(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-20
(45)【発行日】2023-10-30
(54)【発明の名称】光ファイバ
(51)【国際特許分類】
G02B 6/036 20060101AFI20231023BHJP
【FI】
G02B6/036
(21)【出願番号】P 2021110724
(22)【出願日】2021-07-02
(62)【分割の表示】P 2018041711の分割
【原出願日】2018-03-08
【審査請求日】2021-07-02
(73)【特許権者】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】武笠 和則
【審査官】奥村 政人
(56)【参考文献】
【文献】特開2019-158941(JP,A)
【文献】米国特許出願公開第2008/0124028(US,A1)
【文献】特開2006-154713(JP,A)
【文献】特開2015-045704(JP,A)
【文献】国際公開第2005/012967(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 6/02- 6/10
G02B 6/44
(57)【特許請求の範囲】
【請求項1】
ガラスからなるコア部と、
前記コア部の外周に位置し、前記コア部の屈折率よりも低い屈折率を有するガラスからなるクラッド部と、を備え、
ステップ型の屈折率プロファイルを有し、
前記クラッド部の外径は8
8μm以上100μm未満であり、前記クラッド部に対する前記コア部の比屈折率差が0.33%~0.34%かつ前記コア部のコア径が8μm~
9μmである、または、
前記クラッド部の外径は80μm以上100μm未満であり、前記
クラッド部に対する前記コア部の比屈折率差が0.37%~0.39%かつ前記コア部のコア径が7μm~9μmであり、
波長1310nmにおけるモードフィールド径が8.6μm~9.5μmであり、
波長1625nmにおいて0.001dB/km以下のリーケージ損失であることを特徴とする光ファイバ。
【請求項2】
直径60mmで曲げた場合の波長1550nmにおける曲げ損失が5.3×10
-3dB/m以下であることを特徴とする請求項1に記載の光ファイバ。
【請求項3】
ゼロ分散波長が1300nm~1324nmであり、前記ゼロ分散波長での分散スロープが0.092ps/nm
2/km以下であることを特徴とする請求項1または2に記載の光ファイバ。
【請求項4】
ケーブルカットオフ波長が1260nm以下であることを特徴とする請求項1~3のいずれか一つに記載の光ファイバ。
【請求項5】
ケーブルカットオフ波長が1530nm以下であることを特徴とする請求項1~3のいずれか一つに記載の光ファイバ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、光ファイバに関する。
【背景技術】
【0002】
データコムやテレコムの分野において、高密度光ファイバケーブルを実現する光ファイバとして、細径の光ファイバが注目されている。従来、細径の光ファイバとして、クラッド部に対するコア部の比屈折率差を高くした構成が開示されている(非特許文献1)。また、コア部に隣接してトレンチ層を設けた構成が開示されている(特許文献1)。
【先行技術文献】
【特許文献】
【0003】
【非特許文献】
【0004】
【文献】村瀬 他、「細径クラッドファイバの開発」、昭和電線レビュー、vol.53、N0.1(2003)、pp.32-36
【発明の概要】
【発明が解決しようとする課題】
【0005】
しかしながら、非特許文献1に開示される光ファイバは、その特性が、たとえばITU-T(国際電気通信連合)G.650.2で定義される標準的なシングルモード光ファイバの規格(以下、G.650.2規格)を満たすものではない。また、特許文献1に開示される光ファイバは、その特性がG.650.2規格を満たすものの、そのクラッド部の外径(ファイバ径)は100μm~125μm程度であり、今後益々要求が高まる細径化の点では不十分である。また、光ファイバの細径化を行うとリーケージ損失が増大するが、リーケージ損失が十分な低さに抑制され、かつ細径化された光ファイバは開示されていなかった。
【0006】
本発明は、上記に鑑みてなされたものであって、その目的は、リーケージ損失が抑制された細径の光ファイバを提供することにある。
【課題を解決するための手段】
【0007】
上述した課題を解決し、目的を達成するために、本発明の一態様に係る光ファイバは、ガラスからなるコア部と、前記コア部の外周に位置し、前記コア部の屈折率よりも低い屈折率を有するガラスからなるクラッド部と、を備え、前記クラッド部の外径は100μm未満であり、前記クラッド部に対する前記コア部の比屈折率差が0.32%~0.40%であることを特徴とする。
【0008】
本発明の一態様に係る光ファイバは、前記コア部のコア径が7μm~10μmであることを特徴とする。
【0009】
本発明の一態様に係る光ファイバは、前記コア部の比屈折率差が0.335%~0.375%であり、前記コア部のコア径が8.2μm~9.2μmであることを特徴とする。
【0010】
本発明の一態様に係る光ファイバは、前記コア部の比屈折率差が0.37%~0.395%であり、前記コア部のコア径が7.6μm~8.3μmであることを特徴とする。
【0011】
本発明の一態様に係る光ファイバは、前記クラッド部は、前記コア部の外周に隣接する隣接領域と、前記隣接領域の外周に位置し、前記コア部との間に前記隣接領域が介在する非隣接領域とを備え、前記隣接領域は、純石英ガラスからなることを特徴とする。
【0012】
本発明の一態様に係る光ファイバは、前記非隣接領域は、純石英ガラスからなることを特徴とする。
【0013】
本発明の一態様に係る光ファイバは、前記非隣接領域は、前記隣接領域の屈折率よりも低い屈折率を有するトレンチ層を有することを特徴とする。
【0014】
本発明の一態様に係る光ファイバは、前記コア部のコア径を2a、前記トレンチ層の内径を2bとしたときに、b/aが2以上であることを特徴とする。
【0015】
本発明の一態様に係る光ファイバは、前記コア部のコア径を2a、前記トレンチ層の内径を2bとしたときに、b/aが3以上であることを特徴とする。
【0016】
本発明の一態様に係る光ファイバは、前記コア部のコア径を2a、前記トレンチ層の内径を2b、外径を2cとしたときに、前記トレンチ層の幅(c-b)がaの0.2倍~1倍であることを特徴とする。
【0017】
本発明の一態様に係る光ファイバは、前記トレンチ層の前記隣接領域に対する比屈折率差が-0.4%以下であることを特徴とする。
【0018】
本発明の一態様に係る光ファイバは、前記クラッド部は、前記コア部に隣接するトレンチ層を有し、前記トレンチ層の前記トレンチ層以外の前記クラッド部に対する比屈折率差が-0.1%以上0%未満であることを特徴とする。
【0019】
本発明の一態様に係る光ファイバは、波長1310nmにおけるモードフィールド径が8.6μm~9.5μmであることを特徴とする。
【0020】
本発明の一態様に係る光ファイバは、直径60mmで曲げた場合の波長1550nmにおける曲げ損失が5.3×10-3dB/m以下であることを特徴とする。
【0021】
本発明の一態様に係る光ファイバは、ゼロ分散波長が1300nm~1324nmであり、前記ゼロ分散波長での分散スロープが0.092ps/nm2/km以下であることを特徴とする。
【0022】
本発明の一態様に係る光ファイバは、ケーブルカットオフ波長が1260nm以下であることを特徴とする。
【0023】
本発明の一態様に係る光ファイバは、波長1550nmにおけるモードフィールド径が9.5μm以上であることを特徴とする。
【0024】
本発明の一態様に係る光ファイバは、ケーブルカットオフ波長が1530nm以下であることを特徴とする。
【発明の効果】
【0025】
本発明によれは、リーケージ損失が抑制された細径の光ファイバを実現できるという効果を奏する。
【図面の簡単な説明】
【0026】
【
図1】
図1は、実施形態1に係る光ファイバの模式的断面図である。
【
図2】
図2は、
図1に示す光ファイバの屈折率プロファイルを示す図である。
【
図3】
図3は、Δ1、コア径に対する限界ファイバ径の関係を示す図である。
【
図4】
図4は、実施形態2に係る光ファイバの屈折率プロファイルを示す図である。
【
図5】
図5は、トレンチ層とコア部との距離に対する波長分散、MFDの関係を示す図である。
【
図6】
図6は、コア部とトレンチ層が隣接する場合の、Δ3に対するMFD変化量、カットオフ波長変化量の関係を示す図である。
【
図7】
図7は、伝送損失の測定結果を示す図である。
【
図8】
図8は、トレンチ位置に対するゼロ分散波長、分散スロープの関係を示す図である。
【
図9】
図9は、トレンチ位置に対するゼロ分散波長、分散スロープの関係を示す図である。
【
図10】
図10は、トレンチ位置に対する曲げ損失、限界ファイバ径の関係を示す図である。
【
図11】
図11は、トレンチ位置に対する曲げ損失、限界ファイバ径の関係を示す図である。
【
図12】
図12は、トレンチ位置に対するMFD、カットオフ波長の関係を示す図である。
【
図13】
図13は、トレンチ位置に対するMFD、カットオフ波長の関係を示す図である。
【
図14】
図14は、トレンチ位置に対するMFDの関係を示す図である。
【
図15】
図15は、パラメータを変化させたときの限界ファイバ径の変化を示す図である。
【発明を実施するための形態】
【0027】
以下に、図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、各図面において、同一又は対応する構成要素には適宜同一の符号を付している。また、本明細書においては、カットオフ波長(Cutoff波長)とは、ITU-T G.650.1で定義するケーブルカットオフ波長をいう。また、その他、本明細書で特に定義しない用語についてはG.650.1における定義、測定方法に従うものとする。
【0028】
(実施形態1)
図1は、実施形態1に係る光ファイバの模式的断面図である。光ファイバ10は、光ファイバ10の略中心に位置するコア部11と、コア部11の外周に位置するクラッド部12とを備えている。クラッド部12は、コア部11の外周に隣接するように取り囲む隣接領域12aと、隣接領域12aの外周に位置し、隣接領域12aの外周に隣接するように取り囲む非隣接領域12bとを備えている。すなわち、コア部11と非隣接領域12bとの間に隣接領域12aが介在する。
【0029】
コア部11とクラッド部12とは、いずれも石英系ガラスからなる。たとえば、コア部11は、ゲルマニウム(Ge)などの屈折率を高めるドーパントが添加された石英ガラスからなる。クラッド部12は、コア部11の屈折率よりも低い屈折率を有する。また、光ファイバ10では、クラッド部12は、隣接領域12a及び非隣接領域12bのいずれもが、Ge、フッ素(F)などの屈折率調整用のドーパントを含まない純石英ガラスからなる。
【0030】
なお、光ファイバ10は、クラッド部12の外周を覆うように、たとえば樹脂からなるコーティングが形成されて使用される。コーティングは、たとえばUV硬化樹脂等からなり、1層又は2層以上の層構造を有する。UV硬化樹脂としては、たとえばウレタンアクリレート系、ポリブタジエンアクリレート系、エポキシアクリレート系、シリコーンアクリレート系、ポリエステルアクリレート系などがあるが、光ファイバのコーティングに使用されるものであれば特に限定されない。また、光ファイバ10では、ガラス部分であるコア部11とクラッド部12との細径化に着目するので、クラッド部12の外径を細径化の対象であるファイバ径とする。
【0031】
図2は、光ファイバ10の中心軸から半径方向における屈折率プロファイルを示す図である。
図2(a)において、プロファイルP11がコア部11の屈折率プロファイルを示し、プロファイルP12がクラッド部12の屈折率プロファイルを示す。なお、屈折率プロファイルは、クラッド部12に対する比屈折率差で示している。
図2(a)に示すように、光ファイバ10はステップ型の屈折率プロファイルを有し、コア部11の直径(コア径)は2aであり、クラッド部12に対するコア部11の比屈折率差はΔ1である。
【0032】
なお、
図2(b)に示すように、コア部11の屈折率プロファイルは、幾何学的に理想的な形状のステップ型である場合だけでなく、頂部の形状が平坦ではなく製造特性により凹凸が形成されたり、頂部から裾を引くような形状となっていたりする場合がある。この場合、製造設計上のコア径2aの範囲内における、屈折率プロファイルの頂部の少なくとも一部の値が、Δ1を決定する指標となる。
【0033】
つづいて、光ファイバ10の細径化のための設計について説明する。光ファイバ10において、細径化していくときに制限となる光学特性は、光漏れによるリーケージ損失である。このリーケージ損失や他の特性に対して、支配的な構造となるのがコア部11の構造である。そこで、コア部11の比屈折率差Δ1やコア径2aを変化させて、波長1625nmにおいて0.001dB/km以下のリーケージ損失を得るのに必要な最低限のファイバ径(限界ファイバ径)をシミュレーション計算によって検討した。
【0034】
本検討では、G.652規格による以下の(1)~(5)の規格、すなわち(1)波長1310nmにおけるモードフィールド径(MFD)が8.6μm~9.5μm、(2)直径60mmで曲げた場合の波長1550nmにおける曲げ損失が5.3×10-3dB/m以下、(3)ゼロ分散波長が1300nm~1324nm、(4)ゼロ分散波長での分散スロープが0.092ps/nm2/km以下(5)ケーブルカットオフ波長が1260nm以下、を満たすものを調べた。
【0035】
図3は、Δ1、コア径に対する限界ファイバ径の関係を示す図である。
図3に示すように、コア部11のパラメータであるΔ1、コア径を最適化する事で、ファイバ径を限界ファイバ径である100μm未満にしてもリーケージ損失が十分に抑制できる条件があることがわかる。これにより、G.652規格を満たすと共に、従来の光ファイバと比べてファイバ径が100μ未満の細径化を実現する事が可能となる。具体的には、Δ1を0.32%~0.40%、コア径を7μm~10μmにすることで、G.652規格を満たし、リーケージ損失が抑制された、ファイバ径が100μm未満の細径の光ファイバ10を実現できる。ファイバ径が100μm未満であれば、標準的な光ファイバにおけるファイバ径である125μmよりも大幅に小さいものとなる。なお、コーティングの構造(物性や厚み)などは、特に限定されないが、たとえば、公知のように、マイクロベンド損失などを抑制するために適切に設定されたものを使用することが好ましい。
【0036】
また、上述したように、光ファイバ10のコア部11の屈折率プロファイルの頂部は必ずしも平坦な形状ではないが、頂部の少なくとも一部、すなわちΔ1を決定する頂部の領域の比屈折率差が0.32%~0.40%であることで、リーケージ損失及び細径の特性が得られる。より好ましくは、頂部の50%以上の領域の比屈折率差が0.32%~0.40%であることが好ましい。さらに、製造設計上のコア径2aの範囲内における頂部の比屈折率差の平均値や最大値及び最小値が0.32%~0.40%であることが、所望の特性を得る点でより好ましい。
【0037】
さらに、光ファイバ10を実際にケーブル化することを考慮すると、リーケージ損失に加えて、コーティングの影響やマイクロベンド損失などの影響も生じる。そのため、ファイバ径として、100μmよりも1割程度余裕がある90μm以下を実現できる設計とすることが好ましい。
図2の結果から、コア部11のΔ1が0.335%~0.375%でありコア径が8.2μm~9.2μmである、又は、Δ1が0.37%~0.395%でありコア径が7.6μm~8.3μmであることが好ましい。
【0038】
(実施形態2)
実施形態2に係る光ファイバは、実施形態1に係る光ファイバ10と同様に、石英系ガラスからなるコア部と、石英系ガラスからなるクラッド部とを備えており、クラッド部は、隣接領域と非隣接領域とを備えている。また、クラッド部の外周を覆うようにコーティングが形成されている。
【0039】
図4は、実施形態2に係る光ファイバの中心軸から半径方向における屈折率プロファイルを示す図である。
図4において、プロファイルP21がコア部の屈折率プロファイルを示し、プロファイルP22がクラッド部の屈折率プロファイルを示す。なお、屈折率プロファイルは、比屈折率差Δで示している。
【0040】
プロファイルP22が示すように、クラッド部は、それぞれプロファイルP22a、P22b、P22cを有する3つの層を備える。プロファイルP22aは、隣接領域の屈折率プロファイルであり、隣接領域は純石英ガラスからなる。プロファイルP22bは、非隣領域内において、Fなどの屈折率を低くするドーパントが添加された領域であり、コア部を同心円状に囲む層状の領域の屈折率プロファイルである。この領域をトレンチ層とする。プロファイルP22cは、非隣領域内においてトレンチ層の外周に位置し、その外径がファイバ径を確定する領域の屈折率プロファイルである。この領域は、純石英ガラスからなり、基準屈折率領域である。
【0041】
図4に示すように、実施形態2に係る光ファイバはトレンチ型の屈折率プロファイルを有し、コア部のコア径は2aであり、隣接領域に対するコア部の比屈折率差はΔ1である。基準屈折率領域に対する隣接領域の比屈折率差はΔ2であり、本実施形態では0%である。基準屈折率領域に対するトレンチ層の比屈折率差はΔ3である。また、隣接領域の外径すなわちトレンチ層の内径はいずれも2bであり、トレンチ層の外径は2cである。
【0042】
実施形態2に係る光ファイバは、実施形態1に係る光ファイバ10にトレンチ層を設けた構造であり、Δ1及びコア径の値の好ましい範囲は光ファイバ10と同じである。これにより、実施形態2に係る光ファイバは、光ファイバ10と同様にリーケージ損失が抑制された細径の光ファイバであり、かつトレンチ層の効果によってマクロベンド損失(曲げ損失)を低減できる。
【0043】
ただし、実施形態2に係る光ファイバにおいて、光ファイバ10と同様にG.652規格を満たす、あるいはより低いマクロベンド損失が求められるG.657規格を満たすようにするには、トレンチ層の比屈折率差Δ3や、トレンチ層の内径2b、外径2cには好ましい範囲がある。たとえば、コア径2aに対して、b/aが2以上であることが好ましく、b/aが3以上であることがより好ましい。また、トレンチ層の幅(c-b)がaの0.2倍~1倍であることが好ましく、Δ3が-0.4%以下であることが好ましい。これらについては後述する。
【0044】
図5は、実施形態2のようにトレンチ層を有する光ファイバにおいて、トレンチ層とコア部との距離に対する波長分散、MFDの関係をシミュレーション計算した結果した示す図である。ここで、トレンチ層とコア部との距離とは、コア部の外周とトレンチ層の内周との距離(b-a)であり、隣接領域の厚さに対応する値である。なお、コア径2aは10μmとし、Δ3は-1%とし、トレンチ層の幅(c-b)はコア径2aと同じ10μmとした。なお、
図5中でトレンチ層とコア部との距離が0μmとは、トレンチ層がコア部に隣接している(すなわち、隣接領域にトレンチ層が存在する)場合を示している。また、「トレンチ無し」とは、実施形態1に係る光ファイバ10の場合である。
【0045】
図5に示すように、トレンチ層とコア部との距離が0μm(すなわちコア部とトレンチ層とが隣接)の場合は、トレンチ無しの場合からの波長分散、MFDの変化が大きいが、トレンチ層とコア部との距離が10μm程度以上、すなわちb/aが3程度以上になると波長分散、MFDの変化がほとんど無い安定した状態となることがわかる。また、トレンチ層とコア部との距離が5μm程度から、すなわちb/aが2の場合から、波長分散、MFDの変化が緩やかになるといえる。したがって、トレンチ層を設けたことによる光ファイバ10からの特性変化を抑制するためには、Δ3が-1%程度と大きい場合は、トレンチ層を非隣接領域に設けることが好ましく、b/aが2以上であることが好ましく、b/aが3以上であることがさらに好ましい。
【0046】
ただし、本発明はこれに限らず、実施形態2の変形例として、コア部とトレンチ層とを隣接させてもよい。
図6は、コア部とトレンチ層が隣接する場合の、Δ3に対するMFD変化量(実線)、カットオフ波長変化量(破線)の関係をシミュレーション計算した結果した示す図である。コア径とΔ1は
図5の場合と同じである。また、トレンチ層の幅(c-b)は4aとしている。なお、これらの変化量は、コア径をカットオフ波長が1160nm~1260nmになるように3点ほど振って算出したものである。
図6から、トレンチ層の幅(c-b)を4aと比較的広くしても、Δ3を-0.1%程度以上0%未満にした場合には、MFDやカットオフ波長の変化量が十分に小さいことがわかる。なお、トレンチ層の幅(c-b)を4aよりも狭くすると変化量をより小さくできるが、この場合は許容されるMFDやカットオフ波長などの変化量に応じて、-0.1%以上0%未満の範囲内でΔ3を設定することが好ましい。
【0047】
以上の実施形態1、2及びその変形例に係る光ファイバは、G.652規格を満たすように構成することができる。また、G.652規格に近い特性が要求されるITU-T G.654規格(いわゆるカットオフシフトファイバであり、たとえばカットオフ波長が1530nm以下と規定される)やG.657規格(いわゆる曲げ耐性ファイバ)を満たす光ファイバを設計する場合には、実施形態1、2及びその変形例に係る光ファイバのコア部の屈折率プロファイルを採用することが好適である。
【0048】
さらに、実施形態1、2及びその変形例に係る光ファイバは、細径のためクラッド部を構成するガラス材料の量が少ないので、原料コストが低減された光ファイバである。
【0049】
以下、本発明についてさらに説明する。本発明に係る光ファイバは、リーケージ損失が抑制された細径の光ファイバであるが、上記のようにG.652規格を満たすものであることが、実用上好ましい。すなわち、波長1625nmにおいて0.001dB/km以下のリーケージ損失を実現し、さらに、表1に示すG.652A、G.652B、G.652C、G.652Dの規格を満たすことが好ましい。なお、マクロベンド損失については、G.652A規格では波長1550nmにおける値であるが、G.652B、G.652C、G.652Dの規格では波長1625nmにおける値である。なお、以降の表において、「E」は10のべき乗を表し、たとえば「5.3E-3」は「5.3×10
-3」を意味している。
【表1】
【0050】
表2は、実施形態1に係る光ファイバ10において、Δ1を0.32%~0.40%、コア径2aを7μm~10μmに設定してその特性をシミュレーション計算した結果の一例を示す。いずれの場合も、G.652A規格を満たし、かつ限界ファイバ径が100μm未満である。特に、Δ1が0.37%、2aが9.0μmの場合は、ファイバ径を80μmとすることができることがわかる。すなわち、これらのΔ1、コア径を有する光ファイバは、ファイバ径が100μm未満であり、カットオフ波長以上1625nm以下のシングルモード動作する波長帯で、リーケージ損失の影響が小さい光ファイバである。
【表2】
【0051】
なお、実際の光ファイバでは、マイクロベンド損失などの要因も加わるため、表2に示すパラメータを用いた上で、さらにマイクロベンド損失を抑制できるように、最適な樹脂物性や厚みを有するコーティング構造を用いることが重要である。
【0052】
ここで、表2のシミュレーション結果と実際の光ファイバの特性との整合性を調査するために、周知の方法によって本発明の実施例としての光ファイバを製造した。実施例の光ファイバにおいて、Δ1は0.37%とし、コア径は8.5μmとし、ファイバ径を90μmとした。なお、コーティングの樹脂材料については、G.650.2規格を満たす通常の光ファイバに用いられているものを用いたが、プライマリ層の外径を100μmとし、セカンダリ層の外径を125μmと、通常よりも薄肉にした。
【0053】
図7は、実施例の光ファイバの伝送損失の測定結果を示す図である。
図7に示すように、実施例の光ファイバの伝送損失スペクトルにおいて、長波長側における損失の増加は確認されなかった。このことは、実施例の光ファイバにおいて、リーケージ損失がほとんど発生しないことを意味する。また、表3に示すように、シミュレーション結果である計算例と実施例の実測値とはよい精度で一致した。
【表3】
【0054】
つづいて、実施形態2に係る光ファイバについて、より細径にできることをシミュレーション結果に基づいて説明する。以下では、Δ1を3.6%に固定し、コア径2a、トレンチ位置、トレンチ幅、Δ3などを変化させてシミュレーション計算を行った。ここで、トレンチ位置とは、b/aのことである。また、トレンチ幅は、コア径で規格化した値とする、すなわち、トレンチ幅は(c-b)/aである。
【0055】
まず、コア径2aを9μmとし、Δ3を、-0.4%、-0.6%、-0.7%、-1.0%とし、トレンチ位置とトレンチ幅とを変化させてシミュレーション計算を行った。
【0056】
図8、9は、トレンチ位置に対する分散特性、すなわちゼロ分散波長、分散スロープの関係を示す図である。分散スロープはゼロ分散波長における値である。
図8(a)、(b)はΔ3が-0.4%の場合であり、
図8(c)、(d)はΔ3が-0.6%の場合である。また、
図9(a)、(b)はΔ3が-0.7%の場合であり、
図9(c)、(d)はΔ3が-1.0%の場合である。
【0057】
図10、11は、トレンチ位置に対する光閉じ込め特性、すなわち曲げ損失(マクロベンディング損失)、限界ファイバ径の関係を示す図である。曲げ損失は直径60mmで曲げた場合の波長1550nmにおける値である。
図10(a)、(b)はΔ3が-0.4%の場合であり、
図10(c)、(d)はΔ3が-0.6%の場合である。また、
図11(a)、(b)はΔ3が-0.7%の場合であり、
図11(c)、(d)はΔ3が-1.0%の場合である。
【0058】
図12、13は、トレンチ位置に対するMFD、カットオフ波長の関係を示す図である。MFDは波長1310nmにおける値である。
図12(a)、(b)はΔ3が-0.4%の場合であり、
図12(c)、(d)はΔ3が-0.6%の場合である。また、
図13(a)、(b)はΔ3が-0.7%の場合であり、
図13(c)、(d)はΔ3が-1.0%の場合である。
【0059】
図8~
図13において、太線で囲んだ範囲は、
図10、11における限界ファイバ径については目標値を示し、その他についてはG.652A規格の範囲を示している。なお、ここでは目標値を80μm以下に設定しているが、100μm未満の細径であればよい。
【0060】
図8、9から明らかなように、トレンチ位置が小さい、すなわちトレンチ層がコア部に近いと、分散特性は大きく変化し、トレンチ位置が大きくなるにつれて、分散特性の変化が緩やかになり、規格内に安定して収まる。また、
図10、11から明らかなように、光閉じ込め特性は、分散特性と同様にトレンチ位置が小さいと特性の変化が大きいが、その変化は不規則である。また、トレンチ位置が大きくなるにつれて、光閉じ込め特性の変化が緩やかになり、曲げ損失が規格内に収まり、限界ファイバ径も80μm以下となる。
【0061】
一方、
図12、13から明らかなように、MFDについてはトレンチ位置が大きくなるにつれて大きくなって規格を満たすようになり、その後安定した値となる。しかし、カットオフ波長については、MFDとトレードオフの関係にあり、トレンチ位置が大きくなると大きくなって規格を満たさないようになる。したがって、MFDとカットオフ波長との両方が規格を満たすようにトレンチ位置を設定することが好ましい。
【0062】
つづいて、コア径2aを8μmとし、トレンチ位置とトレンチ幅とを変化させてシミュレーション計算を行った。なお、Δ3については、-0.4%、-0.6%とし、-0.7%、-1.0%については、このようにΔ3を小さくしても、規格で定める光学特性にあまり影響がないことが解ったので、光ファイバの製造性を考慮し、以下では計算を省略した。
【0063】
表4は、Δ3が-0.4%の場合を示している。表5は、Δ3が-0.6%の場合を示している。なお、G.652A規格を満たす場合は記号「〇」を示し、満たさない場合は記号「×」を示した。表4、5に示すように、G.652A規格を満たし、かつ限界ファイバ径が100μm未満となるパラメータの組み合わせが数多く存在した。特に、Δ3が-0.6%の場合、限界ファイバ径が80μm以下となる組み合わせも存在した。たとえば、トレンチ幅が1.0、トレンチ位置が3.0の場合は、限界ファイバ径が78μmであった。
このように、トレンチ位置についてb/aが2倍以上の場合に、(c-b)/aが0.2~1、すなわち、(c-b)がaの0.2倍~1倍であることが好ましい。また、Δ2は、-0.4%以下であることが好ましい。
【表4】
【表5】
【0064】
つづいて、コア径2aを7μmとし、トレンチ位置とトレンチ幅とを変化させてシミュレーション計算を行った。
図14と表6は、トレンチ位置に対するMFDの関係を示す。トレンチ無しの場合のMFDと比較とすると、トレンチ位置が小さい場合はMFDが小さく、トレンチ位置が大きくなるにつれてMFDが大きくなるが、トレンチ無しの場合のMFDより大きくはならないことがわかった。
【表6】
【0065】
以上のシミュレーション結果の範囲では、トレンチ層を有する実施形態2に係る光ファイバの場合、コア径2aが8μmの場合が最適であることが確認された。
【0066】
なお、実施形態2に係る光ファイバの場合、トレンチ層の効果によって曲げ損失(マクロベンド損失)を低減できるので、より低いマクロベンド損失が求められるG.657規格を満たす光ファイバに適用するのに好適である。また、カットオフ波長がより長波長にシフトすることを許容することで、G.654規格を満たす光ファイバに適用するのに好適である。
【0067】
次に、表2に示すステップ型のパラメータの組み合わせのうち最も良好な特性を示したものと、表5に示すトレンチ型のパラメータの組み合わせのうち最も良好な特性を示したものとを、最適なパラメータの組み合わせとして表7に示す。そして、表8に、G.652A規格と、表7の場合の光ファイバの光学特性を示す。ステップ型については、コア部の屈折率プロファイルの最適化により限界ファイバ径として80μmが得られた。また、トレンチ型についてはトレンチ層の効果により限界ファイバ径として78μmが得られた。
【表7】
【表8】
【0068】
次に、表9に、G.657A2規格と、表7の場合の光ファイバの光学特性を示す。G.657A規格の場合、マクロベンド損失として、直径20mmで曲げた場合の波長1550nmにおける値が規定されており、G.652よりも要求がより厳しい規格となっている。表9からわかるように、トレンチ型の場合にG.657A2規格を満たすことができ、トレンチ型の優位性が確認された。
【表9】
【0069】
次に、表5に示すトレンチ型の最適なパラメータを変化させた場合、光ファイバの光学特性がどのように変化するかについて説明する。表10は、表5に示すトレンチ型の最適なパラメータを基準値(トレンチ1)として、Δ1、Δ3、b/a、c/a、2aを変化させたトレンチ2~15のパラメータ組み合わせを示す。なお、表中、記号「-」は基準値と同じ値であることを示す。そして、表11は、G.652A規格と、トレンチ1~15のパラメータとした光ファイバの光学特性を示す。
【表10】
【表11】
【0070】
図15は、パラメータを変化させたときの限界ファイバ径の変化を示す図である。表10、11の結果から明らかなように、たとえばパラメータをトレンチ3、5、8、11、14のような変化の方向(
図15の実線の矢印で示す増加(UP)又は減少(DOWN)の方向)に変化させることで、限界ファイバ径を78μmからさらに小さくすることができるが、カットオフ波長も長波長側にシフトしてしまうことがわかる。トレンチ3、5、8、11、14は、カットオフ波長が規格上限の1260nm付近の場合の特性となっているが、基準であるトレンチ1のカットオフ波長が1252nmと規格の上限に近いので改善の余地が少ないことがわかる。また、
図15に示すように、限界ファイバ径に対して最も大きな改善が見られたのは、Δ1を大きくした場合である。この結果からも、コア部を最適な構造にすることが重要であることが見て取れる。たとえば、トレンチ3では、G.652A規格を満たし、かつ限界ファイバ径76μmという、トレンチ型の採用によるさらなる特性改善が実現された。なお、今回の基準を用いた場合は、いずれのパラメータを変化させた場合もカットオフ波長が特性改善の制限要因となったが、基準の選定によっては他のパラメータが特性改善の制限要因になることもあると考えられるので、その制限要因を見極めた上で、今回の手法の様な最適化を行うことが好ましい。
【0071】
なお、上記実施形態及び変形例、計算結果、実施例では、光ファイバの屈折率プロファイルをステップ型及びトレンチ型としているが、これらは好ましい形態の一例である。すなわち、本発明はこれらに限定されず、たとえばステップ型及びトレンチ型で、上記とは異なるパラメータを用いて本発明の効果を得る場合も含まれる。また、ステップ型やトレンチ型以外でも、上述した最適構造としたコア部を採用して、汎用性の高い特性を有する細径の光ファイバを実現する場合も、本発明に含まれる。たとえば、実施形態2で説明したように、トレンチ型においてトレンチ層をコア部に隣接させた、いわゆるW型の屈折率プロファイルの光ファイバも本発明に含まれることは言うまでもない。この場合、トレンチ層が、最適構造のコア部によって実現される光学特性に、許容範囲の変化を与える程度にトレンチ層を設計することが好ましい。また、他の実施形態として、最適構造のコア部に対して好適な位置にΔ+層を設けてもよい。ここで、Δ+層は、コア部を取り囲み、クラッド部における基準屈折率領域に対して正値の比屈折率差を有する層である。このような本発明に係る光ファイバによって、リーケージ損失が抑制された細径の光ファイバであって、各種標準規格を満たす光ファイバを好適に実現できる。
【0072】
なお、上記実施形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施形態に限定されるものではなく、様々な変更が可能である。
【符号の説明】
【0073】
10 光ファイバ
11 コア部
12 クラッド部
12a 隣接領域
12b 非隣接領域