。
【0079】
有機溶剤を使用する場合は、水溶性のものが好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アセトン、テトラヒドロフラン、アセトニトリル、ブタンジオールモノメチルエーテル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、ブタンジオールモノエチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、ブタンジオールモノプロピルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテル等の多価アルコール縮合物誘導体及びこれらの混合物等を挙げることができる。
【0080】
有機溶剤の使用量は、モノマー1モルに対して0~1,000ml、特に0~500mlが好ましい。有機溶剤の使用量が少ない方が、反応容器が小さくなり経済的である。得られた反応混合物の後処理は、前記の方法と同様で後処理し、熱硬化性ポリシロキサンを得ることができる。
【0081】
(合成方法2:アルカリ触媒)
また、熱硬化性ケイ素含有材料(Sx:熱硬化性ポリシロキサン)は、加水分解性モノマー(Sm)1種または2種以上の混合物をアルカリ触媒の存在下、加水分解縮合を行うことで製造することができる。このとき使用されるアルカリ触媒は、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、エチレンジアミン、ヘキサメチレンジアミン、ジメチルアミン、ジエチルアミン、エチルメチルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、シクロヘキシルアミン、ジシクロヘキシルアミン、モノエタノールアミン、ジエタノールアミン、ジメチルモノエタノールアミン、モノメチルジエタノールアミン、トリエタノールアミン、ジアザビシクロオクタン、ジアザビシクロシクロノネン、ジアザビシクロウンデセン、ヘキサメチレンテトラミン、アニリン、N,N-ジメチルアニリン、ピリジン、N,N-ジメチルアミノピリジン、ピロール、ピペラジン、ピロリジン、ピペリジン、ピコリン、テトラメチルアンモニウムハイドロオキサイド、コリンハイドロオキサイド、テトラプロピルアンモニウムハイドロオキサイド、テトラブチルアンモニウムハイドロオキサイド、アンモニア、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化バリウム、水酸化カルシウム等を挙げることができる。触媒の使用量は、ケイ素モノマー1モルに対して1×10-6モル~10モル、好ましくは1×10-5モル~5モル、より好ましくは1×10-4モル~1モルである。
【0082】
上記のモノマーから加水分解縮合により熱硬化性ポリシロキサンを得るときの水の量は、モノマーに結合している加水分解性置換基1モル当たり0.1~50モルを添加することが好ましい。50モル以下であれば、反応に使用する装置が小さくなり経済的になる。
【0083】
操作方法として、触媒水溶液にモノマーを添加して加水分解縮合反応を開始させる。このとき、触媒水溶液に有機溶媒を加えてもよいし、モノマーを有機溶媒で希釈しておいてもよいし、両方行っても良い。反応温度は0~100℃、好ましくは5~80℃である。モノマーの滴下時に5~80℃に温度を保ち、その後20~80℃で熟成させる方法が好ましい。
【0084】
アルカリ触媒水溶液に加えることのできる、又はモノマーを希釈することのできる有機溶媒としては、酸触媒水溶液に加えることのできるものとして例示した有機溶剤と同様のものが好ましく用いられる。尚、有機溶媒の使用量は、経済的に反応を行えるため、モノマー1モルに対して0~1,000mlが好ましい。
【0085】
その後、必要であれば触媒の中和反応を行い、反応混合物水溶液を得る。このとき、中和に使用することのできる酸性物質の量は、触媒で使用されたアルカリ性物質に対して0.1~2当量が好ましい。この酸性物質は水中で酸性を示すものであれば、任意の物質でよい。
【0086】
続いて、反応混合物から加水分解縮合反応で生成したアルコールなどの副生物を減圧除去等で取り除くことが好ましい。このとき反応混合物を加熱する温度は、添加した有機溶媒と反応で発生したアルコールの種類に依るが、好ましくは0~100℃、より好ましくは10~90℃、更に好ましくは15~80℃である。またこのときの減圧度は、除去すべき有機溶剤およびアルコールの種類、排気装置、凝縮装置及び加熱温度により異なるが、好ましくは大気圧以下、より好ましくは絶対圧で80kPa以下、更に好ましくは絶対圧で50kPa以下である。この際除去されるアルコール量を正確に知ることは難しいが、生成したアルコールのおよそ80質量%以上が除かれることが望ましい。
【0087】
次に加水分解縮合に使用した触媒を除去するため、熱硬化性ポリシロキサンを有機溶剤で抽出する。このとき使用する有機溶剤としては、熱硬化性ポリシロキサンを溶解でき、水と混合させると2層分離するものが好ましい。例えばメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アセトン、テトラヒドロフラン、トルエン、ヘキサン、酢酸エチル、シクロヘキサノン、メチルアミルケトン、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、ピルビン酸エチル、酢酸ブチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸エチル、酢酸t-ブチル、プロピオン酸t-ブチル、プロピレングリコールモノt-ブチルエーテルアセテート、γ-ブチロラクトン、メチルイソブチルケトン、シクロペンチルメチルエーテル等、及びこれらの混合物を挙げることができる。
【0088】
次に加水分解縮合に使用したアルカリ触媒を除去するため、熱硬化性ポリシロキサンを有機溶剤で抽出する。このとき使用する有機溶剤としては、熱硬化性ポリシロキサンを溶解でき、水と混合させると2層分離するものが好ましい。更に、水溶性有機溶剤と水難溶性有機溶剤の混合物を使用することも可能である。
【0089】
アルカリ触媒を除去する際に用いられる有機溶剤の具体例は、酸触媒を除去する際に用いられるものとして具体的に例示した上述の有機溶剤や、水溶性有機溶剤と水難性有機溶剤の混合物と同様のものを用いることができる。
【0090】
尚、水溶性有機溶剤と水難溶性有機溶剤との混合割合は、適宜選定されるが、水難溶性有機溶剤100質量部に対して、水溶性有機溶剤0.1~1,000質量部、好ましくは1~500質量部、更に好ましくは2~100質量部である。
【0091】
続いて、中性水で洗浄する。この水は、通常脱イオン水や超純水と呼ばれているものを使用すればよい。この水の量は、熱硬化性ポリシロキサン溶液1Lに対して、0.01~100L、好ましくは0.05~50L、より好ましくは0.1~5Lである。この洗浄の方法は、両方を同一の容器にいれ掻き混ぜた後、静置して水層を分離すればよい。洗浄回数は、1回以上あればよいが、10回以上洗浄しても洗浄しただけの効果は得られないため、好ましくは1~5回程度である。
【0092】
洗浄済みの熱硬化性ポリシロキサン溶液に最終的な溶媒を加え、減圧で溶媒交換することで所望の熱硬化性ポリシロキサン溶液を得る。このときの溶媒交換の温度は、除去すべき抽出溶剤の種類に依るが、好ましくは0~100℃、より好ましくは10~90℃、更に好ましくは15~80℃である。またこのときの減圧度は、除去すべき抽出溶剤の種類、排気装置、凝縮装置及び加熱温度により異なるが、好ましくは大気圧以下、より好ましくは絶対圧で80kPa以下、更に好ましくは絶対圧で50kPa以下である。
【0093】
熱硬化性ポリシロキサン溶液に加える最終的な溶媒として好ましいものはアルコール系溶媒であり、特に好ましいものはエチレングリコール、ジエチレングリコール、トリエチレングリコールなどのモノアルキルエーテル、プロピレングリコール、ジプロピレングリコールなどのモノアルキルエーテルである。具体的には、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、ジアセトンアルコールなどが好ましい。
【0094】
また、アルカリ触媒を用いた別の反応操作としては、モノマーまたはモノマーの有機溶液に、水または含水有機溶媒を添加し、加水分解反応を開始させる。このとき触媒はモノマーまたはモノマーの有機溶液に添加しても良いし、水または含水有機溶媒に添加しておいてもよい。反応温度は0~100℃、好ましくは10~80℃である。水の滴下時に10~50℃に加熱し、その後20~80℃に昇温させて熟成させる方法が好ましい。
【0095】
モノマーの有機溶液又は含水有機溶媒として使用できる有機溶媒としては、水溶性のものが好ましく、メタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノール、2-ブタノール、2-メチル-1-プロパノール、アセトン、テトラヒドロフラン、アセトニトリル、プロピレングリコールモノメチルエーテル、エチレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル、エチレングリコールモノプロピルエーテル、プロピレングリコールジメチルエーテル、ジエチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、プロピレングリコールモノプロピルエーテルなどの多価アルコール縮合物誘導体及びこれらの混合物などを挙げることができる。
【0096】
上記合成方法1又は2により得られる熱硬化性ポリシロキサンの分子量は、モノマーの選択だけでなく、重合時の反応条件制御により調整することができるが、重量平均分子量(Mw)が100,000以下、より好ましくは200~50,000、更には300~30,000のものを用いることが好ましい。重量平均分子量が100,000を以下のものを用いると、異物の発生や塗布斑が生じることがない。
尚、上記重量平均分子量に関するデータは、検出器としてRI、溶離溶剤としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)により、標準物質としてポリスチレンを用いて、ポリスチレン換算で分子量を表したものである。
【0097】
本発明で使用される熱硬化性ポリシロキサンの物性は、加水分解縮合時に使用される酸またはアルカリ触媒の種類や反応条件により異なる。そのため、目的とするレジスト下層膜の性能に合わせて適宜選択することが出来る。
【0098】
さらに、このモノマーと下記一般式(Mm)で示される加水分解性金属化合物の混合物を前記の酸またはアルカリ触媒を用いた条件で製造したポリシロキサン誘導体をレジスト下層膜組成物の成分として用いることが出来る。
U(ORm7(ORm8(Mm)
(式中、R、Rは炭素数1~30の有機基であり、m7+m8はUの種類により決まる価数と同数であり、m7、m8は0以上の整数、Uは周期律表のIII族、IV族、又はV族の元素で炭素及びケイ素を除くものである。)
【0099】
このとき使用される加水分解性金属化合物(Mm)として、以下のものを例示出来る。
Uがホウ素の場合、一般式(Mm)で示される化合物として、ボロンメトキシド、ボロンエトキシド、ボロンプロポキシド、ボロンブトキシド、ボロンアミロキシド、ボロンヘキシロキシド、ボロンシクロペントキシド、ボロンシクロヘキシロキシド、ボロンアリロキシド、ボロンフェノキシド、ボロンメトキシエトキシド、ホウ酸、酸化ホウ素などをモノマーとして例示出来る。
【0100】
Uがアルミニウムの場合、一般式(Mm)で示される化合物として、アルミニウムメトキシド、アルミニウムエトキシド、アルミニウムプロポキシド、アルミニウムブトキシド、アルミニウムアミロキシド、アルミニウムヘキシロキシド、アルミニウムシクロペントキシド、アルミニウムシクロヘキシロキシド、アルミニウムアリロキシド、アルミニウムフェノキシド、アルミニウムメトキシエトキシド、アルミニウムエトキシエトキシド、アルミニウムジプロポキシエチルアセトアセテート、アルミニウムジブトキシエチルアセトアセテート、アルミニウムプロポキシビスエチルアセトアセテート、アルミニウムブトキシビスエチルアセトアセテート、アルミニウム2,4-ペンタンジオネート、アルミニウム2,2,6,6-テトラメチル-3,5-ヘプタンジオネートなどをモノマーとして例示出来る。
【0101】
Uがガリウムの場合、一般式(Mm)で示される化合物として、ガリウムメトキシド、ガリウムエトキシド、ガリウムプロポキシド、ガリウムブトキシド、ガリウムアミロキシド、ガリウムヘキシロキシド、ガリウムシクロペントキシド、ガリウムシクロヘキシロキシド、ガリウムアリロキシド、ガリウムフェノキシド、ガリウムメトキシエトキシド、ガリウムエトキシエトキシド、ガリウムジプロポキシエチルアセトアセテート、ガリウムジブトキシエチルアセトアセテート、ガリウムプロポキシビスエチルアセトアセテート、ガリウムブトキシビスエチルアセトアセテート、ガリウム2,4-ペンタンジオネート、ガリウム2,2,6,6-テトラメチル-3,5-ヘプタンジオネートなどをモノマーとして例示出来る。
【0102】
Uがイットリウムの場合、一般式(Mm)で示される化合物として、イットリウムメトキシド、イットリウムエトキシド、イットリウムプロポキシド、イットリウムブトキシド、イットリウムアミロキシド、イットリウムヘキシロキシド、イットリウムシクロペントキシド、イットリウムシクロヘキシロキシド、イットリウムアリロキシド、イットリウムフェノキシド、イットリウムメトキシエトキシド、イットリウムエトキシエトキシド、イットリウムジプロポキシエチルアセトアセテート、イットリウムジブトキシエチルアセトアセテート、イットリウムプロポキシビスエチルアセトアセテート、イットリウムブトキシビスエチルアセトアセテート、イットリウム2,4-ペンタンジオネート、イットリウム2,2,6,6-テトラメチル-3,5-ヘプタンジオネートなどをモノマーとして例示出来る。
【0103】
Uがゲルマニウムの場合、一般式(Mm)で示される化合物として、ゲルマニウムメトキシド、ゲルマニウムエトキシド、ゲルマニウムプロポキシド、ゲルマニウムブトキシド、ゲルマニウムアミロキシド、ゲルマニウムヘキシロキシド、ゲルマニウムシクロペントキシド、ゲルマニウムシクロヘキシロキシド、ゲルマニウムアリロキシド、ゲルマニウムフェノキシド、ゲルマニウムメトキシエトキシド、ゲルマニウムエトキシエトキシドなどをモノマーとして例示出来る。
【0104】
Uがチタンの場合、一般式(Mm)で示される化合物として、チタンメトキシド、チタンエトキシド、チタンプロポキシド、チタンブトキシド、チタンアミロキシド、チタンヘキシロキシド、チタンシクロペントキシド、チタンシクロヘキシロキシド、チタンアリロキシド、チタンフェノキシド、チタンメトキシエトキシド、チタンエトキシエトキシド、チタンジプロポキシビスエチルアセトアセテート、チタンジブトキシビスエチルアセトアセテート、チタンジプロポキシビス2,4-ペンタンジオネート、チタンジブトキシビス2,4-ペンタンジオネートなどをモノマーとして例示出来る。
【0105】
Uがハフニウムの場合、一般式(Mm)で示される化合物として、ハフニウムメトキシド、ハフニウムエトキシド、ハフニウムプロポキシド、ハフニウムブトキシド、ハフニウムアミロキシド、ハフニウムヘキシロキシド、ハフニウムシクロペントキシド、ハフニウムシクロヘキシロキシド、ハフニウムアリロキシド、ハフニウムフェノキシド、ハフニウムメトキシエトキシド、ハフニウムエトキシエトキシド、ハフニウムジプロポキシビスエチルアセトアセテート、ハフニウムジブトキシビスエチルアセトアセテート、ハフニウムジプロポキシビス2,4-ペンタンジオネート、ハフニウムジブトキシビス2,4-ペンタンジオネートなどをモノマーとして例示出来る。
【0106】
Uがスズの場合、一般式(Mm)で示される化合物として、メトキシスズ、エトキシスズ、プロポキシスズ、ブトキシスズ、フェノキシスズ、メトキシエトキシスズ、エトキシエトキシスズ、スズ2,4-ペンタンジオネート、スズ2,2,6,6-テトラメチル-3,5-ヘプタンジオネートなどをモノマーとして例示出来る。
【0107】
Uがヒ素の場合、一般式(Mm)で示される化合物として、メトキシヒ素、エトキシヒ素、プロポキシヒ素、ブトキシヒ素、フェノキシヒ素などをモノマーとして例示出来る。
【0108】
Uがアンチモンの場合、一般式(Mm)で示される化合物として、メトキシアンチモン、エトキシアンチモン、プロポキシアンチモン、ブトキシアンチモン、フェノキシアンチモン、酢酸アンチモン、プロピオン酸アンチモンなどをモノマーとして例示出来る。
【0109】
Uがニオブの場合、一般式(Mm)で示される化合物として、メトキシニオブ、エトキシニオブ、プロポキシニオブ、ブトキシニオブ、フェノキシニオブなどをモノマーとして例示出来る。
【0110】
Uがタンタルの場合、一般式(Mm)で示される化合物として、メトキシタンタル、エトキシタンタル、プロポキシタンタル、ブトキシタンタル、フェノキシタンタルなどをモノマーとして例示出来る。
【0111】
Uがビスマスの場合、一般式(Mm)で示される化合物として、メトキシビスマス、エトキシビスマス、プロポキシビスマス、ブトキシビスマス、フェノキシビスマスなどをモノマーとして例示出来る。
【0112】
Uがリンの場合、一般式(Mm)で示される化合物として、トリメチルフォスフェイト、トリエチルフォスフェイト、トリプロピルフォスフェイト、トリメチルフォスファイト、トリエチルフォスファイト、トリプロピルフォスファイト、五酸化ニリンなどをモノマーとして例示出来る。
【0113】
Uがバナジウムの場合、一般式(Mm)で示される化合物として、バナジウムオキシドビス(2、4-ペンタンジオネート)、バナジウム2、4-ペンタンジオネート、バナジウムトリブトキシドオキシド、バナジウムトリプロポキシドオキシドなどをモノマーとして例示出来る。
【0114】
Uがジルコニウムの場合、一般式(Mm)で示される化合物として、メトキシジルコニウム、エトキシジルコニウム、プロポキシジルコニウム、ブトキシジルコニウム、フェノキシジルコニウム、ジルコニウムジブトキシドビス(2,4-ペンタンジオネート)、ジルコニウムジプロポキシドビス(2,2,6,6-テトラメチル-3,5-ヘプタンジオネート)などをモノマーとして例示出来る。
【0115】
[ベタイン型化合物]
本発明のケイ素含有レジスト下層膜形成用組成物は、上記熱硬化性ケイ素含有材料(Sx)に加えて下記一般式(P-0)で示される分子内にカチオン部位とアニオン部位を有するベタイン型の化合物(酸発生剤)を含む。なお、以下において、該化合物を光酸発生剤ということもある。
【化13】
(式(P-0)中、R100は1個以上のフッ素原子で置換された2価の有機基、R101及びR102はそれぞれ独立にヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の1価炭化水素基を示す。R103はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。また、R101とR102、あるいはR101とR103は互いに結合して式中の硫黄原子と共に環を形成してもよい。L104は単結合又はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。)
【0116】
上記一般式(P-0)中、R100は1個以上のフッ素原子で置換された炭素数1~20の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基、アリーレン基等の2価炭化水素基であってよい。
100として具体的には以下のものを挙げることができる。なお、以下では、一般式(P-0)において、R100と”SO ”以外の部分を便宜的にR200とする。
【0117】
【化14】
【0118】
101及びR102はそれぞれ独立に、ヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状のアルキル基、アルケニル基、アリール基、アラルキル基等の1価炭化水素基を示す。R101及びR102として具体的には、アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロペニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2-オキソシクロペンチル基、2-オキソシクロヘキシル基、2-オキソプロピル基、2-オキソエチル基、2-シクロペンチル-2-オキソエチル基、2-シクロヘキシル-2-オキソエチル基、2-(4-メチルシクロヘキシル)-2-オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基、チエニル基等や、4-ヒドロキシフェニル基、4-メトキシフェニル基、3-メトキシフェニル基、2-メトキシフェニル基、4-エトキシフェニル基、4-tert-ブトキシフェニル基、3-tert-ブトキシフェニル基等のアルコキシフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-エチルフェニル基、4-tert-ブチルフェニル基、4-n-ブチルフェニル基、2,4-ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基、n-プロポキシナフチル基、n-ブトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基等が挙げられる。アリールオキソアルキル基としては、2-フェニル-2-オキソエチル基、2-(1-ナフチル)-2-オキソエチル基、2-(2-ナフチル)-2-オキソエチル基等の2-アリール-2-オキソエチル基等が挙げられる。
【0119】
また、R101とR102は互いに結合して式中の硫黄原子と共に環を形成してもよく、その場合には、下記式で示される基が挙げられる。
【化15】
(破線は結合を表す。)
【0120】
上記一般式(P-0)中、R103はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。R103として具体的には、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基等の直鎖状アルカンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基、アダマンタンジイル基等の飽和環状炭化水素基、フェニレン基、ナフチレン基等の不飽和環状炭化水素基が挙げられる。またこれらの基の水素原子の一部がメチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基といったアルキル基に置換してもよい。あるいは、これらの基の一部が酸素原子、硫黄原子、窒素原子、ハロゲン原子といったヘテロ原子と置き換わっていてもよく、その結果ヒドロキシ基、シアノ基、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を形成してもよい。
【0121】
また、R101とR103は互いに結合して式中の硫黄原子と共に環を形成してもよく、その場合には、下記式で示される基が挙げられる。
【化16】
(破線は結合を表す。)
【0122】
上記一般式(P-0)中、L104は単結合又はヘテロ原子で置換されていてもよく、ヘテロ原子が介在していてもよい炭素数1~20の直鎖状、分岐状又は環状の2価炭化水素基を示す。L104として具体的には、メチレン基、エチレン基、プロパン-1,3-ジイル基、ブタン-1,4-ジイル基、ペンタン-1,5-ジイル基、ヘキサン-1,6-ジイル基、ヘプタン-1,7-ジイル基、オクタン-1,8-ジイル基、ノナン-1,9-ジイル基、デカン-1,10-ジイル基、ウンデカン-1,11-ジイル基、ドデカン-1,12-ジイル基、トリデカン-1,13-ジイル基、テトラデカン-1,14-ジイル基、ペンタデカン-1,15-ジイル基、ヘキサデカン-1,16-ジイル基、ヘプタデカン-1,17-ジイル基等の直鎖状アルカンジイル基、シクロペンタンジイル基、シクロヘキサンジイル基、ノルボルナンジイル基、アダマンタンジイル基等の飽和環状炭化水素基、フェニレン基、ナフチレン基等の不飽和環状炭化水素基が挙げられる。またこれらの基の水素原子の一部がメチル基、エチル基、プロピル基、n-ブチル基、tert-ブチル基といったアルキル基に置換してもよい。あるいは、これらの基の一部が酸素原子、硫黄原子、窒素原子、ハロゲン原子といったヘテロ原子と置き換わっていてもよく、その結果ヒドロキシ基、シアノ基、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を形成してもよい。
【0123】
上記一般式(P-0)で示される化合物(光酸発生剤)において、好ましくは下記一般式(P-1)で示される。
【化17】
【0124】
上記一般式(P-1)中、X105、X106はそれぞれ独立して水素原子、フッ素原子、トリフルオロメチル基のいずれかを示す。n107は1~4の整数を示す。
【0125】
上記一般式(P-0)あるいは(P-1)で示される光酸発生剤において、より好ましくは下記一般式(P-1-1)で示される。
【化18】
【0126】
上記一般式(P-1-1)中、R108、R109及びR110はそれぞれ独立に水素原子、又はヘテロ原子が介在してもよい炭素数1~20の直鎖状、分岐状又は環状の1価炭化水素基を示す。具体的にはメチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、tert-アミル基、n-ペンチル基、n-ヘキシル基、n-オクチル基、n-ノニル基、n-デシル基、シクロペンチル基、シクロヘキシル基、2-エチルヘキシル基、シクロペンチルメチル基、シクロペンチルエチル基、シクロペンチルブチル基、シクロヘキシルメチル基、シクロヘキシルエチル基、シクロヘキシルブチル基、ノルボルニル基、オキサノルボルニル基、トリシクロ[5.2.1.02,6]デカニル基、アダマンチル基等を例示できる。またこれらの基の水素原子の一部が酸素原子、硫黄原子、窒素原子、ハロゲン原子といったヘテロ原子と置き換わっていてもよく、酸素原子、硫黄原子、窒素原子等のヘテロ原子が介在していてもよく、その結果ヒドロキシ基、シアノ基、カルボニル基、エーテル結合、エステル結合、スルホン酸エステル結合、カーボネート結合、ラクトン環、スルトン環、カルボン酸無水物、ハロアルキル基等を形成又は介在してもよい。好ましくはメチル基、メトキシ基、tert-ブチル基、tert-ブトキシ基である。
【0127】
上記一般式(P-1-1)中、n108及びn109はそれぞれ0~5の整数を示し、好ましくは0又は1である。n110は0~4の整数を示し、好ましくは0又は2である。L104、X105、X106、n107についてはすでに詳述した通りである。
【0128】
上記一般式(P-0)、(P-1)あるいは(P-1-1)で示される光酸発生剤において、更に好ましくは下記一般式(P-1-2)で示される。
【化19】
【0129】
上記一般式(P-1-2)中、A111は水素原子又はトリフルオロメチル基を示す。R108、R109、R110、n108、n109、n110、L104についてはすでに詳述した通りである。
【0130】
上記一般式(P-0)、(P-1)、(P-1-1)および(P-1-2)で示される光酸発生剤として、より具体的には下記に示す構造が挙げられる。但し、本発明はこれらに限定されるわけではない。
【化20】
【0131】
【化21】
【0132】
【化22】
【0133】
【化23】
【0134】
【化24】
【0135】
(P-0)で示される化合物の添加量は、熱硬化性ケイ素含有材料(Sx:熱架橋性ポリシロキサン樹脂)100質量部に対し、0.001~40質量部であるが、好ましくは0.1~40質量部、更に好ましくは0.1~20質量部である。この範囲であれば、解像性が良好であり、レジスト現像後又は剥離時において異物の問題が生じるおそれもないため好ましい。更に必要に応じて(P-0)は、1種単独で又は2種以上を組み合わせて用いることができる。
【0136】
[その他の成分]
(架橋触媒)
本発明においては、更に架橋触媒(Xc)をケイ素含有レジスト下層膜形成用組成物に配合してもよい。
本発明のケイ素含有レジスト下層膜形成用組成物に含まれていてもよい架橋触媒は、熱硬化性ポリシロキサンが硬化する際にシロキサン結合の形成を促進することが可能で、高密度に架橋したケイ素含有レジスト下層膜を形成することが可能である。これにより、本発明の酸発生剤から発生した酸の拡散が小さくなるだけでなく、酸で分解される置換基を有する含窒素化合物を含有することで、過剰に存在する酸を失活させることが可能であり、これにより上層レジストへの酸拡散が抑制され、LWRやCDUに優れる上層レジストパターンの形成が可能になる。
【0137】
配合可能な架橋触媒として、下記一般式(Xc0)で示される化合物を挙げることができる。
A(Xc0)
(式中、Lはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、スルホニウム、ヨードニウム、ホスホニウム又はアンモニウム、Hは水素、Aは非求核性対向イオンであり、aは1以上の整数、bは0又は1以上の整数で、a+bは非求核性対向イオンの価数である。)
【0138】
具体的な(Xc0)として本発明で使用される架橋触媒としては、下記一般式(Xc-1)のスルホニウム塩、(Xc-2)のヨードニウム塩、(Xc-3)のホスホニウム塩、(Xc-4)のアンモニウム塩、アルカリ金属塩等が挙げられる。
【0139】
スルホニウム塩(Xc-1)、ヨードニウム塩(Xc-2)、ホスホニウム塩(Xc-3)として以下のものが例示される。
【0140】
【化25】
【0141】
また、アンモニウム塩(Xc-4)として以下のものが例示される。
【化26】
(式中、R204、R205、R206、R207はそれぞれ炭素数1~12の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6~20の置換あるいは非置換のアリール基、又は炭素数7~12のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基等によって置換されていてもよい。また、R205とR206とは環を形成してもよく、環を形成する場合には、R205、R206はそれぞれ炭素数1~6のアルキレン基を示す。Aは非求核性対向イオンを表す。R208、R209、R210、R211は、R204、R205、R206、R207と同様であるが、水素原子であってもよい。R208とR209、R208とR209とR210とは環を形成してもよく、環を形成する場合には、R208とR209及びR208とR209とR210は炭素数3~10のアルキレン基を示す。)
【0142】
上記R204、R205、R206、R207、R208、R209、R210、R211は互いに同一であっても異なっていてもよく、具体的にはアルキル基として、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロプロピルメチル基、4-メチルシクロヘキシル基、シクロヘキシルメチル基、ノルボルニル基、アダマンチル基等が挙げられる。アルケニル基としては、ビニル基、アリル基、プロぺニル基、ブテニル基、ヘキセニル基、シクロヘキセニル基等が挙げられる。オキソアルキル基としては、2-オキソシクロペンチル基、2-オキソシクロヘキシル基等が挙げられ、2-オキソプロピル基、2-シクロペンチル-2-オキソエチル基、2-シクロヘキシル-2-オキソエチル基、2-(4-メチルシクロヘキシル)-2-オキソエチル基等を挙げることができる。アリール基としては、フェニル基、ナフチル基等や、p-メトキシフェニル基、m-メトキシフェニル基、o-メトキシフェニル基、エトキシフェニル基、p-tert-ブトキシフェニル基、m-tert-ブトキシフェニル基等のアルコキシフェニル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、エチルフェニル基、4-tert-ブチルフェニル基、4-ブチルフェニル基、ジメチルフェニル基等のアルキルフェニル基、メチルナフチル基、エチルナフチル基等のアルキルナフチル基、メトキシナフチル基、エトキシナフチル基等のアルコキシナフチル基、ジメチルナフチル基、ジエチルナフチル基等のジアルキルナフチル基、ジメトキシナフチル基、ジエトキシナフチル基等のジアルコキシナフチル基等が挙げられる。アラルキル基としてはベンジル基、フェニルエチル基、フェネチル基等が挙げられる。アリールオキソアルキル基としては、2-フェニル-2-オキソエチル基、2-(1-ナフチル)-2-オキソエチル基、2-(2-ナフチル)-2-オキソエチル基等の2-アリール-2-オキソエチル基等が挙げられる。
【0143】
の非求核性対向イオンとしては水酸イオン、ギ酸イオン、酢酸イオン、プロピオン酸イオン、ブタン酸イオン、ペンタン酸イオン、ヘキサン酸イオン、ヘプタン酸イオン、オクタン酸イオン、ノナン酸イオン、デカン酸イオン、オレイン酸イオン、ステアリン酸イオン、リノール酸イオン、リノレン酸イオン、安息香酸イオン、フタル酸イオン、イソフタル酸イオン、テレフタル酸イオン、サリチル酸イオン、トリフルオロ酢酸イオン、モノクロロ酢酸イオン、ジクロロ酢酸イオン、トリクロロ酢酸イオン、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、硝酸イオン、亜硝酸イオン、塩素酸イオン、臭素酸イオン、メタンスルホン酸イオン、パラトルエンスルホン酸イオン、モノメチル硫酸イオン等の1価のイオン、1価または2価のシュウ酸イオン、マロン酸イオン、メチルマロン酸イオン、エチルマロン酸イオン、プロピルマロン酸イオン、ブチルマロン酸イオン、ジメチルマロン酸イオン、ジエチルマロン酸イオン、コハク酸イオン、メチルコハク酸イオン、グルタル酸イオン、アジピン酸イオン、イタコン酸イオン、マレイン酸イオン、フマル酸イオン、シトラコン酸イオン、クエン酸イオン、炭酸イオン、硫酸イオン等が挙げられる。
【0144】
アルカリ金属塩としては、リチウム、ナトリウム、カリウム、セシウム、マグネシウム、カルシウムの水酸塩、ギ酸塩、酢酸塩、プロピオン酸塩、ブタン酸塩、ペンタン酸塩、ヘキサン酸塩、ヘプタン酸塩、オクタン酸塩、ノナン酸塩、デカン酸塩、オレイン酸塩、ステアリン酸塩、リノール酸塩、リノレン酸塩、安息香酸塩、フタル酸塩、イソフタル酸塩、テレフタル酸塩、サリチル酸塩、トリフルオロ酢酸塩、モノクロロ酢酸塩、ジクロロ酢酸塩、トリクロロ酢酸塩等の1価の塩、1価または2価のシュウ酸塩、マロン酸塩、メチルマロン酸塩、エチルマロン酸塩、プロピルマロン酸塩、ブチルマロン酸塩、ジメチルマロン酸塩、ジエチルマロン酸塩、コハク酸塩、メチルコハク酸塩、グルタル酸塩、アジピン酸塩、イタコン酸塩、マレイン酸塩、フマル酸塩、シトラコン酸塩、クエン酸塩、炭酸塩等が挙げられる。
【0145】
具体的には、スルホニウム塩(Xc-1)として、ギ酸トリフェニルスルホニウム、酢酸トリフェニルスルホニウム、プロピオン酸トリフェニルスルホニウム、ブタン酸トリフェニルスルホニウム、安息香酸トリフェニルスルホニウム、フタル酸トリフェニルスルホニウム、イソフタル酸トリフェニルスルホニウム、テレフタル酸トリフェニルスルホニウム、サリチル酸トリフェニルスルホニウム、トリフルオロメタンスルホン酸トリフェニルスルホニウム、トリフルオロ酢酸トリフェニルスルホニウム、モノクロロ酢酸トリフェニルスルホニウム、ジクロロ酢酸トリフェニルスルホニウム、トリクロロ酢酸トリフェニルスルホニウム、水酸化トリフェニルスルホニウム、硝酸トリフェニルスルホニウム、塩化トリフェニルスルホニウム、臭化トリフェニルスルホニウム、シュウ酸トリフェニルスルホニウム、マロン酸トリフェニルスルホニウム、メチルマロン酸トリフェニルスルホニウム、エチルマロン酸トリフェニルスルホニウム、プロピルマロン酸トリフェニルスルホニウム、ブチルマロン酸トリフェニルスルホニウム、ジメチルマロン酸トリフェニルスルホニウム、ジエチルマロン酸トリフェニルスルホニウム、コハク酸トリフェニルスルホニウム、メチルコハク酸トリフェニルスルホニウム、グルタル酸トリフェニルスルホニウム、アジピン酸トリフェニルスルホニウム、イタコン酸トリフェニルスルホニウム、マレイン酸トリフェニルスルホニウム、フマル酸トリフェニルスルホニウム、シトラコン酸トリフェニルスルホニウム、クエン酸トリフェニルスルホニウム、炭酸トリフェニルスルホニウム、シュウ酸ビストリフェニルスルホニウム、マレイン酸ビストリフェニルスルホニウム、フマル酸ビストリフェニルスルホニウム、シトラコン酸ビストリフェニルスルホニウム、クエン酸ビストリフェニルスルホニウム、炭酸ビストリフェニルスルホニウムなどが挙げられる。
【0146】
また、ヨードニウム塩(Xc-2)として具体的には、ギ酸ジフェニルヨードニウム、酢酸ジフェニルヨードニウム、プロピオン酸ジフェニルヨードニウム、ブタン酸ジフェニルヨードニウム、安息香酸ジフェニルヨードニウム、フタル酸ジフェニルヨードニウム、イソフタル酸ジフェニルヨードニウム、テレフタル酸ジフェニルヨードニウム、サリチル酸ジフェニルヨードニウム、トリフルオロメタンスルホン酸ジフェニルヨードニウム、トリフルオロ酢酸ジフェニルヨードニウム、モノクロロ酢酸ジフェニルヨードニウム、ジクロロ酢酸ジフェニルヨードニウム、トリクロロ酢酸ジフェニルヨードニウム、水酸化ジフェニルヨードニウム、硝酸ジフェニルヨードニウム、塩化ジフェニルヨードニウム、臭化ジフェニルヨードニウム、ヨウ化ジフェニルヨードニウム、シュウ酸ジフェニルヨードニウム、マレイン酸ジフェニルヨードニウム、フマル酸ジフェニルヨードニウム、シトラコン酸ジフェニルヨードニウム、クエン酸ジフェニルヨードニウム、炭酸ジフェニルヨードニウム、シュウ酸ビスジフェニルヨードニウム、マレイン酸ビスジフェニルヨードニウム、フマル酸ビスジフェニルヨードニウム、シトラコン酸ビスジフェニルヨードニウム、クエン酸ビスジフェニルヨードニウム、炭酸ビスジフェニルヨードニウムなどが挙げられる。
【0147】
また、ホスホニウム塩(Xc-3)として具体的には、ギ酸テトラエチルホスホニウム、酢酸テトラエチルホスホニウム、プロピオン酸テトラエチルホスホニウム、ブタン酸テトラエチルホスホニウム、安息香酸テトラエチルホスホニウム、フタル酸テトラエチルホスホニウム、イソフタル酸テトラエチルホスホニウム、テレフタル酸テトラエチルホスホニウム、サリチル酸テトラエチルホスホニウム、トリフルオロメタンスルホン酸テトラエチルホスホニウム、トリフルオロ酢酸テトラエチルホスホニウム、モノクロロ酢酸テトラエチルホスホニウム、ジクロロ酢酸テトラエチルホスホニウム、トリクロロ酢酸テトラエチルホスホニウム、水酸化テトラエチルホスホニウム、硝酸テトラエチルホスホニウム、塩化テトラエチルホスホニウム、臭化テトラエチルホスホニウム、ヨウ化テトラエチルホスホニウム、シュウ酸テトラエチルホスホニウム、マレイン酸テトラエチルホスホニウム、フマル酸テトラエチルホスホニウム、シトラコン酸テトラエチルホスホニウムム、クエン酸テトラエチルホスホニウム、炭酸テトラエチルホスホニウム、シュウ酸ビステトラエチルホスホニウム、マレイン酸ビステトラエチルホスホニウム、フマル酸ビステトラエチルホスホニウム、シトラコン酸ビステトラエチルホスホニウムム、クエン酸ビステトラエチルホスホニウム、炭酸ビステトラエチルホスホニウム、ギ酸テトラフェニルホスホニウム、酢酸テトラフェニルホスホニウム、プロピオン酸テトラフェニルホスホニウム、ブタン酸テトラフェニルホスホニウム、安息香酸テトラフェニルホスホニウム、フタル酸テトラフェニルホスホニウム、イソフタル酸テトラフェニルホスホニウム、テレフタル酸テトラフェニルホスホニウム、サリチル酸テトラフェニルホスホニウム、トリフルオロメタンスルホン酸テトラフェニルホスホニウム、トリフルオロ酢酸テトラフェニルホスホニウム、モノクロロ酢酸テトラフェニルホスホニウム、ジクロロ酢酸テトラフェニルホスホニウム、トリクロロ酢酸テトラフェニルホスホニウム、水酸化テトラフェニルホスホニウム、硝酸テトラフェニルホスホニウム、塩化テトラフェニルホスホニウム、臭化テトラフェニルホスホニウム、ヨウ化テトラフェニルホスホニウム、シュウ酸テトラフェニルホスホニウム、マレイン酸テトラフェニルホスホニウム、フマル酸テトラフェニルホスホニウム、シトラコン酸テトラフェニルホスホニウムム、クエン酸テトラフェニルホスホニウム、炭酸テトラフェニルホスホニウム、シュウ酸ビステトラフェニルホスホニウム、マレイン酸ビステトラフェニルホスホニウム、フマル酸ビステトラフェニルホスホニウム、シトラコン酸ビステトラフェニルホスホニウムム、クエン酸ビステトラフェニルホスホニウム、炭酸ビステトラフェニルホスホニウムなどが挙げられる。
【0148】
一方、アンモニウム塩(Xc-4)として具体的には、ギ酸テトラメチルアンモニウム、酢酸テトラメチルアンモニウム、プロピオン酸テトラメチルアンモニウム、ブタン酸テトラメチルアンモニウム、安息香酸テトラメチルアンモニウム、フタル酸テトラメチルアンモニウム、イソフタル酸テトラメチルアンモニウム、テレフタル酸テトラメチルアンモニウム、サリチル酸テトラメチルアンモニウム、トリフルオロメタンスルホン酸テトラメチルアンモニウム、トリフルオロ酢酸テトラメチルアンモニウム、モノクロロ酢酸テトラメチルアンモニウム、ジクロロ酢酸テトラメチルアンモニウム、トリクロロ酢酸テトラメチルアンモニウム、水酸化テトラメチルアンモニウム、硝酸テトラメチルアンモニウム、塩化テトラメチルアンモニウム、臭化テトラメチルアンモニウム、ヨウ化テトラメチルアンモニウム、モノメチル硫酸テトラメチルアンモニウム、シュウ酸テトラメチルアンモニウム、マロン酸テトラメチルアンモニウム、マレイン酸テトラメチルアンモニウム、フマル酸テトラメチルアンモニウム、シトラコン酸テトラメチルアンモニウム、クエン酸テトラメチルアンモニウム、炭酸テトラメチルアンモニウム、シュウ酸ビステトラメチルアンモニウム、マロン酸ビステトラメチルアンモニウム、マレイン酸ビステトラメチルアンモニウム、フマル酸ビステトラメチルアンモニウム、シトラコン酸ビステトラメチルアンモニウム、クエン酸ビステトラメチルアンモニウム、炭酸ビステトラメチルアンモニウム、ギ酸テトラエチルアンモニウム、酢酸テトラエチルアンモニウム、プロピオン酸テトラエチルアンモニウム、ブタン酸テトラエチルアンモニウム、安息香酸テトラエチルアンモニウム、フタル酸テトラエチルアンモニウム、イソフタル酸テトラエチルアンモニウム、テレフタル酸テトラエチルアンモニウム、サリチル酸テトラエチルアンモニウム、トリフルオロメタンスルホン酸テトラエチルアンモニウム、トリフルオロ酢酸テトラエチルアンモニウム、モノクロロ酢酸テトラエチルアンモニウム、ジクロロ酢酸テトラエチルアンモニウム、トリクロロ酢酸テトラエチルアンモニウム、水酸化テトラエチルアンモニウム、硝酸テトラエチルアンモニウム、塩化テトラエチルアンモニウム、臭化テトラエチルアンモニウム、ヨウ化テトラエチルアンモニウム、モノメチル硫酸テトラエチルアンモニウム、シュウ酸テトラエチルアンモニウム、マロン酸テトラエチルアンモニウム、マレイン酸テトラエチルアンモニウム、フマル酸テトラエチルアンモニウム、シトラコン酸テトラエチルアンモニウム、クエン酸テトラエチルアンモニウム、炭酸テトラエチルアンモニウム、シュウ酸ビステトラエチルアンモニウム、マロン酸ビステトラエチルアンモニウム、マレイン酸ビステトラエチルアンモニウム、フマル酸ビステトラエチルアンモニウム、シトラコン酸ビステトラエチルアンモニウム、クエン酸ビステトラエチルアンモニウム、炭酸ビステトラエチルアンモニウム、ギ酸テトラプロピルアンモニウム、酢酸テトラプロピルアンモニウム、プロピオン酸テトラプロピルアンモニウム、ブタン酸テトラプロピルアンモニウム、安息香酸テトラプロピルアンモニウム、フタル酸テトラプロピルアンモニウム、イソフタル酸テトラプロピルアンモニウム、テレフタル酸テトラプロピルアンモニウム、サリチル酸テトラプロピルアンモニウム、トリフルオロメタンスルホン酸テトラプロピルアンモニウム、トリフルオロ酢酸テトラプロピルアンモニウム、モノクロロ酢酸テトラプロピルアンモニウム、ジクロロ酢酸テトラプロピルアンモニウム、トリクロロ酢酸テトラプロピルアンモニウム、水酸化テトラプロピルアンモニウム、硝酸テトラプロピルアンモニウム、塩化テトラプロピルアンモニウム、臭化テトラプロピルアンモニウム、ヨウ化テトラプロピルアンモニウム、モノメチル硫酸テトラプロピルアンモニウム、シュウ酸テトラプロピルアンモニウム、マロン酸テトラプロピルアンモニウム、マレイン酸テトラプロピルアンモニウム、フマル酸テトラプロピルアンモニウム、シトラコン酸テトラプロピルアンモニウム、クエン酸テトラプロピルアンモニウム、炭酸テトラプロピルアンモニウム、シュウ酸ビステトラプロピルアンモニウム、マロン酸ビステトラプロピルアンモニウム、マレイン酸ビステトラプロピルアンモニウム、フマル酸ビステトラプロピルアンモニウム、シトラコン酸ビステトラプロピルアンモニウム、クエン酸ビステトラプロピルアンモニウム、炭酸ビステトラプロピルアンモニウム、ギ酸テトラブチルアンモニウム、酢酸テトラブチルアンモニウム、プロピオン酸テトラブチルアンモニウム、ブタン酸テトラブチルアンモニウム、安息香酸テトラブチルアンモニウム、フタル酸テトラブチルアンモニウム、イソフタル酸テトラブチルアンモニウム、テレフタル酸テトラブチルアンモニウム、サリチル酸テトラブチルアンモニウム、トリフルオロメタンスルホン酸テトラブチルアンモニウム、トリフルオロ酢酸テトラブチルアンモニウム、モノクロロ酢酸テトラブチルアンモニウム、ジクロロ酢酸テトラブチルアンモニウム、トリクロロ酢酸テトラブチルアンモニウム、水酸化テトラブチルアンモニウム、硝酸テトラブチルアンモニウム、塩化テトラブチルアンモニウム、臭化テトラブチルアンモニウム、ヨウ化テトラブチルアンモニウム、メタンスルホン酸テトラブチルアンモニウム、モノメチル硫酸テトラブチルアンモニウム、シュウ酸テトラブチルアンモニウム、マロン酸テトラブチルアンモニウム、マレイン酸テトラブチルアンモニウム、フマル酸テトラブチルアンモニウム、シトラコン酸テトラブチルアンモニウム、クエン酸テトラブチルアンモニウム、炭酸テトラブチルアンモニウム、シュウ酸ビステトラブチルアンモニウム、マロン酸ビステトラブチルアンモニウム、マレイン酸ビステトラブチルアンモニウム、フマル酸ビステトラブチルアンモニウム、シトラコン酸ビステトラブチルアンモニウム、クエン酸ビステトラブチルアンモニウム、炭酸ビステトラブチルアンモニウム、ギ酸トリメチルフェニルアンモニウム、酢酸トリメチルフェニルアンモニウム、プロピオン酸トリメチルフェニルアンモニウム、ブタン酸トリメチルフェニルアンモニウム、安息香酸トリメチルフェニルアンモニウム、フタル酸トリメチルフェニルアンモニウム、イソフタル酸トリメチルフェニルアンモニウム、テレフタル酸トリメチルフェニルアンモニウム、サリチル酸トリメチルフェニルアンモニウム、トリフルオロメタンスルホン酸トリメチルフェニルアンモニウム、トリフルオロ酢酸トリメチルフェニルアンモニウム、モノクロロ酢酸トリメチルフェニルアンモニウム、ジクロロ酢酸トリメチルフェニルアンモニウム、トリクロロ酢酸トリメチルフェニルアンモニウム、水酸化トリメチルフェニルアンモニウム、硝酸トリメチルフェニルアンモニウム、塩化トリメチルフェニルアンモニウム、臭化トリメチルフェニルアンモニウム、ヨウ化トリメチルフェニルアンモニウム、メタンスルホン酸トリメチルフェニルアンモニウム、モノメチル硫酸トリメチルフェニルアンモニウム、シュウ酸トリメチルフェニルアンモニウム、マロン酸トリメチルフェニルアンモニウム、マレイン酸トリメチルフェニルアンモニウム、フマル酸トリメチルフェニルアンモニウム、シトラコン酸トリメチルフェニルアンモニウム、クエン酸トリメチルフェニルアンモニウム、炭酸トリメチルフェニルアンモニウム、シュウ酸ビストリメチルフェニルアンモニウム、マロン酸ビストリメチルフェニルアンモニウム、マレイン酸ビストリメチルフェニルアンモニウム、フマル酸ビストリメチルフェニルアンモニウム、シトラコン酸ビストリメチルフェニルアンモニウム、クエン酸ビストリメチルフェニルアンモニウム、炭酸ビストリメチルフェニルアンモニウム、ギ酸トリエチルフェニルアンモニウム、酢酸トリエチルフェニルアンモニウム、プロピオン酸トリエチルフェニルアンモニウム、ブタン酸トリエチルフェニルアンモニウム、安息香酸トリエチルフェニルアンモニウム、フタル酸トリエチルフェニルアンモニウム、イソフタル酸トリエチルフェニルアンモニウム、テレフタル酸トリエチルフェニルアンモニウム、サリチル酸トリエチルフェニルアンモニウム、トリフルオロメタンスルホン酸トリエチルフェニルアンモニウム、トリフルオロ酢酸トリエチルフェニルアンモニウム、モノクロロ酢酸トリエチルフェニルアンモニウム、ジクロロ酢酸トリエチルフェニルアンモニウム、トリクロロ酢酸トリエチルフェニルアンモニウム、水酸化トリエチルフェニルアンモニウム、硝酸トリエチルフェニルアンモニウム、塩化トリエチルフェニルアンモニウム、臭化トリエチルフェニルアンモニウム、ヨウ化トリエチルフェニルアンモニウム、メタンスルホン酸トリエチルフェニルアンモニウム、モノメチル硫酸トリエチルフェニルアンモニウム、シュウ酸トリエチルフェニルアンモニウム、マロン酸トリエチルフェニルアンモニウム、マレイン酸トリエチルフェニルアンモニウム、フマル酸トリエチルフェニルアンモニウム、シトラコン酸トリエチルフェニルアンモニウム、クエン酸トリエチルフェニルアンモニウム、炭酸トリエチルフェニルアンモニウム、シュウ酸ビストリエチルフェニルアンモニウム、マロン酸ビストリエチルフェニルアンモニウム、マレイン酸ビストリエチルフェニルアンモニウム、フマル酸ビストリエチルフェニルアンモニウム、シトラコン酸ビストリエチルフェニルアンモニウム、クエン酸ビストリエチルフェニルアンモニウム、炭酸ビストリエチルフェニルアンモニウム、ギ酸ベンジルジメチルフェニルアンモニウム、酢酸ベンジルジメチルフェニルアンモニウム、プロピオン酸ベンジルジメチルフェニルアンモニウム、ブタン酸ベンジルジメチルフェニルアンモニウム、安息香酸ベンジルジメチルフェニルアンモニウム、フタル酸ベンジルジメチルフェニルアンモニウム、イソフタル酸ベンジルジメチルフェニルアンモニウム、テレフタル酸ベンジルジメチルフェニルアンモニウム、サリチル酸ベンジルジメチルフェニルアンモニウム、トリフルオロメタンスルホン酸ベンジルジメチルフェニルアンモニウム、トリフルオロ酢酸ベンジルジメチルフェニルアンモニウム、モノクロロ酢酸ベンジルジメチルフェニルアンモニウム、ジクロロ酢酸ベンジルジメチルフェニルアンモニウム、トリクロロ酢酸ベンジルジメチルフェニルアンモニウム、水酸化ベンジルジメチルフェニルアンモニウム、硝酸ベンジルジメチルフェニルアンモニウム、塩化ベンジルジメチルフェニルアンモニウム、臭化ベンジルジメチルフェニルアンモニウム、ヨウ化ベンジルジメチルフェニルアンモニウム、メタンスルホン酸ベンジルジメチルフェニルアンモニウム、モノメチル硫酸ベンジルジメチルフェニルアンモニウム、シュウ酸ベンジルジメチルフェニルアンモニウム、マロン酸ベンジルジメチルフェニルアンモニウム、マレイン酸ベンジルジメチルフェニルアンモニウム、フマル酸ベンジルジメチルフェニルアンモニウム、シトラコン酸ベンジルジメチルフェニルアンモニウム、クエン酸ベンジルジメチルフェニルアンモニウム、炭酸ベンジルジメチルフェニルアンモニウム、シュウ酸ビスベンジルジメチルフェニルアンモニウム、マロン酸ビスベンジルジメチルフェニルアンモニウム、マレイン酸ビスベンジルジメチルフェニルアンモニウム、フマル酸ビスベンジルジメチルフェニルアンモニウム、シトラコン酸ビスベンジルジメチルフェニルアンモニウム、クエン酸ビスベンジルジメチルフェニルアンモニウム、炭酸ビスベンジルジメチルフェニルアンモニウム、等を例示することが出来る。
【0149】
アルカリ金属塩としては、ギ酸リチウム、酢酸リチウム、プロピオン酸リチウム、ブタン酸リチウム、安息香酸リチウム、フタル酸リチウム、イソフタル酸リチウム、テレフタル酸リチウム、サリチル酸リチウム、トリフルオロメタンスルホン酸リチウム、トリフルオロ酢酸リチウム、モノクロロ酢酸リチウム、ジクロロ酢酸リチウム、トリクロロ酢酸リチウム、水酸化リチウム、硝酸リチウム、塩化リチウム、臭化リチウム、ヨウ化リチウム、メタンスルホン酸リチウム、シュウ酸水素リチウム、マロン酸水素リチウム、マレイン酸水素リチウム、フマル酸水素リチウム、シトラコン酸水素リチウム、クエン酸水素リチウム、炭酸水素リチウム、シュウ酸リチウム、マロン酸リチウム、マレイン酸リチウム、フマル酸リチウム、シトラコン酸リチウム、クエン酸リチウム、炭酸リチウム、ギ酸ナトリウム、酢酸ナトリウム、プロピオン酸ナトリウム、ブタン酸ナトリウム、安息香酸ナトリウム、フタル酸ナトリウム、イソフタル酸ナトリウム、テレフタル酸ナトリウム、サリチル酸ナトリウム、トリフルオロメタンスルホン酸ナトリウム、トリフルオロ酢酸ナトリウム、モノクロロ酢酸ナトリウム、ジクロロ酢酸ナトリウム、トリクロロ酢酸ナトリウム、水酸化ナトリウム、硝酸ナトリウム、塩化ナトリウム、臭化ナトリウム、ヨウ化ナトリウム、メタンスルホン酸ナトリウム、シュウ酸水素ナトリウム、マロン酸水素ナトリウム、マレイン酸水素ナトリウム、フマル酸水素ナトリウム、シトラコン酸水素ナトリウム、クエン酸水素ナトリウム、炭酸水素ナトリウム、シュウ酸ナトリウム、マロン酸ナトリウム、マレイン酸ナトリウム、フマル酸ナトリウム、シトラコン酸ナトリウム、クエン酸ナトリウム、炭酸ナトリウム、ギ酸カリウム、酢酸カリウム、プロピオン酸カリウム、ブタン酸カリウム、安息香酸カリウム、フタル酸カリウム、イソフタル酸カリウム、テレフタル酸カリウム、サリチル酸カリウム、トリフルオロメタンスルホン酸カリウム、トリフルオロ酢酸カリウム、モノクロロ酢酸カリウム、ジクロロ酢酸カリウム、トリクロロ酢酸カリウム、水酸化カリウム、硝酸カリウム、塩化カリウム、臭化カリウム、ヨウ化カリウム、メタンスルホン酸カリウム、シュウ酸水素カリウム、マロン酸水素カリウム、マレイン酸水素カリウム、フマル酸水素カリウム、シトラコン酸水素カリウム、クエン酸水素カリウム、炭酸水素カリウム、シュウ酸カリウム、マロン酸カリウム、マレイン酸カリウム、フマル酸カリウム、シトラコン酸カリウム、クエン酸カリウム、炭酸カリウムなどを例示できる。
【0150】
本発明において、架橋触媒(Xc)として、スルホニウム塩、ヨードニウム塩、ホスホニウム塩、アンモニウム塩を構造の一部として有するポリシロキサン(Xc-10)をケイ素含有レジスト下層膜形成用組成物に配合してもよい。
ここで使用される(Xc-10)を製造するために使用される原料として、下記一般式(Xm)で示される化合物を使用できる。
1A A12A A23A A3Si(OR0A(4-A1-A2-A3)(Xm)
(式中、R0Aは炭素数1~6の炭化水素基であり、R1A、R2A、R3Aのうち、少なくとも一つはアンモニウム塩、スルホニウム塩、ホスホニウム塩、ヨードニウム塩を有する有機基であり、他方が水素原子又は炭素数1~30の1価の有機基である。A1、A2、A3は0又は1であり、1≦A1+A2+A3≦3である。)
ここで、R0Aとしては、メチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、シクロペンチル基、n-ヘキシル基、シクロヘキシル基、フェニル基を例示出来る。
【0151】
Xmとして、例えば、スルホニウム塩を構造の一部として有する加水分解性ケイ素化合物として下記一般式(Xm-1)を例示できる。
【化27】
【0152】
(式中、RSA1、RSA2はそれぞれ炭素数1~20の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6~20の置換あるいは非置換のアリール基、又は炭素数7~20のアラルキル基又はアリールオキシアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基、ハロゲン原子等によって置換されていてもよい1価の有機基である。また、RSA1とRSA2とはこれらが結合する窒素原子と共に環を形成してもよく、環を形成する場合には、RSA1、RSA2はそれぞれ炭素数1~6のアルキレン基を示す。RSA3は炭素数1~20の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基、炭素数6~20の置換あるいは非置換のアリーレン基、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基等によって置換されていてもよい2価の有機基である。)
【0153】
としては水酸イオン、フッ素イオン、塩素イオン、臭素イオン、ヨウ素イオン、ギ酸イオン、酢酸イオン、プロピオン酸イオン、ブタン酸イオン、ペンタン酸イオン、ヘキサン酸イオン、ヘプタン酸イオン、オクタン酸イオン、ノナン酸イオン、デカン酸イオン、オレイン酸イオン、ステアリン酸イオン、リノール酸イオン、リノレン酸イオン、安息香酸イオン、p-メチル安息香酸イオン、p-t-ブチル安息香酸イオン、フタル酸イオン、イソフタル酸イオン、テレフタル酸イオン、サリチル酸イオン、トリフルオロ酢酸イオン、モノクロロ酢酸イオン、ジクロロ酢酸イオン、トリクロロ酢酸イオン、硝酸イオン、塩素酸イオン、過塩素酸イオン、臭素酸イオン、ヨウ素酸イオン、メタンスルホン酸イオン、ベンゼンスルホン酸イオン、トルエンスルホン酸イオン、モノメチル硫酸イオン、硫酸水素イオン、シュウ酸イオン、マロン酸イオン、メチルマロン酸イオン、エチルマロン酸イオン、プロピルマロン酸イオン、ブチルマロン酸イオン、ジメチルマロン酸イオン、ジエチルマロン酸イオン、コハク酸イオン、メチルコハク酸イオン、グルタル酸イオン、アジピン酸イオン、イタコン酸イオン、マレイン酸イオン、フマル酸イオン、シトラコン酸イオン、クエン酸イオン、炭酸イオン等が挙げられる。
【0154】
具体的には、以下のものが挙げられる(Xは上記と同じ。)。
【化28】
【0155】
例えば、ヨードニウム塩を構造の一部として有する加水分解性ケイ素化合物として下記一般式(Xm-2)を例示できる。Xは上記と同じである。
【化29】
【0156】
(式中、RIA1は炭素数1~20の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6~20の置換あるいは非置換のアリール基、又は炭素数7~20のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基、ハロゲン原子等によって置換されていてもよい1価の有機基である。RIA2は炭素数1~20の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基、炭素数6~20の置換あるいは非置換のアリーレン基、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基等によって置換されていてもよい2価の有機基である。)
【0157】
具体的には、以下のものが挙げられる(Xは上記と同じ。)。
【化30】
【0158】
例えば、ホスホニウム塩を構造の一部として有する加水分解性ケイ素化合物として下記一般式(Xm-3)を例示できる。Xは上記と同じである。
【化31】
【0159】
(式中、RPA1、RPA2、RPA3はそれぞれ炭素数1~20の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6~20の置換あるいは非置換のアリール基、又は炭素数7~20のアラルキル基又はアリールオキソアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基、ハロゲン原子等によって置換されていてもよい。また、RPA1とRPA2とはこれらが結合する窒素原子と共に環を形成してもよく、環を形成する場合には、RPA1、RPA2はそれぞれ炭素数1~6のアルキレン基を示す。RPA4は炭素数1~20の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基、炭素数6~20の置換あるいは非置換のアリーレン基、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基等によって置換されていてもよい。)
【0160】
具体的には、以下のものが挙げられる(Xは上記と同じ。)。
【化32】
【0161】
例えば、アンモニウム塩を構造の一部として有する加水分解性ケイ素化合物として下記一般式(Xm-4)を例示できる。Xは上記と同じである。
【化33】
【0162】
(式中、RNA1、RNA2、RNA3はそれぞれ水素、炭素数1~20の直鎖状、分岐状又は環状のアルキル基、アルケニル基、オキソアルキル基又はオキソアルケニル基、炭素数6~20の置換あるいは非置換のアリール基、又は炭素数7~20のアラルキル基又はアリールオキシアルキル基を示し、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基等によって置換されていてもよい1価の有機基である。また、RNA1とRNA2とはこれらが結合する窒素原子と共に環を形成してもよく、環を形成する場合には、RNA1、RNA2はそれぞれ炭素数1~6のアルキレン基または窒素を含んだ環状複素環、複素芳香環を示す。RNA4は炭素数1~20の直鎖状、分岐状又は環状のアルキレン基、アルケニレン基、炭素数6~20の置換あるいは非置換のアリーレン基、これらの基の水素原子の一部又は全部がアルコキシ基、アミノ基、アルキルアミノ基等によって置換されていてもよい2価の有機基であり、RNA1とRNA2、RNA1とRNA4で環状構造を形成し更に不飽和窒素を含む場合はnNA3=0、それ以外はnNA3=1である。)
【0163】
具体的には、以下のものが挙げられる(Xは上記と同じ。)。
【化34】
【0164】
【化35】
【0165】
【化36】
【0166】
【化37】
【0167】
【化38】
【0168】
【化39】
【0169】
【化40】
【0170】
ポリシロキサン構造を有する架橋触媒(Xc-10)を製造するために、上記(Xm-1)、(Xm-2)、(Xm-3)、(Xm-4)と同時に使用される加水分解性ケイ素化合物として、上記加水分解性モノマー(Sm)を例示出来る。更に(Mm)を加えてもよい。
【0171】
このように示されるモノマー(Xm-1)、(Xm-2)、(Xm-3)、(Xm-4)の1種以上と上記に示されている加水分解性ケイ素化合物の1種以上、更に必要であれば(Mm)の1種以上を選択して、反応前又は反応中に混合して(Xc-10)を形成する反応原料とすることが出来る。反応条件は熱硬化性ケイ素含有材料(Sx)の合成方法と同様の方法でよい。
【0172】
得られる架橋触媒(Xc-10)の分子量は、モノマーの選択だけでなく、重合時の反応条件制御により調整することが出来る。重量平均分子量が100,000以下、より好ましくは200~50,000、更には300~30,000のものを用いることが好ましい。重量平均分子量が100,000以下のものを用いると、異物の発生や塗布斑が生じることがない。
尚、上記重量平均分子量に関するデータは、検出器としてRI、溶離溶剤としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)により、標準物質としてポリスチレンを用いて、ポリスチレン換算で分子量を表したものである。
【0173】
尚、上記架橋触媒(Xc-1)、(Xc-2)、(Xc-3)、(Xc-4)、(Xc-10)は1種を単独で又は2種以上を組み合わせて用いることが出来る。架橋触媒の添加量は、ベースポリマー(上記方法で得られた熱硬化性ケイ素含有材料(Sx))100質量部に対して、好ましくは0.01~50質量部、より好ましくは0.1~40質量部である。
【0174】
(酸分解性置換基を含有する含窒素化合物)
本発明においては、酸で分解される置換基(酸分解性置換基)を含有する含窒素化合物(Qn)として、窒素原子上に酸で分解される置換基を側鎖に有する加水分解性ケイ素化合物(Qn-1)、これらの加水分解縮合物またはモノマーの一部としてこれらを含有するケイ素化合物含有化合物の混合物から作られるポリシロキサンを例示することが出来る。
【0175】
(Qn-1)として具体的には、以下のものを例示できるが、これらの化合物に限定されるわけではない。これらの化合物のうち、特に環状構造を有する化合物が好ましい。
【化41】
【0176】
【化42】
【0177】
酸分解性置換基を含有する含窒素化合物(Qn)を製造するために、1種以上の上記加水分解性ケイ素化合物(Qn-1)または(Qn-1)と上記に示されている加水分解性ケイ素化合物の1種以上、更に必要であれば(Mm)の1種以上を選択して、反応前又は反応中に混合してQnを形成する原料として例示出来る。反応条件は熱硬化性ケイ素含有材料(Sx)の合成方法と同様の方法でよい。
【0178】
得られる酸で分解される置換基を含有する含窒素化合物(Qn)の分子量は、モノマーの選択だけでなく、重合時の反応条件制御により調整することが出来る。100,000以下、より好ましくは200~50,000、更には300~30,000のものを用いることが好ましい。重量平均分子量が100,000以下のものを用いると、異物の発生や塗布斑が生じることがない。
尚、上記重量平均分子量に関するデータは、検出器としてRI、溶離溶剤としてテトラヒドロフランを用いたゲルパーミエーションクロマトグラフィー(GPC)により、標準物質としてポリスチレンを用いて、ポリスチレン換算で分子量を表したものである。
【0179】
尚、上記Qnは1種を単独で又は2種以上を組み合わせて用いることが出来る。添加量は、ベースポリマー(上記方法で得られた熱硬化性ケイ素含有材料(Sx))100質量部に対して、好ましくは0.001~50質量部、より好ましくは0.01~10質量部である。
【0180】
(有機酸)
本発明のケイ素含有レジスト下層膜形成用組成物の安定性を向上させるため、炭素数が1~30の1価又は2価以上の有機酸を添加することが好ましい。このとき添加する酸としては、ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸、ノナン酸、デカン酸、オレイン酸、ステアリン酸、リノール酸、リノレン酸、安息香酸、フタル酸、イソフタル酸、テレフタル酸、サリチル酸、トリフルオロ酢酸、モノクロロ酢酸、ジクロロ酢酸、トリクロロ酢酸、シュウ酸、マロン酸、メチルマロン酸、エチルマロン酸、プロピルマロン酸、ブチルマロン酸、ジメチルマロン酸、ジエチルマロン酸、コハク酸、メチルコハク酸、グルタル酸、アジピン酸、イタコン酸、マレイン酸、フマル酸、シトラコン酸、クエン酸等を例示することができる。特にシュウ酸、マレイン酸、ギ酸、酢酸、プロピオン酸、クエン酸等が好ましい。また、安定性を保つため、2種以上の酸を混合して使用してもよい。添加量は組成物に含まれるケイ素100質量部に対して0.001~25質量部、好ましくは0.01~15質量部、より好ましくは0.1~5質量部である。
【0181】
あるいは、上記有機酸を組成物のpHに換算して、好ましくは0≦pH≦7、より好ましくは0.3≦pH≦6.5、更に好ましくは0.5≦pH≦6となるように配合することがよい。
【0182】
(水)
本発明では組成物に水を添加してもよい。水を添加すると、組成物中のポリシロキサン化合物が水和されるため、リソグラフィー性能が向上する。組成物の溶剤成分における水の含有率は0質量%を超え50質量%未満であり、特に好ましくは0.3~30質量%、更に好ましくは0.5~20質量%である。
【0183】
有機酸及び水それぞれは、添加量が上記範囲内であれば、ケイ素含有レジスト下層膜の均一性が悪くならず、はじきが発生してしまう恐れもなく、また、リソグラフィー性能が低下する恐れもない。
【0184】
水を含む全溶剤の使用量は、ベースポリマーであるポリシロキサン化合物100質量部に対して100~100,000質量部、特に200~50,000質量部が好適である。
【0185】
(光酸発生剤)
本発明では組成物に、一般式(P-0)で示される化合物以外の光酸発生剤を添加してもよい。本発明で使用される光酸発生剤として、具体的には、特開2009-126940号公報(0160)~(0179)段落に記載されている材料を添加することができる。
【0186】
(安定剤)
更に、本発明では組成物に安定剤を添加することができる。安定剤として環状エーテルを置換基として有する1価又は2価以上のアルコールを添加することができる。特に特開2009-126940号公報(0181)~(0182)段落に記載されている安定剤を添加するとケイ素含有レジスト下層膜形成用組成物の安定性を向上させることができる。
【0187】
(界面活性剤)
更に、本発明では必要に応じて組成物に界面活性剤を配合することが可能である。このようなものとして、具体的には、特開2009-126940号公報(0185)段落に記載されている材料を添加することができる。
【0188】
(その他成分)
更に、本発明では必要に応じて組成物に沸点が180度以上の高沸点溶剤を添加する事も可能である。この高沸点溶剤としては、1-オクタノール、2-エチルヘキサノール、1-ノナノール、1-デカノール、1-ウンデカール、エチレングリコール、1,2-プロピレングリコール、1,3-ブチレングリコール、2,4-ペンタンジオール、2-メチル-2,4-ペンタンジオール、2,5-ヘキサンジオール、2,4-ヘプタンジオール、2-エチル-1,3-ヘキサンジオール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、トリプロピレングリコール、グリセリン、ガンマブチロラクトン、トリプロピレングリコールモノメチルエーテル、ジアセトンアルコール、酢酸n-ノニル、酢酸エチレングリコールモノエチルエーテル、1,2-ジアセトキシエタン、1-アセトキシ-2-メトキシエタン、1,2-ジアセトキシプロパン、酢酸ジエチレングリコールモノメチルエーテル、酢酸ジエチレングリコールモノエチルエーテル、酢酸ジエチレングリコールモノ-n-ブチルエーテル、酢酸プロピレングリコールモノメチルエーテル、酢酸プロピレングリコールモノプロピルエーテル、酢酸プロピレングリコールモノブチルエーテル、酢酸ジプロピレングリコールモノメチルエーテル、酢酸ジプロピレングリコールモノエチルエーテルなどを例示できる。
【0189】
〔ネガ型パターン形成方法〕
(ネガ型パターン形成方法1)
本発明では、被加工体上に塗布型有機下層膜材料を用いて有機下層膜を形成し、該有機下層膜の上に上記ケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜を形成し、該ケイ素含有レジスト下層膜上に化学増幅型レジスト組成物を用いてフォトレジスト膜を形成し、加熱処理後に高エネルギー線等で前記フォトレジスト膜を露光し、有機溶剤現像液を用いて前記フォトレジスト膜の未露光部を溶解させることによりネガ型パターンを形成し、該ネガ型パターンが形成されたフォトレジスト膜をマスクにして前記ケイ素含有レジスト下層膜にドライエッチングでパターン転写し、該パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機下層膜をドライエッチングでパターン転写し、さらに該パターンが転写された有機下層膜をマスクにして前記被加工体にドライエッチングでパターンを転写することを特徴とするパターン形成方法を提供することができる(所謂「多層レジスト法」)。
【0190】
(ネガ型パターン形成方法2)
また、本発明では、被加工体上に炭素を主成分とする有機ハードマスクをCVD法で形成し、該有機ハードマスクの上に上記ケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜を形成し、該ケイ素含有レジスト下層膜上に化学増幅型レジスト組成物を用いてフォトレジスト膜を形成し、加熱処理後に高エネルギー線等で前記フォトレジスト膜を露光し、有機溶剤現像液を用いて前記フォトレジスト膜の未露光部を溶解させることによりネガ型パターンを形成し、該ネガ型パターンが形成されたフォトレジスト膜をマスクにして前記ケイ素含有レジスト下層膜にドライエッチングでパターン転写し、該パターンが転写されたケイ素含有レジスト下層膜をマスクにして前記有機ハードマスクをドライエッチングでパターン転写し、さらに該パターンが転写された有機ハードマスクをマスクにして前記被加工体にドライエッチングでパターンを転写することを特徴とするパターン形成方法を提供することができる(所謂「多層レジスト法」)。
【0191】
本発明のレジスト下層膜を使用してネガ型パターンを形成すると、上記のように、CVD膜や有機下層膜の組み合わせを最適化することで、サイズ変換差を生じさせることなくフォトレジストで形成されたパターンを基板上に形成できる。
【0192】
さらに、前記フォトレジスト膜の露光において、前記露光されたフォトレジスト膜の露光部に対応する前記ケイ素含有レジスト下層膜の部分の露光後の接触角が、露光前と比較して10度以上低下することが好ましい。
【0193】
ケイ素含有レジスト下層膜の露光部の接触角が露光前に比べて10度以上低下すると、ネガ現像後のレジストパターンとの接触角の差が小さくなり、密着性が向上しパターン倒れが防止され、微細なパターンを形成することができる。
【0194】
本発明のパターンの形成方法に使用されるケイ素含有レジスト下層膜は、本発明のケイ素含有レジスト下層膜形成用組成物からフォトレジスト膜と同様にスピンコート法等で被加工体上に作製することが可能である。スピンコート後、溶剤を蒸発させ、フォトレジスト膜とのミキシング防止のため、架橋反応を促進させるためにベークをすることが望ましい。ベーク温度は50~500℃の範囲内で、ベーク時間は10~300秒の範囲内が好ましく用いられる。特に好ましい温度範囲は、製造されるデバイスの構造にもよるが、デバイスへの熱ダメージを少なくするため、400℃以下が好ましい。
【0195】
ここで、被加工体は、半導体装置基板、又は、半導体装置基板に被加工層(被加工部分)として、金属膜、合金膜、金属炭化膜、金属酸化膜、金属窒化膜、金属酸化炭化膜、及び金属酸化窒化膜のいずれかが成膜されたもの等を用いることができる。
【0196】
半導体装置基板としては、シリコン基板が一般的に用いられるが、特に限定されるものではなく、Si、アモルファスシリコン(α-Si)、p-Si、SiO、SiN、SiON、W、TiN、Al等で被加工層と異なる材質のものが用いられてもよい。
【0197】
被加工体を構成する金属としては、ケイ素、ガリウム、チタン、タングステン、ハフニウム、ジルコニウム、クロム、ゲルマニウム、銅、銀、金、インジウム、ヒ素、パラジウム、タンタル、イリジウム、アルミニウム、鉄、モリブデン及びコバルトのいずれか、あるいはこれらの合金であるものを用いることができる。このような金属を含む被加工層としては、例えば、Si、SiO、SiN、SiON、SiOC、p-Si、α-Si、TiN、WSi、BPSG、SOG、Cr、CrO、CrON、MoSi、W、W-Si、Al、Cu、Al-Si等及び種々の低誘電膜及びそのエッチングストッパー膜が用いられ、通常50~10,000nm、特に100~5,000nmの厚さに形成し得る。
【0198】
本発明のネガ型パターン形成方法において、フォトレジスト膜は、化学増幅型であることができ、有機溶剤の現像液を用いた現像によりネガ型のパターンを形成できるものであれば、特に限定されない。
【0199】
例えば、本発明における露光工程を、ArFエキシマレーザー光による露光プロセスとする場合、フォトレジスト膜としては、通常のArFエキシマレーザー光用レジスト組成物をいずれも使用可能である。
【0200】
このようなArFエキシマレーザー光用レジスト組成物は多数の候補がすでに公知であり、すでに公知の樹脂を大別すると、ポリ(メタ)アクリル系、COMA(Cyclo Olefin Maleic Anhydride)系、COMA-(メタ)アクリルハイブリッド系、ROMP(Ring Opening Methathesis Polymerization)系、ポリノルボルネン系等があるが、このうち、ポリ(メタ)アクリル系樹脂を使用したレジスト組成物は、側鎖に脂環式骨格を導入することでエッチング耐性を確保しているため、解像性能は、他の樹脂系に比較して優れる。
【0201】
ネガ型パターン形成方法では、ケイ素含有レジスト下層膜を形成した後、その上にフォトレジスト組成物溶液を用いてフォトレジスト膜を形成するが、ケイ素含有レジスト下層膜と同様にスピンコート法が好ましく用いられる。フォトレジスト組成物をスピンコート後、プリベークを行うが、温度は80~180℃の範囲で、時間は10~300秒の範囲が好ましい。その後露光を行い、有機溶剤現像を行い、ネガ型のレジストパターンを得る。また、露光後にポストエクスポジュアーベーク(PEB)を行うことが好ましい。
【0202】
当該有機溶剤の現像液としては、2-オクタノン、2-ノナノン、2-ヘプタノン、3-ヘプタノン、4-ヘプタノン、2-ヘキサノン、3-ヘキサノン、ジイソブチルケトン、メチルシクロヘキサノン、アセトフェノン、メチルアセトフェノン、酢酸プロピル、酢酸ブチル、酢酸イソブチル、酢酸アミル、酢酸ブテニル、酢酸イソアミル、酢酸フェニル、ギ酸プロピル、ギ酸ブチル、ギ酸イソブチル、ギ酸アミル、ギ酸イソアミル、吉草酸メチル、ペンテン酸メチル、クロトン酸メチル、クロトン酸エチル、乳酸メチル、乳酸エチル、乳酸プロピル、乳酸ブチル、乳酸イソブチル、乳酸アミル、乳酸イソアミル、2-ヒドロキシイソ酪酸メチル、2-ヒドロキシイソ酪酸エチル、安息香酸メチル、安息香酸エチル、酢酸フェニル、酢酸ベンジル、フェニル酢酸メチル、ギ酸ベンジル、ギ酸フェニルエチル、3-フェニルプロピオン酸メチル、プロピオン酸ベンジル、フェニル酢酸エチル、酢酸-2-フェニルエチルから選ばれる1種以上を成分として含む現像液等を使用することができ、現像液成分1種又は2種以上の合計が、50質量%以上である現像液を使用することが、パターン倒れ改善等の観点から好ましい。
【0203】
本発明のパターン形成方法において、ケイ素含有レジスト下層膜をエッチングマスクとして使用する場合、フロン系ガス等のフッ素を含有したガスを主成分としたガスを使ってエッチングを行うことができる。フォトレジスト膜の膜減りを小さくするため、ケイ素含有レジスト下層膜は前記ガスに対するエッチング速度が速いことが好ましい。
【0204】
このような多層レジスト法において、ケイ素含有レジスト下層膜と被加工体との間に有機下層膜を設けて、有機下層膜を被加工体のエッチングマスクとする場合には、有機下層膜は芳香族骨格を有する有機膜であることが好ましいが、有機下層膜が犠牲膜である場合等は、ケイ素含量が15質量%以下のものであればケイ素含有有機下層膜であってもよい。
【0205】
このような有機下層膜としては、既に3層レジスト法用、あるいはシリコンレジスト組成物を使用した2層レジスト法用の下層膜として公知のもの、特開2005-128509号公報記載の4,4’-(9-フルオレニリデン)ビスフェノールノボラック樹脂(分子量11,000)の他、ノボラック樹脂をはじめとする多数の樹脂であって、2層レジスト法や3層レジスト法のレジスト下層膜材料として公知のもの等を使用することができる。また、通常のノボラックよりも耐熱性を上げたい場合には、6,6’-(9-フルオレニリデン)-ジ(2-ナフトール)ノボラック樹脂のような多環式骨格を入れることもでき、更にポリイミド系樹脂を選択することもできる(例えば、特開2004-153125号公報)。
【0206】
上記有機下層膜は、組成物溶液を用い、フォトレジスト組成物と同様にスピンコート法等で被加工体上に形成することが可能である。スピンコート法等で有機下層膜を形成した後、有機溶剤を蒸発させるためベークをすることが望ましい。ベーク温度は80~300℃の範囲内で、ベーク時間は10~300秒の範囲内が好ましく用いられる。
【0207】
尚、特に限定されるものではなく、エッチング加工条件により異なるが、有機下層膜の厚さは5nm以上、特に20nm以上であり、50,000nm以下であることが好ましく、本発明に係るケイ素含有レジスト下層膜の厚さは1nm以上500nm以下であることが好ましく、より好ましくは300nm以下、更に好ましくは200nm以下である。また、フォトレジスト膜の厚さは1nm以上200nm以下であることが好ましい。
【0208】
〔3層レジスト法による本発明のパターン形成方法〕
以上のような3層レジスト法による本発明のネガ型パターン形成方法は次の通りである(図1参照)。このプロセスにおいては、まず被加工体1上に有機下層膜2をスピンコートで作製する(図1(I-A))。この有機下層膜2は、被加工体1をエッチングするときのマスクとして作用するので、エッチング耐性が高いことが望ましく、上層のケイ素含有レジスト下層膜とミキシングしないことが求められるため、スピンコートで形成した後に熱あるいは酸によって架橋することが望ましい。
【0209】
その上に本発明のケイ素含有レジスト下層膜形成用組成物を用いてケイ素含有レジスト下層膜3をスピンコート法で成膜し(図1(I-B))、その上にフォトレジスト膜4をスピンコート法で成膜する(図1(I-C))。尚、ケイ素含有レジスト下層膜3は、フォトレジスト膜4が露光された時に、該露光部に対応する前記ケイ素含有レジスト下層膜3の露光後の純水に対する接触角が40度以上70度未満となる組成物を用いて形成することができる。
【0210】
フォトレジスト膜4は、定法に従い、マスク5を用いて、フォトレジスト膜4に応じた光源P、例えばKrFエキシマレーザー光や、ArFエキシマレーザー光、Fレーザー光、あるいはEUV光を用いたパターン露光により、好ましくは、波長が10nm以上300nm以下の光リソグラフィー、電子線による直接描画、及びナノインプリンティングのいずれか、あるいはこれらの組み合わせによりパターン形成し(図1(I-D))、個々のフォトレジスト膜に合わせた条件による加熱処理の後(図1(I-E))、有機現像液による現像操作(ネガ現像)、その後必要に応じてリンスを行うことで、ネガ型のレジストパターン4aを得ることができる(図1(I-F))。なお、図1(I-D)中の4’はパターン露光によりフォトレジスト膜4が変化した部分である。
【0211】
次に、このネガ型レジストパターン4aをエッチングマスクとして、フォトレジスト膜4に対し、ケイ素含有レジスト下層膜3のエッチング速度が優位に高いドライエッチング条件、例えばフッ素系ガスプラズマによるドライエッチングでのエッチングを行う。結果としてフォトレジスト膜のサイドエッチングによるパターン変化の影響を殆ど受けずに、ネガ型のケイ素含有レジスト下層膜パターン3aを得ることができる(図1(I-G))。
【0212】
次に、上記で得たネガ型レジストパターン4aが転写されたネガ型ケイ素含有レジスト下層膜パターン3aを持つ基板に対し、有機下層膜2のエッチング速度が優位に高いドライエッチング条件、例えば酸素を含有するガスプラズマによる反応性ドライエッチングや、水素-窒素を含有するガスプラズマによる反応性ドライエッチングを行い、有機下層膜2をエッチング加工する。このエッチング工程によりネガ型の有機下層膜パターン2aが得られるが、同時に最上層のフォトレジスト膜は、通常失われる(図1(I-H))。更に、ここで得られたネガ型有機下層膜パターン2aをエッチングマスクとして、被加工体1のドライエッチング、例えば、フッ素系ドライエッチングや塩素系ドライエッチングを使用することで、被加工体1を精度よくエッチング加工し、被加工体1にネガ型パターン1aを転写することができる(図1(I-I))。
【0213】
また、上記3層レジスト法によるパターン形成方法において、フォトレジスト膜4を露光してパターン形成する際にフォトレジスト膜4のみならずその下層のケイ素含有レジスト下層膜3も変化する場合がある。以下、これについて図2を参照しながら説明する。なお、上記と共通する点については説明を省略する。
【0214】
フォトレジスト膜4を、マスク5を用いたパターン露光によりパターン形成する(図2(II-D))。続いて加熱処理を行うと、例えばケイ素含有レジスト下層膜3に含まれる熱硬化性ケイ素含有材料(Sx)が保護基を有する場合には、フォトレジスト膜4の露光された部分で発生した酸の作用により下層のケイ素含有レジスト下層膜3に含まれる熱硬化性ケイ素含有材料の保護基が脱離して親水性基(水酸基もしくはカルボキシル基等)を生じる。その結果、フォトレジスト膜4の露光後変化した部分4’の下層にケイ素含有レジスト下層膜3の変化した部分3’が形成される(図2(II-E))。そして、この変化部分3’の純水に対する接触角は、保護基の脱離(すなわち、親水性基の発生)によってケイ素含有レジスト下層膜3の接触角よりも低くなる。この変化を利用することにより、ケイ素含有レジスト下層膜3自体の接触角が高い場合であっても、フォトレジスト膜4が露光された時に、露光部に対応するケイ素含有レジスト下層膜3の露光後の変化した部分3’の純水に対する接触角を40度以上70度未満とすることができる。
以下の処理は上記と同様に行えばよい(図2(II-F)~(II-I))。
【0215】
このように、ケイ素含有レジスト下層膜3に含まれる熱硬化性ケイ素含有材料の保護基の有無によりケイ素含有レジスト下層膜3の変化部分3’の接触角を調節することができる。これにより、使用可能なケイ素含有レジスト下層膜形成用組成物の組成の自由度が高まる上、現像手段の自由度を高めることもできる。
【0216】
なお、上記では熱硬化性ケイ素含有材料が酸で脱離する保護基を有する場合について説明したが、保護基は露光時の熱で脱離しても良く、保護基の脱離以外の変化であってもよく、特に限定されない。また、露光してパターン形成した後のケイ素含有レジスト下層膜3の変化の態様についても特に限定されない。
【0217】
また、上記の3層レジスト法によるプロセスにおいて、有機下層膜2の代わりにCVD法で形成された有機ハードマスクを適用することも可能である。その場合も、上記と同様の手順で被加工体の加工が可能である。
【0218】
本発明のケイ素含有レジスト下層膜形成用組成物は、LWRやCDUが良好な上層レジストパターンが形成可能なだけでなく、上層レジストと下層有機膜またはCVDカーボン膜等の有機ハードマスクとのドライエッチング選択性に優れるため、歩留まり良く半導体装置用のパターンを基板に形成することが出来る。
【実施例
【0219】
以下、合成例及び実施例と比較例を示して本発明を具体的に説明するが、本発明はこれらの記載によって限定されるものではない。なお、下記例で%は質量%を示し、分子量測定はGPCによった。
【0220】
ケイ素含有ポリマーの合成
[合成例1]
メタノール200g、メタンスルホン酸0.1g及び脱イオン水60gの混合物にモノマー101を17.0g、モノマー102を53.3g及びモノマー130を7.5gの混合物を添加し、12時間、40℃に保持し、加水分解縮合させた。反応終了後、プロピレングリコールエチルエーテル(PGEE)200gを加え、副生アルコールを減圧で留去した。そこに、酢酸エチル1000ml及びPGEE280gを加え、水層を分液した。残った有機層に、イオン交換水100mlを加えて撹拌、静置、分液した。これを3回繰り返した。残った有機層を減圧で濃縮してケイ素含有化合物1のPGEE溶液480g(化合物濃度10%)を得た。このもののポリスチレン換算分子量を測定したところMw=2,400であった。
【0221】
合成例1と同様の条件で表1-1~1-2に示してあるモノマー(ケイ素含有ポリマーの反応原料)を使用して、合成例2から合成例55まで行い、それぞれ目的物を得た。
【0222】
[合成例56]
メタノール200g、35%塩酸0.1g及び脱イオン水60gの混合物にモノマー101を6.8g、モノマー102を60.9g及びモノマー149を20.1gの混合物を添加し、12時間、40℃に保持し、加水分解縮合させた。反応終了後、プロピレングリコールエチルエーテル(PGEE)620gを加え、副生アルコールを減圧で留去してケイ素含有化合物20のPGEE溶液570g(化合物濃度10%)を得た。このもののポリスチレン換算分子量を測定したところMw=2,100であった。
【0223】
合成例56と同様の条件で表1-2に示してあるモノマーを使用して、合成例57から合成例60まで行いそれぞれ目的物を得た。
【0224】
【表1-1】
【0225】
【表1-2】
【0226】
【化43】
【0227】
【化44】
【0228】
ケイ素含有硬化触媒の合成
[合成例2-1]
メタノール120g、70%硝酸0.1g及び脱イオン水60gの混合物にモノマー101を13.6g、モノマー102を53.3g、及びモノマー121を12.9gの混合物を加え、室温で20時間撹拌した。得られた反応混合物にPGEEを500g加え、副生アルコールおよび過剰の水を減圧で留去して、ポリシロキサン化合物Z-1のPGEE溶液450g(ポリマー濃度10%)を得た。このもののポリスチレン換算分子量を測定したところMw=3,000であった。
【化45】
【0229】
[実施例、比較例]
上記合成例で得られたケイ素含有化合物1~60、熱硬化触媒、添加物、表3に示されている光酸発生剤(一般式(P-0)で示される化合物等)、溶剤、水を表2-1~2-4に示す割合で混合し、0.1μmのフッ素樹脂製のフィルターで濾過することによって、ケイ素含有レジスト下層膜形成用組成物溶液をそれぞれ調製し、それぞれSol.1~77とした。
【0230】
【表2-1】
【0231】
【表2-2】
【0232】
【表2-3】
【0233】
【表2-4】
【0234】
TPSNO:硝酸トリフェニルスルホニウム
TMPANO:硝酸トリメチルフェニルアンモニウム
TPSMA :マレイン酸モノ(トリフェニルスルホニウム)
QBANO:硝酸テトラブチルアンモニウム
TPSTFA:トリフルオロ酢酸トリフェニルスルホニウム
QMAMA :マレイン酸モノ(テトラメチルアンモニウム)
PGEE :プロピレングリコールエチルエーテル
【0235】
【表3】
【0236】
ArF露光、ネガ型現像によるパターニング試験
シリコンウエハー上に、信越化学工業(株)製スピンオンカーボン膜ODL-301(カーボン含有量88質量%)を膜厚200nmで形成した。その上にケイ素含有レジスト下層膜形成用組成物Sol.1~17を塗布して240℃で60秒間加熱して、膜厚35nmのケイ素含有膜Film1~17を作製した。
【0237】
続いて、当該ケイ素含有膜上に表4記載のネガ現像用ArFレジスト溶液(PR-A1、PR-A2)を塗布し、100℃で60秒間ベークして膜厚100nmのフォトレジスト層を形成した。フォトレジスト膜上に液浸保護膜(TC-1)を塗布し90℃で60秒間ベークし膜厚50nmの保護膜を形成した。
別に当該ケイ素含有膜上に表4記載のネガ現像用ArFレジスト溶液(PR-A3)を塗布し100℃で60秒間ベークして膜厚100nmのフォトレジスト層を形成した。
次いで、ArF液浸露光装置((株)ニコン製;NSR-S610C,NA1.30、σ0.98/0.65、35度ダイポール偏光照明、6%ハーフトーン位相シフトマスク)で露光し、100℃で60秒間ベーク(PEB)し、30rpmで回転させながら現像ノズルから現像液として酢酸ブチルを3秒間吐出し、その後回転を止めてパドル現像を27秒間行い、ジイソアミルエーテルでリンス後スピンドライし、100℃で20秒間ベークしてリンス溶剤を蒸発させた。
このパターニングにより、43nmのネガ型のラインアンドスペースパターンを得た。得られたパターンの断面形状を(株)日立製作所製電子顕微鏡(S-4700)で、パターンラフネス(LWR)を(株)日立ハイテクノロジーズ製電子顕微鏡(CG4000)でそれぞれ形状を測定した(表6-1~6-2)。
【0238】
【表4】
【0239】
レジスト用ポリマー:PRP-A1
分子量(Mw)=8,600
分散度(Mw/Mn)=1.88
【化46】
【0240】
レジスト用ポリマー:PRP-A2
分子量(Mw)=8,900
分散度(Mw/Mn)=1.93
【化47】
【0241】
酸発生剤:PAG1(表4に記載のもの)
【化48】
【0242】
塩基:Quencher
【化49】
【0243】
液浸保護膜(TC-1)としては、表5に示す組成の樹脂を溶媒中に溶解させ、0.1μmのフッ素樹脂製のフィルターで濾過することによって調製した。
保護膜ポリマー
分子量(Mw)=8,800
分散度(Mw/Mn)=1.69
【化50】
【0244】
【表5】
【0245】
【表6-1】
【0246】
【表6-2】
【0247】
表6-1~6-2に示されているように、本発明の酸発生剤を添加すると、比較例で示されている従来型の酸発生剤に比べて、LWRの小さなパターンを形成できることが確認できた。
【0248】
EUV露光、ネガ型現像によるパターニング試験
シリコンウエハー上にケイ素含有レジスト下層膜形成用組成物Sol.18~77を塗布して240℃で60秒間加熱して、膜厚20nmのケイ素含有膜Film18~77を作製した。
【0249】
続いて、下記成分を表7の割合で溶解させたレジスト材料をFilm18~77上にスピンコートし、ホットプレートを用いて105℃で60秒間プリベークして膜厚60nmのレジスト膜を作製した。これに、ASML社製EUVスキャナーNXE3300(NA0.33、σ0.9/0.6、クアドルポール照明、ウエハー上寸法がピッチ50nm)を用いて露光し、ホットプレート上で100℃、60秒間PEBを行い、30rpmで回転させながら現像ノズルから現像液として酢酸ブチルを3秒間吐出し、その後回転を止めてパドル現像を27秒間行い、ジイソアミルエーテルでリンス後スピンドライし、100℃で20秒間ベークしてリンス溶剤を蒸発させ、寸法25nmのホールパターンを得た。
(株)日立ハイテクノロジーズ製の測長SEM(CG5000)を用いて、ホール寸法が25nmで形成されるときの断面形状を観察し、このときのホール50個の寸法を測定し、寸法バラツキ(CDU、3σ)を求めた。結果を表10-1~10-2に示す。
【0250】
【表7】
界面活性剤:3M社製FC-4430
【0251】
【表8】
【0252】
【表9】
【0253】
【表10-1】
【0254】
【表10-2】
【0255】
表10-1~10-2に示されているように、本発明の酸発生剤を添加すると、比較例で示されている従来型の酸発生剤に比べて、CDUに優れたパターンを形成できることが確認できた。
【0256】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【符号の説明】
【0257】
1…被加工体、 1a…ネガ型パターン、
2…有機下層膜、 2a…ネガ型有機下層膜パターン、
3…ケイ素含有レジスト下層膜、3a…ネガ型ケイ素含有レジスト下層膜パターン、
4…フォトレジスト膜、4a…ネガ型レジストパターン。
図1
図2