(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-07
(45)【発行日】2023-11-15
(54)【発明の名称】半導体パッケージ用基板及び半導体パッケージ用基板の製造方法
(51)【国際特許分類】
H01L 23/14 20060101AFI20231108BHJP
H01L 23/12 20060101ALI20231108BHJP
H05K 3/10 20060101ALI20231108BHJP
【FI】
H01L23/14 M
H01L23/12 Q
H05K3/10 E
(21)【出願番号】P 2022015441
(22)【出願日】2022-02-03
(62)【分割の表示】P 2020124359の分割
【原出願日】2017-02-23
【審査請求日】2022-03-04
(31)【優先権主張番号】P 2016061899
(32)【優先日】2016-03-25
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】株式会社レゾナック
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100169454
【氏名又は名称】平野 裕之
(74)【代理人】
【識別番号】100186761
【氏名又は名称】上村 勇太
(72)【発明者】
【氏名】満倉 一行
(72)【発明者】
【氏名】鳥羽 正也
(72)【発明者】
【氏名】江尻 芳則
(72)【発明者】
【氏名】蔵渕 和彦
【審査官】井上 和俊
(56)【参考文献】
【文献】特開平09-283520(JP,A)
【文献】特開2012-146752(JP,A)
【文献】特開2008-147562(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 23/14
H01L 23/12
H05K 3/10
(57)【特許請求の範囲】
【請求項1】
第1の有機絶縁層を有する絶縁積層体と、
前記第1の有機絶縁層内に配置される第1の配線と、
前記第1の配線の上に位置する第2の配線と、
前記第1の配線と前記第1の有機絶縁層とを仕切る第1のバリア導電膜と、
前記第1の配線及び前記第2の配線の間に位置する第2のバリア導電膜と、を備え、
前記第1の配線は、前記第1のバリア導電膜及び前記第2のバリア導電膜に囲われており、
前記第2の配線は、前記第1のバリア導電膜と前記第2のバリア導電膜との両方に接触
し、
前記第2のバリア導電膜の少なくとも一部は、前記第1の有機絶縁層よりも上側に位置する、半導体パッケージ用基板。
【請求項2】
前記第1の有機絶縁層には、前記第1の配線が収容される開口部が設けられ、
前記開口部の内面と前記第1の配線との間には、前記第1のバリア導電膜が設けられる、請求項1記載の半導体パッケージ用基板。
【請求項3】
前記絶縁積層体を貫通すると共に、前記第1の配線、前記第2の配線、前記第1のバリア導電膜、及び前記第2のバリア導電膜を含むスルー配線をさらに備える、
請求項1または2記載の半導体パッケージ用基板。
【請求項4】
前記絶縁積層体、前記第1の配線、前記第2の配線、前記第1のバリア導電膜、及び前記第2のバリア導電膜を有する有機インターポーザを含む、請求項1~
3のいずれか一項記載の半導体パッケージ用基板。
【請求項5】
複数の溝部を有する有機絶縁層を準備する第1工程と、
前記有機絶縁層の表面上及び前記溝部の内面を覆う第1のバリア導電膜を形成する第2工程と、
前記溝部を埋めるように前記第1のバリア導電膜上に配線層を形成する第3工程と、
前記有機絶縁層が露出するように前記配線層を薄化する第4工程と、
前記溝部内に残存する前記配線層の露出部を覆う第2のバリア導電膜を形成する第5工程と、を備え、
前記溝部内に残存する前記配線層は、前記第1のバリア導電膜及び前記第2のバリア導電膜に囲われ
、
前記第2のバリア導電膜の少なくとも一部は、前記溝部の外側に位置する、半導体パッケージ用基板の製造方法。
【請求項6】
前記第3工程では、前記第1のバリア導電膜をシード層としためっき法によって前記配線層を形成する、請求項
5記載の半導体パッケージ用基板の製造方法。
【請求項7】
前記第5工程では、前記配線層をシード層としためっき法によって前記第2のバリア導電膜を形成する、請求項
5又は6記載の半導体パッケージ用基板の製造方法。
【請求項8】
前記第4工程では、前記有機絶縁層の前記表面を研磨又は研削する、請求項
5~7のいずれか一項記載の半導体パッケージ用基板の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、有機インターポーザ及び有機インターポーザの製造方法に関する。
【背景技術】
【0002】
半導体パッケージの高密度化及び高性能化を目的に、異なる性能のチップを一つのパッケージに混載する実装形態が提案されている。この場合、コスト面に優れた、チップ間の高密度インターコネクト技術が重要になっている(例えば、特許文献1参照)。
【0003】
非特許文献1及び非特許文献2には、パッケージ上に異なるパッケージをフリップチップ実装によって積層することで接続するパッケージ・オン・パッケージ(PoP:Package on Package)の態様が記載されている。このPoPは、スマートフォン、タブレット端末等に広く採用されている態様である。
【0004】
さらに複数のチップを高密度で実装するための他の形態として、高密度配線を有する有機基板を用いたパッケージ技術(有機インターポーザ)、スルーモールドビア(TMV:Through Mold Via)を有するファンアウト型のパッケージ技術(FO-WLP:Fan Out-Wafer Level Package)、シリコン又はガラスインターポーザを用いたパッケージ技術、シリコン貫通電極(TSV:Through Silicon Via)を用いたパッケージ技術、基板に埋め込まれたチップをチップ間伝送に用いるパッケージ技術等が提案されている。
【0005】
特に有機インターポーザ及びFO-WLPにおいて半導体チップ同士を搭載する場合、当該半導体チップ同士を高密度で導通させるための微細な配線層が必要となる(例えば、特許文献2参照)。
【先行技術文献】
【特許文献】
【0006】
【文献】特表2012-529770号公報
【文献】米国特許出願公開第2011/0221071号明細書
【非特許文献】
【0007】
【文献】Jinseong Kim et al., 「Application of Through Mold Via (TMV) as PoP Base Package」, Electronic Components and Technology Conference (ECTC), p.1089-1092 (2008)
【文献】S.W. Yoon et al., 「Advanced Low Profile PoP Solution with Embedded Wafer Level PoP (eWLB-PoP) Technology」, ECTC, p.1250-1254 (2012)
【発明の概要】
【発明が解決しようとする課題】
【0008】
ビルドアップ基板、ウェハレベルパッケージ(WLP)、ファンアウト型のPoPのボトムパッケージ等には、複数の有機絶縁層が積層されてなる積層体(有機絶縁積層体)を有する有機インターポーザが用いられることがある。例えば、この有機絶縁積層体内に10μm以下のライン幅とスペース幅とを有する複数の微細な配線が配置される場合、当該配線は、トレンチ法を用いて形成される。トレンチ法とは、有機絶縁層の表面に形成したトレンチ(溝)に配線となる金属層をめっき法等によって形成する方法である。このため、有機絶縁層上に形成される配線の形状は、溝の形状に沿ったものとなる。
【0009】
トレンチ法によって有機絶縁積層体内に微細な配線を形成する際には、低コスト化且つ配線抵抗の上昇抑制を図るために、例えば、銅等の高い導電性を有する金属材料を用いることがある。このような金属材料を用いて配線を形成した場合、当該金属材料が有機絶縁積層体内に拡散することがある。この場合、拡散した金属材料を介して配線同士が短絡するおそれがあり、有機インターポーザの絶縁信頼性に課題がある。
【0010】
本発明は、絶縁信頼性を向上できる有機インターポーザ及びその製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
本発明の第1の態様に係る有機インターポーザは、複数の有機絶縁層を含んでなる有機絶縁積層体と、有機絶縁積層体内に配列された複数の配線と、を備え、配線と有機絶縁層とがバリア金属膜によって仕切られている。
【0012】
この有機インターポーザでは、配線と有機絶縁層とがバリア金属膜によって仕切られている。このため、配線内における金属材料の有機絶縁積層体への拡散は、バリア金属膜によって抑制される。したがって、拡散した金属材料を介した複数の配線同士の短絡を抑制できるので、有機インターポーザの絶縁信頼性を向上できる。
【0013】
有機絶縁積層体は、配線が配置された複数の溝部を有する第1の有機絶縁層と、配線を埋め込むように第1の有機絶縁層に積層された第2の有機絶縁層と、を含んでもよい。この場合、複数の配線のそれぞれは、第1の有機絶縁層の溝部に沿った形状を有する。このため、微細な幅及び間隔を有する複数の溝部を形成することによって、微細な配線を容易に形成できる。
【0014】
バリア金属膜は、配線と溝部の内面との間に設けられた第1のバリア金属膜と、配線と第2の有機絶縁層との間に設けられた第2のバリア金属膜と、を含んでもよい。この場合、配線内における金属材料の第1の有機絶縁層への拡散は、第1のバリア金属膜によって良好に抑制される。また、上記金属材料の第2の有機絶縁層への拡散は、第2のバリア金属膜によって良好に抑制される。
【0015】
第1のバリア金属膜は、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含んでもよい。チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金は、いずれも第1及び第2の有機絶縁層に拡散しにくいので、有機インターポーザの絶縁信頼性をさらに向上できる。
【0016】
第2のバリア金属膜は、めっき膜であってもよい。この場合、溝部内の配線上に選択的に第2のバリア金属膜を形成できるので、有機インターポーザの製造工程を簡略化できる。
【0017】
第2のバリア金属膜は、ニッケルめっき膜であってもよい。この場合、良好な平坦性を有する第2のバリア金属膜を容易に形成できる。加えて、ニッケルは第1及び第2の有機絶縁層に拡散しにくいので、有機インターポーザの絶縁信頼性を好適に向上できる。
【0018】
第2のバリア金属膜は、パラジウムめっき膜であってもよい。この場合、第2のバリア金属膜を、容易に薄くできる。加えて、パラジウムは第1及び第2の有機絶縁層に拡散しにくいので、有機インターポーザの絶縁信頼性を好適に向上できる。
【0019】
第2のバリア金属膜の厚さは、0.001μm以上1μm以下であってもよい。この場合、配線内における金属材料の第2の有機絶縁層への拡散は、第2のバリア金属膜によって良好に抑制される。
【0020】
第2のバリア金属膜の表面粗さは、0.01μm以上1μm以下であってもよい。この場合、第2のバリア金属膜が第2の有機絶縁層に良好に密着できる。また、第2のバリア金属膜の表面粗さに起因した有機インターポーザ内の断線等を抑制できる。
【0021】
第1の有機絶縁層の厚さは、1μm以上10μm以下であってもよい。この場合、第1の有機絶縁層を用いて10μm以下の幅及び間隔を有する複数の溝部を形成できる。
【0022】
第1の有機絶縁層は、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜であってもよい。この場合、微細な幅及び間隔を有する溝部を第1の有機絶縁層に容易に形成できる。加えて、第1の有機絶縁層に含まれる水分を低減できるので、当該第1の有機絶縁層に金属材料が拡散しにくくなる。したがって、有機インターポーザの絶縁信頼性を向上できる。
【0023】
本発明の第2の態様に係る有機インターポーザの製造方法は、第1の有機絶縁層に複数の溝部を形成する第1工程と、溝部の内面を覆うように第1の有機絶縁層上に第1のバリア金属膜を形成する第2工程と、溝部を埋めるように第1のバリア金属膜上に配線層を形成する第3工程と、第1の有機絶縁層が露出するように配線層を薄化する第4工程と、溝部内の配線層を覆うように第2のバリア金属膜を形成する第5工程と、第1の有機絶縁層上及び第2のバリア金属膜上に第2の有機絶縁層を形成する第6工程と、を備える。
【0024】
この有機インターポーザの製造方法では、第1~第3工程を経ることにより、各溝部の内面と配線層との間に第1のバリア金属膜を形成できる。また、第4~第6工程を経ることにより、有機絶縁層の積層方向において、配線層と第2の有機絶縁層との間に第2のバリア金属膜を形成できる。このため、配線層内における金属材料の第1及び第2の有機絶縁層への拡散は、第1及び第2のバリア金属膜によって抑制される。したがって、拡散した金属材料を介した複数の配線同士の短絡を抑制できるので、有機インターポーザの絶縁信頼性を向上できる。
【0025】
第3工程では、第1のバリア金属膜をシード層としためっき法によって配線層を形成してもよい。この場合、第1の有機絶縁層と配線層との間に第1のバリア金属膜が挟持されるように当該配線層を形成できる。これにより、配線層内における金属材料の第1の有機絶縁層への拡散が良好に抑制される。
【0026】
第5工程では、配線層をシード層としためっき法によって第2のバリア金属膜を形成してもよい。この場合、配線層上に選択的に第2のバリア金属膜を形成できるので、有機インターポーザの製造工程を簡略化できる。
【0027】
第4工程では、溝部内の配線層の一部を除去し、第5工程では、溝部を埋めるように第2のバリア金属膜を形成してもよい。この場合、第2のバリア金属膜が溝部内に埋められて形成されるので、有機インターポーザにおいて第2のバリア金属膜に起因した段差の形成を抑制できる。これにより、有機インターポーザに半導体素子等を良好に搭載できる。
【発明の効果】
【0028】
本発明によれば、良好な絶縁信頼性を有する有機インターポーザ及びその製造方法を提供できる。
【図面の簡単な説明】
【0029】
【
図1】
図1は、本実施形態に係る有機インターポーザを有する半導体パッケージの模式断面図である。
【
図2】
図2は、本実施形態に係る有機インターポーザの模式断面図である。
【
図3】
図3(a)~(c)は、有機インターポーザの製造方法を説明する図である。
【
図4】
図4(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図5】
図5(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図6】
図6(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図7】
図7(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図8】
図8(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図9】
図9(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図10】
図10(a),(b)は、有機インターポーザの製造方法を説明する図である。
【
図11】
図11(a)は、実施例の測定評価用試料を示す平面図であり、
図11(b)は、
図11(a)のXIb-XIb線に沿った断面図である。
【
図12】
図12(a)は、比較例の測定評価用試料を示す平面図であり、
図12(b)は、
図12(a)のXIIb-XIIb線に沿った断面図である。
【
図13】
図13(a)は、実施例2と比較例2との高加速度寿命試験の結果を示すグラフであり、
図13(b)は、実施例3と比較例3との高加速度寿命試験の結果を示すグラフである。
【
図14】
図14(a)は、実施例3の測定評価試料の断面サンプルにおけるCuのEDX解析結果であり、
図14(b)は、上記断面サンプルにおけるTiのEDX解析結果であり、
図14(c)は、上記断面サンプルにおけるNiのEDX解析結果である。
【発明を実施するための形態】
【0030】
以下、図面を参照しながら本実施形態について詳細に説明する。以下の説明では、同一又は相当部分には同一符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。さらに、図面の寸法比率は図示の比率に限られるものではない。
【0031】
本実施形態の記載及び請求項において「左」、「右」、「正面」、「裏面」、「上」、「下」、「上方」、「下方」、「第1」、「第2」等の用語が利用されている場合、これらは、説明を意図したものであり、必ずしも永久にこの相対位置である、という意味ではない。また、「層」及び「膜」は、平面図として観察したときに、全面に形成されている形状の構造に加え、一部に形成されている形状の構造も包含される。また、「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば、本用語に含まれる。また、本明細書中に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値に置き換えてもよい。
【0032】
図1は、本実施形態に係る有機インターポーザを有する半導体パッケージの模式断面図である。本開示の有機インターポーザは、異種チップを混載するインターポーザが必要なパッケージ形態に用いられることが好適である。
【0033】
図1に示されるように、半導体パッケージ100は、基板1上に設けられる有機インターポーザ10上に半導体チップ2A,2Bが搭載されてなる装置である。半導体チップ2A,2Bは、対応するアンダーフィル3A,3Bによって有機インターポーザ10上にそれぞれ固定されており、有機インターポーザ10内に設けられる表面配線16(詳細は後述する)を介して互いに電気的接続されている。基板1は、半導体チップ2C,2Dと電極5A,5Bとを絶縁材料4で封止して形成された封止体である。基板1内の半導体チップ2C,2Dは、絶縁材料4から露出した電極を介して外部装置と接続可能になっている。電極5A,5Bは、例えば、有機インターポーザ10と外部装置とが互いに電気的接続するための導電路として機能する。
【0034】
半導体チップ2A~2Dのそれぞれは、例えば、グラフィック処理ユニット(GPU:Graphic Processing Unit)、DRAM(Dynamic Random Access Memory)若しくはSRAM(Static Random Access Memory)等の揮発性メモリ、フラッシュメモリ等の不揮発性メモリ、RFチップ、シリコンフォトニクスチップ、MEMS(Micro Electro Mechanical Systems)、センサーチップなどである。半導体チップ2A~2Dは、TSVを有してもよい。半導体チップ2A~2Dのそれぞれは、例えば、半導体素子が積層されたものも用いることができる、この場合、TSVを用いて積層した半導体素子を使用できる。半導体チップ2A,2Bの厚さは、例えば、200μm以下である。半導体パッケージ100を薄型化する観点から、半導体チップ2A,2Bの厚さは、100μm以下であることが好ましい。また、取り扱い性の観点から、半導体チップ2A,2Bの厚さは、30μm以上であることがより好ましい。
【0035】
アンダーフィル3A,3Bは、例えば、キャピラリーアンダーフィル(CUF)、モールドアンダーフィル(MUF)、ペーストアンダーフィル(NCP)、フィルムアンダーフィル(NCF)、又は感光性アンダーフィルである。アンダーフィル3A,3Bは、それぞれ液状硬化型樹脂(例えば、エポキシ樹脂)を主成分として構成される。また、絶縁材料4は、例えば、絶縁性を有する硬化性樹脂である。
【0036】
次に、
図2を用いながら本実施形態に係る有機インターポーザ10について詳細に説明する。本実施形態における有機インターポーザ10は、半導体素子等を支持する有機基板であり、例えば、ガラスクロス若しくは炭素繊維に樹脂を含浸させた材料(プリプレグ)を積層したビルドアップ基板、ウェハレベルパッケージ用基板、コアレス基板、封止材料を熱硬化することによって作製される基板、チップが封止もしくは埋め込まれた基板である。有機インターポーザ10の形状は、後述する基板11の形状に応じており、ウェハ状(平面視にて略円形状)でもよいし、パネル状(平面視にて略矩形状)でもよい。なお、有機インターポーザ10の熱膨張係数は、反り抑制の観点から、例えば、40ppm/℃以下であることが好ましい。有機インターポーザ10の絶縁信頼性の観点から、当該熱膨張係数は、20ppm/℃以下であることが好ましい。
【0037】
図2に示される基板11上に設けられる有機インターポーザ10は、複数の有機絶縁層を含んでなる有機絶縁積層体12と、有機絶縁積層体12内に配列された複数の配線13と、配線13を覆うバリア金属膜14と、有機絶縁積層体12を貫通するスルー配線15と、有機絶縁積層体12の表面及びその近傍に形成される表面配線16とを備えている。
【0038】
基板11は、有機インターポーザ10を支持する支持体である。基板11の平面視における形状は、例えば、円形状又は矩形状である。円形状である場合、基板11は、例えば、200mm~450mmの直径を有する。矩形状である場合、基板11の一辺は、例えば、300mm~700mmである。
【0039】
基板11は、例えば、シリコン基板、ガラス基板、又はピーラブル銅箔である。基板11は、例えば、ビルドアップ基板、ウェハレベルパッケージ用基板、コアレス基板、封止材料を熱硬化することによって作製される基板、又はチップが封止もしくは埋め込まれた基板でもよい。基板11としてシリコン基板又はガラス基板等が用いられる場合、有機インターポーザ10と基板11とを仮固定する図示しない仮固定層が設けられてもよい。この場合、仮固定層を除去することによって、有機インターポーザ10から基板11を容易に剥離できる。なお、ピーラブル銅箔とは、支持体、剥離層、及び銅箔が順に重なった積層体である。ピーラブル銅箔においては、支持体が基板11に相当し、銅箔がスルー配線15に含まれる一部の銅配線の材料に相当する。
【0040】
有機絶縁積層体12は、対応する配線13が配置された複数の溝部21aを有する第1の有機絶縁層21と、配線13を埋め込むように第1の有機絶縁層21に積層された第2の有機絶縁層22とを備えている。また、有機絶縁積層体12には、スルー配線15が設けられる複数の開口部12aが設けられている。
【0041】
複数の溝部21aは、第1の有機絶縁層21において基板11と反対側の表面に設けられている。溝部21aの延在方向に直交する方向に沿った断面において、溝部21aのそれぞれは略矩形状を有している。このため、溝部21aの内面は、側面及び底面を有している。また、複数の溝部21aは、所定のライン幅L及びスペース幅Sを有している。ライン幅L及びスペース幅Sのそれぞれは、例えば、0.5μm~10μmであり、好ましくは0.5μm~5μmであり、より好ましくは2μm~5μmである。有機インターポーザ10の高密度伝送を実現する観点から、ライン幅Lは1μm~5μmであることが好ましい。ライン幅Lとスペース幅Sとは、互いに同一になるように設定されてもよいし、互いに異なるように設定されてもよい。ライン幅Lは、平面視にて溝部21aの延在方向に直交する方向における溝部21aの幅に相当する。スペース幅Sは、隣り合う溝部21a同士の距離に相当する。溝部21aの深さは、例えば、後述する第4の有機絶縁層24の厚さに相当する。
【0042】
溝部21aにおける内面の表面粗さは、0.01μm~0.1μmであることが好ましい。この表面粗さが0.01μm以上である場合、溝部21a内において第1の有機絶縁層21と密着する対象物の密着性、及び温度サイクル耐性が良好になる。上記表面粗さが0.1μm以下である場合、配線13の短絡を抑制し、当該配線13の高周波特性を向上できる傾向にある。溝部21aにおける内面の表面粗さは、例えば、溝部21aの断面を電子顕微鏡で観察することによって算出する。なお、上記表面粗さは、JIS B 0601 2001で規定される算術平均粗さ(Ra)であり、以下の「表面粗さ」は、全て「表面粗さRa」とする。温度サイクル耐性とは、温度変化に伴う体積変化、性能劣化、破損等に対する耐性である。
【0043】
第1の有機絶縁層21は、基板11と第2の有機絶縁層22との間に設けられている。第1の有機絶縁層21の室温における貯蔵弾性率は、例えば、500MPa~10GPaである。当該貯蔵弾性率が500MPa以上であることにより、第1の有機絶縁層21の研削中の延伸を抑制できる。これにより、例えば、延伸した樹脂材料が溝部21a内の配線13を覆うことを防止できる。また、当該貯蔵弾性率が10GPa以下であることにより、例えば、研削用の刃の破損を防ぎ、結果として第1の有機絶縁層21等の表面粗さの拡大を抑制できる。なお、「室温」とは、25℃程度を示す。
【0044】
第1の有機絶縁層21は、基板11側に位置する第3の有機絶縁層23と、第2の有機絶縁層22側に位置する第4の有機絶縁層24とを含んでいる。第4の有機絶縁層24の一部には、溝部21aに対応する複数の開口部が設けられている。これらの開口部によって露出する第3の有機絶縁層23の表面が、溝部21aの内面における底面を構成している。また、溝部21aの内面における各側面は、第4の有機絶縁層24によって構成されている。
【0045】
第3の有機絶縁層23及び第4の有機絶縁層24の厚さは、例えば、それぞれ0.5μm~10μmである。このため、第1の有機絶縁層21の厚さは、例えば、1μm~20μmである。第1の有機絶縁層21の厚さが1μm以上であることにより、第1の有機絶縁層21が有機絶縁積層体12の応力緩和に寄与し、当該有機絶縁積層体12の温度サイクル耐性が向上し得る。第1の有機絶縁層21の厚さが20μm以下であることにより、有機絶縁積層体12の反りを抑制し、例えば、有機絶縁積層体12を研削した際に容易に配線等を露出できる。露光及び現像を行うことによって幅3μm以下の配線13を形成する観点から、第1の有機絶縁層21の厚さは、15μm以下であることが好ましく、10μm以下であることがより好ましい。
【0046】
有機絶縁積層体12における第1の有機絶縁層21及び第2の有機絶縁層22のそれぞれは、例えば、液状又はフィルム状であって、硬化性を有する絶縁材料を含んでいる。有機絶縁層の平坦性及び製造コストの観点から、フィルム状の材料(有機絶縁材料)が好ましい。この場合、例えば、基板11の表面粗さが300μm以上であっても、有機絶縁積層体12の表面粗さを低減できる。また、フィルム状の有機絶縁材料は、40℃~120℃でラミネート可能であることが好ましい。ラミネート可能な温度を40℃以上にすることで、室温における、有機絶縁材料のタック(粘着性)が強くなることを抑えると共に、良好な取り扱い性を維持することができる。ラミネート可能な温度を120℃以下にすることで、有機絶縁積層体12における反りの発生を抑制できる。
【0047】
硬化後の有機絶縁材料の熱膨張係数は、有機絶縁層(及び有機絶縁積層体12)の反り抑制の観点から、例えば、80ppm/℃以下である。有機インターポーザ10の絶縁信頼性の観点から、当該熱膨張係数は、70ppm/℃以下であることが好ましい。また、有機絶縁材料の応力緩和性、及び加工精度の観点から、当該熱膨張係数は、20ppm/℃以上であることがより好ましい。
【0048】
有機絶縁材料は、加工容易性及び加工精度の観点から、感光性の有機絶縁材料(感光性絶縁樹脂)であることが好ましい。この感光性絶縁樹脂は、耐熱性及び取り扱い容易性の観点から、ネガ型感光性絶縁樹脂であることがより好ましい。光硬化する絶縁樹脂には光ラジカル開始材又は光酸発生剤が含まれ得るが、微細加工容易性の観点から、光酸発生剤が含まれることが好ましい。以上の観点から、有機絶縁層は、光酸発生剤を含有するネガ型感光性絶縁樹脂フィルムであることが最も好ましい。
【0049】
光酸発生剤としては、光照射によって酸を発生する化合物であれば特に限定されない。効率的に酸が発生する観点から、光酸発生剤は、例えば、オニウム塩化合物又はスルホンイミド化合物であることが好ましい。オニウム塩化合物としては、例えば、ヨードニウム塩、又はスルホニウム塩が挙げられる。具体例としては、ジフェニルヨードニウムトリフルオロメタンスルホネート、ジフェニルヨードニウムp-トルエンスルホネート、ジフェニルヨードニウムヘキサフルオロアンチモネート、ジフェニルヨードニウムヘキサフルオロホスフェート、ジフェニルヨードニウムテトラフルオロボレート等のジアリールヨードニウム塩、トリフェニルスルホニウムトリフルオロメタンスルホネート、トリフェニルスルホニウムp-トルエンスルホネート、トリフェニルスルホニウムヘキサフルオロアンチモネート等のトリアリールスルホニウム塩、4-tert-ブチルフェニル-ジフェニルスルホニウムp-トルエンスルホネート、4,7-ジ-n-ブトキシナフチルテトラヒドロチオフェニウムトリフルオロメタンスルホネート等が挙げられる。スルホンイミド化合物の具体例としては、N-(トリフルオロメチルスルホニルオキシ)スクシンイミド、N-(トリフルオロメチルスルホニルオキシ)フタルイミド、N-(トリフルオロメチルスルホニルオキシ)ジフェニルマレイミド、N-(トリフルオロメチルスルホニルオキシ)ビシクロ[2.2.1]ヘプト-5-エン-2,3-ジカルボキシイミド、N-(トリフルオロメチルスルホニルオキシ)ナフタルイミド、N-(p-トルエンスルホニルオキシ)―1,8-ナフタルイミド、N-(10-カンファースルホニルオキシ)―1,8-ナフタルイミド等が挙げられる。
【0050】
解像性の観点から、光酸発生剤として、トリフルオロメタンスルホネート基、ヘキサフルオロアンチモネート基、ヘキサフルオロホスフェート基、又はテトラフルオロボレート基を有する化合物を用いてもよい。
【0051】
感光性絶縁樹脂は、2.38質量%のテトラメチルアンモニウム水溶液に可溶であることが好ましい。感光性絶縁樹脂の解像性、保存安定性、及び絶縁信頼性の観点から、感光性絶縁樹脂は、フェノール性水酸基を有する化合物を含有することが好ましい。フェノール性水酸基を有する化合物としては、フェノール/ホルムアルデヒド縮合ノボラック樹脂、クレゾール/ホルムアルデヒド縮合ノボラック樹脂、フェノール-ナフトール/ホルムアルデヒド縮合ノボラック樹脂、ポリヒドロキシスチレン及びその重合体、フェノール-キシリレングリコール縮合樹脂、クレゾール-キシリレングリコール縮合樹脂、フェノール-ジシクロペンタジエン縮合樹脂等が挙げられる。
【0052】
感光性絶縁樹脂は、熱硬化性樹脂を含むことが好ましい。熱硬化性樹脂としては、例えば、アクリレート樹脂、エポキシ樹脂、シアネートエステル樹脂、マレイミド樹脂、アリルナジイミド樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、アルキド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、レゾルシノールホルムアルデヒド樹脂、トリアリルシアヌレート樹脂、ポリイソシアネート樹脂、トリス(2-ヒドロキシエチル)イソシアヌラートを含有する樹脂、トリアリルトリメリタートを含有する樹脂、シクロペンタジエンから合成された熱硬化性樹脂が挙げられる。感光性絶縁樹脂の解像性、絶縁信頼性、及び金属との密着性の観点から、熱硬化性樹脂は、メチロール基、アルコキシアルキル基、グリシジル基のいずれかを有する化合物であることがより好ましい。
【0053】
以上の観点から、第1の有機絶縁層21及び第2の有機絶縁層22のそれぞれは、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜であることが最も好ましい。なお、第1の有機絶縁層21及び第2の有機絶縁層22のそれぞれは、フィラを含んでもよい。加工容易性及び加工精度の観点から、フィラの平均粒径は、例えば、500nm以下である。第1の有機絶縁層21(又は第2の有機絶縁層22)におけるフィラの含有量が1質量%未満であることが好ましい。また、第1の有機絶縁層21及び第2の有機絶縁層22は、フィラを含有しないことがより好ましい。
【0054】
複数の配線13は、上述したように対応する溝部21a内に設けられ、有機インターポーザ10内部における導電路として機能する。このため、配線13の幅は、溝部21aのライン幅Lと略一致しており、隣り合う配線13同士の間隔は、溝部21aのスペース幅Sと略一致している。導電路としての機能を良好に発揮する観点から、配線13は、高い導電性を有する金属材料を含有している事が好ましい。高い導電性を有する金属材料は、例えば、銅、アルミニウム、又は銀である。これらの金属材料は、加熱により有機絶縁積層体12内に拡散する傾向にある。導電性及びコストの観点から、配線13に含まれる金属材料は、銅であることが好ましい。
【0055】
バリア金属膜14は、配線13と第1の有機絶縁層21及び第2の有機絶縁層22とを仕切るように設けられる金属膜である。バリア金属膜14は、配線13と溝部21aの内面との間に設けられる第1のバリア金属膜31、及び配線13と第2の有機絶縁層22との間に設けられる第2のバリア金属膜32を含んでいる。このため、第1のバリア金属膜31は、配線13と溝部21aの内面(すなわち、第1の有機絶縁層21)とを仕切るように設けられている。また、第2のバリア金属膜32は、配線13と第2の有機絶縁層22とを仕切るように設けられている。
【0056】
第1のバリア金属膜31は、配線13内における金属材料の第1の有機絶縁層21への拡散を防止するための導電膜であり、溝部21aの内面に沿って形成されている。第1のバリア金属膜31は、有機絶縁層へ拡散しにくい金属材料として、例えば、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含んでいる。溝部21aの内面との密着性の観点から、第1のバリア金属膜31は、チタン膜又はチタンを含む合金膜であることが好ましい。また、第1のバリア金属膜31をスパッタリングで形成する観点から、第1のバリア金属膜31は、チタン膜、タンタル膜、タングステン膜、クロム膜、又はチタン、タンタル、タングステン、及びクロムの少なくとも何れかを含む合金膜であることが好ましい。
【0057】
第1のバリア金属膜31の厚さは、溝部21aの幅の半分未満且つ溝部21aの深さ未満であり、例えば、0.001μm~0.5μmである。配線13内における金属材料の拡散を防止する観点から、第1のバリア金属膜31の厚さは、0.01μm~0.5μmであることが好ましい。また、第1のバリア金属膜31の平坦性、及び配線13に流れる電流量を大きくする観点から、第1のバリア金属膜31の厚さは、0.001μm~0.3μmであることが好ましい。以上から、第1のバリア金属膜31の厚さは、0.01μm~0.3μmであることが最も好ましい。
【0058】
第2のバリア金属膜32は、配線13内における金属材料の第2の有機絶縁層22への拡散を防止するための導電膜であり、配線13を覆うように形成されている。第2のバリア金属膜32は、有機絶縁層へ拡散しにくい金属材料として、例えば、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、コバルト、及び金の少なくとも一つを含んでいる。なお、第2のバリア金属膜32は、異なる金属膜の積層体でもよい。
【0059】
第2のバリア金属膜32は、配線13をシード層としためっき膜(例えば、無電解めっき膜)であることが好ましい。このため、第2のバリア金属膜32は、ニッケルめっき膜、パラジウムめっき膜、コバルトめっき膜、金めっき膜、又はニッケル、パラジウム、コバルト、及び金の少なくとも一つを含む合金めっき膜であることが好ましい。配線13との密着性、及び温度サイクル耐性の観点から、ニッケルめっき膜もしくはパラジウムめっき膜であることが好ましい。
【0060】
ニッケルめっき膜としては、例えば、リンを含有した無電解ニッケル-リン合金めっき膜、ホウ素を含有した無電解ニッケル-ホウ素合金めっき膜、又は窒素を含有した無電解ニッケル-窒素合金めっき膜が挙げられる。ニッケルめっき膜のニッケル含有量は、80質量%以上であることが好ましい。ニッケル含有量が80質量%以上であることにより、第2のバリア金属膜32による有機インターポーザ10の絶縁信頼性向上の効果が良好に発揮される。ニッケルめっき膜は、絶縁信頼性の観点から、無電解ニッケル-リン合金めっき膜が好ましい。
【0061】
第2のバリア金属膜32は、0.1μm以下の厚さで良好な絶縁信頼性が得られる観点から、無電解パラジウムめっき膜であることが好ましい。無電解パラジウムめっき膜としては、例えば、置換パラジウムめっき膜、蟻酸化合物を還元剤として用いた無電解パラジウムめっき膜、次亜リン酸若しくは亜リン酸等を還元剤として用いたパラジウムーリン合金めっき膜、又はホウ素化合物を用いたパラジウムーホウ素合金めっき膜が挙げられる。
【0062】
第2のバリア金属膜32の厚さは、例えば、0.001μm~1μmである。第2のバリア金属膜32の歩留まりの観点から、第2のバリア金属膜32の厚さは、0.01μm~1μmであることが好ましい。また、第2のバリア金属膜32の生産タクト向上、薄型化、及び温度サイクル耐性の観点から、0.001μm~0.5μmであることがより好ましい。第2のバリア金属膜32の薄型化、及び感光性絶縁樹脂の解像度の観点から、0.001μm~0.3μmであることが更に好ましい。以上の観点から、第2のバリア金属膜32の厚さは、0.01μm~0.3μmであることが最も好ましい。
【0063】
第2のバリア金属膜32の表面粗さRaは、配線13の表面粗さの影響を受けており、例えば、0.01μm~1μmである。第2のバリア金属膜32の表面粗さRaが0.01μm以上である場合、第2のバリア金属膜32と第2の有機絶縁層22との密着性、及び温度サイクル耐性等の信頼性を確保可能になる。第2のバリア金属膜32の表面粗さRaが1μm以下である場合、第2の有機絶縁層22の形成時に生じる凹凸に起因した有機インターポーザ10内の断線等を抑制できると共に、有機絶縁積層体12の解像度の低下を抑制できる。第2の有機絶縁層22との密着性の観点から、第2のバリア金属膜32の表面粗さRaは、0.03μm以上であることが好ましい。温度サイクル耐性の観点から、第2のバリア金属膜32の表面粗さRaは、0.5μm以下であることが好ましい。高周波特性の観点から、第2のバリア金属膜32の表面粗さRaは、0.1μm以下であることがより好ましい。以上の観点から、第2のバリア金属膜32の表面粗さRaは、0.03μm~0.1μmであることが最も好ましい。
【0064】
有機インターポーザ10において、第1の有機絶縁層21(すなわち、第4の有機絶縁層24)と、第2のバリア金属膜32とを併せた面の表面粗さRaは、例えば、0.01μm~1μmである。上記面の表面粗さRaが0.01μm以上であることにより、第1の有機絶縁層21(及び第2のバリア金属膜32)と、第2の有機絶縁層22との密着性が良好になる。また、上記面の表面粗さが1μm以下であることにより、有機絶縁積層体12の反りを抑制し、例えば、有機絶縁積層体12を研削した際に容易に配線等を露出できる。上記面の表面粗さRaは、例えば、レーザー顕微鏡(オリンパス株式会社製、「LEXT OLS3000」)を用いて、第1の有機絶縁層21と第2のバリア金属膜32との両方を含む100×100μmの範囲をスキャンすることによって算出する。
【0065】
第1の有機絶縁層21と第2のバリア金属膜32とを併せた上記面の表面粗さRaは、配線13と第1の有機絶縁層21とを平坦化することによって制御できる。上記面に対する平坦化処理としては、例えば、化学機械研磨法(CMP:Chemical Mechanical Polishing)又はフライカット法が挙げられる。配線13に対するディッシングの発生を抑制する観点から、フライカット法を用いることが好ましい。なお、フライカット法とは、サーフェスプレーナー等の研削装置を用いて対象物を物理的に研削する方法である。
【0066】
スルー配線15は、有機絶縁積層体12の開口部12aに埋め込まれる配線であり、外部装置への接続端子として機能する。スルー配線15は、互いに積層された複数の配線層15a~15cから構成されている。配線層15bは、配線13と同時に形成された配線層と、バリア金属膜14と同時に形成された金属膜とを含んでいる。
【0067】
表面配線16は、有機インターポーザ10に搭載される半導体チップ同士を電気的接続させるための配線である。このため、表面配線16の両端部は、有機インターポーザ10から露出しており、当該両端部以外の表面配線16は、有機インターポーザ10(より具体的には、第2の有機絶縁層22)に埋め込まれている。このため、第2の有機絶縁層22は、少なくとも2つの有機絶縁層を含む。
【0068】
次に、
図3~
図10を参照しながら本実施形態に係る有機インターポーザ10の製造方法を説明する。下記製造方法によって形成される有機インターポーザ10は、例えば、微細化及び多ピン化が必要とされる形態において特に好適である。なお、
図4(b)は、
図4(a)の一部の拡大図である。同様に、
図5(b)、
図6(b)、
図7(b)、
図8(b)、及び
図9(b)のそれぞれは、対応する図面の一部の拡大図である。
【0069】
まず、第1ステップとして
図3(a)に示されるように、基板11上に配線層15aを形成する。配線層15aは、基板11上に形成された金属膜をパターニングすることによって形成される。第1ステップでは、例えば、塗布法、真空蒸着若しくはスパッタリング等の物理気相蒸着法(PVD法)、金属ペーストを用いた印刷法若しくはスプレー法、又は種々のめっき法によって、上記金属膜を形成する。本実施形態では、金属膜として銅箔が用いられる。
【0070】
なお、基板11と配線層15aとの間に仮固定層(図示しない)が設けられる場合、当該仮固定層は、例えば、ポリイミド、ポリベンゾオキサゾール、シリコン、フッ素等の非極性成分を含有した樹脂、加熱若しくはUV(紫外線)によって体積膨張若しくは発泡する成分を含有した樹脂、加熱若しくはUVによって架橋反応が進行する成分を含有した樹脂、又は、光照射によって発熱する樹脂を含んでいる。仮固定層の形成方法としては、例えば、スピンコート、スプレーコート、又はラミネート加工が挙げられる。取り扱い性及びキャリア剥離性を高度に両立できる観点から、仮固定層は、光又は熱等の外部刺激によって剥離しやすくなることが好ましい。仮固定層が後に製造される有機インターポーザ10に残存しないように剥離可能である観点から、仮固定層は、加熱処理によって体積膨張する樹脂を含有することが最も好ましい。
【0071】
基板11と配線層15aとの間に仮固定層が設けられる場合、配線層15aはピーラブル銅箔の銅箔から形成されてもよい。この場合、基板11がピーラブル銅箔の支持体に相当し、仮固定層がピーラブル銅箔の剥離層に相当する。
【0072】
次に、第2ステップとして
図3(b)に示されるように、配線層15aを覆うように、基板11上に第3の有機絶縁層23を形成する。第2ステップでは、ネガ型感光性絶縁樹脂を含むフィルム状の第3の有機絶縁層23を基板11に貼り付けることによって、配線層15aを覆う。そして、必要に応じて第3の有機絶縁層23に露光処理、現像処理、又は硬化処理等を施す。
【0073】
次に、第3ステップとして
図3(c)に示されるように、第3の有機絶縁層23上に第4の有機絶縁層24を形成することによって、第1の有機絶縁層21を形成する。第3ステップでは、第2ステップと同様に、ネガ型感光性絶縁樹脂を含むフィルム状の第4の有機絶縁層24を第3の有機絶縁層23に貼り付ける。そして、必要に応じて第4の有機絶縁層24に露光処理、現像処理、又は硬化処理等を施す。
【0074】
次に、第4ステップとして
図4(a),(b)に示されるように、第1の有機絶縁層21に複数の溝部21a及び開口部21bを形成する(第1工程とも呼称する)。第4ステップでは、例えば、レーザアブレーション、フォトリソグラフィー、又はインプリントによって複数の溝部21a及び開口部21bを形成する。溝部21aの微細化及び形成コストの観点から、フォトリソグラフィーを適用することが好ましい。このため、第1の有機絶縁層21に露光処理及び現像処理を施すことによって、複数の溝部21aを形成する。また、開口部21bは、配線層15aを露出するように形成される。なお、第1の有機絶縁層21に感光性絶縁樹脂が用いられる場合、溝部21aのパターンを短時間且つ平滑に形成することができる。このため、後述する配線を高周波特性に優れたものとすることができる。
【0075】
上記フォトリソグラフィーにおいて感光性絶縁樹脂を露光する方法としては、公知の投影露光方式、コンタクト露光方式、又は直描露光方式等を用いることができる。また、感光性絶縁樹脂を現像するために、例えば、炭酸ナトリウム又はTMAH等のアルカリ性水溶液を用いてもよい。
【0076】
上記第4ステップにおいては、複数の溝部21a及び開口部21bを形成した後、第1の有機絶縁層21をさらに加熱硬化させてもよい。この場合、例えば、加熱温度を100~200℃と設定し、加熱時間を30分~3時間と設定し、第1の有機絶縁層21を加熱硬化する。
【0077】
次に、第5ステップとして
図5(a),(b)に示されるように、溝部21aの内面を覆うように第1の有機絶縁層21上に第1のバリア金属膜31を形成する(第2工程とも呼称する)。第5ステップでは、例えば、塗布法、PVD法、金属ペーストを用いた印刷法若しくはスプレー法、又は種々のめっき法によって第1のバリア金属膜31を形成する。塗布法の場合、パラジウム又はニッケルの錯体を第1の有機絶縁層21上に塗布した後に加熱することによって、第1のバリア金属膜31を形成する。金属ペーストを用いる場合、ニッケル又はパラジウム等の金属粒子を含有するペーストを第1の有機絶縁層21上に塗布した後に焼結することによって、第1のバリア金属膜31を形成する。本実施形態では、PVD法の一つであるスパッタリングによって第1のバリア金属膜31を形成する。なお、第1のバリア金属膜31は、開口部21bの内面も覆うように形成される。
【0078】
次に、第6ステップとして
図6(a),(b)に示されるように、溝部21aを埋めるように第1のバリア金属膜31上に配線層13Aを形成する(第3工程とも呼称する)。第6ステップでは、例えば、金属ペーストを用いた方法、又は第1のバリア金属膜31をシード層としためっき法によって配線層13Aを形成する。配線層13Aの厚さは、第1の有機絶縁層21の厚さの0.5倍~3倍であることが好ましい。配線層13Aの厚さが0.5倍以上である場合、後工程で形成される配線13の表面粗さRaの拡大を抑制できる傾向にある。また、配線層13Aの厚さが3倍以下である場合、配線層13Aの反りを抑え、第1の有機絶縁層21に対して良好に密着する傾向にある。なお、配線層13Aは、開口部21bも埋めるように形成される。
【0079】
次に、第7ステップとして
図7(a),(b)に示されるように、第1の有機絶縁層21が露出するように配線層13Aを薄化する(第4工程とも呼称する)。第7ステップでは、配線層13Aにおいて溝部21a及び開口部21b外の部分と、第1のバリア金属膜31において溝部21a又は開口部21bを覆わない部分とを除去することによって、第1の有機絶縁層21を露出させると共に配線層13Aを薄化する。これにより、溝部21a内に埋め込まれる配線13を形成する。この薄化処理は、第1の有機絶縁層21と配線13とを併せた面の平坦化処理としてもよい。この場合、CMP又はフライカット法によって配線層13A及び第1のバリア金属膜31の対象部分を除去すると共に、第1の有機絶縁層21の表面を研磨又は研削して平坦化する。
【0080】
第7ステップにおいてCMPを用いる場合、スラリとして例えば、一般的に樹脂の研磨に用いられるアルミナが配合されたスラリと、第1のバリア金属膜31の研磨に用いられる過酸化水素及びシリカが配合されたスラリと、配線層13Aの研磨に用いられる過酸化水素及び過硫酸アンモニウムが配合されたスラリとを用いる。コストを低減すると共に表面粗さRaを0.01μm~1μmに制御する観点から、アルミナが配合されたスラリを用いて第1の有機絶縁層21、第1のバリア金属膜31、及び配線層13A(配線13)を研削することが好ましい。CMPを用いた場合、高コストになる傾向がある。また、第1の有機絶縁層21、第1のバリア金属膜31、及び配線層13A(配線13)を同時に平坦化する場合、研磨速度の違いによって配線13にディッシングが生じ、結果として第1の有機絶縁層21と配線13とを併せた面の平坦性が大きく損なわれる傾向がある。このため、上記面の表面粗さRaを0.03μm~0.1μmにする観点から、サーフェスプレーナーを用いたフライカット法によって第1の有機絶縁層21、第1のバリア金属膜31、及び配線層13A(配線13)を研削することがより好ましい。
【0081】
次に、第8ステップとして
図8(a),(b)に示されるように、溝部21a内の配線層13Aである配線13を覆うように第2のバリア金属膜32を形成する(第5工程とも呼称する)。第8ステップでは、例えば、PVD法、金属ペーストを用いた方法、又は配線13をシード層としためっき法によって第2のバリア金属膜32を形成する。配線13上に選択性よく第2のバリア金属膜32を形成する観点から、配線13をシード層としためっき法によって第2のバリア金属膜32を形成することが好ましい。なお、めっき処理前に、露出した第1の有機絶縁層21の酸によるクリーニング、又はベンゾトリアゾールなどによる保護処理を実施してもよい。なお、第8ステップを経ることによって、配線層15a上に設けられる配線層15bが完成する。
【0082】
第8ステップにおいて、第2のバリア金属膜32は、配線13上に加え、第1のバリア金属膜31において溝部21aの側面に接する部分上に形成されることが好ましい。この場合、第1のバリア金属膜31及び第2のバリア金属膜32によって配線13を隙間なく覆うことができる。
【0083】
次に、第9ステップとして
図9(a),(b)に示されるように、第1の有機絶縁層21及び第2のバリア金属膜32上に第2の有機絶縁層22を形成する(第6工程とも呼称する)。第9ステップでは、ネガ型感光性絶縁樹脂を含むフィルム状の第2の有機絶縁層22を第1の有機絶縁層21及び第2のバリア金属膜32に貼り付ける。第2の有機絶縁層22は、第1の有機絶縁層21と同一のフィルムでもよいし、異なる感光性絶縁樹脂を用いて形成されてもよい。配線13を構成する金属の拡散防止の観点から、第2の有機絶縁層22に対しては、現像処理を施さないことが好ましい。
【0084】
次に、第10ステップとして
図10(a)に示されるように、第2の有機絶縁層22に開口部22aを形成する。第10ステップでは、配線層15bを露出するように開口部22aを形成する。開口部22aは、例えば、フォトリソグラフィー等によって形成される。
【0085】
次に、第11ステップとして
図10(b)に示されるように、開口部22aに金属材料を充填して配線層15cを形成することによって、スルー配線15を形成する。第11ステップでは、例えば、PVD法又は種々のめっき法によって配線層15cを形成する。金属材料は、例えば、銅、ニッケル、スズなどが挙げられる。第11ステップ後、表面配線16等を形成することによって、
図2に示される有機インターポーザ10を製造する。なお仮固定層が設けられている場合、基板11から有機インターポーザ10を剥離してもよい。
【0086】
以上に説明した構成を有する有機インターポーザ10によれば、配線13と第1の有機絶縁層21及び第2の有機絶縁層22とがバリア金属膜14によって仕切られている。このため、配線13内における金属材料の有機絶縁積層体への拡散は、バリア金属膜14によって抑制される。したがって、拡散した金属材料を介した複数の配線13同士の短絡を抑制できるので、有機インターポーザ10の絶縁信頼性を向上できる。
【0087】
有機絶縁積層体12は、配線13が配置された複数の溝部21aを有する第1の有機絶縁層21と、配線13を埋め込むように第1の有機絶縁層21に積層された第2の有機絶縁層22とを含んでいる。このため、複数の配線13のそれぞれは、第1の有機絶縁層21の溝部21aに沿った形状を有する。このため、微細な幅及び間隔を有する複数の溝部21aを形成することによって、微細な配線13を容易に形成できる。
【0088】
バリア金属膜14は、配線13と溝部21aの内面との間に設けられた第1のバリア金属膜31と、配線13と第2の有機絶縁層22との間に設けられた第2のバリア金属膜32とを含んでいる。このため、配線13内における金属材料の第1の有機絶縁層21への拡散は、第1のバリア金属膜31によって良好に抑制される。また、上記金属材料の第2の有機絶縁層22への拡散は、第2のバリア金属膜32によって良好に抑制される。
【0089】
第1のバリア金属膜31は、チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金の少なくとも一つを含んでいる。チタン、ニッケル、パラジウム、クロム、タンタル、タングステン、及び金は、いずれも第1の有機絶縁層21及び第2の有機絶縁層22に拡散しにくいので、有機インターポーザ10の絶縁信頼性をさらに向上できる。
【0090】
第2のバリア金属膜32は、めっき膜であってもよい。この場合、溝部21a内の配線13上に選択的に第2のバリア金属膜32を形成できるので、有機インターポーザ10の製造工程を簡略化できる。例えば、第2のバリア金属膜32を形成するためのレジスト塗布工程、スパッタリング工程、及びレジスト除去工程等を省略できる。
【0091】
第2のバリア金属膜32は、ニッケルめっき膜であってもよい。この場合、良好な平坦性を有する第2のバリア金属膜32を容易に形成できる。加えて、ニッケルは第1の有機絶縁層21及び第2の有機絶縁層22に拡散しにくいので、有機インターポーザ10の絶縁信頼性を好適に向上できる。
【0092】
第2のバリア金属膜32は、パラジウムめっき膜であってもよい。この場合、第2のバリア金属膜32を、薄く形成できる。加えて、パラジウムは第1の有機絶縁層21及び第2の有機絶縁層22に拡散しにくいので、有機インターポーザ10の絶縁信頼性を好適に向上できる。
【0093】
第2のバリア金属膜32の厚さは、0.001μm以上1μm以下であってもよい。この場合、配線13内における金属材料の第2の有機絶縁層22への拡散は、第2のバリア金属膜32によって良好に抑制される。
【0094】
第2のバリア金属膜32の表面粗さRaは、0.01μm以上1μm以下であってもよい。この場合、第2のバリア金属膜32が第2の有機絶縁層22に良好に密着できる。また、第2のバリア金属膜32の表面粗さに起因した有機インターポーザ10内の断線等を抑制できる。
【0095】
第1の有機絶縁層21の厚さは、1μm以上10μm以下であってもよい。この場合、第1の有機絶縁層21を用いて10μm以下の幅及び間隔を有する複数の溝部21aを形成できる。
【0096】
第1の有機絶縁層21は、光酸発生剤、フェノール性水酸基を有する化合物、及び熱硬化性樹脂を含む感光性の有機絶縁樹脂が硬化してなる硬化膜でってもよい。この場合、微細な幅及び間隔を有する溝部21aを第1の有機絶縁層21に容易に形成できる。加えて、第1の有機絶縁層21に含まれる水分を低減できるので、当該第1の有機絶縁層21に金属材料が拡散しにくくなる。したがって、有機インターポーザ10の絶縁信頼性を向上できる。
【0097】
本実施形態に係る有機インターポーザ10の製造方法によれば、第4ステップ~第6ステップを経ることにより、各溝部21aの内面と配線層13Aとの間に第1のバリア金属膜31を形成できる。また、第7ステップ~第9ステップを経ることにより、有機絶縁層の積層方向において、配線13と第2の有機絶縁層22との間に第2のバリア金属膜32を形成できる。このため、配線13内における金属材料の第1の有機絶縁層21及び第2の有機絶縁層22への拡散は、第1のバリア金属膜31及び第2のバリア金属膜32によって抑制される。したがって、拡散した金属材料を介した複数の配線13同士の短絡を抑制できるので、有機インターポーザ10の絶縁信頼性を向上できる。
【0098】
第6ステップでは、第1のバリア金属膜31をシード層としためっき法によって配線層13Aを形成してもよい。この場合、第1の有機絶縁層21と配線層13Aとの間に第1のバリア金属膜31が挟持されるように配線層13Aを形成できる。これにより、配線層13A内における金属材料の第1の有機絶縁層21への拡散が良好に抑制される。
【0099】
第8ステップでは、配線13をシード層としためっき法によって第2のバリア金属膜32を形成してもよい。この場合、例えばレジスト等を用いずに配線13上に選択的に第2のバリア金属膜32を形成できる。これにより、第2のバリア金属膜32の形成時にレジスト形成工程及びレジスト除去工程等の工程を省略できるので、有機インターポーザ10の製造工程を簡略化できる。
【0100】
なお、有機インターポーザ10内の配線13は、例えば、セミアディティブ法によって形成されることも考えられる。セミアディティブ法とは、シード層を形成し、所望のパターンを有するレジストをシード層上に形成し、シード層における露出した部分を電解めっき法等により厚膜化し、レジストを除去した後、薄いシード層をエッチングして所望の配線を得る方法である。しかしながら、セミアディティブ法を適用した場合、薄いシード層をエッチングする際に配線に加わるダメージが大きい。加えて、配線の有機絶縁層に対する密着強度の確保が困難である。このため、セミアディティブ法を用いて例えば、5μm以下のライン幅とスペース幅とを有する微細な配線を形成する場合、有機インターポーザの歩留まりが大きく低下する傾向にある。したがって本実施形態では、この歩留まり低下を抑制するために、第4工程にて第1の有機絶縁層21に溝部21aを設け、当該溝部21a内に配線13を形成するトレンチ法が採用されている。
【0101】
以上、本開示の一実施形態に係る有機インターポーザ及びその製造方法について説明したが、本開示は上述した実施形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更を行ってもよい。例えば、第1の有機絶縁層21に形成される溝部21aの断面形状は、略矩形状に限らず、略台形状、略半円状等の他の形状でもよい。
【0102】
上記実施形態において、配線13、配線層15a~15c、第1のバリア金属膜31、第2のバリア金属膜32、及び表面配線16等は、それぞれ単層構造を有してもよく、複数の導電層からなる多層構造を有してもよい。
【0103】
上記実施形態では、第1の有機絶縁層21は第3の有機絶縁層23及び第4の有機絶縁層24の両方を含んでいるが、これに限られない。例えば、第1の有機絶縁層21は、単層構造でもよい。この場合、上記製造方法における第2ステップ及び第3ステップをまとめた1ステップにでき、有機インターポーザ10の製造工程を簡略化できる。
【0104】
上記実施形態における製造方法の第7ステップでは溝部21a内の配線層13A(配線13)の一部を除去し、続く第8ステップにて、溝部21aを埋めるように第2のバリア金属膜32を形成してもよい。この場合、第2のバリア金属膜32が溝部21a内に埋められて形成されるので、有機インターポーザ10において第2のバリア金属膜32に起因した段差の形成を抑制できる。すなわち、第2の有機絶縁層22と第2のバリア金属膜32とを併せた面の表面粗さRaを低減できる。これにより、有機インターポーザ10に半導体素子等を良好に搭載できる。なお、溝部21a内の配線13の一部の除去は、例えば、CMPを行う際に発生するディッシングを利用する。また、溝部21a内の配線13の一部は、例えば、溝部21aにおける上半分に位置する配線13の少なくとも一部である。
【0105】
上記実施形態において、有機絶縁積層体12に含まれる有機絶縁層には、密着助剤が含まれてもよい。密着助剤としては、例えば、シランカップリング剤、トリアゾールもしくはテトラゾール系化合物が挙げられる。
【0106】
シランカップリング剤としては、金属との密着性を向上させるため、窒素原子を有する化合物が好ましく用いられる。具体的には、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチルーブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、トリス-(トリメトキシシリルプロピル)イソシアヌレート、3-ウレイドプロピルトリアルコキシシラン、3-イソシアネートプロピルトリエトキシシラン、などが挙げられる。上記シランカップリング剤の使用量は、添加による効果、耐熱性及び製造コスト等の観点から、フェノール性水酸基を有する化合物100質量部に対して、0.1質量部~20質量部であることが好ましい。
【0107】
トリアゾール化合物としては、2-(2'-ヒドロキシ-5'-メチルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-3'-tert-ブチル-5'-メチルフェニル)-5-クロロベンゾトリアゾール、2-(2'-ヒドロキシ-3',5'-ジ-tert-アミルフェニル)ベンゾトリアゾール、2-(2'-ヒドロキシ-5'-tert-オクチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[6-(2H-ベンゾトリアゾール-2-イル)-4-tert-オクチルフェノール]、6-(2-ベンゾトリアゾリル)-4-tert-オクチル-6'-tert-ブチル-4'-メチル-2,2'-メチレンビスフェノール、1,2,3-ベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]ベンゾトリアゾール、カルボキシベンゾトリアゾール、1-[N,N-ビス(2-エチルヘキシル)アミノメチル]メチルベンゾトリアゾール、2,2’-[[(メチル-1H-ベンゾトリアゾール-1-イル)メチル]イミノ]ビスエタノール、などが挙げられる。
【0108】
テトラゾール化合物としては、1H-テトラゾール、5-アミノ-1H-テトラゾール、5-メチル-1H-テトラゾール、5-フェニル-1H-テトラゾール、1-メチル-5-エチル-1H-テトラゾール、1-メチル-5-メルカプト-1H-テトラゾール、1-フェニル-5-メルカプト-1H-テトラゾール、1-(2-ジメチルアミノエチル)-5-メルカプト-1H-テトラゾール、2-メトキシ-5-(5-トリフルオロメチル-1H-テトラゾール-1-イル)-ベンズアルデヒド、4,5-ジ(5-テトラゾリル)-[1,2,3]トリアゾール、1-メチル-5-ベンゾイル-1H-テトラゾール、などが挙げられる。上記トリアゾールもしくはテトラゾール系化合物の使用量は、添加による効果、耐熱性及び製造コストの観点から、フェノール性水酸基を有する化合物100質量部に対して、0.1質量部~20質量部であることが好ましい。
【0109】
上記シランカップリング剤、トリアゾール系化合物、及びテトラゾール系化合物は、それぞれ単独で使用してもよいし、併用してもよい。
【0110】
更に、有機絶縁層にはイオン捕捉剤が添加されてもよい。上記イオン捕捉剤によって有機絶縁層中のイオン性不純物を吸着することにより、吸湿時の絶縁信頼性を向上できる。このようなイオン捕捉剤としては、例えば、トリアジンチオール化合物及びフェノール系還元剤等の銅がイオン化して溶け出すのを防止するための銅害防止剤として知られる化合物、粉末状のビスマス系、アンチモン系、マグネシウム系、アルミニウム系、ジルコニウム系、カルシウム系、チタン系、及びスズ系、並びに、これらの混合系等の無機化合物が挙げられる。
【0111】
上記イオン捕捉剤としては、例えば、東亜合成株式会社製の無機イオン捕捉剤(商品名:IXE-300(アンチモン系)、IXE-500(ビスマス系)、IXE-600(アンチモン、ビスマス混合系)、IXE-700(マグネシウム、アルミニウム混合系)、IXE-800(ジルコニウム系)、及びIXE-1100(カルシウム系))が挙げられる。これらは1種を単独で用いてもよいし、2種以上を混合して用いてもよい。上記イオン捕捉剤の使用量は、添加による効果、耐熱性及び製造コスト等の観点から、フェノール性水酸基を有する化合物100質量部に対して、0.01質量部~10質量部であることが好ましい。
【実施例】
【0112】
本発明を以下の実施例によりさらに詳細に説明するが、本発明はこれらの例に限定されるものではない。
【0113】
(実施例1)
図11(a),(b)に示される測定評価用試料を以下のようにして作製した。まず、厚さ150mmのシリコンウェハ51に厚さ5μmの感光性絶縁樹脂フィルム52を貼り付けた。この感光性絶縁樹脂フィルム52は、以下のようにして形成した。まず、クレゾールノボラック樹脂(旭有機材工業株式会社製、商品名:TR-4020G、100質量部)と、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル(30質量部)と、トリメチロールプロパントリグリシジルエーテル(40質量部)と、トリアリールスルホニウム塩(サンアプロ株式会社製、商品名:CPI-310B、8質量部)と、メチルエチルケトン(100質量部)とを配合し、感光性絶縁組成物を得た。次に、得られた感光性絶縁組成物をポリエチレンテレフタレートフィルム(帝人デュポンフィルム株式会社製、商品名:A-53)に塗布し、90℃のオーブンで10分間乾燥することによって、厚さ5μmの感光性絶縁樹脂フィルム52を得た。
【0114】
次に、シリコンウェハ51に貼り付けた感光性絶縁樹脂フィルム52を露光処理、加熱処理、現像処理及び熱硬化処理を順番に施した。次に、感光性絶縁樹脂フィルム52に、当該フィルム52と同様にして形成した厚さ5μmの感光性絶縁樹脂フィルム53を貼り付けた。次に、貼り付けた感光性絶縁樹脂フィルム53を、フォトマスクを介して露光処理した後、加熱処理、現像処理、及び熱硬化処理を順番に施した。これにより感光性絶縁樹脂フィルム53をパターニングし、互いにかみ合うように櫛歯状になっている第1の溝部53a及び第2の溝部53bと、第1の溝部53a同士を結ぶ第1の接続部53cと、第2の溝部53b同士を結ぶ第2の接続部53dとを形成した。第1の溝部53aの幅と第2の溝部53bの幅とをそれぞれ10μmに設定した。これらの幅は、後述する配線のライン幅Lに相当する。また、隣り合う第1の溝部53aと第2の溝部53bとの距離(スペース幅S)を10μmに設定し、それぞれの溝の長さを1mmに設定した。
【0115】
次に、スパッタリングによって、感光性絶縁樹脂フィルム53上に厚さ0.05μmのチタンを含むバリア金属膜54を形成した。次に、バリア金属膜54をシード層とした電解めっき法によって、第1の溝部53a、第2の溝部53b、第1の接続部53c、及び第2の接続部53dを埋めるように銅層を形成した。次に、サーフェスプレーナーを用いたフライカット法によって、銅層の一部と、バリア金属膜54において第1の溝部53a、第2の溝部53b、第1の接続部53c、及び第2の接続部53dの内面を覆わない部分を研削した。これにより、第1の溝部53aに埋められる第1の配線55aと、第2の溝部53bに埋められる第2の配線55bと、第1の接続部53cに埋められる第1の接続配線55cと、第2の接続部53dに埋められる第2の接続配線55dとを形成した。サーフェスプレーナーとして、オートマチックサーフェスプレーナー(株式会社ディスコ製、商品名「DAS8930」)を用いた。また、フライカット法による研削では、送り速度を1mm/sに設定し、スピンドル回転数を2000min-1に設定した。
【0116】
次に、第1の配線55aと、第2の配線55bと、第1の接続配線55cと、第2の接続配線55dとのそれぞれをシード層とした無電解めっき法によって、厚さ0.2μmのニッケル-リン合金を含むバリア金属膜56を形成した。次に、第1の接続配線55cの一部と、第2の接続配線55dの一部とを少なくとも露出させるように、感光性絶縁樹脂フィルム52と同様にして形成した厚さ5μmの感光性絶縁樹脂フィルム57を貼り付けた。次に、貼り付けた感光性絶縁樹脂フィルム57に対して露光処理、加熱処理、現像処理及び熱硬化処理を順番に施した。これにより、
図11(a),(b)に示される測定評価用試料50を形成した。この測定評価用試料50においては、第1の配線55aと第1の接続配線55cとは、互いに接続されていると共にバリア金属膜54,56によって覆われている。同様に、第2の配線55bと第2の接続配線55dとは、互いに接続されていると共にバリア金属膜54,56によって覆われている。また、第1の配線55a及び第1の接続配線55cと、第2の配線55b及び第2の接続配線55dとは、互いに感光性絶縁樹脂フィルム52,53,57によって絶縁されている。
【0117】
上述した測定評価用試料50の絶縁信頼性を確認するため、以下に説明する高加速度寿命試験(HAST:Highly Accelerated Stress Test)を行った。この試験では、湿度85%、130℃の条件下において第1の接続配線55cと第2の接続配線55dとに3.3Vの電圧を印加し、所定の時間にわたって静置した。これにより、時間経過に伴う第1の配線55aと、第2の配線55bとの絶縁性の変化を測定した。この試験では、第1の配線55aと第2の配線55bとの間の抵抗値が、試験開始から200時間経過時に1×106Ω以上であれば評価Aとし、試験開始から200時間経過前に1×106Ω未満となれば評価Bとした。実施例1の高加速度寿命試験の結果を、下記表1に示す。
【0118】
(実施例2)
ライン幅L及びスペース幅Sを5μmに設定したこと以外は実施例1と同様にして測定評価用試料50を形成し、上述した高加速度寿命試験を行った。実施例2の高加速度寿命試験の結果を、下記表1に示す。
【0119】
(実施例3)
ライン幅L及びスペース幅Sを2μmに設定したこと以外は実施例1と同様にして測定評価用試料50を形成し、上述した高加速度寿命試験を行った。実施例3の高加速度寿命試験の結果を、下記表1に示す。
【0120】
(実施例4)
感光性絶縁樹脂フィルム57として、ソルダーレジストフィルム(日立化成株式会社製、商品名:FZ-2700GA、厚さ30μm)としたこと以外は実施例2と同様にして測定評価用試料50を形成した。この測定評価用試料50に対して上述した高加速度寿命試験を行った。実施例4の高加速度寿命試験の結果を、下記表1に示す。
【0121】
(実施例5)
感光性絶縁樹脂フィルム57として、ソルダーレジストフィルム(日立化成株式会社製、商品名:FZ-2700GA、厚さ30μm)としたこと以外は実施例3と同様にして測定評価用試料50を形成した。この測定評価用試料50に対して上述した高加速度寿命試験を行った。実施例5の高加速度寿命試験の結果を、下記表1に示す。
【0122】
(比較例1)
図12(a),(b)に示されるように、バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例1と同様にして測定評価用試料50Aを形成した。すなわち、第1の配線55a、第2の配線55b、第1の接続配線55c、及び第2の接続配線55dが感光性絶縁樹脂フィルム57に接するように測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例1の高加速度寿命試験の結果を、下記表1に示す。
【0123】
(比較例2)
バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例2と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例2の高加速度寿命試験の結果を、下記表1に示す。
【0124】
(比較例3)
バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例3と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例3の高加速度寿命試験の結果を、下記表1に示す。
【0125】
(比較例4)
バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例4と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例4の高加速度寿命試験の結果を、下記表1に示す。
【0126】
(比較例5)
バリア金属膜56を第1の配線55a上、第2の配線55b上、第1の接続配線55c上、及び第2の接続配線55d上に設けなかったこと以外は実施例5と同様にして測定評価用試料50Aを形成した。この測定評価用試料50Aに対して上述した高加速度寿命試験を行った。比較例5の高加速度寿命試験の結果を、下記表1に示す。
【0127】
【0128】
上記表1においては、バリア金属膜56が設けられている場合「Y」と示され、バリア金属膜56が設けられていない場合「N」と示される。また上記表1において、感光性絶縁樹脂フィルム57が感光性絶縁樹脂フィルム52と同様にして形成された場合「α」と示され、感光性絶縁樹脂フィルム57がソルダーレジストフィルムを用いて形成された場合「β」と示される。表1より、実施例1~5の高加速度寿命試験の結果は全て評価Aであった一方で、比較例1~5の高加速度寿命試験の結果は全て評価Bであった。これらの結果より、バリア金属膜56の有無によって、測定評価用試料の絶縁信頼性が大きく異なることがわかった。
【0129】
図13(a)は、実施例2と比較例2との高加速度寿命試験の結果を示すグラフであり、
図13(b)は、実施例3と比較例3との高加速度寿命試験の結果を示すグラフである。
図13(a)及び
図13(b)において、横軸は時間を示し、縦軸は第1の配線55aと第2の配線55bとの間の抵抗値を示す。
図13(a)において、データ61は実施例2の試験結果であり、データ62は比較例2の試験結果である。
図13(b)において、データ63は実施例3の試験結果であり、データ64は比較例3の試験結果である。
【0130】
図13(a)に示されるように、実施例2では試験開始から300時間経過時であっても、第1の配線55aと第2の配線55bとの間の抵抗値が1×10
6Ω以上を示した。一方、比較例2では試験開始から20時間程度の時点で急激に抵抗値が減少し、1×10
6Ω未満になった。同様に、
図13(b)に示されるように、実施例3では試験開始から200時間経過時であっても、第1の配線55aと第2の配線55bとの間の抵抗値が1×10
6Ω以上を示した一方で、比較例
3では試験開始から数時間の時点で急激に抵抗値が減少し、1×10
6Ω未満になった。
【0131】
図14(a)~(c)は、実施例3の硬化速度寿命試験を250時間経過した後の測定評価用試料50の断面サンプルをTEM(透過電子顕微鏡)/EDX(エネルギー分散形X線分析装置)にて銅、チタン、及びニッケルの成分を解析した結果を示す。
図14(a)は、測定評価用試料50の断面サンプルにおけるCu(銅)の解析結果であり、
図14(b)は、当該断面サンプルにおけるTi(チタン)の解析結果であり、
図14(c)は、当該断面サンプルにおけるNi(ニッケル)の解析結果である。TEMとして日本電子株式会社製 JEM-2100Fを用い、EDXとして日本電子株式会社製 JED-2300を用い、加速電圧を200kVと設定し、上記解析を実施した。実施例3においては、EDX解析試験後に、配線及びバリア金属の感光性絶縁樹脂フィルムへの溶出は観測されなかった。具体的には、バリア金属膜54,56に囲まれる銅層を構成する銅の感光性絶縁樹脂フィルムへの拡散、バリア金属膜54を構成するチタンの感光性絶縁樹脂フィルムへの拡散、及びバリア金属膜56を構成するニッケルの感光性絶縁樹脂フィルムへの拡散は、いずれも確認されなかった。
【0132】
上記高加速度寿命試験後の比較例2,3の測定評価用試料50Aを目視したところ、比較例2,3においては、少なくとも感光性絶縁樹脂フィルム57が何らかの要因にて汚染されていることが確認された。一方、上記高加速度寿命試験後の実施例2,3の測定評価用試料50を目視したところ、感光性絶縁樹脂フィルム52,53,57の汚染は確認されなかった。
【0133】
以上より、比較例2,3における急激な抵抗値の減少は、第1の配線55a及び第2の配線55b内における金属材料が感光性絶縁樹脂フィルム57に拡散し、拡散した金属材料を介して第1の配線55aと第2の配線55bとが短絡したからであると推察される。一方で実施例2,3においては、第1の配線55a又は第2の配線55b内における金属材料の感光性絶縁樹脂フィルム52,53,57への拡散がバリア金属膜54,56によって防止され、第1の配線55aと第2の配線55bとが短絡しなかったと推察される。
【符号の説明】
【0134】
1…基板、2A~2D…半導体チップ、3A,3B…アンダーフィル、4…絶縁材料、10…有機インターポーザ、11…基板、12…有機絶縁積層体、13…配線、13A…配線層、14…バリア金属膜、15…スルー配線、21…第1の有機絶縁層、21a…溝部、21b…開口部、22…第2の有機絶縁層、31…第1のバリア金属膜、32…第2のバリア金属膜、100…半導体パッケージ、L…ライン幅、S…スペース幅。