(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-09
(45)【発行日】2023-11-17
(54)【発明の名称】排気ガス浄化用酸化触媒構造体及びその製造方法、自動車の排気ガス処理装置、触媒成形体、並びに気体浄化方法
(51)【国際特許分類】
B01J 29/035 20060101AFI20231110BHJP
B01J 37/08 20060101ALI20231110BHJP
B01J 37/10 20060101ALI20231110BHJP
B01J 37/18 20060101ALI20231110BHJP
B01J 37/02 20060101ALI20231110BHJP
B01J 35/10 20060101ALI20231110BHJP
B01D 53/94 20060101ALI20231110BHJP
F01N 3/28 20060101ALI20231110BHJP
【FI】
B01J29/035 A
B01J37/08 ZAB
B01J37/10
B01J37/18
B01J37/02 101D
B01J35/10 301F
B01D53/94 245
B01D53/94 280
F01N3/28 301P
(21)【出願番号】P 2019521324
(86)(22)【出願日】2018-05-31
(86)【国際出願番号】 JP2018021084
(87)【国際公開番号】W WO2018221696
(87)【国際公開日】2018-12-06
【審査請求日】2021-04-20
(31)【優先権主張番号】P 2017108615
(32)【優先日】2017-05-31
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2017108616
(32)【優先日】2017-05-31
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2017108617
(32)【優先日】2017-05-31
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】100114890
【氏名又は名称】アインゼル・フェリックス=ラインハルト
(74)【代理人】
【識別番号】100116403
【氏名又は名称】前川 純一
(74)【代理人】
【識別番号】100162880
【氏名又は名称】上島 類
(74)【代理人】
【識別番号】100143959
【氏名又は名称】住吉 秀一
(72)【発明者】
【氏名】増田 隆夫
(72)【発明者】
【氏名】中坂 佑太
(72)【発明者】
【氏名】吉川 琢也
(72)【発明者】
【氏名】加藤 禎宏
(72)【発明者】
【氏名】福嶋 將行
(72)【発明者】
【氏名】高橋 尋子
(72)【発明者】
【氏名】馬場 祐一郎
(72)【発明者】
【氏名】関根 可織
【審査官】若土 雅之
(56)【参考文献】
【文献】国際公開第2010/097108(WO,A1)
【文献】特開平05-049943(JP,A)
【文献】国際公開第2016/014691(WO,A1)
【文献】米国特許第05849652(US,A)
【文献】特表2016-529190(JP,A)
【文献】WU, Zhijie et al.,Hydrothermal synthesis of LTA-encapsulated metal clusters and consequences for catalyst stability, reactivity, and selectivity,J. Catal.,米国,Elsevier Inc.,2014年01月31日,Vol. 311,pp. 458-468,DOI: 10.1016/j.cat.2013.12.021
(58)【調査した分野】(Int.Cl.,DB名)
B01D 53/73
53/86-53/90
53/94
53/96
B01J 21/00-38/74
F01N 3/00
3/02
3/04-3/38
9/00-11/00
JSTPlus(JDreamIII)
JST7580(JDreamIII)
JSTChina(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
ゼオライト型化合物で構成される多孔質構造の担体と、
前記担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒と、
を備え、
前記担体が、互いに連通する通路を有し、
前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、
前記金属の平均粒径は0.8nm~11.0nmであり、
前記
金属酸化物の平均粒径は0.5nm~14.0nmであり、
前記拡径部は、前記酸化触媒を包接している、排気ガス浄化用酸化触媒構造体。
【請求項2】
前記金属酸化物は、少なくとも一つのペロブスカイト型酸化物を含有する、請求項1に記載の排気ガス浄化用酸化触媒構造体。
【請求項3】
前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通している、請求項1または2に記載の排気ガス浄化用酸化触媒構造体。
【請求項4】
前記酸化触媒は、金属微粒子および金属酸化物微粒子からなる群から選択される少なくとも一種の酸化触媒微粒子であり、
前記酸化触媒微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下である、請求項1~3のいずれか1項に記載の排気ガス浄化用酸化触媒構造体。
【請求項5】
前記酸化触媒微粒子は、コバルト、鉄、銅、銀、マンガン、ニッケル、クロム、スズ、亜鉛、チタン、および白金から選択される少なくとも1種の金属、並びに前記金属の酸化物からなる群から選択される、請求項4に記載の排気ガス浄化用酸化触媒構造体。
【請求項6】
前記通路の平均内径は、0.1nm~1.5nmであり、前記拡径部の内径は、0.5nm~50nmである、請求項4または5に記載の排気ガス浄化用酸化触媒構造体。
【請求項7】
前記酸化触媒微粒子の金属元素(M)が、前記酸化触媒に対して0.5~2.5質量%で含有されている、請求項4~6のいずれか1項に記載の排気ガス浄化用酸化触媒構造体。
【請求項8】
前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.06~500である、請求項4~
7のいずれか1項に記載の排気ガス浄化用酸化触媒構造体。
【請求項9】
前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.1~36である、請求項
8に記載の排気ガス浄化用酸化触媒構造体。
【請求項10】
前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、1.7~4.5である、請求項
9に記載の排気ガス浄化用酸化触媒構造体。
【請求項11】
前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.05~300である、請求項4~
10のいずれか1項に記載の排気ガス浄化用酸化触媒構造体。
【請求項12】
前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.1~30である、請求項
11に記載の排気ガス浄化用酸化触媒構造体。
【請求項13】
前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、1.4~3.6である、請求項
12に記載の排気ガス浄化用酸化触媒構造体。
【請求項14】
前記担体の外表面に保持された少なくとも1つの他の機能性物質を更に備える、請求項1~
13のいずれか1項に記載の排気ガス浄化用酸化触媒構造体。
【請求項15】
前記担体に内在する前記少なくとも一種の酸化触媒の含有量が、前記担体の外表面に保持された前記少なくとも1つの他の機能性物質の含有量よりも大きい、請求項
14に記載の排気ガス浄化用酸化触媒構造体。
【請求項16】
前記ゼオライト型化合物は、ケイ酸塩化合物である、請求項1~
15のいずれか1項に記載の排気ガス浄化用酸化触媒構造体。
【請求項17】
請求項1~
16のいずれか1項に記載の排気ガス浄化用酸化触媒構造体を有する、自動車の排気ガス処理装置。
【請求項18】
ハニカム状基材と、前記ハニカム状基材の表面上に請求項1~
16のいずれか1項に記載の排気ガス浄化用酸化触媒構造体とを有する、触媒成形体。
【請求項19】
規則性メソ細孔物質である前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
前記前駆体材料(B)を焼成して得られた前駆体材料(C)と構造規定剤とを混合し水熱処理することにより前記担体および前記担体に内在する酸化触媒を得る、水熱処理工程と、
を有し、
前記金属含有溶液は金属成分として、金(Au)、銀(Ag)、ロジウム(Rh)、イリジウム(Ir)、オスミウム(Os)、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ニッケル(Ni)、コバルト(Co)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、クロム(Cr)、セリウム(Ce)、銅(Cu)、マグネシウム(Mg)、アルミニウム(Al)、マンガン(Mn)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)、ジルコニウム(Zr)、アルミニウム(Al)、ニオブ(Nb)、ビスマス(Bi)、バナジウム(V)、ランタン(La)、ストロンチウム(Sr)、ガリウム(Ga)のいずれかまたは2種以上を含む、
排気ガス浄化用酸化触媒構造体の製造方法。
【請求項20】
前記水熱処理工程の後に更に、前記水熱処理された前駆体材料(C)に還元処理を行う工程を有する、請求項
19に記載の排気ガス浄化用酸化触媒構造体の製造方法。
【請求項21】
前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加する、請求項
19または
20に記載の排気ガス浄化用酸化触媒構造体の製造方法。
【請求項22】
前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させる、請求項
19~
21のいずれか1項に記載の排気ガス浄化用酸化触媒構造体の製造方法。
【請求項23】
前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整する、請求項
19~
22のいずれか1項に記載の排気ガス浄化用酸化触媒構造体の製造方法。
【請求項24】
前記水熱処理工程が塩基性雰囲気下で行われる、請求項
20または
21に記載の排気ガス浄化用酸化触媒構造体の製造方法。
【請求項25】
触媒構造体を用いて、一酸化炭素と炭化水素とを含有する気体を浄化する気体浄化方法であって、
前記触媒構造体は、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒とを備え、前記担体が互いに連通する通路を有し、
前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、
前記金属の平均粒径は0.8nm~11.0nmであり、
前記
金属酸化物の平均粒径は0.5nm~14.0nmであり、
前記拡径部は、前記酸化触媒を包接している、気体浄化方法。
【請求項26】
前記触媒構造体は、請求項1~
16のいずれか1項に記載の排気ガス浄化用酸化触媒構造体である、請求項
25に記載の気体浄化方法。
【請求項27】
前記気体は、内燃機関から排出される気体である、請求項
26に記載の気体浄化方法。
【請求項28】
内燃機関から排出される気体を、請求項
17に記載の自動車の排気ガス処理装置で浄化する、気体浄化方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、排気ガス浄化用酸化触媒構造体及びその製造方法、自動車の排気ガス処理装置、触媒成形体、並びに気体浄化方法に関する。
【背景技術】
【0002】
近年の環境意識の高まりに伴い、自動車の排気ガス規制が厳しくなっている。自動車から排出される排気ガス中には一酸化炭素(CO)、炭化水素(HC;Hydrocarbon)、粒子状物質(PM;Particulate Matter)等の有害物質が含まれる。環境基準により、排気ガス中のこれらの有害物質量を所定の濃度以下にすることが要求される。特に、ディーゼルエンジンを搭載した自動車から排出される排気ガス中には多量の有害物質が含まれるため、排気ガス中の有害物質量を低減することが強く要望されている。
【0003】
そこで、従来から、自動車には排気ガス処理装置が内蔵され、環境基準に適合するように、排気ガス中の有害物質量を低減することが行われている。例えば、一酸化炭素、炭化水素等の気体状の有害物質は酸化触媒により酸化することで無害化する方法が採用されている。また、粒子状物質はフィルタにより捕集・除去されている。しかし、使用時間の経過と共にフィルタ中に粒子状物質が堆積し、フィルタ中の圧損を上昇させることにより、粒子状物質の捕集効率が低下する。また、フィルタ中に堆積した粒子状物質は、エンジン出力の低下や燃費悪化の原因となる。ここで、この粒子状物質は固体すすや可溶性有機成分(SOF;Soluble Organic Fraction)等から構成される。そこで、フィルタ中に捕集された粒子状物質を燃焼させて酸化することで粒子状物質を除去し、フィルタの再生を行っている。
【0004】
上記のような気体状の有害物質及び粒子状物質の酸化を効率的に行うために通常、酸化触媒が使用される。この酸化触媒は一般的に、耐熱性の担持体により担持させた形態のものが用いられている。
特許文献1では、ディーゼル自動車の排気ガス浄化用触媒構造体として、基材セラミック表面にセラミック担体を配置し、該セラミック担体に主触媒成分及び助触媒成分の双方を担持させたセラミック触媒体が提案されている。このセラミック触媒体では、γ-アルミナからなるセラミック担体の表面に、結晶格子中の格子欠陥等からなる多数の細孔が形成されており、Ce-Zr、Pt等からなる主触媒成分がセラミック担体の表面近傍に直接担持された構成を有している。
また、非特許文献1は、CO酸化反応における、様々な金属および金属酸化物からなる酸化触媒の触媒活性を報告している。より具体的には、Ag2O、Co3O4、MnO2、CuO、NiO、Cr2O3、Fe2O3、SnO2、CdO、ZnO、TiO2、V2O5、MoO3、WO3、Bi2O3、MgO、Al2O3、SiO2、Pd、Pt、AuなどがCO酸化反応の触媒活性を有することを報告している(表1)。
【先行技術文献】
【特許文献】
【0005】
【文献】米国特許出願公開第20030109383号明細書
【非特許文献】
【0006】
【文献】石油学会誌(1994年)、37巻、5号、480~491頁
【発明の概要】
【発明が解決しようとする課題】
【0007】
自動車において、酸化触媒を有する排気ガス処理装置の後段(排気ガスが流れる方向の下流側)には通常、排気ガス中の他の有害物質を除去する装置が配置される。例えば、酸化触媒を有する排気ガス処理装置の後段には、排気ガス中に含まれる窒素酸化物(ノックス;NOx)の還元装置が配置される。この還元装置としては現在、尿素の加水分解によって生じるアンモニア(NH3)により窒素酸化物の還元を行うものが主流となっている。ここで、排気ガスが高温になると、排気ガス処理装置中に担持された酸化触媒が後段の還元装置にまで飛散する場合があった。このように飛散した酸化触媒は後段の還元装置内に混入する。酸化触媒としてPt等の酸化力の高い触媒を使用した場合、還元装置中のアンモニアが酸化触媒によって酸化され、窒素酸化物となる。このため、還元装置中のアンモニアは排気ガス中の窒素酸化物を還元するように機能できなくなり、還元装置による窒素酸化物の浄化率が低下することとなっていた。
【0008】
また、自動車の運転中、自動車からは高温の排気ガスが長時間、排出される。従って、酸化触媒には、長期使用時における安定性と信頼性の確保、及び優れた耐熱性が求められる。ここで、従来から使用されている酸化触媒は、常温常圧下で担持体の表面に分散して担持されている。しかし、酸化触媒が機能する300℃以上の温度領域では、担持体上を酸化触媒が移動し、酸化触媒同士が凝集・融合(シンタリング)することとなっていた。このため、酸化触媒の有効表面積が低下して、触媒活性が低下していた。また、通常の排気ガス処理装置ではこのような触媒活性の低下を想定して予め担持体上に過剰量の酸化触媒を担持させているため、必要以上の酸化触媒が必要となっていた。このため、コストを増加させる原因となっていた。
【0009】
更に、自動車からの排気ガス中には、酸化触媒の触媒毒となる成分が含まれる場合があった。例えば、酸化触媒としてパラジウム(Pd)を使用し、排気ガス中に二酸化硫黄(SO2)が含まれる場合、二酸化硫黄はパラジウムに強く化学吸着して酸化触媒の表面に安定した吸着層を形成していた。この結果、酸化触媒の活性が低下して、目的とする有害物質の浄化機能が著しく低下していた。そこで、従来から、酸化触媒を定期的に加熱して、酸化触媒に吸着した触媒毒を熱脱離させることにより、酸化触媒の再賦活を行っていた。しかし、このような酸化触媒の加熱処理を行うと、上記のように酸化触媒の凝集・融合が起こり、その触媒活性が低下するという問題があった。
本発明の目的は、酸化触媒の触媒機能の低下を抑制して長寿命化を実現することができ、煩雑な交換作業を要せず、省資源化を図ることができる、排気ガス浄化用酸化触媒構造体及びその製造方法、自動車の排気ガス処理装置、触媒成形体、並びに気体浄化方法を提供することにある。
【課題を解決するための手段】
【0010】
本発明者らは、上記目的を達成するために鋭意研究を重ねた結果、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒とを備え、担体が互いに連通する通路を有し、酸化触媒が担体の少なくとも通路に存在している、排気ガス浄化用酸化触媒構造体とすることによって、酸化触媒の機能(例えば触媒機能等)の低下が抑制され、長寿命化を実現できる排気ガス浄化用酸化触媒構造体等が得られることを見出し、かかる知見に基づき本発明を完成させるに至ったものである。
【0011】
本発明の要旨構成は、以下のとおりである。
[1]ゼオライト型化合物で構成される多孔質構造の担体と、
前記担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒と、
を備え、
前記担体が、互いに連通する通路を有し、
前記酸化触媒が、前記担体の少なくとも前記通路に存在している、排気ガス浄化用酸化触媒構造体。
[2]前記金属酸化物は、少なくとも一つのペロブスカイト型酸化物を含有する、上記[1]に記載の排気ガス浄化用酸化触媒構造体。
[3]前記通路は、前記ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれとも異なる拡径部とを有し、かつ
前記酸化触媒が、少なくとも前記拡径部に存在している、上記[1]または[2]に記載の排気ガス浄化用酸化触媒構造体。
[4]前記拡径部は、前記一次元孔、前記二次元孔及び前記三次元孔のうちのいずれかを構成する複数の孔同士を連通している、上記[3]に記載の排気ガス浄化用酸化触媒構造体。
[5]前記酸化触媒は、金属微粒子および金属酸化物微粒子からなる群から選択される少なくとも一種の酸化触媒微粒子であり、
前記酸化触媒微粒子の平均粒径が、前記通路の平均内径よりも大きく、且つ前記拡径部の内径以下である、上記[3]または[4]に記載の排気ガス浄化用酸化触媒構造体。
[6]前記酸化触媒微粒子は、コバルト、鉄、銅、銀、マンガン、ニッケル、クロム、スズ、亜鉛、チタン、および白金から選択される少なくとも1種の金属、並びに前記金属の酸化物からなる群から選択される、上記[5]に記載の排気ガス浄化用酸化触媒構造体。
[7]前記通路の平均内径は、0.1nm~1.5nmであり、前記拡径部の内径は、0.5nm~50nmである、上記[5]または[6]に記載の排気ガス浄化用酸化触媒構造体。
[8]前記酸化触媒微粒子の金属元素(M)が、前記酸化触媒に対して0.5~2.5質量%で含有されている、上記[5]~[7]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[9]前記金属酸化物微粒子の平均粒径が、0.1nm~50nmである、上記[5]~[8]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[10]前記金属酸化物微粒子の平均粒径が、0.5nm~14.0nmである、上記[9]に記載の排気ガス浄化用酸化触媒構造体。
[11]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.06~500である、上記[5]~[10]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[12]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、0.1~36である、上記[11]に記載の排気ガス浄化用酸化触媒構造体。
[13]前記通路の平均内径に対する前記金属酸化物微粒子の平均粒径の割合が、1.7~4.5である、上記[12]に記載の排気ガス浄化用酸化触媒構造体。
[14]前記金属微粒子の平均粒径が、0.08nm~30nmである、上記[5]~[13]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[15]前記金属微粒子の平均粒径が、0.4nm~11.0nmである、上記[14]に記載の排気ガス浄化用酸化触媒構造体。
[16]前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.05~300である、上記[5]~[15]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[17]前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、0.1~30である、上記[16]に記載の排気ガス浄化用酸化触媒構造体。
[18]前記通路の平均内径に対する前記金属微粒子の平均粒径の割合が、1.4~3.6である、上記[17]に記載の排気ガス浄化用酸化触媒構造体。
[19]前記担体の外表面に保持された少なくとも1つの他の機能性物質を更に備える、上記[1]~[18]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[20]前記担体に内在する前記少なくとも一種の酸化触媒の含有量が、前記担体の外表面に保持された前記少なくとも1つの他の機能性物質の含有量よりも大きい、上記[19]に記載の排気ガス浄化用酸化触媒構造体。
[21]前記ゼオライト型化合物は、ケイ酸塩化合物である、上記[1]~[20]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体。
[22]上記[1]~[21]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体を有する、自動車の排気ガス処理装置。
[23]ハニカム状基材と、前記ハニカム状基材の表面上に上記[1]~[21]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体とを有する、触媒成形体。
[24]ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、
前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理することにより前記担体および前記担体に内在する酸化触媒を得る、水熱処理工程と、
を有する、排気ガス浄化用酸化触媒構造体の製造方法。
[25]前記水熱処理工程の後に更に、前記水熱処理された前駆体材料(C)に還元処理を行う工程を有する、上記[24]に記載の排気ガス浄化用酸化触媒構造体の製造方法。
[26]前記焼成工程の前に、非イオン性界面活性剤を、前記前駆体材料(A)に対して50~500質量%添加する、上記[24]または[25]に記載の排気ガス浄化用酸化触媒構造体の製造方法。
[27]前記焼成工程の前に、前記前駆体材料(A)に前記金属含有溶液を複数回に分けて添加することで、前記前駆体材料(A)に前記金属含有溶液を含浸させる、上記[24]~[26]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体の製造方法。
[28]前記焼成工程の前に前記前駆体材料(A)に前記金属含有溶液を含浸させる際に、前記前駆体材料(A)に添加する前記金属含有溶液の添加量を、前記前駆体材料(A)に添加する前記金属含有溶液中に含まれる金属元素(M)に対する、前記前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整する、上記[24]~[27]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体の製造方法。
[29]前記水熱処理工程において、前記前駆体材料(C)と構造規定剤とを混合する、上記[24]または[25]に記載の排気ガス浄化用酸化触媒構造体の製造方法。
[30]前記水熱処理工程が塩基性雰囲気下で行われる、上記[25]または[26]に記載の排気ガス浄化用酸化触媒構造体の製造方法。
[31]触媒構造体を用いて、一酸化炭素と炭化水素とを含有する気体を浄化する気体浄化方法であって、
前記触媒構造体は、ゼオライト型化合物で構成される多孔質構造の担体と、前記担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒とを備え、前記担体が互いに連通する通路を有し、前記酸化触媒が前記担体の少なくとも前記通路に存在している、気体浄化方法。
[32]前記触媒構造体は、上記[1]~[21]のいずれか1つに記載の排気ガス浄化用酸化触媒構造体である、上記[31]に記載の気体浄化方法。
[33]前記気体は、内燃機関から排出される気体である、上記[32]に記載の気体浄化方法。
[34]内燃機関から排出される気体を、上記[22]に記載の自動車の排気ガス処理装置で浄化する、気体浄化方法。
【発明の効果】
【0012】
酸化触媒の触媒機能の低下を抑制して長寿命化を実現することができ、煩雑な交換作業を要せず、省資源化を図ることができる、排気ガス浄化用酸化触媒構造体及びその製造方法、自動車の排気ガス処理装置、触媒成形体、並びに気体浄化方法を提供することができる。
【図面の簡単な説明】
【0013】
【
図1】
図1は、本発明の実施形態に係る排気ガス浄化用酸化触媒構造体の内部構造が分かるように概略的に示したものであって、
図1(a)は斜視図(一部を横断面で示す。)、
図1(b)は部分拡大断面図である。
【
図2】
図2は、
図1の排気ガス浄化用酸化触媒構造体の機能の一例を説明するための部分拡大断面図であり、
図2(a)は篩機能、
図2(b)は触媒機能を説明する図である。
【
図3】
図3は、
図1の排気ガス浄化用酸化触媒構造体の製造方法の一例を示すフローチャートである。
【
図4】
図4は、
図1の排気ガス浄化用酸化触媒構造体の変形例を示す模式図である。
【発明を実施するための形態】
【0014】
以下、本発明の実施形態を、図面を参照しながら詳細に説明する。
【0015】
[排気ガス浄化用酸化触媒構造体の構成]
一実施形態の排気ガス浄化用酸化触媒構造体は、ゼオライト型化合物で構成される多孔質構造の担体と、担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒とを備え、担体が互いに連通する通路を有し、酸化触媒が担体の少なくとも前記通路に存在している。
図1は、本発明の実施形態に係る排気ガス浄化用酸化触媒構造体の構成を概略的に示す図であり、(a)は斜視図(一部を横断面で示す。)、(b)は部分拡大断面図である。なお、
図1における排気ガス浄化用酸化触媒構造体は、その一例を示すものであり、本発明に係る各構成の形状、寸法等は、
図1のものに限られないものとする。
【0016】
図1(a)に示されるように、排気ガス浄化用酸化触媒構造体1は、ゼオライト型化合物で構成される多孔質構造の担体10と、該担体10に内在する、少なくとも1つの酸化触媒20とを備える。
【0017】
酸化触媒20は、単独で、または担体10と協働することで、触媒機能を有する触媒物質である。なお、担体10は、触媒物質を担持する担体である。酸化触媒20は触媒機能以外の一または複数の機能を有してもよく、触媒機能以外の機能としては例えば、発光(或いは蛍光)機能、吸光機能、識別機能等を挙げることができる。
【0018】
排気ガス浄化用酸化触媒構造体1において、複数の酸化触媒20,20,・・・は、担体10の多孔質構造の内部に存在し、好適には包接されている。酸化触媒20の一例である触媒物質は金属および金属酸化物からなる群から選択される少なくとも一種であり、金属酸化物は少なくとも一つのペロブスカイト型酸化物を含有してもよい。好ましくは、酸化触媒20は、金属微粒子および金属酸化物微粒子からなる群から選択される少なくとも一種の酸化触媒微粒子である。金属微粒子および金属酸化物微粒子については、詳しくは後述する。
【0019】
担体10は、多孔質構造であり、
図1(b)に示すように、好適には複数の孔11a,11a,・・・が形成されることにより、互いに連通する通路11を有する。ここで酸化触媒20は、担体10の少なくとも通路11に存在しており、好ましくは担体10の少なくとも通路11に保持されている。
【0020】
このような構成により、担体10内での酸化触媒20の移動が規制され、酸化触媒20、20同士の凝集が有効に防止されている。その結果、酸化触媒20としての有効表面積の減少を効果的に抑制することができ、酸化触媒20の機能は長期にわたって持続する。すなわち、排気ガス浄化用酸化触媒構造体1によれば、酸化触媒20の凝集による機能の低下を抑制でき、排気ガス浄化用酸化触媒構造体1としての長寿命化を図ることができる。また、排気ガス浄化用酸化触媒構造体1の長寿命化により、排気ガス浄化用酸化触媒構造体1の交換頻度を低減でき、使用済みの排気ガス浄化用酸化触媒構造体1の廃棄量を大幅に低減することができ、省資源化を図ることができる。
【0021】
通常、排気ガス浄化用酸化触媒構造体を、流体(例えば、一酸化炭素(CO)、炭化水素(HC)、粒子状物質(PM)などを含んだ排気ガス)の中で用いる場合、流体から外力を受ける可能性がある。この場合、酸化触媒が、担体10の外表面に付着状態で保持されているだけであると、流体からの外力の影響で担体10の外表面から離脱しやすいという問題がある。これに対し、排気ガス浄化用酸化触媒構造体1では、酸化触媒20は担体10の少なくとも通路11に存在しているため、流体による外力の影響を受けたとしても、担体10から酸化触媒20が離脱しにくい。すなわち、排気ガス浄化用酸化触媒構造体1が流体内にある場合、流体は担体10の孔11aから、通路11内に流入するため、通路11内を流れる流体の速さは、流路抵抗(摩擦力)により、担体10の外表面を流れる流体の速さに比べて、遅くなると考えられる。このような流路抵抗の影響により、通路11内に存在する酸化触媒20が流体から受ける圧力は、担体10の外部において酸化触媒が流体から受ける圧力に比べて低くなる。そのため、担体11に内在する酸化触媒20が離脱することを効果的に抑制でき、酸化触媒20の機能を長期的に安定して維持することが可能となる。なお、上記のような流路抵抗は、担体10の通路11が、曲がりや分岐を複数有し、担体10の内部がより複雑で三次元的な立体構造となっているほど、大きくなると考えられる。
【0022】
また、通路11は、ゼオライト型化合物の骨格構造によって画定される一次元孔、二次元孔及び三次元孔のうちのいずれかと、上記一次元孔、上記二次元孔及び上記三次元孔のうちのいずれとも異なる拡径部12とを有していることが好ましく、このとき、酸化触媒20は、少なくとも拡径部12に存在していることが好ましく、少なくとも拡径部12に包接されていることがより好ましい。ここでいう一次元孔とは、一次元チャンネルを形成しているトンネル型またはケージ型の孔、もしくは複数の一次元チャンネルを形成しているトンネル型またはケージ型の複数の孔(複数の一次元チャンネル)を指す。また、二次元孔とは、複数の一次元チャンネルが二次元的に連結された二次元チャンネルを指し、三次元孔とは、複数の一次元チャンネルが三次元的に連結された三次元チャンネルを指す。これにより、酸化触媒20の担体10内での移動がさらに規制され、酸化触媒20の離脱や、酸化触媒20、20同士の凝集をさらに有効に防止することができる。包接とは、酸化触媒20が担体10に内包されている状態を指す。このとき酸化触媒20と担体10とは、必ずしも直接的に互いが接触している必要はなく、酸化触媒20と担体10との間に他の物質(例えば、界面活性剤等)が介在した状態で、酸化触媒20が担体10に間接的に存在してもよい。
【0023】
図1(b)では酸化触媒20が拡径部12に存在している場合を示しているが、この構成だけには限定されず、酸化触媒20は、その一部が拡径部12の外側にはみ出した状態で通路11に存在してもよい。また、酸化触媒20は、拡径部12以外の通路11の部分(例えば通路11の内壁部分)に部分的に埋設され、または固着等によって存在してもよい。また、拡径部12は、上記一次元孔、上記二次元孔及び上記三次元孔のうちのいずれかを構成する複数の孔11a,11a同士を連通しているのが好ましい。これにより、担体10の内部に、一次元孔、二次元孔又は三次元孔とは異なる別途の通路が設けられるので、酸化触媒20の機能をより発揮させることができる。
【0024】
また、通路11は、担体10の内部に、分岐部または合流部を含んで三次元的に形成されており、拡径部12は、通路11の上記分岐部または合流部に設けられるのが好ましい。
【0025】
担体10に形成された通路11の平均内径DFは、上記一次元孔、二次元孔及び三次元孔のうちのいずれかを構成する孔11aの短径及び長径の平均値から算出され、例えば0.1nm~1.5nmであり、好ましくは0.5nm~0.8nmである。また、拡径部12の内径DEは、例えば0.5nm~50nmであり、好ましくは1.1nm~40nm、より好ましくは1.1nm~3.3nmである。拡径部12の内径DEは、例えば後述する前駆体材料(A)の細孔径、及び存在する酸化触媒20の平均粒径DCに依存する。拡径部12の内径DEは、酸化触媒20が存在し得る大きさである。
【0026】
担体10は、ゼオライト型化合物で構成される。ゼオライト型化合物としては、例えば、ゼオライト(アルミノケイ酸塩)、陽イオン交換ゼオライト、シリカライト等のケイ酸塩化合物、アルミノホウ酸塩、アルミノヒ酸塩、ゲルマニウム酸塩等のゼオライト類縁化合物、リン酸モリブデン等のリン酸塩系ゼオライト類似物質などが挙げられる。中でも、ゼオライト型化合物はケイ酸塩化合物であることが好ましい。
【0027】
ゼオライト型化合物の骨格構造は、FAU型(Y型またはX型)、MTW型、MFI型(ZSM-5)、FER型(フェリエライト)、LTA型(A型)、MWW型(MCM-22)、MOR型(モルデナイト)、LTL型(L型)、BEA型(ベータ型)などの中から選択され、好ましくはMFI型であり、より好ましくはZSM-5である。ゼオライト型化合物には、各骨格構造に応じた孔径を有する孔が複数形成されており、例えばMFI型の最大孔径は0.636nm(6.36Å)、平均孔径0.560nm(5.60Å)である。
【0028】
以下、酸化触媒20が金属微粒子および金属酸化物微粒子である場合について詳しく説明する。
【0029】
酸化触媒20が金属微粒子および金属酸化物微粒子からなる群から選択される少なくとも一種の酸化触媒微粒子である場合、酸化触媒微粒子20は一次粒子である場合と、一次粒子が凝集して形成した二次粒子である場合とがあるが、酸化触媒微粒子20の平均粒径DCは、好ましくは通路11の平均内径DFよりも大きく、且つ拡径部12の内径DE以下である(DF<DC≦DE)。このような酸化触媒微粒子20は、通路11内に存在し、好適には拡径部12に包接されており、担体10内での酸化触媒微粒子20の移動が規制される。よって、酸化触媒微粒子20が流体から外力を受けた場合であっても、担体10内での酸化触媒微粒子20の移動が抑制され、担体10の通路11に分散配置された拡径部12、12、・・のそれぞれに存在する酸化触媒微粒子20、20、・・同士が接触するのを有効に防止することができる。
【0030】
また、酸化触媒20が金属微粒子である場合、該金属微粒子20の平均粒径DCは、一次粒子および二次粒子のいずれの場合も、好ましくは0.08nm~30nmであり、より好ましくは0.08nm以上25nm未満であり、さらに好ましくは0.4nm~11.0nmであり、特に好ましくは0.8nm~2.7nmである。また、通路11の平均内径DFに対する金属微粒子20の平均粒径DCの割合(DC/DF)は、好ましくは0.05~300であり、より好ましくは0.1~30であり、更に好ましくは1.1~30であり、特に好ましくは1.4~3.6である。また、酸化触媒20が金属微粒子である場合、金属微粒子の金属元素(M)は、排気ガス浄化用酸化触媒構造体1に対して0.5~2.5質量%で含有されているのが好ましく、排気ガス浄化用酸化触媒構造体1に対して0.5~1.5質量%で含有されているのがより好ましい。例えば、金属元素(M)がCoである場合、Co元素の含有量(質量%)は、{(Co元素の質量)/(排気ガス浄化用酸化触媒構造体1の全元素の質量)}×100で表される。
【0031】
上記金属微粒子20は、酸化されていない金属で構成されていればよく、例えば、単一の金属で構成されていてもよく、あるいは2種以上の金属の混合物で構成されていてもよい。なお、本明細書において、金属微粒子を構成する(材質としての)「金属」は、1種の金属元素(M)を含む単体金属と、2種以上の金属元素(M)を含む金属合金とを含む意味であり、1種以上の金属元素を含む金属の総称である。
【0032】
このような金属としては、金(Au)、銀(Ag)、ロジウム(Rh)、イリジウム(Ir)、オスミウム(Os)、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ニッケル(Ni)、コバルト(Co)、モリブデン(Mo)、タングステン(W)、鉄(Fe)、クロム(Cr)、セリウム(Ce)、銅(Cu)、マグネシウム(Mg)、アルミニウム(Al)、マンガン(Mn)、スズ(Sn)、亜鉛(Zn)、チタン(Ti)のいずれかまたは2種以上を主成分とする複合金属を挙げることができる。
【0033】
また、酸化触媒20が金属酸化物微粒子である場合には、金属酸化物微粒子20の平均粒径DCは、一次粒子および二次粒子のいずれの場合も、好ましくは0.1nm~50nmであり、より好ましくは0.1nm以上30nm未満であり、さらに好ましくは0.5nm~14.0nm、特に好ましくは1.0nm~3.3nmである。また、通路11の平均内径DFに対する金属酸化物微粒子20の平均粒径DCの割合(DC/DF)は、好ましくは0.06~500であり、より好ましくは0.1~36であり、更に好ましくは1.1~36であり、特に好ましくは1.7~4.5である。また、酸化触媒20が金属酸化物微粒子である場合、金属酸化物微粒子の金属元素(M)は、排気ガス浄化用酸化触媒構造体1に対して0.5~2.5質量%で含有されているのが好ましく、排気ガス浄化用酸化触媒構造体1に対して0.5~1.5質量%で含有されているのがより好ましい。例えば、金属元素(M)がCoである場合、Co元素の含有量(質量%)は、{(Co元素の質量)/(排気ガス浄化用酸化触媒構造体1の全元素の質量)}×100で表される。
【0034】
上記金属酸化物微粒子20は、金属酸化物で構成されていればよく、例えば、単一の金属酸化物で構成されていてもよく、あるいは2種以上の金属酸化物の混合物で構成されていてもよい。なお、本明細書において、金属酸化物微粒子を構成する(材質としての)「金属酸化物」は、1種の金属元素(M)を含む酸化物と、2種以上の金属元素(M)を含む複合酸化物とを含む意味であり、1種以上の金属元素(M)を含む酸化物の総称である。
【0035】
このような金属酸化物としては、例えば酸化コバルト(CoOx)、酸化ニッケル(NiOx)、酸化鉄(FeOx)、酸化銅(CuOx)、酸化ジルコニウム(ZrOx)、酸化セリウム(CeOx)、酸化アルミニウム(AlOx)、酸化ニオブ(NbOx)、酸化チタン(TiOx)、酸化ビスマス(BiOx)、酸化モリブデン(MoOx)、酸化バナジウム(VOx)、酸化クロム(CrOx)、酸化銀(AgOx)、酸化マンガン(MnOx)、酸化スズ(SnOx)、酸化亜鉛(ZnOx)等が挙げられ、上記のいずれか1種以上を主成分とすることができる。
【0036】
酸化触媒微粒子は、コバルト、鉄、銅、銀、マンガン、ニッケル、クロム、スズ、亜鉛、チタン、および白金から選択される少なくとも1種の金属、並びに前記金属の酸化物からなる群から選択されることが好ましい。非特許文献1にも示されるように、上記のような金属または金属酸化物からなる酸化触媒微粒子は、優れた酸化触媒活性を有する。
【0037】
また、金属酸化物微粒子は、金属酸化物として少なくとも一つのペロブスカイト型酸化物を含有してもよい。ペロブスカイト型酸化物は、希土類元素、アルカリ土類金属などのイオン半径の大きな(>0.90Å)金属イオン(Aイオン)と、イオン半径の小さな(>0.51Å)金属イオン(Bイオン)とからなるABO3型化合物である。触媒として重要なペロブスカイト型酸化物は、希土類元素(Aサイト)と遷移金属(Bサイト)との組み合わせを基礎とした化合物であり、その触媒特性はBサイト遷移金属の性質に主に依存する。内包させるペロブスカイト触媒種としては、ペロブスカイトの一般式 ABO3(A: 希土類元素およびアルカリ土類金属から選ばれる少なくとも1種の元素、B: 遷移金属元素から選ばれる少なくとも1種の元素)を満たし、かつ触媒活性を持つ化合物であれば特に限定されない。具体的にはペロブスカイト型酸化物として、LaBO3(B=Mn、Cr、Co、Fe、Al、Pd、Mg)、BaZrO3、La0.8Sr0.2Ga0.8Mg0.2O3(LSGM)、LaFe0.57Co0.38Pd0.05O3、Ba0.8La0.2Mn0.2O3等が挙げられる。金属酸化物微粒子20は例えば、単一のペロブスカイト型酸化物で構成されていてもよく、あるいは、2種以上のペロブスカイト型酸化物からなる複合酸化物や、ペロブスカイト型酸化物と他の酸化物からなる複合酸化物で構成されていてもよい。
【0038】
また、酸化触媒微粒子20を構成する金属元素(M)に対する、担体10を構成するケイ素(Si)の割合(原子数比Si/M)は、10~1000であるのが好ましく、50~200であるのがより好ましい。上記割合が1000より大きいと、活性が低く、酸化触媒としての作用が十分に得られない可能性がある。一方、上記割合が10よりも小さいと、酸化触媒微粒子20の割合が大きくなりすぎて、担体10の強度が低下する傾向がある。なお、ここでいう酸化触媒微粒子20は、担体10の内部に存在する微粒子をいい、担体10の外表面に付着した微粒子を含まない。
【0039】
[排気ガス浄化用酸化触媒構造体の機能]
排気ガス浄化用酸化触媒構造体1は、自動車の排気ガスに含まれる有害物質(例えば、一酸化炭素(CO)、炭化水素(HC)、粒子状物質(PM)など)を透過する分子篩能を有する。具体的には、
図2(a)に示すように、担体10の外表面10aに形成された孔11aの内径以下の大きさを有する有害物質15aが、担体10内に浸入することができ、孔11aの内径を超える大きさを有する排気ガス成分15bは、担体10内への浸入が規制される。この篩能により、孔11aに入ることができる有害物質を優先的に反応させることができる。また、上記反応によって孔11a内で生じた物質のうち、孔11aから担体10の外部に出ることができる物質のみを生成物として得ることができ、孔11aから担体10の外部に出ることができない物質は、孔11aから出ることできる大きさの物質に変換された後、孔11aから担体10の外部に出る。これにより、酸化触媒反応によって得られる生成物を所定の物質に規制することができる。
【0040】
また、排気ガス浄化用酸化触媒構造体1では、通路11の拡径部12に酸化触媒20が存在する。よって、孔11a、すなわち通路11に浸入した有害物質が酸化触媒20と接触する。また、酸化触媒20が、例えば金属微粒子または金属酸化物微粒子である場合、金属微粒子または金属酸化物微粒子の平均粒径DCが、通路11の平均内径DFよりも大きく、拡径部12の内径DEよりも小さい場合には(DF<DC<DE)、金属微粒子または金属酸化物微粒子と拡径部12との間に小通路13が形成され(図中の矢印)、小通路13に浸入した分子が、金属微粒子または金属酸化物微粒子と接触する。このとき、酸化触媒20は、拡径部12に存在することによってその移動が制限され、通路11に浸入した有害物質を含む流体との接触面積を維持することができる。そして、通路11に浸入した有害物質が酸化触媒20としての金属微粒子または金属酸化物微粒子に接触すると、酸化反応によって有害物質が無害化される。例えば、下記に示すように、排気ガス中の有害物質である一酸化炭素及び炭化水素は、効率的に二酸化炭素及び水に変換される。このように金属微粒子または金属酸化物微粒子の触媒による酸化処理を行うことにより、排気ガス中の有害物質量を効果的に低減することができる。
CO+1/2O2→CO2
CyHz+(y+z/4)O2→yCO2+z/2H2O
【0041】
同様に、排気ガス中の粒子状物質である固体すすや可溶性有機成分等も、酸化触媒20としての金属微粒子または金属酸化物微粒子による酸化反応によって、効率的に二酸化炭素及び水等に変換されて無害化される。例えば、フィルタ中に捕集された粒子状物質を酸化触媒20により酸化して他の物質に変換することにより、フィルタの再生を行うことができる。
【0042】
ここで、排気ガスが高温である場合、金属微粒子または金属酸化物微粒子20が排気ガスから受ける熱によって拡散し、拡散によって超微粒子化して、拡径部12から脱離することが懸念される。しかしながら、例えば粒径5nm程度の小さな金属微粒子または金属酸化物微粒子が、より小さい金属微粒子または金属酸化物微粒子として拡散する現象は不安定であり、拡散の進行には高い活性化エネルギーが必要とされる。このため、上記のような拡散は進行し難い。また、仮に拡散が進行した場合であっても、金属微粒子または金属酸化物微粒子20が超微粒子化するため、拡散後の触媒としての有効表面積は拡散前よりも増大することになる。また、通路11は、
図1(b)では簡略化して記載されているが、実際には金属微粒子または金属酸化物微粒子20の内在によって三次元的に複雑な構造を有しているため、通路11の内壁表面に沿う金属微粒子または金属酸化物微粒子の移動をある程度規制することが可能となり、金属微粒子または金属酸化物微粒子の移動に因る凝集(シンタリング)を抑制することができるものと推察される。更に、金属微粒子または金属酸化物微粒子20が拡径部12から脱離した場合であっても、通路11の上記構造により、金属微粒子または金属酸化物微粒子が担体10内に留まる時間が長くなると推察される。したがって、金属微粒子または金属酸化物微粒子20が拡径部12に存在することで、酸化触媒としての機能を長期的に発揮することが可能となる。また、酸化触媒の触媒機能の低下を抑制して長寿命化を実現することができ、煩雑な交換作業を要せず、省資源化を図ることができる。
【0043】
[自動車の排気ガス処理装置]
一実施形態では、排気ガス浄化用酸化触媒構造体を有する自動車の排気ガス処理装置が提供されてもよい。自動車の排気ガス処理装置は、排気ガス浄化用酸化触媒構造体を単独で有していても良いし、排気ガス浄化用還元触媒構造体等の他の触媒構造体や、粒子状物質の捕集フィルタ等と組み合わせても良い。このような構成を有する装置に排気ガス浄化用酸化触媒構造体を用いることで、上記と同様の効果を奏することができる。一実施形態の気体浄化方法では、内燃機関から排出される気体を自動車の排気ガス処理装置で浄化することが好ましい。
【0044】
[排気ガス浄化用酸化触媒構造体の製造方法]
一実施形態の排気ガス浄化用酸化触媒構造体の製造方法は、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成する焼成工程と、前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理することにより担体および担体に内在する酸化触媒を得る、水熱処理工程と、を有する。
図3は、
図1の排気ガス浄化用酸化触媒構造体1の製造方法を示すフローチャートである。以下、担体に内在する酸化触媒が金属微粒子および金属酸化物微粒子である場合を例に、排気ガス浄化用酸化触媒構造体の製造方法の一例を説明する。
【0045】
(ステップS1:準備工程)
図3に示すように、先ず、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)を準備する。前駆体材料(A)は、好ましくは規則性メソ細孔物質であり、排気ガス浄化用酸化触媒構造体の担体を構成するゼオライト型化合物の種類(組成)に応じて適宜、選択できる。
【0046】
ここで、排気ガス浄化用酸化触媒構造体を構成するゼオライト型化合物がケイ酸塩化合物である場合には、規則性メソ細孔物質は、細孔径1~50nmの細孔が1次元、2次元または3次元に均一な大きさかつ規則的に発達したSi-O骨格からなる化合物であることが好ましい。このような規則性メソ細孔物質は、合成条件によって様々な合成物として得られるが、合成物の具体例としては、例えばSBA-1、SBA-15、SBA-16、KIT-6、FSM-16、MCM-41等が挙げられ、中でもMCM-41が好ましい。なお、SBA-1の細孔径は10~30nm、SBA-15の細孔径は6~10nm、SBA-16の細孔径は6nm、KIT-6の細孔径は9nm、FSM-16の細孔径は3~5nm、MCM-41の細孔径は1~10nmである。また、このような規則性メソ細孔物質としては、例えばメソポーラスシリカ、メソポーラスアルミノシリケート、メソポーラスメタロシリケート等が挙げられる。
【0047】
前駆体材料(A)は、市販品および合成品のいずれであってもよい。前駆体材料(A)を合成する場合には、公知の規則性メソ細孔物質の合成方法により行うことができる。例えば、前駆体材料(A)の構成元素を含有する原料と、前駆体材料(A)の構造を規定するための鋳型剤とを含む混合溶液を調製し、必要に応じてpHを調整して、水熱処理(水熱合成)を行う。その後、水熱処理により得られた沈殿物(生成物)を回収(例えば、ろ別)し、必要に応じて洗浄および乾燥し、さらに焼成することで、粉末状の規則性メソ細孔物質である前駆体材料(A)が得られる。ここで、混合溶液の溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。また、原料は、担体の種類に応じて選択されるが、例えばテトラエトキシシラン(TEOS)等のシリカ剤、フュームドシリカ、石英砂等が挙げられる。また、鋳型剤としては、各種界面活性剤、ブロックコポリマー等を用いることができ、規則性メソ細孔物質の合成物の種類に応じて選択することが好ましく、例えばMCM-41を作製する場合にはヘキサデシルトリメチルアンモニウムブロミド等の界面活性剤が好適である。水熱処理は、例えば、密閉容器内で、80~800℃、5時間~240時間、0~2000kPaの処理条件で行うことができる。焼成処理は、例えば、空気中で、350~850℃、2時間~30時間の処理条件で行うことができる。
【0048】
(ステップ2:含浸工程)
次に、準備した前駆体材料(A)に、金属含有溶液を含浸させ、前駆体材料(B)を得る。
【0049】
金属含有溶液は、排気ガス浄化用酸化触媒構造体の金属微粒子および金属酸化物微粒子を構成する金属元素(M)に対応する金属成分(例えば、金属イオン)を含有する溶液であればよく、例えば、溶媒に、金属元素(M)を含有する金属塩を溶解させることにより調製できる。このような金属塩としては、例えば、塩化物、水酸化物、酸化物、硫酸塩、硝酸塩等の金属塩が挙げられ、中でも硝酸塩が好ましい。溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。
【0050】
前駆体材料(A)に金属含有溶液を含浸させる方法は、特に限定されないが、例えば、後述する焼成工程の前に、粉末状の前駆体材料(A)を撹拌しながら、金属含有溶液を複数回に分けて少量ずつ添加することが好ましい。また、前駆体材料(A)の細孔内部に金属含有溶液がより浸入し易くなる観点から、前駆体材料(A)に、金属含有溶液を添加する前に予め、添加剤として界面活性剤を添加しておくことが好ましい。このような添加剤は、前駆体材料(A)の外表面を被覆する働きがあり、その後に添加される金属含有溶液が前駆体材料(A)の外表面に付着することを抑制し、金属含有溶液が前駆体材料(A)の細孔内部により浸入し易くなると考えられる。
【0051】
このような添加剤としては、例えばポリオキシエチレンオレイルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル等の非イオン性界面活性剤が挙げられる。これらの界面活性剤は、分子サイズが大きく前駆体材料(A)の細孔内部には浸入できないため、細孔の内部に付着することは無く、金属含有溶液が細孔内部に浸入することを妨げないと考えられる。非イオン性界面活性剤の添加方法としては、例えば、後述する焼成工程の前に、非イオン性界面活性剤を、前駆体材料(A)に対して50~500質量% 添加するのが好ましい。非イオン性界面活性剤の前駆体材料(A)に対する添加量が50質量%未満であると上記の抑制作用が発現し難く、非イオン性界面活性剤を前駆体材料(A)に対して500質量%よりも多く添加すると粘度が上がりすぎるので好ましくない。よって、非イオン性界面活性剤の前駆体材料(A)に対する添加量を上記範囲内の値とする。
【0052】
また、前駆体材料(A)に添加する金属含有溶液の添加量は、前駆体材料(A)に含浸させる金属含有溶液中に含まれる金属元素(M)の量(すなわち、前駆体材料(B)に内在させる金属元素(M)の量)を考慮して、適宜調整することが好ましい。例えば、後述する焼成工程の前に、前駆体材料(A)に添加する金属含有溶液の添加量を、前駆体材料(A)に添加する金属含有溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算して、10~1000となるように調整することが好ましく、50~200となるように調整することがより好ましい。例えば、前駆体材料(A)に金属含有溶液を添加する前に、添加剤として界面活性剤を前駆体材料(A)に添加した場合、前駆体材料(A)に添加する金属含有溶液の添加量を、原子数比Si/Mに換算して50~200とすることで、金属微粒子および金属酸化物微粒子の金属元素(M)を、排気ガス浄化用酸化触媒構造体に対して0.5~2.5質量%で含有させることができる。前駆体材料(B)の状態で、その細孔内部に存在する金属元素(M)の量は、金属含有溶液の金属濃度や、上記添加剤の有無、その他温度や圧力等の諸条件が同じであれば、前駆体材料(A)に添加する金属含有溶液の添加量に概ね比例する。また、前駆体材料(B)に内在する金属元素(M)の量は、排気ガス浄化用酸化触媒構造体の担体に内在する金属微粒子および金属酸化物微粒子を構成する金属元素の量と比例関係にある。したがって、前駆体材料(A)に添加する金属含有溶液の添加量を上記範囲に制御することにより、前駆体材料(A)の細孔内部に金属含有溶液を十分に含浸させることができ、ひいては、排気ガス浄化用酸化触媒構造体の担体に内在させる金属微粒子および金属酸化物微粒子の量を調整することができる。
【0053】
前駆体材料(A)に金属含有溶液を含浸させた後は、必要に応じて、洗浄処理を行ってもよい。洗浄溶液として、水、またはアルコール等の有機溶媒、若しくはこれらの混合溶液を用いることができる。また、前駆体材料(A)に金属含有溶液を含浸させ、必要に応じて洗浄処理を行った後、さらに乾燥処理を施すことが好ましい。乾燥処理としては、一晩程度の自然乾燥や、150℃以下の高温乾燥が挙げられる。なお、金属含有溶液に含まれる水分や、洗浄溶液の水分が、前駆体材料(A)に多く残った状態で、後述の焼成処理を行うと、前駆体材料(A)の規則性メソ細孔物質としての骨格構造が壊れる恐れがあるので、十分に乾燥するのが好ましい。
【0054】
(ステップS3:焼成工程)
次に、ゼオライト型化合物で構成される多孔質構造の担体を得るための前駆体材料(A)に金属含有溶液が含浸された前駆体材料(B)を焼成して、前駆体材料(C)を得る。
【0055】
焼成処理は、例えば、空気中で、350~850℃、2時間~30時間の処理条件で行うことが好ましい。このような焼成処理により、規則性メソ細孔物質の孔内に含浸された金属成分が結晶成長して、孔内で金属微粒子または金属酸化物微粒子が形成される。
【0056】
(ステップS4:水熱処理工程)
次いで、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製し、前記前駆体材料(B)を焼成して得られた前駆体材料(C)を水熱処理して、排気ガス浄化用酸化触媒構造体を得る。
【0057】
構造規定剤は、排気ガス浄化用酸化触媒構造体の担体の骨格構造を規定するための鋳型剤であり、例えば界面活性剤を用いることができる。構造規定剤は、排気ガス浄化用酸化触媒構造体の担体の骨格構造に応じて選択することが好ましく、例えばテトラメチルアンモニウムブロミド(TMABr)、テトラエチルアンモニウムブロミド(TEABr)、テトラプロピルアンモニウムブロミド(TPABr)等の界面活性剤が好適である。
【0058】
前駆体材料(C)と構造規定剤との混合は、本水熱処理工程時に行ってもよいし、水熱処理工程の前に行ってもよい。また、上記混合溶液の調製方法は、特に限定されず、前駆体材料(C)と、構造規定剤と、溶媒とを同時に混合してもよいし、溶媒に前駆体材料(C)と構造規定剤とをそれぞれ個々の溶液に分散させた状態にした後に、それぞれの分散溶液を混合してもよい。溶媒としては、例えば水、またはアルコール等の有機溶媒、若しくはこれらの混合溶媒等を用いることができる。また、混合溶液は、水熱処理を行う前に、酸または塩基を用いてpHを調整しておくことが好ましい。
【0059】
水熱処理は、公知の方法で行うことができ、例えば、密閉容器内で、80~800℃、5時間~240時間、0~2000kPaの処理条件で行うことが好ましい。また、水熱処理は、塩基性雰囲気下で行われることが好ましい。ここでの反応メカニズムは必ずしも明らかではないが、前駆体材料(C)を原料として水熱処理を行うことにより、前駆体材料(C)の規則性メソ細孔物質としての骨格構造は次第に崩れるが、前駆体材料(C)の細孔内部での金属微粒子および金属酸化物微粒子の位置は概ね維持されたまま、構造規定剤の作用により、排気ガス浄化用酸化触媒構造体の担体としての新たな骨格構造(多孔質構造)が形成される。このようにして得られた排気ガス浄化用酸化触媒構造体は、多孔質構造の担体と、担体に内在する金属微粒子および金属酸化物微粒子からなる群から選択される少なくとも一つの酸化触媒を備え、さらに担体はその多孔質構造により複数の孔が互いに連通した通路を有し、酸化触媒はその少なくとも一部分が担体の通路に存在している。また、本実施形態では、上記水熱処理工程において、前駆体材料(C)と構造規定剤とを混合した混合溶液を調製して、前駆体材料(C)を水熱処理しているが、これに限らず、前駆体材料(C)と構造規定剤とを混合すること無く、前駆体材料(C)を水熱処理してもよい。
【0060】
水熱処理後に得られる沈殿物(排気ガス浄化用酸化触媒構造体)は、回収(例えば、ろ別)後、必要に応じて洗浄、乾燥および焼成することが好ましい。洗浄溶液としては、水、またはアルコール等の有機溶媒、若しくはこれらの混合溶液を用いることができる。乾燥処理としては、一晩程度の自然乾燥や、150℃以下の高温乾燥が挙げられる。なお、沈殿物に水分が多く残った状態で、焼成処理を行うと、排気ガス浄化用酸化触媒構造体の担体としての骨格構造が壊れる恐れがあるので、十分に乾燥するのが好ましい。また、焼成処理は、例えば、空気中で、350~850℃、2~30時間の処理条件で行うことができる。このような焼成処理により、排気ガス浄化用酸化触媒構造体に付着していた構造規定剤が焼失する。また、排気ガス浄化用酸化触媒構造体は、使用目的に応じて、回収後の沈殿物を焼成処理することなくそのまま用いることもできる。例えば、排気ガス浄化用酸化触媒構造体の使用する環境が、酸化性雰囲気の高温環境である場合には、使用環境に一定時間晒すことで、構造規定剤は焼失し、焼成処理した場合と同様の排気ガス浄化用酸化触媒構造体が得られるので、そのまま使用することが可能となる。
【0061】
以上説明した製造方法は、前駆体材料(A)に含浸させる金属含有溶液に含まれる金属元素(M)が、酸化され難い金属種(例えば、貴金属)である場合の一例である。
【0062】
前駆体材料(A)に含浸させる金属含有溶液中に含まれる金属元素(M)が、酸化され易い金属種(例えば、Fe、Co、Cu等)であり、酸化触媒として金属微粒子を用いる場合には、上記水熱処理工程後に、水熱処理された前駆体材料(C)に還元処理を行うことが好ましい。金属含有溶液中に含まれる金属元素(M)が、酸化され易い金属種である場合、含浸処理(ステップS2)の後の工程(ステップS3~4)における熱処理により、金属成分が酸化されてしまう。そのため、水熱処理工程(ステップS4)で形成される担体には、金属酸化物微粒子が内在することになる。そのため、担体に金属微粒子が内在する排気ガス浄化用酸化触媒構造体を得るためには、上記水熱処理後に、回収した沈殿物を焼成処理し、さらに水素ガス等の還元ガス雰囲気下で還元処理することが望ましい。還元処理を行うことにより、担体に内在する金属酸化物微粒子が還元され、金属酸化物微粒子を構成する金属元素(M)に対応する金属微粒子が形成される。その結果、担体に金属微粒子が内在する排気ガス浄化用酸化触媒構造体が得られる。なお、このような還元処理は、必要に応じて行えばよく、例えば、排気ガス浄化用酸化触媒構造体を使用する環境が、還元雰囲気である場合には、使用環境に一定時間晒すことで、金属酸化物微粒子は還元されるため、還元処理した場合と同様の排気ガス浄化用酸化触媒構造体が得られるので、担体に金属酸化物微粒子が内在した状態でそのまま使用することが可能となる。
【0063】
[排気ガス浄化用酸化触媒構造体1の変形例]
図4は、
図1の排気ガス浄化用酸化触媒構造体1の変形例を示す模式図である。
図1の排気ガス浄化用酸化触媒構造体1は、担体10と、担体10に内在する酸化触媒20とを備える場合を示しているが、この構成だけには限定されず、例えば、
図4に示すように、排気ガス浄化用酸化触媒構造体2が、担体10の外表面10aに保持された他の機能性物質30を更に備えていてもよい。
【0064】
この機能性物質30は、一又は複数の機能を発揮する物質である。他の機能性物質30が有する機能は、酸化触媒20が有する触媒機能と同一であってもよいし、異なっていてもよい。他の機能性物質30が有する機能の具体例は、酸化触媒20について説明したものと同様であり、中でも触媒機能を有することが好ましく、このとき機能性物質30は触媒物質である。また、酸化触媒20、機能性物質30の双方が同一の機能を有する物質である場合、他の機能性物質30の材料は、酸化触媒20の材料と同一であってもよいし、異なっていてもよい。本構成によれば、排気ガス浄化用酸化触媒構造体2に存在する酸化触媒の含有量を、担体の外表面に保持された少なくとも1つの他の機能性物質の含有量よりも大きくすることができ、酸化触媒の機能発揮を更に促進することができる。
【0065】
この場合、担体10に内在する酸化触媒20の含有量は、担体10の外表面10aに保持された他の機能性物質30の含有量よりも多いことが好ましい。これにより、担体10の内部に保持された酸化触媒20による機能が支配的となり、安定的に機能性物質の機能が発揮される。
【0066】
[触媒成形体]
一実施形態では、排気ガス浄化用酸化触媒構造体を有する触媒成形体が提供されてもよい。触媒成形体は、排気ガス浄化用酸化触媒構造体を単独で有していても良いし、排気ガス浄化用還元触媒構造体等の他の触媒構造体を有してもよい。このような構成を有する触媒成形体に排気ガス浄化用酸化触媒構造体を用いることで、上記と同様の効果を奏することができる。
【0067】
触媒成形体は好ましくは、基材と、基材の表面上に排気ガス浄化用酸化触媒構造体とを有する。基材は、軸方向に排気ガスが通過する管状通路を有する部材である。すなわち、その内部を排気ガスが通過する管状通路を有する構造とすることで、排気ガス浄化用酸化触媒構造体の排気ガスとの接触面積が大きくなる。このように排気ガス浄化用酸化触媒構造体の排気ガスとの接触面積を大きくすることにより、排気ガスの浄化能を向上させることができる。このような基材としては好ましくは、ハニカム状基材を挙げることができる。ハニカム状基材の形状は特に限定されるものではなく、公知のハニカム状基材(一体構造型担体)の中から選択可能である。ハニカム状基材の材料としてはステンレス等の金属、コーディエライト等の耐熱性セラミックスを挙げることができる。
【0068】
[触媒成形体の製造方法]
一実施形態の触媒成形体の製造方法では、排気ガス浄化用酸化触媒構造体に粉砕処理などを行い、粒子状の排気ガス浄化用酸化触媒構造体を得る。次に、粒子状の排気ガス浄化用酸化触媒構造体に、水などの媒体を混合してスラリーを得る。この後、ハニカム状基材へ該スラリーを塗工、乾燥することにより、ハニカム状基材とハニカム状基材の表面上に排気ガス浄化用酸化触媒構造体とを有する触媒成形体を製造することができる。ハニカム状基材へのスラリーの塗工方法は、特に限定されないがウォッシュコート法が好ましい。上記乾燥時の温度は100~300℃が好ましく、100~200℃がより好ましい。加熱手段については、電気炉やガス炉等の公知の加熱手段を用いることができる。
【0069】
[気体浄化方法]
一実施形態の気体浄化方法は、触媒構造体を用いて一酸化炭素と炭化水素とを含有する気体を浄化する気体浄化方法であって、触媒構造体はゼオライト型化合物で構成される多孔質構造の担体と担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒とを備え、担体が互いに連通する通路を有し、酸化触媒が担体の少なくとも通路に存在している。このような構成を有する触媒構造体を用いた気体浄化方法により、上記と同様の効果を奏することができる。一実施形態では、触媒構造体として排気ガス浄化用酸化触媒構造体を使用することができる。気体浄化方法で浄化する気体は、内燃機関から排出される気体であることが好ましい。
【0070】
以上、本発明の実施形態に係る排気ガス浄化用酸化触媒構造体について述べたが、本発明は上記実施形態に限定されるものではなく、本発明の技術思想に基づいて各種の変形および変更が可能である。
【実施例】
【0071】
(実施例1~1248)
[前駆体材料(A)の合成]
シリカ剤(テトラエトキシシラン(TEOS)、和光純薬工業株式会社製)と、鋳型剤としての界面活性剤とを混合した混合水溶液を作製し、適宜pH調整を行い、密閉容器内で、80~350℃、100時間、水熱処理を行った。その後、生成した沈殿物をろ別し、水およびエタノールで洗浄し、さらに600℃、24時間、空気中で焼成して、表1~26に示される種類および孔径の前駆体材料(A)を得た。なお、界面活性剤は、前駆体材料(A)の種類に応じて(「前駆体材料(A)の種類:界面活性剤」)以下のものを用いた。
・MCM-41:ヘキサデシルトリメチルアンモニウムブロミド(CTAB)(和光純薬工業株式会社製)
・SBA-1:Pluronic P123(BASF社製)
【0072】
[前駆体材料(B)および(C)の作製]
次に、表1~26に示される種類の金属微粒子および金属酸化物微粒子を構成する金属元素(M)に応じて、該金属元素(M)を含有する金属塩を、水に溶解させて、金属含有水溶液を調製した。なお、金属塩は、金属微粒子および金属酸化物微粒子の種類に応じて以下のものを用いた。なお、以下では、金属および金属酸化物と、金属塩とを「金属酸化物微粒子:金属塩」、または「金属微粒子:金属塩」の順番で表記する。
・CoOx:硝酸コバルト(II)六水和物(和光純薬工業社製)
・NiOx:硝酸ニッケル(II)六水和物(和光純薬工業社製)
・FeOx:硝酸鉄(III)九水和物(和光純薬工業社製)
・CuOx:硝酸銅(II)三水和物(和光純薬工業社製)
・LaMnO3:La-Mn硝酸塩(La(NO3)3・6H2O(99%)およびMn(NO3)2・9H2O(99%)を使用、ともに和光純薬工業株式会社製)
・BaMnO3:Ba-Mn硝酸塩(Ba(NO3)2(99%)およびMn(NO3)2・9H2O(99%)を使用、ともに和光純薬工業株式会社製)
・LaAlO3:La-Al硝酸塩(La(NO3)3・6H2O(99%)およびAl(NO3)3・9H2O(99%)を使用、ともに和光純薬工業株式会社製)
・LaCoO3:La-Co硝酸塩(La(NO3)3・6H2O(99%)およびCo(NO3)2・6H2O(99%)を使用、ともに和光純薬工業株式会社製)
・Co:硝酸コバルト(II)六水和物(和光純薬工業社製)
・Ni:硝酸ニッケル(II)六水和物(和光純薬工業社製)
・Fe:硝酸鉄(III)九水和物(和光純薬工業社製)
・Cu:硝酸銅(II)三水和物(和光純薬工業社製)
・Pt:塩化白金(IV)酸六水和物(和光純薬工業社製)
【0073】
次に、粉末状の前駆体材料(A)に、金属含有水溶液を複数回に分けて少量ずつ添加し、室温(20℃±10℃)で12時間以上乾燥させて、前駆体材料(B)を得た。
【0074】
なお、表1~26に示す添加剤の有無の条件が「有り」の場合は、金属含有水溶液を添加する前の前駆体材料(A)に対して、添加剤としてのポリオキシエチレン(15)オレイルエーテル(NIKKOL BO-15V、日光ケミカルズ株式会社製)の水溶液を添加する前処理を行い、その後、上記のように金属含有水溶液を添加した。なお、添加剤の有無の条件で「無し」の場合については、上記のような添加剤による前処理は行っていない。
【0075】
また、前駆体材料(A)に添加する金属含有水溶液の添加量は、該金属含有水溶液中に含まれる金属元素(M)に対する、前駆体材料(A)を構成するケイ素(Si)の比(原子数比Si/M)に換算したときの数値が、表1~26の値になるように調整した。
【0076】
次に、上記のようにして得られた金属含有水溶液を含浸させた前駆体材料(B)を、600℃、24時間、空気中で焼成して、前駆体材料(C)を得た。
【0077】
[排気ガス浄化用酸化触媒構造体の合成]
上記のようにして得られた前駆体材料(C)と、表1~26に示す構造規定剤とを混合して混合水溶液を作製し、密閉容器内で、80~350℃、表1~26に示すpHおよび時間の条件で、水熱処理を行った。その後、生成した沈殿物をろ別し、水洗し、100℃で12時間以上乾燥させ、さらに600℃、24時間、空気中で焼成して、表1~16に示す担体と酸化触媒としての金属酸化物微粒子とを有する排気ガス浄化用酸化触媒構造体を得た(実施例1~768)。その後、焼成物を回収し、水素ガスの流入下で、400℃、350分間、還元処理して、表17~26に示す担体と酸化触媒としての金属微粒子とを有する排気ガス浄化用酸化触媒構造体を得た(実施例769~1248)。
【0078】
(比較例1)
比較例1では、MFI型シリカライトに平均粒径50nm以下の酸化コバルト粉末(II,III)(シグマ アルドリッチ ジャパン合同会社製)を混合し、担体としてのシリカライトの外表面に、酸化触媒として酸化コバルト微粒子を付着させた排気ガス浄化用酸化触媒構造体を得た。MFI型シリカライトは、金属を添加する工程以外は、実施例52~57と同様の方法で合成した。
【0079】
(比較例2)
比較例2では、酸化コバルト微粒子を付着させる工程を省略したこと以外は、比較例1と同様の方法にてMFI型シリカライトを合成した。
【0080】
(比較例3)
比較例3では、MFI型シリカライトに平均粒径50nm以下の酸化コバルト粉末 (II,III)(シグマ アルドリッチ ジャパン合同会社製)を混合し、実施例と同様にして水素還元処理を行って、担体としてのシリカライトの外表面に、酸化触媒としてコバルト微粒子を付着させた排気ガス浄化用酸化触媒構造体を得た。MFI型シリカライトは、金属を添加する工程以外は、実施例436~441と同様の方法で合成した。
【0081】
[評価]
担体と酸化触媒とを備える上記実施例、並びに比較例の排気ガス浄化用酸化触媒構造体およびシリカライトそのものついて、以下に示す条件で、各種特性評価を行った。
【0082】
[A]断面観察
担体と酸化触媒とを備える上記実施例、並びに比較例の排気ガス浄化用酸化触媒構造体およびシリカライトそのものについて、粉砕法にて観察試料を作製し、透過電子顕微鏡(TEM)(TITAN G2、FEI社製)を用いて、断面観察を行った。
その結果、上記実施例の排気ガス浄化用酸化触媒構造体では、シリカライトまたはゼオライトからなる担体の内部に酸化触媒が存在し、保持されていることが確認された。一方、比較例1、3の排気ガス浄化用酸化触媒構造体では、酸化触媒が担体の外表面に付着しているのみで、担体の内部には存在していなかった。
また、上記実施例のうち酸化触媒が酸化鉄微粒子(FeOx)である排気ガス浄化用酸化触媒構造体、および酸化触媒が鉄微粒子(Fe)である排気ガス浄化用酸化触媒構造体について、FIB(集束イオンビーム)加工により断面を切り出し、SEM(SU8020、日立ハイテクノロジーズ社製)、EDX(X-Max、堀場製作所社製)を用いて断面元素分析を行った。その結果、担体内部からFe元素が検出された。
上記TEMとSEM/EDXによる断面観察の結果から、担体内部にそれぞれ、酸化鉄微粒子または鉄微粒子が存在していることが確認された。
【0083】
[B]担体の通路の平均内径および酸化触媒の平均粒径
上記評価[A]で行った断面観察により撮影したTEM画像にて、担体の通路を、任意に500個選択し、それぞれの長径および短径を測定し、その平均値からそれぞれの内径を算出し(N=500)、さらに内径の平均値を求めて、担体の通路の平均内径DFとした。また、酸化触媒についても同様に、上記TEM画像から、酸化触媒を、任意に500個選択し、それぞれの粒径を測定して(N=500)、その平均値を求めて、酸化触媒の平均粒径DCとした。結果を表1~26に示す。
また、酸化触媒の平均粒径及び分散状態を確認するため、SAXS(小角X線散乱)を用いて分析した。SAXSによる測定は、Spring-8のビームラインBL19B2を用いて行った。得られたSAXSデータは、Guinier近似法により球形モデルでフィッティングを行い、粒径を算出した。粒径は、酸化触媒が酸化鉄微粒子である排気ガス浄化用酸化触媒構造体、および酸化触媒が鉄微粒子である排気ガス浄化用酸化触媒構造体について測定した。また、比較対象として、市販品である酸化鉄微粒子(Wako製)および鉄微粒子(Wako製)をSEMにて観察、測定した。
この結果、市販品では粒径約50nm~400nmの範囲で様々なサイズの酸化鉄微粒子または鉄微粒子がランダムに存在しているのに対し、TEM画像から求めた平均粒径が1.2nm~2.0nmの各nmの各実施例の排気ガス浄化用酸化触媒構造体では、SAXSの測定結果においても粒径が10nm以下の散乱ピークが検出された。SAXSの測定結果とSEM/EDXによる断面の測定結果から、担体内部に、粒径10nm以下の酸化触媒が、粒径が揃い、かつ非常に高い分散状態で存在していることが分かった。
【0084】
[C]金属含有溶液の添加量と担体内部に包接された金属量との関係
原子数比Si/M=50,100,200,1000(M=Co、Ni、Fe、Cu)の添加量で、金属酸化物微粒子を担体内部に包接させた排気ガス浄化用酸化触媒構造体、および金属微粒子を担体内部に包接させた排気ガス浄化用酸化触媒構造体を作製し、その後、上記添加量で作製された排気ガス浄化用酸化触媒構造体の担体内部に包接された金属量(質量%)を測定した。尚、本測定において原子数比Si/M=100,200,1000の排気ガス浄化用酸化触媒構造体は、それぞれ実施例1~1248のうちの原子数比Si/M=100,200,1000の排気ガス浄化用酸化触媒構造体と同様の方法で金属含有溶液の添加量を調整して作製し、原子数比Si/M=50の排気ガス浄化用酸化触媒構造体、金属含有溶液の添加量を異なるものとしたこと以外は、原子数比Si/M=100,200,1000の排気ガス浄化用酸化触媒構造体と同様の方法で作製した。
金属量の定量は、ICP(高周波誘導結合プラズマ)単体か、或いはICPとXRF(蛍光X線分析)を組み合わせて行った。XRF(エネルギー分散型蛍光X線分析装置「SEA1200VX」、エスエスアイ・ナノテクノロジー社製)は、真空雰囲気、加速電圧15kV(Crフィルター使用)或いは加速電圧50kV(Pbフィルター使用)の条件で行った。
XRFは、金属の存在量を蛍光強度で算出する方法であり、XRF単体では定量値(質量%換算)を算出できない。そこで、Si/M=100で金属を添加した排気ガス浄化用酸化触媒構造体の金属量は、ICP分析により定量し、Si/M=50および100未満で金属を添加した排気ガス浄化用酸化触媒構造体の金属量は、XRF測定結果とICPO測定結果を元に算出した。
この結果、少なくとも原子数比Si/Mが50~1000の範囲内で、金属含有溶液の添加量の増加に伴って、排気ガス浄化用酸化触媒構造体に包接された金属量が増大していることが確認された。
【0085】
[D]性能評価
担体と、金属微粒子または金属酸化物微粒子とを備える上記実施例および比較例の排気ガス浄化用酸化触媒構造体について、金属微粒子または金属酸化物微粒子(酸化触媒物質)がもつ触媒能(触媒活性および耐久性)を評価した。結果を表1~26に示す。
【0086】
(1)CO酸化反応の触媒活性
まず、排気ガス浄化用酸化触媒構造体を、常圧流通式反応装置に10mg充填し、CO(127μL/分)とAir(21ml/分)を供給し、100~600℃で加熱しながら、CO酸化反応を行った。常圧流通式反応装置はシングルマイクロリアクター(フロンティアラボ社、Rx-3050SR)を使用した。生成物の分析はガスクロマトグラフィー質量分析法(GC/MS)により成分分析した。なお、生成ガスの分析装置には、TRACE 1310GC(サーモフィッシャーサイエンティフィック株式会社製、検出器:熱伝導度検出器)を用いた。そして、生成ガス中にCO2が含まれる反応が起こる最も低い温度を測定し、以下の評価基準に基づき、排気ガス浄化用酸化触媒構造体を「◎」、「○」、「△」および「×」で評価付けした。
(2)プロパン酸化反応の触媒活性
排気ガス浄化用酸化触媒構造体を、常圧流通式反応装置に10mg充填し、C3H8(21μL/分)とAir(21ml/分)を供給し、100~600℃で加熱しながら、プロパン酸化反応を行った。そして、生成ガス中にCO2が含まれる反応が起こる最も低い温度を測定し、以下の評価基準に基づき、排気ガス浄化用酸化触媒構造体を「◎」、「○」、「△」および「×」で評価付けした。
(3)中間生成物の確認
近年、自動車の排気ガスに関する規制が厳しくなっており、排気ガス浄化用の触媒として、排気ガスの浄化反応時の中間生成物(アセトン等)を極力、少なくするように要望されている(例えば、1ppm未満)。反応温度450℃で上記(1)および(2)の酸化反応を行わせた後のガス成分の分析を行ったところ、アセトン濃度は0.1ppm以下であった。
【0087】
<触媒活性の評価基準>
(a)CO酸化反応
「◎」:反応開始温度(CO2生成開始温度)が200℃以下である。
「○」:反応開始温度(CO2生成開始温度)が200℃を超え250℃以下である。
「△」:反応開始温度(CO2生成開始温度)が250℃を超え300℃以下である。
「×」:反応開始温度(CO2生成開始温度)が300℃を超える。
(b)プロパン酸化反応
「◎」:反応開始温度(CO2生成開始温度)が400℃以下である。
「○」:反応開始温度(CO2生成開始温度)が400℃を超え500℃以下である。
「△」:反応開始温度(CO2生成開始温度)が500℃を超え600℃以下である。
「×」:反応開始温度(CO2生成開始温度)が600℃を超え700℃以下である。
【0088】
(4)耐久性(寿命)
各排気ガス浄化用酸化触媒構造体について、650℃で12時間、加熱した後、室温まで冷却し30分放置することを10回繰り返す熱サイクル試験を行なった後に、上記(1)および(2)と同様の酸化反応試験を実施した。耐久性は、CO酸化反応およびプロパン酸化反応の双方について、生成ガス中にCO2が含まれる反応が起こる最も低い温度を測定し、以下の評価基準に基づき、排気ガス浄化用酸化触媒構造体を「◎」、「○」、「△」および「×」で評価付けした。
【0089】
<耐久性の評価基準>
(a)CO酸化反応
「◎」:反応開始温度(CO2生成開始温度)が200℃以下である。
「○」:反応開始温度(CO2生成開始温度)が200℃を超え250℃以下である。
「△」:反応開始温度(CO2生成開始温度)が250℃を超え300℃以下である。
「×」:反応開始温度(CO2生成開始温度)が300℃を超える。
(b)プロパン酸化反応
「◎」:反応開始温度(CO2生成開始温度)が400℃以下である。
「○」:反応開始温度(CO2生成開始温度)が400℃を超え500℃以下である。
「△」:反応開始温度(CO2生成開始温度)が500℃を超え600℃以下である。
「×」:反応開始温度(CO2生成開始温度)が600℃を超え700℃以下である。
【0090】
これらの評価結果を表1~表26に示す。
【0091】
【0092】
【0093】
【0094】
【0095】
【0096】
【0097】
【0098】
【0099】
【0100】
【0101】
【0102】
【0103】
【0104】
【0105】
【0106】
【0107】
【0108】
【0109】
【0110】
【0111】
【0112】
【0113】
【0114】
【0115】
【0116】
【0117】
表1~26から明らかなように、断面観察により担体の内部に酸化触媒が保持されていることが確認された排気ガス浄化用酸化触媒構造体(実施例1~1248)は、単に酸化触媒が担体の外表面に付着しているだけの排気ガス浄化用酸化触媒構造体(比較例1、3)と比較して、CO酸化反応およびプロパン酸化反応のいずれの酸化反応においても優れた触媒活性を示し、触媒としての耐久性にも優れていることが分かった。
【0118】
一方、酸化触媒を担持していない比較例2の担体そのものは、CO酸化反応およびプロパン酸化反応のいずれの酸化反応において触媒活性を殆ど示さず、実施例1~1248の排気ガス浄化用酸化触媒構造体と比較して、触媒活性および耐久性の双方が劣っていた。
【0119】
また、担体の外表面にのみ酸化触媒を付着させた比較例1、3の排気ガス浄化用酸化触媒構造体は、酸化触媒を何ら有していない比較例2の担体そのものと比較して、CO酸化反応およびプロパン酸化反応のいずれの酸化反応においても触媒活性は改善されるものの、実施例1~1248の排気ガス浄化用酸化触媒構造体に比べて、触媒としての耐久性は劣っていた。なお、上記の排気ガス浄化用酸化触媒構造体は、自動車からの排気ガス中に含まれる有害物質の酸化反応に対する優れた触媒活性、及び優れた耐久性を有していた。従って、上記の排気ガス浄化用酸化触媒構造体は、優れた作用効果を奏することが確認された。
【0120】
[他の実施態様]
[A]排気ガスを浄化するために触媒構造体を使用する方法であって、
ゼオライト型化合物で構成される多孔質構造の担体と、
前記担体に内在する、金属および金属酸化物からなる群から選択される少なくとも一種の酸化触媒と、
を備え、
前記担体が、互いに連通する通路を有し、
前記酸化触媒が、前記担体の少なくとも前記通路に存在している、触媒構造体を使用する方法。
[B]前記排気ガスは、内燃機関から排出される排気ガスである、上記[A]に記載の触媒構造体を使用する方法。
[C]前記内燃機関は、自動車のエンジンである、上記[A]または[B]に記載の触媒構造体を使用する方法。
【符号の説明】
【0121】
1 排気ガス浄化用酸化触媒構造体
10 担体
10a 外表面
11 通路
11a 孔
12 拡径部
20 酸化触媒
30 機能性物質
DC 一次平均粒径
DF 平均内径
DE 内径