IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 日本ゼオン株式会社の特許一覧

特許7371498蓄電デバイス用接着剤組成物、蓄電デバイス用機能層、蓄電デバイス、及び蓄電デバイスの製造方法
<>
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-10-23
(45)【発行日】2023-10-31
(54)【発明の名称】蓄電デバイス用接着剤組成物、蓄電デバイス用機能層、蓄電デバイス、及び蓄電デバイスの製造方法
(51)【国際特許分類】
   H01M 50/409 20210101AFI20231024BHJP
   H01M 50/42 20210101ALI20231024BHJP
   H01M 4/02 20060101ALI20231024BHJP
   H01M 4/13 20100101ALI20231024BHJP
   H01M 4/62 20060101ALI20231024BHJP
   H01M 10/04 20060101ALI20231024BHJP
   H01M 10/058 20100101ALI20231024BHJP
   H01G 11/84 20130101ALI20231024BHJP
   H01G 11/52 20130101ALI20231024BHJP
   H01G 11/26 20130101ALI20231024BHJP
   H01G 11/30 20130101ALI20231024BHJP
【FI】
H01M50/409
H01M50/42
H01M4/02 Z
H01M4/13
H01M4/62 Z
H01M10/04 Z
H01M10/058
H01G11/84
H01G11/52
H01G11/26
H01G11/30
【請求項の数】 7
(21)【出願番号】P 2019550975
(86)(22)【出願日】2018-10-10
(86)【国際出願番号】 JP2018037790
(87)【国際公開番号】W WO2019082660
(87)【国際公開日】2019-05-02
【審査請求日】2021-09-16
(31)【優先権主張番号】P 2017208596
(32)【優先日】2017-10-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000229117
【氏名又は名称】日本ゼオン株式会社
(74)【代理人】
【識別番号】100147485
【弁理士】
【氏名又は名称】杉村 憲司
(74)【代理人】
【識別番号】230118913
【弁護士】
【氏名又は名称】杉村 光嗣
(74)【代理人】
【識別番号】100150360
【弁理士】
【氏名又は名称】寺嶋 勇太
(74)【代理人】
【識別番号】100174001
【弁理士】
【氏名又は名称】結城 仁美
(72)【発明者】
【氏名】荒井 健次
【審査官】長谷川 真一
(56)【参考文献】
【文献】特開2015-141838(JP,A)
【文献】国際公開第2017/073022(WO,A1)
【文献】特開2015-138768(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 50/409
H01M 10/04
H01M 10/058
H01G 11/84
H01G 11/52
H01G 11/26
H01G 11/30
H01M 4/13
H01M 4/62
H01M 4/02
(57)【特許請求の範囲】
【請求項1】
重合体A及び溶媒を含む蓄電デバイス用接着剤組成物であって、
前記重合体Aが、ニトリル基含有単量体単位、脂環式(メタ)アクリル酸エステル単量体単位、並びに、酸性基含有単量体単位、(メタ)アクリル酸アルキルエステル単量体単位(ただし、前記脂環式(メタ)アクリル酸エステル単量体単位に該当するものは含まない)、脂肪族共役ジエン単量体単位、芳香族ビニル単量体単位、アミド基含有単量体単位及び架橋性単量体単位から選択される少なくとも一種の単量体単位であるその他の単量体単位を含み、
前記重合体Aにおける、前記ニトリル基含有単量体単位の含有割合が50.0質量%超80.0質量%以下であり、前記脂環式(メタ)アクリル酸エステル単量体単位の含有割合が15質量%以上40.0質量%以下であり、前記その他の単量体の含有割合が3.0質量%以上30.0質量%以下であり、ここで、前記その他の単量体単位が一種の単量体単位のみからなる場合にはかかる一種の単量体単位の含有割合が、また、前記その他の単量体単位が複数種の単量体単位を含む場合にはそれらの複数種の単量体単位の合計含有割合が、前記その他の単量体の含有割合の範囲を満たし、さらに、
前記重合体Aのガラス転移温度が80℃以上である、
蓄電デバイス用接着剤組成物。
【請求項2】
前記重合体Aのガラス転移温度が、120℃以下である請求項1に記載の蓄電デバイス用接着剤組成物。
【請求項3】
重合体Bを更に含み、
前記重合体Bのガラス転移温度が、20℃以下である、請求項1又は2に記載の蓄電デバイス用接着剤組成物。
【請求項4】
請求項1~3の何れかに記載の蓄電デバイス用接着剤組成物を用いて形成された、蓄電デバイス用機能層。
【請求項5】
請求項4に記載の蓄電デバイス用機能層を備える、蓄電デバイス。
【請求項6】
請求項5に記載の蓄電デバイスを製造する方法であって、
前記蓄電デバイスが複数の部材を含み、該複数の部材のうちの少なくとも2つを、前記蓄電デバイス用機能層を介して積層して積層体を得る積層工程と、
前記積層体を加圧して前記少なくとも2つの部材を相互に接着する加圧工程と、
を含む、蓄電デバイスの製造方法。
【請求項7】
前記蓄電デバイスの前記複数の部材が、2種類の電極及びセパレータを含み、
前記積層工程の前段に、前記セパレータの少なくとも一方の表面上に前記蓄電デバイス用機能層を付与して機能層付きセパレータを形成する工程を更に含み、
前記積層工程にて、前記2種類の電極のうちの少なくとも一方と、前記機能層付きセパレータとを、前記蓄電デバイス用機能層を介して積層する、
請求項6に記載の蓄電デバイスの製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、蓄電デバイス用接着剤組成物、蓄電デバイス用機能層、蓄電デバイス、及び蓄電デバイスの製造方法に関するものである。
【背景技術】
【0002】
電池、二次電池及びキャパシタなどを含む蓄電デバイスは、幅広い用途に使用されている。これらの蓄電デバイスは、性質の異なる2つの電極がセパレータ等の隔離部材により隔離されてなる。すなわち、一般的に、蓄電デバイスは、イオン化傾向の異なる2つの電極、及びセパレータなどの複数の各種部材を備えている。
【0003】
ここで、蓄電デバイスに備えられる部材としては、部材に所望の機能を発揮させるために配合されている粒子(以下、「機能性粒子」という。)及びその他の成分を含んでなる機能層を備える部材が使用されている。
例えば、蓄電デバイスのセパレータとしては、セパレータ基材の上に、結着材と機能性粒子としての非導電性粒子とを含む多孔膜層を備えるセパレータが使用されている。また、例えば、蓄電デバイスの電極としては、集電体の上に、結着材と機能性粒子としての電極活物質粒子とを含む電極合材層を備える電極や、集電体上に電極合材層を備える電極基材の上に、さらに上述の多孔膜層等を備える電極が使用されている。
【0004】
そして、近年、蓄電デバイスの更なる性能向上を達成すべく、蓄電デバイス用接着剤組成物の改良が試みられている。例えば、特許文献1では、脂環式炭化水素基を有する不飽和カルボン酸エステルに由来する第1の繰り返し単位3~40質量%と、α,β-不飽和ニトリル化合物に由来する第2の繰り返し単位1~40質量%とを有する重合体を含有する、蓄電デバイス用接着剤組成物が提案されている。かかる蓄電デバイス用接着剤組成物は、蓄電デバイスに備えられるセパレータの保護膜を形成するための保護膜用スラリー、及び蓄電デバイスに備えられる電極活物質層を形成するための電極用スラリーの調製に用いることができる。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開第2014/157715号
【発明の概要】
【発明が解決しようとする課題】
【0006】
ここで、蓄電デバイスの製造プロセスにおいては、長尺に製造した電池部材を、そのまま捲き取って保存及び運搬することが一般的である。しかし、機能層を備える部材は、捲き取った状態で保存及び運搬すると、機能層を介して隣接する部材同士が膠着する、即ち、ブロッキングすることにより、不良が発生し、或いは、蓄電デバイスの製造効率が低下することがある。従って、機能層を備える部材には、製造プロセス中におけるブロッキングを抑制する性能(耐ブロッキング性)を有することが求められている。
しかしながら、上記従来の技術では、接着剤組成物を用いて形成した保護膜や電極活物質層等の機能層の呈し得る耐ブロッキング性、及び機能層を備える蓄電デバイスの低温出力特性に一層の改善の余地があった。
そこで、本発明は、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る機能層の形成に使用し得る、蓄電デバイス用接着剤組成物を提供することを目的とする。
また、本発明は、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る蓄電デバイス用機能層を提供することを目的とする。
さらに、本発明は、低温出力特性に優れる蓄電デバイス、及び、かかる蓄電デバイスを良好に製造することが可能な製造方法を提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、ニトリル基含有単量体単位を主成分とするとともに、脂環式(メタ)アクリル酸エステル単量体単位を含む重合体を含有する蓄電デバイス用接着剤組成物が、耐ブロッキング性に優れる機能層の形成に使用可能であること、及び、かかる機能層を備える蓄電デバイスが優れた低温出力特性を発揮しうることを見出し、本発明を完成させた。なお、本明細書において、ある重合体が特定の単量体単位を「主成分とする」とは、当該重合体に含有される全繰り返し単位を100.0質量%として、上記特定の単量体単位の含有割合が50.0質量%超であることを意味する。
【0008】
即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の蓄電デバイス用接着剤組成物は、重合体A及び溶媒を含む蓄電デバイス用接着剤組成物であって、前記重合体Aが、ニトリル基含有単量体単位及び脂環式(メタ)アクリル酸エステル単量体単位を含み、前記重合体Aが、前記ニトリル基含有単量体単位を50.0質量%超90.0質量%以下の含有割合で含むことを特徴とする。このように、ニトリル基含有単量体単位を50.0質量%超90.0質量%以下の含有割合で含むとともに、脂環式(メタ)アクリル酸エステル単量体単位を含む重合体Aを含んでなる蓄電デバイス用接着剤組成物は、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る機能層を形成することができる。
なお、重合体A中におけるニトリル基含有単量体単位の含有割合は、1H-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。また、本発明において、重合体が「単量体単位を含む」とは、「その単量体を用いて得た重合体中に単量体由来の繰り返し単位が含まれている」ことを意味する。また、本明細書において、「(メタ)アクリル」とは、アクリル又はメタクリルを意味する。
【0009】
ここで、本発明の蓄電デバイス用接着剤組成物において、前記重合体Aが、前記脂環式(メタ)アクリル酸エステル単量体単位を5.0質量%以上の含有割合で含むことが好ましい。重合体Aにおける脂環式(メタ)アクリル酸エステル単量体単位の含有割合が上記下限値以上であれば、得られる蓄電デバイスの低温出力特性を一層向上させることができる。なお、重合体A中における脂環式(メタ)アクリル酸エステル単量体単位の含有割合は、1H-NMRを用いて測定することができる。
【0010】
また、本発明の蓄電デバイス用接着剤組成物において、前記重合体Aのガラス転移温度が、40℃以上120℃以下であることが好ましい。重合体Aのガラス転移温度が上記範囲内であれば、得られる蓄電デバイス用機能層を備える部材の保存時又は運搬時等の、接着能を発揮することが不要である場合に、蓄電デバイス用機能層を介して隣接する部材同士が膠着する(即ち、ブロッキングする)ことを抑制しつつ、蓄電デバイス用機能層による接着能の発揮が必要である場合に、良好な接着能を発揮させ得る。なお、重合体Aのガラス転移温度は、本明細書の実施例に記載の測定方法を用いて測定することができる。
【0011】
また、本発明の蓄電デバイス用接着剤組成物が、重合体Bを更に含み、前記重合体Bのガラス転移温度が、20℃以下であることが好ましい。蓄電デバイス用接着剤組成物が、ガラス転移温度が上記上限値以下である重合体Bを含有していれば、得られる蓄電デバイス用機能層から、含有成分が脱落することを効果的に抑制することができる。なお、重合体Bのガラス転移温度は、本明細書の実施例に記載の測定方法を用いて測定することができる。
【0012】
また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の蓄電デバイス用機能層は、上記何れかの蓄電デバイス用接着剤組成物を用いて形成されたことを特徴とする。本発明の蓄電デバイス用機能層は、本発明の蓄電デバイス用接着剤組成物を用いて形成されているので、耐ブロッキング性が高く、且つ、蓄電デバイスの低温出力特性を向上させることができる。
【0013】
さらにまた、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の蓄電デバイスは、上述の蓄電デバイス用機能層を備えることを特徴とする。本発明の本発明の蓄電デバイスは本発明の蓄電デバイス用機能層を備えるので、低温出力特性が高い。
【0014】
そして、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の蓄電デバイスの製造方法は、蓄電デバイスが複数の部材を含み、該複数の部材のうちの少なくとも2つを、前記蓄電デバイス用機能層を介して積層して積層体を得る積層工程と、前記積層体を加圧して前記少なくとも2つの部材を相互に接着する加圧工程とを含むことを特徴とする。本発明の蓄電デバイスの製造方法によれば、本発明の蓄電デバイス用機能層を介して、蓄電デバイスを構成し得る複数の部材のうちの少なくとも2つの部材同士を相互に接着させるため、低温出力特性に富む本発明の蓄電デバイスを良好に製造することができる。
【0015】
ここで、本発明の蓄電デバイスの製造方法は、前記蓄電デバイスの前記複数の部材が、2種類の電極及びセパレータを含み、前記積層工程の前段に、前記セパレータの少なくとも一方の表面上に前記蓄電デバイス用機能層を付与して機能層付きセパレータを形成する工程を更に含み、前記積層工程にて、前記2種類の電極のうちの少なくとも一方と、前記機能層付きセパレータとを、前記蓄電デバイス用機能層を介して積層することが好ましい。かかる蓄電デバイスの製造方法によれば、低温出力特性に富む蓄電デバイスを良好に製造することができる。
【発明の効果】
【0016】
本発明によれば、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る機能層の形成に使用可能である、蓄電デバイス用接着剤組成物を提供することができる。
また、本発明によれば、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る蓄電デバイス用機能層を提供することができる。
さらに、本発明によれば、低温出力特性に優れる蓄電デバイス、及び、かかる蓄電デバイスを良好に製造することが可能な製造方法を提供することができる。
【発明を実施するための形態】
【0017】
以下、本発明の実施形態について詳細に説明する。
ここで、本発明の蓄電デバイス用接着剤組成物は、蓄電デバイスの製造用途に用いられるものである。そして、本発明の蓄電デバイス用接着剤組成物は、蓄電デバイス内において、電子の授受という機能を奏する機能層である電極合材層、部材の補強という機能を奏する機能層である多孔膜層(保護膜層)、及び、部材間の接着という機能を奏する接着層等の各種機能層の形成に用いることができる。なお、多孔膜層は、接着能も発揮し得る。さらに、本発明の蓄電デバイス用機能層は、本発明の蓄電デバイス用接着剤組成物を用いて形成され得る。さらにまた、本発明の蓄電デバイスは、本発明の蓄電デバイス用機能層を有する。そして、本発明の蓄電デバイスは、本発明の蓄電デバイスの製造方法により良好に製造することができる。
【0018】
(蓄電デバイス用接着剤組成物)
本発明の蓄電デバイス用接着剤組成物(以下、単に「接着剤組成物」とも称する。)は、重合体A及び溶媒を含む。そして、重合体Aが、ニトリル基含有単量体単位及び脂環式(メタ)アクリル酸エステル単量体単位を含み、さらに、重合体Aにおけるニトリル基含有単量体単位の含有割合が、50.0質量%超90.0質量%以下であることを特徴とする。なお、本発明の接着剤組成物は、重合体A及び溶媒以外に、重合体Aとは異なる組成及び/又は性状を有する重合体Bを含むことが好ましい。さらに、本発明の接着剤組成物は、重合体A及び重合体Bとは異なる、その他の成分を含有していても良い。
【0019】
そして、本発明の接着剤組成物は、ニトリル基含有単量体単位を50.0質量%超90.0質量%以下の含有割合で含むと共に、脂環式(メタ)アクリル酸エステル単量体単位を含有する重合体Aを含むため、得られる蓄電デバイス用機能層(以下、単に「機能層」とも称する。)の耐ブロッキング性を高めると共に、当該機能層を備える蓄電デバイスの低温出力特性を向上させることができる。その理由は明らかではないが、以下の通りであると推察される。まず、重合体A中に上記割合で含有され、重合体Aの主成分であるニトリル基含有単量体単位は、重合体Aのポリマー強度を向上させることで、蓄電デバイスの製造プロセス中で重合体Aを含む機能層を有する部材を捲き取った状態で保存及び運搬した場合においては、機能層が接着能を発現しにくくすることができると考えられる。その一方で、本発明者の検討により、ニトリル基含有単量体単位は、重合体Aの電解液に対する膨潤度(以下、単に「電解液膨潤度」とも称する)を高める傾向があることが見出された。ここで、機能層に含まれる重合体の電解液膨潤度が過度に高い場合には、蓄電デバイスの内部抵抗が上昇し、ひいては、蓄電デバイスに充分に高い低温出力特性を発揮させることができなくなる虞がある。そこで、本発明者は、種々検討を重ねた結果、重合体Aに、脂環式(メタ)アクリル酸エステル単量体単位を含有させることで、重合体Aの電解液膨潤度が過度に高まることを効果的に抑制し得ることを新たに見出した。このようにして、本発明において、重合体Aに、主成分を構成するニトリル基含有単量体単位に加えて、脂環式(メタ)アクリル酸エステル単量体単位を含有させることで、かかる重合体Aを含む機能層に良好な耐ブロッキング性を発揮させることと、当該機能層を備える蓄電デバイスの低温出力特性を向上させることとを両立することができると推察される。
【0020】
<重合体A>
重合体Aは、ニトリル基含有単量体単位を50.0質量%超90.0質量%以下の含有割合で含むとともに、脂環式(メタ)アクリル酸エステル単量体単位を含むことを特徴とする。なお、重合体Aは、非水溶性の粒子状重合体である。なお、本明細書において、重合体が「非水溶性である」とは、25℃において重合体0.5gを100gの水に溶解した際に、不溶分が90質量%以上となることを指す。
【0021】
このような重合体Aは、接着剤組成物を用いて形成した機能層中において、機能層の耐ブロッキング性を高めるように機能する成分である。さらに、重合体Aは、ロールプレス等による加圧、又は電解液に対する浸漬等の接着性を発現させるための操作を施すことで、接着性を発現するようになり、機能層に隣接する部材同士を接着させることができる。このとき、重合体Aは、部材間の接着強度を高めるようにも機能しうる成分である。これは、重合体Aの主成分であるニトリル基含有単量体単位が、重合体A自体のポリマー強度を向上させるように作用するためであると考えられる。換言すれば、重合体A自体のポリマー強度が高ければ、かかるポリマー強度の高い重合体Aにより接着される部材間の接着強度も高まりうると考えられる。
【0022】
[ニトリル基含有単量体単位]
重合体Aに含まれるニトリル基含有単量体単位を形成するニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;及びシアン化ビニリデンなどが挙げられる。これらの中でも、ニトリル基含有単量体としては、アクリロニトリル及びメタクリロニトリルが好ましく、アクリロニトリルがより好ましい。
これらは、単独で、又は、2種以上を組み合わせて用いることができる。
【0023】
そして、重合体Aにおけるニトリル基含有単量体単位の含有割合は、重合体Aを構成する全繰り返し単位を100.0質量%として、50.0質量%超90.0質量%以下である必要があり、55.0質量%以上であることが好ましく、60.0質量%以上であることがより好ましく、85.0質量%以下であることが好ましく、80.0質量%以下であることがより好ましい。重合体Aにおけるニトリル基含有単量体単位の含有割合が上記下限値以上であれば、重合体A自体のポリマー強度を高めることにより、重合体Aを含む機能層の接着強度を向上させ得ると共に、重合体Aのガラス転移温度が過度に低下することを抑制して、機能層の耐ブロッキング性を高めることができる。また、重合体Aにおけるニトリル基含有単量体単位の含有割合が上記上限値以下であれば、重合体Aのガラス転移温度が過度に高くなることを抑制することにより、重合体Aを含む機能層の接着強度を向上させることができる。さらに、重合体Aにおけるニトリル基含有単量体単位の含有割合を上記上限値以下とすることで、得られる蓄電デバイスの内部抵抗を低減することができ、これにより蓄電デバイスの低温出力特性を高めることができると推察される。
【0024】
このように、重合体Aにおけるニトリル基含有単量体単位の含有割合を上記範囲内とすることで、機能層の接着強度を高めることができる。この際に高められる接着強度は、特に、蓄電デバイスを製造して、かかる蓄電デバイスに通電する前の段階における接着強度である。なお、本明細書において、かかる接着強度が高い機能層は、「ウェット接着性」に優れる接着層であると称することとする。
【0025】
[脂環式(メタ)アクリル酸エステル単量体単位]
脂環式(メタ)アクリル酸エステル単量体単位を形成する脂環式(メタ)アクリル酸エステル単量体としては、例えば、アクリル酸シクロヘキシル、アクリル酸シクロヘキシルメチル、アクリル酸メンチル、及びアクリル酸2,2,5-トリメチルシクロヘキシル等の単環式シクロアルキル基を有するアクリル酸エステル単量体;アクリル酸ノルボルニル、アクリル酸ノルボルニルメチル、アクリル酸ボルニル、アクリル酸イソボルニル、アクリル酸フェンチル等の2環式シクロアルキル基を有するアクリル酸エステル単量体;アクリル酸アダマンチル、アクリル酸トリシクロ〔5,2,1,02′6〕デカン-8-イル、及びアクリル酸トリシクロ〔5,2,1,02′6〕デカン-3(又は4)-イルメチル等の3つ以上の環を含むシクロアルキル基を有するアクリル酸エステル単量体;等のアクリル酸シクロアルキル、並びに、メタクリル酸シクロヘキシル、メタクリル酸シクロヘキシルメチル、メタクリル酸メンチル、及びメタクリル酸2,2,5-トリメチルシクロヘキシル等の単環式シクロアルキル基を有するメタクリル酸エステル単量体;メタクリル酸ノルボルニル、メタクリル酸ノルボルニルメチル、メタクリル酸ボルニル、メタクリル酸イソボルニル、及びメタクリル酸フェンチル等の2環式シクロアルキル基を有するメタクリル酸エステル単量体;メタクリル酸アダマンチル、メタクリル酸トリシクロ〔5,2,1,02′6〕デカン-8-イル、メタクリル酸トリシクロ〔5,2,1,02′6〕デカン-3(又は4)-イルメチル等の3つ以上の環を含むシクロアルキル基を有するメタクリル酸エステル単量体;等のメタクリル酸シクロアルキルエステルなどが挙げられる。これらは、単独で、又は、2種以上を組み合わせて用いることができる。
【0026】
上記した中でも、脂環式(メタ)アクリル酸エステル単量体としては、脂環式構造中に含まれる炭素数が5~12である単量体が好ましく、脂環式構造中に含まれる炭素数が6~9である単量体がより好ましい。なお、本明細書において、「脂環式構造中に含まれる炭素数」は、脂環式構造中にて環を形成する炭素の数を指し、脂環式構造が置換基を有する場合は、当該置換基に含有される炭素原子の数は含まない。脂環式構造に含まれる炭素数が上記下限値以上であれば、重合体Aの電解液膨潤度が過度に高まることを効果的に抑制することができる。また、脂環式構造に含まれる炭素数が上記上限値以下であれば、得られる蓄電デバイスの低温出力特性を一層向上させることができる。
【0027】
具体的には、上記列挙した単量体の中でも、アクリル酸シクロヘキシル(脂環式構造中に含まれる炭素数:6)、メタクリル酸シクロヘキシル(脂環式構造中に含まれる炭素数:6)、及びメタクリル酸トリシクロ〔5,2,1,02′6〕デカン-8-イル(脂環式構造中に含まれる炭素数:10)が好ましい。さらに、重合体Aを含む機能層のサイクル後の接着強度を一層向上させる観点から、脂環式(メタ)アクリル酸エステル単量体としては、脂環式構造が単環式シクロアルキル基であることが好ましい。即ち、脂環式(メタ)アクリル酸エステル単量体としては、アクリル酸シクロヘキシル(脂環式構造中に含まれる炭素数:6)、メタクリル酸シクロヘキシル(脂環式構造中に含まれる炭素数:6)がより好ましい。
【0028】
そして、重合体Aにおける脂環式(メタ)アクリル酸エステル単量体単位の含有割合は、重合体Aを構成する全繰り返し単位を100.0質量%として、5.0質量%以上であることが好ましく、10.0質量%以上であることがより好ましく、50.0質量%未満である必要があり、49.7質量%以下であることがより好ましく、45.0質量%以下であることがさらに好ましく、40.0質量%以下であることが特に好ましい。重合体Aにおける脂環式(メタ)アクリル酸エステル単量体単位の含有割合が上記下限値以上であれば、重合体Aの電解液膨潤度が過度に高まることを抑制して、重合体Aを含む機能層を備える蓄電デバイスの低温出力特性を高めることができる。また、重合体Aにおける脂環式(メタ)アクリル酸エステル単量体単位の含有割合が上記下限値以上であれば、重合体Aを含む機能層の接着強度、特に、当該機能層を備える蓄電デバイスについて充放電操作を繰り返した後における、機能層の接着強度を高めることができる。なお、本明細書において、充放電操作を繰り返した後に呈されうる接着強度を「サイクル後接着性」と称する。また、重合体Aにおける脂環式(メタ)アクリル酸エステル単量体単位の含有割合が上記上限値未満/以下であれば、重合体Aを含有する機能層の耐ブロッキング性を高めることができる。
【0029】
[その他の単量体単位]
重合体Aは、上記単量体単位以外のその他の単量体単位を含んでいても良い。かかるその他の単量体単位を形成し得る単量体としては、例えば、酸性基含有単量体、(メタ)アクリル酸アルキルエステル単量体、脂肪族共役ジエン単量体、芳香族ビニル単量体、アミド基含有単量体、及び架橋性単量体等が挙げられる。これらは、単独で、又は、2種以上を組み合わせて用いることができる。中でも、重合体Aが架橋性単量体単位を含むことが好ましい。
【0030】
酸性基含有単量体としては、酸性基を有する単量体、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、及び、リン酸基を有する単量体が挙げられる。
そして、カルボン酸基を有する単量体としては、例えば、モノカルボン酸、ジカルボン酸などが挙げられる。モノカルボン酸としては、例えば、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。ジカルボン酸としては、例えば、マレイン酸、フマル酸、イタコン酸などが挙げられる。
また、スルホン酸基を有する単量体としては、例えば、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
更に、リン酸基を有する単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチルなどが挙げられる。
なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味し、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
【0031】
これらの酸性基含有単量体は、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そしてこれらの中でも、カルボン酸基を有する単量体が好ましく、モノカルボン酸がより好ましく、(メタ)アクリル酸が更に好ましい。
【0032】
(メタ)アクリル酸アルキルエステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート、2-ヒドロキシエチルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート、2-ヒドロキシエチルメタクリレート等のメタクリル酸アルキルエステルなどが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。そしてこれらの中でも、2-エチルヘキシル(メタ)アクリレートが好ましい。
なお、本発明の(メタ)アクリル酸アルキルエステル単量体には、脂環式(メタ)アクリル酸アルキルエステル単量体は含まれない。
【0033】
脂肪族共役ジエン単量体としては、例えば、1,3-ブタジエン、2-メチル-1,3-ブタジエン(イソプレン)、2,3-ジメチル-1,3-ブタジエンなどが挙げられる。
【0034】
芳香族ビニル単量体としては、スチレン、スチレンスルホン酸及びその塩、α-メチルスチレン、ブトキシスチレン、並びに、ビニルナフタレンなどが挙げられる。
【0035】
アミド基含有単量体としては、N-ビニルアセトアミド、アクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)、及びN-メチロール(メタ)アクリルアミドなどが挙げられる。
【0036】
ここで、架橋性単量体としては、単量体に2個以上の重合反応性基を有する多官能単量体が挙げられる。このような多官能単量体としては、例えば、ジビニルベンゼン、1,3-ブタジエン、イソプレン、アリルメタクリレート等のジビニル単量体;エチレンジメタクリレート、ジエチレングリコールジメタクリレート、エチレングリコールジメタクリレート、ジエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等のジ(メタ)アクリル酸エステル単量体;トリメチロールプロパントリメタクリレート、トリメチロールプロパントリアクリレート等のトリ(メタ)アクリル酸エステル単量体;アリルグリシジルエーテル、グリシジルメタクリレート等のエポキシ基を含有するエチレン性不飽和単量体;γ-メタクリロキシプロピルトリメトキシシランなどが挙げられる。中でも、架橋性単量体としては、ジ(メタ)アクリル酸エステル単量体が好ましく、エチレングリコールジメタクリレートが特に好ましい。
【0037】
そして、重合体Aにおけるその他の単量体単位の含有割合は、その他の単量体単位が一種の単量体単位のみからなる場合にはかかる一種の単量体単位の含有割合が、また、その他の単量体単位が複数種の単量体単位を含む場合にはそれらの複数種の単量体単位の合計含有割合が、下記好適範囲を満たすことが好ましい。即ち、重合体Aにおけるその他の単量体単位の含有割合は、重合体Aを構成する全繰り返し単位を100.0質量%として、3.0質量%以上であることが好ましく、5.0質量%以上であることがより好ましく、40.0質量%以下であることが好ましく、30.0質量%以下であることがより好ましい。重合体A中におけるその他の単量体単位の含有割合が上記範囲内であれば、重合体Aを含む機能層の接着性、及びかかる機能層を備える蓄電デバイスの低温出力特性を一層バランス良く高めることができる。
【0038】
特に、重合体Aがその他の単量体単位として、架橋性単量体単位を含む場合には、重合体A中における架橋性単量体単位の含有割合は、重合体Aに含有される全繰り返し単位を100.0質量%として、0.3質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、通常、5.0質量%以下である。重合体A中における架橋性単量体単位の含有割合が上記下限値以上であれば、重合体Aの電解液膨潤度が過剰に高くなることを抑制して、重合体Aを含む機能層を備える蓄電デバイスの低温出力特性を一層向上させることができる。
【0039】
[重合体Aの調製方法]
重合体Aの調製方法は、特に限定されることなく、既知のあらゆる重合方法に従い得る。重合体Aの重合方法としては、特に限定されることなく、例えば、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法を用いてもよい。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などの付加重合を用いることができる。また、重合溶媒としては、特に限定されることなく、既知の有機溶媒や水等を用いることができる。中でも、重合溶媒としては水が好ましい。さらに、重合開始剤としては、特に限定されることなく、過硫酸ナトリウム、過硫酸アンモニウム、過硫酸カリウムが挙げられる。中でも、過硫酸アンモニウムを用いることが好ましい。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
ここで、重合開始剤の添加量や重合温度等の諸条件は、一般的な範囲とすることができる。
【0040】
[重合体Aのガラス転移温度]
重合体Aは、ガラス転移温度が40℃以上であることが好ましく、50℃以上であることがより好ましく、60℃以上であることが更に好ましく、80℃以上であることが更により好ましく、120℃以下であることが好ましく、115℃以下であることがより好ましく、110℃以下であることが更に好ましい。重合体Aのガラス転移温度が上記下限値以上であれば、重合体Aを含む機能層の耐ブロッキング性を向上させることができる。また、重合体Aのガラス転移温度が上記上限値以下であれば、重合体Aを含む機能層のウェット接着性を一層高めることができる。
【0041】
なお、重合体Aのガラス転移温度は、例えば、ニトリル基含有単量体単位の含有割合を高くすることで、高めることができる。また、重合体Aのガラス転移温度は、ニトリル基含有単量体単位の含有割合を低くすること、及び、上記その他の単量体に相当する(メタ)アクリル酸エステル単量体単位等の含有割合を高くすること等により、低くすることができる。
【0042】
[重合体Aの体積平均粒子径]
重合体Aの体積平均粒子径は、150nm以上であることが好ましく、200nm以上であることがより好ましく、600nm以下であることが好ましく、450nm以下であることが更に好ましい。重合体Aの体積平均粒子径を上記範囲内とすることにより、重合体Aを含む機能層により奏されうる部材間の接着強度を高めることができる。
なお、「体積平均粒子径」は、レーザー回折法を用いて測定された粒子径分布において、小径側から計算した累積体積が50%となるときの粒子径(D50)として求めることができる。また、重合体Aの体積平均粒子径は、重合体Aを調製する際の重合時間、乳化剤の配合量等を調節することにより制御することができる。
【0043】
<重合体B>
重合体Bは、重合体A等の機能層中に含有される含有成分を機能層中に保持するように機能する成分である。接着剤組成物が重合体Bを含有していれば、得られる蓄電デバイス用機能層から、含有成分が脱落することを効果的に抑制することができる。なお、重合体Bは、非水溶性の粒子状重合体である。
【0044】
[重合体Bのガラス転移温度]
重合体Bは、ガラス転移温度が、20℃以下であることが好ましく、15℃以下であることがより好ましく、-40℃以上であることが好ましく、-30℃以上であることがより好ましい。重合体Bのガラス転移温度が上記下限値以上であれば、重合体Bを含む機能層の耐ブロッキング性を一層向上させることができる。また、重合体Bのガラス転移温度が上記上限値以下であれば、機能層中において含有成分を良好に保持するように作用し、機能層からの含有成分の脱落を効果的に抑制することができる。
【0045】
[重合体Bの組成]
重合体Bの組成は、特に限定されることなく、例えば、重合体Bのガラス転移温度が上記範囲内となる限りにおいて、あらゆる組成とすることができる。例えば、重合体Bは、熱可塑性エラストマーでありうる。そして、熱可塑性エラストマーとしては、共役ジエン系重合体及びアクリル系重合体が好ましく、アクリル系重合体がより好ましい。ここで、共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指す。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、アクリルゴム(NBR)(アクリロニトリル単位及びブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。
また、アクリル系重合体とは、(メタ)アクリル酸エステル単量体単位を主成分として含む重合体を指す。ここで、(メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、重合体Aのその他の単量体単位の形成に用い得る(メタ)アクリル酸アルキルエステル単量体と同様のものを用いることができる。これらの結着材は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
中でも、重合体Bがアクリル系重合体であることが好ましい。
【0046】
重合体Bがアクリル系重合体であるときは、かかるアクリル系重合体に含まれる(メタ)アクリル酸アルキルエステル単量体単位以外の他の単量体単位は、特に限定されることなく、重合体Aのニトリル基含有単量体単位の形成に用い得る単量体と同様の単量体、脂環式(メタ)アクリル酸エステル単量体単位の形成に用い得る単量体と同様の単量体、及び、重合体Aのその他の単量体単位の形成に用い得る単量体と同様の単量体を用いて形成することができる。なお、重合体Bがニトリル基含有単量体単位を含有する場合には、その含有割合は、重合体Bを構成する全繰り返し単位を100.0質量%として、3.0質量%以上20.0質量%以下であることが好ましい。また、重合体Bが脂環式(メタ)アクリル酸エステル単量体単位を含有する場合には、その含有割合は、3.0質量%以上30.0質量%以下であることが好ましい。
【0047】
[重合体Bの調製方法]
重合体Bは、特に限定されることなく、重合体Aと同様の、既知の重合方法、重合溶媒、重合開始剤、及び重合条件等に基づいて、適宜調製することができる。
【0048】
[重合体Bの体積平均粒子径]
重合体Bの体積平均粒子径は、重合体Aよりも小さいことが好ましく、200nm未満であることがより好ましく、150nm未満であることがより好ましく、30nm以上であることが好ましく、60nm以上であることがより好ましい。重合体Bの体積平均粒子径が上記範囲内であれば、機能層中において含有成分を良好に保持するように作用し、機能層からの含有成分の脱落を効果的に抑制することができる。
【0049】
なお、重合体Bの体積平均粒子径は、重合体Bを調製する際の重合時間、乳化剤の配合量等を調節することにより制御することができる。
【0050】
<配合量>
接着剤組成物における、重合体A及び重合体Bの配合量は、本発明の目的を達成することを阻害しない範疇において特に限定されない。例えば、接着剤組成物における重合体A及び重合体Bの配合量比は、質量基準で、重合体A:重合体B=10:1~5:5の範囲内であり得る。
【0051】
<その他の成分>
本発明の接着剤組成物は、任意で、分散剤、濡れ剤、粘度調整剤、電解液添加剤などの、例えば、特開2016-048670号等に開示されたような既知の添加剤を含有しても良い。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
【0052】
<溶媒>
接着剤組成物中に含まれる溶媒としては、特に限定されず、水及び有機溶媒の何れも使用することができる。有機溶媒としては、例えば、アセトニトリル、N-メチル-2-ピロリドン、テトラヒドロフラン、アセトン、アセチルピリジン、シクロペンタノン、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミン、ジメチルベンゼン(キシレン)、メチルベンゼン(トルエン)、シクロペンチルメチルエーテル、及びイソプロピルアルコールなどを用いることができる。中でも、水が好ましい。
なお、これらの溶媒は、一種単独で、或いは複数種を任意の混合比率で混合して用いることができる。
【0053】
<接着剤組成物の調製方法>
ここで、接着剤組成物の調製方法としては、特に限定はされないが、通常は、重合体A、並びに、任意成分である重合体B及びその他の成分を、溶媒中で混合する方法が挙げられる。混合方法は特に制限されないが、通常用いられうる撹拌機や、分散機を用いた混合方法が挙げられる。なお、本発明の接着剤組成物は、後述する機能層用組成物に配合して用いる場合には、本発明の接着剤組成物として独立して調製されることが必須ではない。即ち、本発明の接着剤組成物を含む機能層用組成物を調製するに当たり、機能性粒子と共に、上記重合体A、並びに、重合体B及び添加剤等の任意成分を添加して、混合することで、調製しても良い。
【0054】
(蓄電デバイス用機能層)
本発明の機能層は、蓄電デバイス内において電子の授受、部材の補強、部材間の接着などの機能を担う層であり、機能層としては、例えば、電気化学反応を介して電子の授受を行う電極合材層や、耐熱性や強度を向上させる多孔膜層や、接着性を向上させる接着層などが挙げられる。ここで、機能層は、上述した本発明の接着剤組成物を用いて形成されたものでありうる。より具体的には、本発明の機能層は、上述した本発明の接着剤組成物から形成された本発明の接着剤組成物の硬化物よりなる層であるか、或いは、上述した本発明の接着剤組成物と、機能層に所望の機能を発揮させるために配合され得る粒子である機能性粒子とを含む機能層用組成物の硬化物よりなる層であり得る。本発明の機能層は、上述した本発明の接着剤組成物、又は本発明の機能層用組成物を適切な基材の表面に塗布して塗膜を形成した後、かかる塗膜を乾燥することにより、形成することができる。即ち、本発明の機能層は、接着剤組成物又は機能層用組成物の乾燥物よりなり、通常、少なくとも、重合体Aを含有する。また、本発明の機能層は、好ましくは重合体Bを更に含有する。なお、機能層中に含まれている各成分は、接着剤組成物又は機能層用組成物中に含まれていたものであるため、それら各成分の好適な存在比は、上述した接着剤組成物又は後述する機能層用組成物中の各成分の好適な存在比と同じである。また、接着剤組成物又は機能層用組成物に含有されうる重合体A、重合体B、及び有機粒子等が、架橋性の官能基を有する重合体である場合には、当該重合体は、接着剤組成物又は機能層用組成物の乾燥時、或いは、乾燥後に任意に実施される熱処理時などに架橋されていてもよい(即ち、機能層は、重合体A、重合体B、及び有機粒子等の架橋物を含んでいてもよい)。
【0055】
本発明の機能層は、本発明の接着剤組成物、又は当該接着剤組成物を含む機能層用組成物から形成されているので、本発明の機能層を備える部材を有する蓄電デバイスに、優れた低温出力特性を発揮させることができる。
【0056】
<機能層用組成物>
本発明の機能層を形成するために用い得る機能層用組成物は、本発明の接着剤組成物に加えて、機能性粒子を含有していても良い。機能性粒子としては、非導電性粒子及び電極活物質粒子が挙げられる。例えば、機能層が多孔膜層である場合、或いは、専ら接着性を発揮させるために設けられる接着層であるものの、かかる接着層の強度及び耐熱性を高めることが必要とされる場合には、機能性粒子としては非導電性粒子が配合され得る。更に、機能層が電極合材層である場合には、機能性粒子としては電極活物質粒子が挙げられる。
【0057】
[非導電性粒子]
機能性粒子としての非導電性粒子としては、特に限定されることなく、二次電池等の蓄電デバイスに用いられる既知の非導電性粒子を挙げることができる。機能層用組成物に、機能性粒子として非導電性粒子を含有させることで、機能層用組成物により形成される機能層に対して機械的強度や耐熱性を付与することができる。
具体的には、非導電性粒子としては、無機粒子及び有機粒子の少なくとも一方を用いることができる。
【0058】
無機粒子としては、例えば、酸化アルミニウム(アルミナ)、水和アルミニウム酸化物(ベーマイト)、酸化ケイ素、酸化マグネシウム(マグネシア)、酸化カルシウム、酸化チタン(チタニア)、BaTiO、ZrO、アルミナ-シリカ複合酸化物等の酸化物粒子;窒化アルミニウム、窒化ホウ素等の窒化物粒子;シリコン、ダイヤモンド等の共有結合性結晶粒子;硫酸バリウム、フッ化カルシウム、フッ化バリウム等の難溶性イオン結晶粒子;タルク、モンモリロナイト等の粘土微粒子;などが挙げられる。また、これらの粒子は必要に応じて元素置換、表面処理、固溶体化等が施されていてもよい。非導電性粒子としての無機粒子を配合することで、機能層の機械的強度及び耐熱性を効果的に高めることができる。
【0059】
また、有機粒子としては、上記重合体A及びBとは組成及び性状の異なる有機粒子が挙げられる。かかる有機粒子としては、例えば、ポリエチレン、ポリスチレン、ポリジビニルベンゼン、スチレン-ジビニルベンゼン共重合体架橋物、そして、ポリイミド、ポリアミド、ポリアミドイミド、メラミン樹脂、フェノール樹脂、ベンゾグアナミン-ホルムアルデヒド縮合物などの各種架橋高分子粒子や、ポリスルフォン、ポリアクリロニトリル、ポリアラミド、ポリアセタール、熱可塑性ポリイミドなどの耐熱性高分子粒子が挙げられる。そして、かかる有機粒子は、ニトリル基含有単量体単位を含まないか、或いは、ニトリル基含有単量体単位を含む場合には、有機粒子を構成する全繰り返し単位を100質量%とした場合に、50質量%以下であるか、90質量%超である点で、重合体Aとは異なる。また、有機粒子は、ガラス転移温度が20℃超である点で、重合体Bとは異なる。なお、非導電性粒子としての有機粒子は、非水溶性である。
【0060】
機能性粒子が非導電性粒子である場合には、機能層用組成物中における重合体Aの配合量は、例えば、非導電性粒子の配合量を100質量部として、10質量部以上50質量部以下であっても良い。
【0061】
[電極活物質粒子]
そして、機能性粒子としての電極活物質粒子としては、特に限定されることなく、例えば、二次電池等の蓄電デバイスに用いられる既知の電極活物質よりなる粒子を挙げることができる。具体的には、二次電池の一例としてのリチウムイオン二次電池の電極合材層において使用し得る電極活物質粒子としては、特に限定されることなく、以下の電極活物質よりなる粒子を用いることができる。本発明の機能層用組成物に対して、機能性粒子として電極活物質粒子を配合することで、機能層用組成物を用いて形成しうる機能層を電極合材層として機能させることができる。
【0062】
-正極活物質-
リチウムイオン二次電池の正極の正極合材層に配合される正極活物質としては、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等が挙げられる。
なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
【0063】
-負極活物質-
リチウムイオン二次電池の負極の負極合材層に配合される負極活物質としては、例えば、炭素系負極活物質、金属系負極活物質、及び、これらを組み合わせた負極活物質などが挙げられる。
ここで、炭素系負極活物質とは、リチウムを挿入(「ドープ」ともいう。)可能な、炭素を主骨格とする活物質をいう。そして、炭素系負極活物質としては、具体的には、コークス、メソカーボンマイクロビーズ(MCMB)、メソフェーズピッチ系炭素繊維、熱分解気相成長炭素繊維、フェノール樹脂焼成体、ポリアクリロニトリル系炭素繊維、擬等方性炭素、フルフリルアルコール樹脂焼成体(PFA)及びハードカーボンなどの炭素質材料、並びに、天然黒鉛及び人造黒鉛などの黒鉛質材料が挙げられる。
また、金属系負極活物質とは、金属を含む活物質であり、通常は、リチウムの挿入が可能な元素を構造に含み、リチウムが挿入された場合の単位質量当たりの理論電気容量が500mAh/g以上である活物質をいう。そして、金属系活物質としては、例えば、リチウム金属、リチウム合金を形成し得る単体金属(例えば、Ag、Al、Ba、Bi、Cu、Ga、Ge、In、Ni、P、Pb、Sb、Si、Sn、Sr、Zn、Tiなど)及びそれらの酸化物、硫化物、窒化物、ケイ化物、炭化物、燐化物などが挙げられる。さらに、チタン酸リチウムなどの酸化物を挙げることができる。
なお、上述した負極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
【0064】
機能性粒子が電極活物質粒子である場合には、機能層用組成物中における重合体Aの配合量は、例えば、電極活物質粒子の配合量を100質量部として、1質量部以上20質量部以下であっても良い。
【0065】
[その他の成分]
機能層用組成物は、任意で、本願の接着剤組成物に任意で含有されうる<その他の成分>と同様の成分、及び導電助剤などの各種機能層に添加され得る既知の添加剤を含有しても良い。これらのその他の成分は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
【0066】
[機能層用組成物の調製方法]
機能層用組成部の調製方法としては、特に限定はされないが、本発明の接着剤組成物、及び機能性粒子を溶媒中で混合する方法が挙げられる。また、<接着剤組成物の調製方法>の項目にて上述したように、本発明の接着剤組成物に含有され得る各種構成成分と、機能性粒子とを、溶媒に対して添加し、混合することで、接着剤組成物を含有する機能層用組成物を調製することもできる。混合方法としては、上述した一般的な混合方法を適用することができる。
【0067】
<基材>
接着剤組成物又は機能層用組成物を塗布する基材に制限は無く、例えば、離型基材の表面に塗膜を形成し、その塗膜を乾燥して機能層を形成し、機能層から離型基材を剥がすようにしてもよい。このように、離型基材から剥がされた機能層を自立膜として蓄電デバイスの部材の形成に用いることもできる。
しかし、機能層を剥がす工程を省略して部材の製造効率を高める観点からは、基材として、集電体、セパレータ基材、又は電極基材を用いることが好ましい。具体的には、電極合材層の調製の際には、機能層用組成物を、基材としての集電体上に塗布することが好ましい。また、多孔膜層や接着層を調製する際には、接着剤組成物又は機能層用組成物を、セパレータ基材又は電極基材上に塗布することが好ましい。
【0068】
-集電体-
集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、集電体としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。中でも、負極に用いる集電体としては銅箔が特に好ましい。また、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
【0069】
-セパレータ基材-
セパレータ基材としては、特に限定されないが、有機セパレータ基材などの既知のセパレータ基材が挙げられる。有機セパレータ基材は、有機材料からなる多孔性部材であり、有機セパレータ基材の例を挙げると、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、芳香族ポリアミド樹脂などを含む微多孔膜又は不織布などが挙げられ、強度に優れることからポリエチレン製の微多孔膜や不織布が好ましい。
【0070】
-電極基材-
電極基材としては、特に限定されないが、上述した集電体上に、電極活物質粒子及び結着材を含む電極合材層が形成された電極基材が挙げられる。
電極基材中の電極合材層に含まれる電極活物質粒子及び結着材としては、特に限定されず、上述した電極活物質粒子、及び、蓄電デバイス用電極の製造に用いられうる既知の結着材を使用することができる。
【0071】
<機能層の形成方法>
上述した集電体、セパレータ基材、電極基材などの基材上に機能層を形成する方法としては、以下の方法が挙げられる。
1)本発明の接着剤組成物又は機能層用組成物を基材の表面(電極基材の場合は電極合材層側の表面、以下同じ)に塗布し、次いで乾燥する方法;
2)本発明の接着剤組成物又は機能層用組成物に基材を浸漬後、これを乾燥する方法;及び
3)本発明の接着剤組成物又は機能層用組成物を離型基材上に塗布し、乾燥して機能層を製造し、得られた機能層を基材の表面に転写する方法。
これらの中でも、前記1)の方法が、機能層の層厚制御をしやすいことから特に好ましい。前記1)の方法は、詳細には、接着剤組成物又は機能層用組成物を基材上に塗布する工程(塗布工程)と、基材上に塗布された接着剤組成物又は機能層用組成物を乾燥させて機能層を形成する工程(乾燥工程)を含む。
【0072】
-塗布工程-
そして、塗布工程において、接着剤組成物又は機能層用組成物を基材上に塗布する方法としては、特に制限は無く、例えば、ドクターブレード法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などの方法が挙げられる。
【0073】
-乾燥工程-
また、乾燥工程において、基材上の接着剤組成物又は機能層用組成物を乾燥する方法としては、特に限定されず公知の方法を用いることができる。乾燥法としては、例えば、温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥が挙げられる。乾燥温度は、好ましくは200℃未満であり、さらに好ましくは150℃未満である。
【0074】
(機能層を備える部材)
本発明の機能層を備える部材(セパレータ及び電極)は、本発明の効果を著しく損なわない限り、上述した本発明の機能層と、基材以外の構成要素を備えていてもよい。このような構成要素としては、特に限定されることなく、本発明の機能層に該当しない電極合材層、多孔膜層、及び接着層などが挙げられる。
また、部材は、本発明の機能層を複数種類備えていてもよい。例えば、電極は、集電体上に上述した機能層用組成物から形成される電極合材層を備え、且つ、当該電極合材層上に上述した機能層用組成物から形成される多孔膜層、及び/又は、上述した機能層用組成物又は本発明の接着剤組成物から形成される接着層を備えていてもよい。また例えば、セパレータは、セパレータ基材上に本発明の機能層用組成物から形成される多孔膜層を備え、且つ、当該多孔膜層上に上述した機能層用組成物又は本発明の接着剤組成物から形成される接着層を備えていてもよい。
本発明の機能層を備える部材は、隣接する部材と良好に接着することができ、蓄電デバイスに優れた低温出力特性を発揮させることができる。
【0075】
(蓄電デバイス)
本発明の蓄電デバイスは、上述した本発明の機能層を備えるものである。本発明の蓄電デバイスは、2種類の電極(以下、それぞれ「電極A」及び「電極B」と称する)、及びセパレータを備え、上述した蓄電デバイス用機能層が、電極A、電極B、及びセパレータのうちの少なくとも一つに含まれるか、或いは、これらの部材と蓄電デバイスの外装体との間の接着層を形成し得る。なお、上記「電極A」は、例えば、蓄電デバイスが電池又は二次電池である場合には「正極」を指し、蓄電デバイスがキャパシタである場合には「陽極」を指す。また、上記「電極B」は、例えば、蓄電デバイスが電池又は二次電池である場合には「負極」を指し、蓄電デバイスがキャパシタである場合には「陰極」を指す。中でも、セパレータが本発明の蓄電デバイス用機能層を備えることが好ましい。この場合、本発明の蓄電デバイス用機能層を介して、機能層付きセパレータと、上記2種類の電極の少なくとも一方とが接着されうる。そして、本発明の蓄電デバイスは、優れた低温出力特性を発揮し得る。
【0076】
<電極A、電極B及びセパレータ>
電極A、電極B及びセパレータは、少なくとも一つが、上述した本発明の機能層を備える電池部材である。なお、本発明の機能層を備えない電極A、電極B及びセパレータとしては、特に限定されることなく、蓄電デバイスにおいて既知の電極及びセパレータを用いることができる。また、本発明の機能層を備えない各種電池部材を、重合体Aを含む本発明の機能層を備える電池部材を組み合わせて用いる場合に、上述したような重合体Bを、本発明の機能層を備えない電池部材の何れかに配合することが好ましい。このような組み合わせとすることで、得られる蓄電デバイスのサイクル後接着性を一層高めることができる。このことは、上述したような重合体Bが、比較的ガラス転移温度の低い重合体であり、また、重合体Aとの親和性が高い組成を有しうる重合体であることに起因すると推察される。
【0077】
<電解液>
電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウムイオン二次電池及びリチウムイオンキャパシタにおいてはリチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
【0078】
電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えばリチウムイオン二次電池及びリチウムイオンキャパシタにおいては、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)、ビニレンカーボネート(VC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。また、これらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いので、カーボネート類が好ましい。通常、用いる溶媒の粘度が低いほどリチウムイオン伝導度が高くなる傾向があるので、溶媒の種類によりリチウムイオン伝導度を調節することができる。
なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤を添加してもよい。
【0079】
<蓄電デバイスの製造方法>
本発明の蓄電デバイスの製造方法は、蓄電デバイスを構成する複数の部材のうちの少なくとも2つを、本発明の蓄電デバイス用機能層を介して積層して積層体を得る積層工程と、積層体を加圧して前記少なくとも2つの部材を相互に接着する加圧工程と、を含むことを特徴とする。さらに、本発明の蓄電デバイスの製造方法は、積層工程の前段にて、セパレータの少なくとも一方の表面上に蓄電デバイス用機能層を付与して機能層付きセパレータを形成する工程を含むことが好ましい。本発明の蓄電デバイスの製造方法によれば、本発明の蓄電デバイス用機能層を介して、蓄電デバイスを構成する複数の部材のうちの少なくとも2つの部材同士を相互に接着させるため、低温出力特性に富む本発明の蓄電デバイスを良好に製造することができる。
【0080】
[機能層付きセパレータ形成工程]
本工程では、セパレータ基材上に、本発明の接着剤組成物又は機能層用組成物を用いて形成された機能層を付与する。機能層を付与する方法としては、特に限定されることなく、(蓄電デバイス用機能層)の<機能層の形成方法>の項目にて説明した各種方法を採用することができる。
【0081】
[積層工程]
積層工程では、例えば、上述した電極A、電極B、及びセパレータのような、蓄電デバイスを構成する複数の部材を、蓄電デバイス用機能層を介して積層して積層体を得る。例えば、上記工程で得た機能層付きセパレータを用いる場合には、機能層と、電極A又は電極Bを構成する電極基材の少なくとも一方の電極合材層側の面とが対面するように積層する。そして、この場合、機能層を介して、電極A又は電極Bの少なくとも一方と、機能層付きセパレータとが接着されうる。なお、積層体について、必要に応じて、「巻く」又は「折る」等の操作を行っても良い。
【0082】
[加圧工程]
加圧工程では、上記工程で得られた積層体を加圧して前記少なくとも2つの部材を相互に接着する。加圧時の圧力は、例えば、0.1MPa以上10.0MPa以下とすることができる。そして、加圧工程を経て得られた積層された部材同士が相互に接着されてなる積層体は、任意の電池容器等の包材により包含することができる。そして、積層体を内包する包材内に電解液を注入して封口することで蓄電デバイスを製造することができる。また、電池容器等の包材内には、必要に応じてエキスパンドメタルや、ヒューズ、PTC素子などの過電流防止素子、リード板などを入れ、蓄電デバイス内部の圧力上昇、過充放電の防止をしてもよい。蓄電デバイスの形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
【実施例
【0083】
以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される繰り返し単位(単量体単位)の前記重合体における割合は、特段断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
実施例及び比較例において、重合体A及び重合体Bのガラス転移温度及び体積平均粒子径、機能層の耐ブロッキング性、ウェット接着性、及びサイクル試験後の機能層の接着性(サイクル後接着性)、及びかかる機能層を備える蓄電デバイスの低温出力特性は、下記の方法で測定又は評価した。
【0084】
<重合体A及び重合体Bのガラス転移温度>
実施例、比較例で調製又は準備した重合体A及び重合体Bを測定試料として、示差熱分析測定装置(エスアイアイ・ナノテクノロジー社製、EXSTAR DSC6220)を用い、JIS K7121に従ってDSC曲線を測定した。具体的には、乾燥させた測定試料10mgをアルミパンに計量し、リファレンスとして空のアルミパンを用い、測定温度範囲-100℃~200℃の間で、昇温速度20℃/分で、DSC曲線を測定した。この昇温過程で、微分信号(DDSC)が0.05mW/分/mg以上となるDSC曲線の吸熱ピークが出る直前のベースラインと、吸熱ピーク後に最初に現れる変曲点でのDSC曲線の接線との交点から、重合体A及び重合体Bのガラス転移温度を求めた。
<重合体A及び重合体Bの体積平均粒子径>
実施例、比較例で準備又は調製した重合体A及び重合体Bについて、固形分濃度0.1質量%の水分散溶液を調製し、レーザー回折式粒度分布測定装置(島津製作所社製、SALD-7100)を用いて水分散液中の重合体A及び重合体Bの粒子径分布(体積基準)を測定した。そして、測定された粒子径分布において、小径側から計算した累積体積が50%となる粒子径を体積平均粒子径(D50)とした。
【0085】
<耐ブロッキング性>
実施例、比較例で作製した片面セパレータを、一辺が5cmの正方形と、一辺が4cmの正方形とに切って、2枚で一組の試験片を2組得た。そして、2枚の試験片を単に重ね合わせたサンプル(未プレスの状態のサンプル)と、2枚の試験片を重ね合わせた後に温度40℃、圧力10g/cmの加圧下に置いたサンプル(プレスしたサンプル)とを作製した。その後、これらのサンプルを、それぞれ24時間放置した。
そして、24時間放置後のサンプルにおいて、各サンプルのセパレータ同士の接着状態(ブロッキング状態)を確認し、下記の基準で評価した。
A:未プレス状態のサンプル及びプレスしたサンプルの双方においてセパレータ同士が貼り付かなかった。
B:未プレス状態のサンプルではセパレータ同士は貼り付かなかったが、プレスしたサンプルではセパレータ同士が貼り付いた。
C:未プレス状態のサンプル、及びプレスしたサンプルの双方においてセパレータ同士が貼りついた。
<ウェット接着性>
実施例、比較例で作製した片面負極と片面セパレータとを、それぞれ、10mm×100mmの短冊状に切り出した。そして、片面セパレータの機能層の表面に片面負極の負極合材層を沿わせた後、温度85℃、圧力0.5MPaで6分間加熱プレスし、片面負極及び片面セパレータを備える積層体を調製し、この積層体を試験片とした。
この試験片を、電解液約400μlと共にラミネート包材に入れた。1時間経過後、試験片を、ラミネート包材ごと60℃、圧力0.5MPaで15分間プレスした。プレス後、温度60℃で1日間保持した。ここで、電解液としては、EC、DEC及びビニレンカーボネート(VC)の混合溶媒(EC/DEC/VC(25℃における体積混合比)=68.5/30/1.5)に対し、支持電解質としてLiPFを1mol/Lの濃度で溶かしたものを用いた。
その後、試験片を取り出し、表面に付着した電解液を拭き取った。次いで、この試験片を、片面負極の集電体側の面を下にして、片面負極の表面にセロハンテープを貼り付けた。この際、セロハンテープとしては、JIS Z1522に規定されるものを用いた。また、セロハンテープは、水平な試験台に固定しておいた。そして、片面セパレータの一端を鉛直上方に引張り速度50mm/分で引っ張って剥がしたときの応力を測定した。この測定を3回行い、応力の平均値をピール強度P1として求め、下記の基準で評価した。ピール強度P1が大きいほど、電解液中における機能層の接着性が優れており、セパレータと負極とが強固に接着していることを示す。
A:ピール強度P1が5.0N/m以上
B:ピール強度P1が3.0N/m以上5.0N/m未満
C:ピール強度P1が3.0N/m未満
<サイクル後接着性>
実施例、比較例で製造した両面負極、機能層付きセパレータ(両面)、及び片面正極を用いて、以下のようにしてサイクル後接着性評価用のリチウムイオン二次電池(以下、「サイクル後接着性評価用二次電池」とも称する)を作製した。作製にあたり、まず、両面負極の各面(負極合材層)に対して、機能層付きセパレータ(両面)、及び片面正極を、この順で、それぞれ積層し、積層体Xを得た。得られた積層体Xを用いて、実施例、比較例と同様にしてアルミ包材外装で包んで、電解液を注液して、サイクル後接着性評価用二次電池を作製した。作製したサイクル後接着性評価用二次電池を、25℃の環境下で24時間静置した後、25℃の環境下において、0.1Cの充電レートで4.35Vまで充電し、0.1Cの放電レートで2.75Vまで放電する充放電の操作を4サイクル行った。その後、更に、60℃の環境下で、同様の充放電の操作を繰り返し、1000サイクル放電後の電池を用いて、サイクル後の機能層への負極合材層の付着性から接着強度を評価した。
評価にあたり、まず、サイクル試験後のサイクル後接着性評価用二次電池を不活性ガス雰囲気下で解体し、積層体Xを取り出し、表面に付着した電解液を拭き取った。次いで、この積層体Xの一端部にて、片面正極を含む機能層付きセパレータと、両面負極との間で、約1cm引き剥がした。そして、引き剥がした部分に含まれるセパレータ端部と、両面負極、を挟んで反対側に位置するセパレータの端部と、をそれぞれ把持して、一方のセパレータを左側に、他方のセパレータを右側に、それぞれ引張速度25mm/分で引っ張って、負極の両面から機能層付きセパレータを全面で引き剥がした。負極合材層の機能層(セパレータ上)への付着面積率を目視で観察し、下記の基準で接着強度を評価した。負極合材層の機能層への付着面積率が高いほど、充放電操作を繰り返した後の機能層により呈されうる接着強度が高い。サイクル後接着性評価用二次電池は2つ用意し、計4面の機能層への負極合材層の付着面積率を評価した。
A:90%以上
B:30%以上90%未満
C:30%未満
【0086】
<低温出力特性>
実施例、比較例で製造したリチウムイオン二次電池を、25℃の環境下で24時間静置させた後、25℃の環境下において、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った後、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、更に、60℃の環境下で、0.1Cの定電流法にて、CC-CV充電(上限セル電圧4.2V)を行い、0.1Cの定電流法にてセル電圧3.00VまでCC放電した。この0.1Cにおける充放電を3回繰り返し実施した。そして、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0aを測定した。その後、-15℃の環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1aを測定した。そして、電圧変化ΔVa(=V0a-V1a)とした。
その後、更に、60℃の環境下で、セル電圧4.20-3.00V、0.1Cの充放電レートにて充放電の操作を1000サイクル行った。次いで、25℃に放冷後、25℃の環境下において、0.1Cの充電レートで5時間の充電の操作を行い、その時の電圧V0bを測定した。V0bはV0aの80%以上であることを確認した。その後、-15℃の環境下で、1Cの放電レートにて放電の操作を行い、放電開始15秒後の電圧V1bを測定した。電圧変化ΔVb(=V0b-V1b)とし、電圧変化の比(ΔVb/ΔVa)を求め、下記の基準で評価した。この電圧変化の比(ΔVb/ΔVa)が小さいほど、二次電池がサイクル後の低温出力特性に優れていることを示す。
A:電圧変化の比が0.9以上
B:電圧変化の比が0.8以上0.9未満
C:電圧変化の比が0.8未満
【0087】
(実施例1)
<重合体Aの調製>
撹拌機を備えた反応器に、イオン交換水100部、重合開始剤としての過硫酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。一方、別の容器で、イオン交換水50部、乳化剤としてドデシルベンゼンスルホン酸ナトリウム0.3部、脂環式(メタ)アクリル酸エステル単量体としてメタクリル酸シクロヘキシル(CHMA)17部、ニトリル基含有単量体としてアクリロニトリル(AN)73部、その他の単量体としては、(メタ)アクリル酸アルキルエステル単量体として2-エチルヘキシルアクリレート(2HEA)4部、酸性基含有単量体としてメタクリル酸(MAA)3部、アクリル酸(AA)2部、架橋性単量体としてエチレングリコールジメタクリレート(EDMA)1部の単量体混合物を得た。この単量体混合物を4時間かけて前記反応器に連続的に添加して60℃で重合を行った。重合転化率が96%になるまで重合を継続させることにより、粒子状の重合体を含む水分散液を得た。重合転化率が99%になった時点で冷却して反応を停止することにより、重合体Aを含む水分散液を調製した。そして、得られた重合体Aについて、ガラス転移温度及び体積平均粒子径を、上記に従って測定した。結果を表1に示す。
【0088】
<重合体Bの調製>
撹拌機を備えた反応器に、イオン交換水70部、乳化剤としてポリオキシエチレンラウリルエーテル(花王ケミカル社製、「エマルゲン(登録商標)120」)0.15部、及び過流酸アンモニウム0.5部を、それぞれ供給し、気相部を窒素ガスで置換し、60℃に昇温した。
一方、別の容器でイオン交換水50部、乳化剤としてポリオキシエチレンラウリルエーテル(花王ケミカル社製、「エマルゲン(登録商標)120」)0.5部、そして、脂環式(メタ)アクリル酸エステル単量体であるメタクリル酸シクロヘキシル12部、アクリル酸アルキルエステル単量体であるメチルメタクリレート13部及び2-エチルヘキシルアクリレート60部、ニトリル基含有単量体であるアクリロニトリル10部、架橋性単量体であるエチレングリコールジメタクリレート(EDMA)1部、及び酸性基含有単量体であるアクリル酸(AA)4部を混合して単量体組成物を得た。この単量体組成物を4時間かけて前記反応器Aに連続的に添加して重合を行った。添加中は、70℃で反応を行った。添加終了後、さらに80℃で3時間撹拌して反応を終了し、重合体Bを含む水分散液を製造した。得られた重合体Bについて、ガラス転移温度及び体積平均粒子径を、上記に従って測定した。結果を表1に示す。
【0089】
<添加剤の準備>
<<水溶性重合体の調製>>
ガラス製1Lフラスコに、イオン交換水710gを投入して、温度40℃に加熱し、流量100mL/分の窒素ガスでフラスコ内を置換した。次に、架橋性単量体であるエチレングリコールジメタクリレート0.1(固形分)と、(メタ)アクリルアミド単量体であるアクリルアミド89.9g(固形分)と、酸基含有単量体であるアクリル酸10.0g(固形分)とを混合して、シリンジでフラスコ内に注入した。その後、反応開始時の重合開始剤として、過硫酸カリウムの2.5%水溶液8.0gをシリンジでフラスコ内に追加した。更に、その15分後に、重合助剤としてテトラメチルエチレンジアミンの2.0%水溶液20gをシリンジで追加し、反応を開始させた。開始剤添加の4時間後、重合開始剤としての過硫酸カリウムの2.5%水溶液4.0gをフラスコ内に追加し、更に重合助剤としてのテトラメチルエチレンジアミンの2.0%水溶液10gを追加して、温度を60℃に昇温し、重合反応を進めた。3時間後、フラスコを空気中に開放して重合反応を停止させ、生成物を温度80℃で脱臭し、残留モノマーを除去した。その後、水酸化ナトリウムの5%水溶液を用いて生成物のpHを8に調整して、粘度調整剤としての水溶性重合体を得た。
<<分散剤の調製>>
水50部、アクリル酸80部、アクリルアミド-2-メチルプロパンスルホン酸19.92部及び2-(N-アクリロイル)アミノ-2-メチル-1,3-プロパン-ジスルホン酸0.08部を混合して、単量体組成物を得た。温度計、攪拌機及び還流冷却器を備えた四つ口フラスコに水150部を仕込み、80℃まで昇温した。次いで、攪拌下に、前記の単量体組成物と、30%過硫酸ナトリウム水溶液10部とを、それぞれ3時間にわたって定量ポンプでフラスコに連続的に滴下供給し、80℃で重合反応を行った。滴下終了後、更に系を80℃に保ったまま1時間熟成し、重合反応を完了した。その後、32%水酸化ナトリウム水溶液120部をフラスコ中に加えて反応液を完全に中和させて、分散剤としてのポリカルボン酸スルホン酸共重合体の水溶液を得た。この重合体の重量平均分子量は、11000であり、電解液膨潤度は1.5倍であった。
【0090】
<機能層用組成物の調製>
非導電性粒子としての無機粒子であるアルミナ粒子(体積平均粒子径:0.50μm)を100部、及び上記で得られた分散剤としてのポリカルボン酸スルホン酸共重合体1.0部に対し、固形分濃度が55質量%となるようにイオン交換水を添加し、湿式分散装置(製品名:LMZ-015、メーカー名:アシザワファインテック)により、直径0.4mmビーズを用いて、周速6m/秒、流量0.3L/分にて分散処理して、アルミナ粒子を分散させた。ここに、上記で得られた粘度調整剤としての水溶性重合体を、無機粒子100質量部に対して、固形分相当で2質量部となるように添加して混合した。次いで、前述の重合体Aを固形分相当で20部含有する水分散液と、重合体Bを固形分相当で5部含有する水分散液と、濡れ剤として、ノニオン性界面活性剤であるエチレンオキサイド-プロピレンオキサイドの重合比50:50(モル比)の重合体(重量平均分子量:8000、電解液膨潤度:2.2倍)を0.3質量部それぞれ添加し、固形分濃度が50質量%となるようにイオン交換水を混合し、本発明の接着剤組成物を含む機能層用組成物を得た。
<機能層及び機能層付きセパレータの形成>
セパレータ基材として、単層のポリプロピレン製セパレータを用意した。用意した基材の片面に、上述のようにして得られた機能層用組成物を塗布し、60℃で10分乾燥させた。これにより、機能層(厚さ:1μm)を片面に備えるセパレータ(片面セパレータ)を得た。
同様にして、用意した基材の両面に、上述のようにして得られた機能層用組成物を塗布し、60℃で10分乾燥させた。これにより、機能層(厚さ:1μm)を両面に備えるセパレータ(両面セパレータ)を得た。
得られた片面及び両面セパレータを用いて、上記に従って耐ブロッキング性、ウェット接着性を評価した。結果を表1に示す。
【0091】
<負極の形成>
ディスパー付きのプラネタリーミキサーに、負極活物質としての人造黒鉛(平均粒子径:15.6μm)100部、水溶性重合体としてのカルボキシメチルセルロースナトリウム塩(日本製紙社製「MAC350HC」)の2%水溶液を固形分相当で1部、及びイオン交換水を混合して固形分濃度68%に調製した後、25℃で60分間さらに混合した。さらにイオン交換水で固形分濃度を62%に調製した後、25℃で15分間さらに混合した。得られた混合液に、負極用結着材としての、固形分濃度40%のスチレン-ブタジエン共重合体(SBR、日本ゼオン社製、「BM-400B」)の溶液を2部(SBR固形分相当)、及びイオン交換水を入れ、最終固形分濃度が42%となるように調整し、更に10分間混合し、分散液を得た。得られた分散液を減圧下で脱泡処理して、リチウムイオン二次電池負極用スラリー組成物を得た。
続いて、得られたリチウムイオン二次電池負極用スラリー組成物を、集電体としての銅箔(厚み:20μm)上に、コンマコーターを用いて塗布した。また、リチウムイオン二次電池負極用スラリー組成物が塗布された銅箔を、温度60℃、0.5m/分の速度で、2分間かけてオーブン内を搬送し、更に、温度120℃下で、2分間かけてオーブン内を搬送して加熱処理することにより、ロールプレス前の負極原反を得た。
そして、得られた負極原反をロールプレスで圧延し、負極合材層の厚みが80μmの負極を作製した(片面負極)。
また、前記プレス前の負極原反を作製する際に、集電体の両面にスラリー組成物を塗布及び乾燥等した。そして、得られた負極原反を、ロールプレス機を用いて圧延して、負極合材層の厚みが80μmの負極を得た(両面負極)。
<正極の形成>
正極活物質としての体積平均粒子径12μmのLiCoOを100部と、導電材としてのカーボンナノチューブ(BET比表面積:150m/g)を1.2部と、正極用結着材としてのポリフッ化ビニリデン(クレハ社製、製品名「#7208」)を固形分相当で2部と、溶媒としてのN-メチルピロリドンとを混合して全固形分濃度を70%とした。これらをプラネタリーミキサーにより混合し、リチウムイオン二次電池正極用スラリー組成物を得た。
得られたリチウムイオン二次電池正極用スラリー組成物を、コンマコーターで、集電体である厚さ20μmのアルミ箔の上に、乾燥後の膜厚が150μm程度になるように塗布し、乾燥させた。この乾燥は、アルミ箔を0.5m/分の速度で60℃のオーブン内を2分間かけて搬送することにより行った。その後、120℃にて2分間加熱処理して、正極原反を得た。そして、得られた正極原反を、ロールプレス機を用いて圧延することにより、正極合材層の厚みが80μmの正極を得た(片面正極)。
また、上記プレス前の正極原反を作製する際に、アルミ箔の両面にスラリー組成物を塗布及び乾燥等した。そして、得られた正極原反を、ロールプレス機を用いて圧延して、正極合材層の厚みが80μmの正極を得た(両面正極)。
<リチウムイオン二次電池の作製>
上記で得られた片面正極を5cm×15cmに切り出し、その上(合材層側)に、6cm×16cmに切り出した両面セパレータを、当該セパレータの一方の機能層が片面正極と対向するように配置した。さらにその両面セパレータのもう一方の機能層側に、5.5cm×15.5cmに切り出した両面負極を配置し、積層体Aを得た。この積層体Aの両面負極側に、6cm×16cmに切り出した両面セパレータを、当該セパレータの一方の機能層が積層体Aの両面負極と対向するように配置した。さらにその両面セパレータのもう一方の機能層側に、5cm×15cmに切り出した両面正極を重ねた。次いで、さらにその両面正極の上に6cm×16cmに切り出した両面セパレータを、当該セパレータの一方の機能層が両面正極と対向するように配置した。最後に、その両面セパレータのもう一方の機能層上に、5.5cm×15.5cmに切り出した片面負極を、負極合材層が両面セパレータの機能層と対向するように積層し、積層体Bを得た。この積層体Bを、電池の外装としてのアルミ包材外装で包み、電解液(EC、DEC及びVCの混合溶媒(EC/DEC/VC(25℃における体積比)=68.5/30/1.5)に対し、支持電解質としてLiPFを1mol/Lの濃度で溶かしたもの)を空気が残らないように注入した。さらに、150℃のヒートシールをしてアルミ包材外装を閉口したのちに、得られた電池外装体を100℃、2分間、100Kgf/cm(≒9.8MPa)で平板プレスし、1000mAhの蓄電デバイスである積層型リチウムイオン二次電池を製造した。
そして、得られたリチウムイオン二次電池について、上述の方法に従って、サイクル後接着性、サイクル後の低温出力特性を評価した。結果を表1に示す。
【0092】
(実施例2~4)
重合体Aの調製の際に、配合する各単量体の配合量を表1に示す通りに変更し、また、表1に示した体積平均粒子径とするために、必要に応じて、乳化剤の配合量を適宜変更した以外は実施例1と同様の工程を実施した。また、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
【0093】
(実施例5)
実施例4の負極用スラリー製造時に用いる負極用結着材としてのスチレン-ブタジエン共重合体の配合量を1部に変更し、且つ、重合体Bを1部配合した。これらの点以外は、実施例4と同様にして、各種測定及び評価を行った。結果を表1に示す。
【0094】
(比較例1~4)
重合体Aに代えて、所定の組成を満たさない重合体A’をそれぞれ作製した。作製にあたり、配合する各単量体の配合量を表1に示す通りに変更し、また、表1に示した体積平均粒子径とするために、必要に応じて、乳化剤の配合量を適宜変更した以外は実施例1と同様の操作を行って重合体A’を得た。これらの点以外は実施例1と同様の工程を実施した。また、実施例1と同様にして、各種測定及び評価を行った。結果を表1に示す。
【0095】
なお、以下に示す表1中、
「AN」は、アクリロニトリルを、
「CHA」は、アクリル酸シクロヘキシルを、
「CHMA」は、メタクリル酸シクロヘキシルを、
「MTDY」は、メタクリル酸トリシクロ〔5,2,1,02′6〕デカン-8-イルを、
「MAA」は、メタクリル酸を、
「AA」は、アクリル酸を、
「2EHA」は、2-エチルヘキシルアクリレートを、
「BD」は、1,3-ブタジエンを、
「ST」は、スチレンを、
「EDMA」は、エチレングリコールジメタクリレートを、
「MMA」は、メタクリル酸メチルを、
「SBR」は、スチレン-ブタジエン共重合体を、
それぞれ示す。
【0096】
【表1】
【0097】
表1より、ニトリル基含有単量体単位を50.0質量%超90.0質量%以下の含有割合で含むと共に、脂環式(メタ)アクリル酸エステル単量体単位を含む重合体Aを含有する接着剤組成物を含んでなる機能層用組成物を用いた実施例1~5では、耐ブロッキング性が高く、且つ、蓄電デバイスの低温出力特性を向上させ得る機能層が形成可能であったことが分かる。また、表1より、所定の組成を満たさない重合体A’を含有する接着剤組成物を含んでなる機能層用組成物を用いた比較例1~4では、耐ブロッキング性に優れるとともに、蓄電デバイスの低温出力特性を向上させ得る機能層を形成できなかったことが分かる。
特に、実施例5より、負極用結着材として、SBRと併せてガラス転移温度が重合体Aよりも低く、且つ、重合体Aとの親和性の高い組成を有する重合体Bを用いることで、機能層と負極との間の接着強度を高めることができ、特に、実施例4と比較してサイクル後接着性を高めることができたことが分かる。
【産業上の利用可能性】
【0098】
本発明によれば、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る機能層の形成に使用可能である、蓄電デバイス用接着剤組成物を提供することができる。
また、本発明によれば、耐ブロッキング性に優れ、且つ、蓄電デバイスの低温出力特性を向上させ得る蓄電デバイス用機能層を提供することができる。
さらに、本発明によれば、低温出力特性に優れる蓄電デバイス、及び、かかる蓄電デバイスを良好に製造することが可能な製造方法を提供することができる。