IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 国立大学法人 東京大学の特許一覧

<>
  • 特許-膵前駆細胞の分離方法 図1
  • 特許-膵前駆細胞の分離方法 図2
  • 特許-膵前駆細胞の分離方法 図3
  • 特許-膵前駆細胞の分離方法 図4
  • 特許-膵前駆細胞の分離方法 図5
  • 特許-膵前駆細胞の分離方法 図6
  • 特許-膵前駆細胞の分離方法 図7
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-14
(45)【発行日】2023-11-22
(54)【発明の名称】膵前駆細胞の分離方法
(51)【国際特許分類】
   C12N 5/077 20100101AFI20231115BHJP
   A61P 3/10 20060101ALI20231115BHJP
   A61P 3/08 20060101ALI20231115BHJP
   A61K 35/39 20150101ALI20231115BHJP
【FI】
C12N5/077
A61P3/10
A61P3/08
A61K35/39
【請求項の数】 5
(21)【出願番号】P 2019119555
(22)【出願日】2019-06-27
(65)【公開番号】P2021003068
(43)【公開日】2021-01-14
【審査請求日】2022-06-21
【国等の委託研究の成果に係る記載事項】(出願人による申告)平成29年度 国立研究開発法人日本医療研究開発機構 再生医療実現拠点ネットワークプログラム 疾患・組織別実用研究拠点(拠点B)事業「iPS細胞を基盤とする次世代型膵島移植療法の開発拠点」、産業技術力強化法第19条の適用を受けるもの。
(73)【特許権者】
【識別番号】504137912
【氏名又は名称】国立大学法人 東京大学
(74)【代理人】
【識別番号】100137512
【弁理士】
【氏名又は名称】奥原 康司
(74)【代理人】
【識別番号】100178571
【弁理士】
【氏名又は名称】関本 澄人
(72)【発明者】
【氏名】宮島 篤
(72)【発明者】
【氏名】渡邊 亜美
【審査官】伊達 利奈
(56)【参考文献】
【文献】PLoS ONE, 2011, Vol.6, No.12, #e28209, pp.1-7
【文献】Stem Cell Reports, 2018, Vol. 11, pp.1551-1564
(58)【調査した分野】(Int.Cl.,DB名)
C12N 5/00
JSTPlus/JMEDPlus/JST7580(JDreamIII)
CAplus/MEDLINE/EMBASE/BIOSIS(STN)
PubMed
(57)【特許請求の範囲】
【請求項1】
インビトロにおいて幹細胞から膵島細胞へ分化する過程で出現する細胞であって、CD82陽性であることを特徴とする膵前駆細胞を80%以上含む、細胞群。
【請求項2】
請求項に記載の細胞群を含む、血糖値異常症の治療剤。
【請求項3】
前記血糖値異常症が高血糖症であることを特徴とする請求項に記載の治療剤。
【請求項4】
インビトロにおいて、幹細胞から膵島細胞へ分化する過程で出現するCD82陽性細胞を分離することを含む、膵前駆細胞および/または成熟膵β細胞を調製する方法。
【請求項5】
前記幹細胞が多能性幹細胞であることを特徴とする請求項に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、膵前駆細胞の分離方法に関する。
【背景技術】
【0002】
膵島(またはランゲルハンス島)移植による膵内分泌細胞(グルカゴンを分泌するα細胞、インスリンを分泌するβ細胞、ソマトスタチンを分泌するδ細胞、グレリンを分泌するε細胞など)の補充は、重症糖尿病の治療に有効である。しかしドナー膵臓の不足のため、この治療法はあまり普及していない。そこで、大量の膵島を取得するために、ES/iPS細胞などの多能性幹細胞から、インビトロにおいて膵島細胞(α細胞、β細胞、δ細胞、ε細胞およびPP細胞など)を調製する方法が代替法として注目を浴びており、現在、その研究が進められている(非特許文献1~6など)。
【0003】
多能性幹細胞から膵島細胞への分化誘導は、膵臓の発生過程で生じる各種シグナル伝達を模倣することで行われる。近年、マウスモデルを用いた膵発生過程解析による詳細な遺伝子の発現解析およびシグナル伝達機構の解明が進むことによって、インビトロにおける多能性幹細胞から膵島細胞への分化誘導効率が劇的に向上してきた。しかし、これまでに膵臓の発生と成熟に重要なシグナルの解明は完全ではなく、未だ、理解されていない点も多く残されている。特にβ細胞のインスリン分泌機能成熟過程については不明な点が多い。
また、近年報告されたsingle-cell遺伝子解析結果により、ヒト胎児/成人の膵島と、従来の方法で分化誘導された膵島細胞の遺伝子発現に大きな違いがあることが示されている(非特許文献7および非特許文献8)。
この事実は、膵発生過程における重要な知見が未だ欠如していることを示している。
【0004】
したがって、これまでに報告されているインビトロにおける分化誘導方法によって、インビボと同等の完全に成熟した細胞が得られているかは、甚だ疑問である。インビトロで成熟した膵島細胞、特に膵β細胞を得るためには、膵臓の発生、特にヒト膵島の発生過程に必須のシグナルをより詳細に解析することが重要になる。
しかしながら、現在のところ、膵島の発生過程の全面解明には至っておらず、インビトロにおいて、効率良く膵島細胞を分化誘導する方法も確立されていない。
【0005】
また、従来の方法により幹細胞から膵島細胞へ分化誘導を行うと、分化させた細胞への未分化細胞の混入が避けられず、分化した細胞を生体内へ移植した場合、混入した未分化細胞が、がん化する危険性があった(非特許文献2および非特許文献3など)。そのため、未分化細胞の混入を回避した、膵前駆細胞への効率的な分化誘導方法の確立は、再生医療分野における重要な課題の1つである。
【先行技術文献】
【非特許文献】
【0006】
【文献】D'Amourら, Nat Biotechnol. 24:1392-1401 2006.
【文献】Kroonら, Nat Biotechnol. 26:443-452 2008.
【文献】Rezaniaら, Diabetes. 61:2016-2029 2012.
【文献】Rezaniaら, Nat Biotechnol. 32:1121-1133 2014.
【文献】Pagliucaら, 159:428-439 2014.
【文献】Russら, EMBO J. 34:1759-1772 2015.
【文献】Ramondら, Development 145, dev165480.2018.
【文献】Petersenら, Stem Cell Reports 9:1246-1261 2017.
【発明の概要】
【発明が解決しようとする課題】
【0007】
上記事情に鑑み、本発明は、未分化細胞を含まず、膵島細胞に効率良く分化する膵前駆細胞(または膵前駆細胞群)の調製または分離方法を解決課題とする。
【課題を解決するための手段】
【0008】
これまでに、インビトロの分化誘導系において、内分泌前駆細胞マーカーであるNgn3が強く発現する細胞が膵内分泌細胞に分化することが報告されている(H Liuら, Cell Res. Oct;24(10):1181-200. 2014)。
そこで、本発明者らは、Ngn3の発現強度を指標にして新規の膵前駆細胞特異的なマーカーの探索を試みたところ、CD82を見出した。多能性幹細胞から膵島細胞へ分化する過程において、CD82発現を指標に分取した細胞は効率良く膵島細胞、特に膵β細胞に分化することを確認した。分取したCD82細胞由来の膵島細胞は、インビトロでグルコース濃度応答性インスリン分泌能を示した。さらに、これらの知見から、インビトロにおいて、膵島細胞へ分化する過程で出現するCD82陽性細胞を純化した上で、膵β細胞への成熟培養を行えば、未分化細胞を含まない膵内分泌細胞を効率良く得られることが明らかとなった。
【0009】
すなわち、本発明は以下の(1)~(7)である。
(1)幹細胞から膵島細胞へ分化する過程で出現する細胞であって、CD82陽性であることを特徴とする膵前駆細胞。
(2)前記幹細胞が多能性幹細胞であることを特徴とする上記(1)に記載の膵前駆細胞。
(3) 上記(1)または(2)に記載の膵前駆細胞を含む細胞群。
(4)上記(1)または(2)に記載の膵前駆細胞を含む、血糖値異常症の治療剤。
(5)前記血糖値異常症が高血糖症であることを特徴とする上記(4)に記載の治療剤。
(6)幹細胞から膵島細胞へ分化する過程で出現するCD82陽性細胞を分離することを含む、膵前駆細胞および/または成熟膵β細胞を調製する方法。
(7)前記幹細胞が多能性幹細胞であることを特徴とする上記(6)に記載の方法。
【発明の効果】
【0010】
本発明の膵前駆細胞を純化(他の細胞種から分離すること)し、各膵島細胞(β細胞など)へ成熟培養を行うことで、未分化細胞を除去することができる。従って、本発明の膵前駆細胞(群)を膵島移植の材料として用いることで、未分化細胞の混入によって生じるがん化を回避することが可能となり、移植治療の安全性の向上が期待できる。
【0011】
本発明の膵前駆細胞を純化することで、不要な細胞が除去され、目的の細胞の成熟培養の効率が向上する。従って、本発明により、高効率に膵内分泌細胞を得ることが可能になる。
【図面の簡単な説明】
【0012】
図1】Ngn3高発現細胞から膵内分泌細胞への分化誘導について検討した結果を示す。(a)は、ヒトiPS細胞からの膵内分泌前駆細胞の分化のためのスキームを示す。(b)は、膵内分泌細胞の成熟プロトコールを示す。(c)は、EP期細胞のレポーター遺伝子発現状態を示す図である。Ngn3-mcherry、INS-venusを蛍光顕微鏡により検出した。 スケールバーは200μm。(d)は、Ngn3レポーターiPS細胞に由来するEP期細胞のフローサイトメトリー分析結果である。(e)は、選別されたNgn3陰性細胞(NGN-)、Ngn3発現細胞(NGN+)およびNgn3高発現細胞(NGN++)のqRT-PCR法による分析結果である。各遺伝子の発現レベルはGAPDHを基準とした。 データは平均値±SEM(N=3)で示した。(f)は、培養32日目のNgn3陰性細胞、Ngn3低発現細胞、Ngn3高発現細胞および非選別細胞(Presort)の明視野像である。 スケールバーは200μm。(g)は、インビトロにおいて、Ngn3発現細胞(NGN+)およびNgn3高発現細胞(NGN++)の各細胞クラスターから分泌された、ヒトc-ペプチドのELISAの測定結果を示す。(h)は、抗Nkx6.1抗体および抗INS抗体で共免疫染色したNgn3陽性細胞(NGN+)およびNgn3高発現細胞(NGN++)由来の細胞クラスターをフローサイトメトリーで分析した結果である。
図2】CD82の膵内分泌前駆細胞マーカーとしての機能について検討した結果を示す。(a)は、Ngn3高発現細胞(左、Ngn3-high)および低発現細胞細胞(右、Ngn3-low)で発現される膵前駆体遺伝子のヒートマップ表示である。 スケールは正規化発現値を示す。(b)は、Ngn3高発現細胞における遺伝子の濃縮を示すGO分析結果である。代表的なGOカテゴリーを示し、対数(p値)に対してプロットした。(c)は、分化誘導後7日目、12日目および22日目のCD82発現細胞をフローサイトメトリーで分析した結果である。(d)は、膵前駆細胞から選別されたCD82陰性細胞(CD82-)およびCD82陽性細胞(CD82+)のqRT-PCR分析の結果を示す。 発現レベルはGAPDHを基準とした。 データは平均値±SEM(N=3)として示した。(e)は、抗PDX1抗体および抗NKX6.1抗体で共免疫染色したCD82陽性細胞(CD82+)およびCD82陰性細胞(CD82-)をフローサイトメトリーで分析した結果である。(f)は、抗CD82抗体および抗PDX1抗体、抗CD82抗体および抗NEUROD1抗体で共免疫染色した、培養後22日目(Day 22)のEP細胞のフローサイトメトリーによる分析結果である。
図3】CD82陽性細胞から成熟膵内分泌細胞への分化誘導について検討した結果を示す。(a)は、CD82陽性細胞(CD82+)およびCD82陰性細胞(CD82-)に由来する細胞クラスターの明視野像である。スケールバーは100μm。(b)抗PDX1抗体および抗C-ペプチド抗体、抗NEUROD1抗体および抗C-ペプチド抗体、抗GCG(glucagon)抗体および抗C-ペプチド抗体で共免疫染色した、CD82陽性細胞クラスター(CD82+)およびCD82陰性細胞クラスター(CD82-)をフローサイトメトリーで分析した結果である。(c)CD82陽性細胞(CD82+)およびCD82陰性細胞(CD82-)に由来する細胞クラスターを、抗GCG抗体(赤色)/抗C-ペプチド抗体(緑色)、抗GCG抗体(赤色)/抗C-ペプチド抗体(緑色)/DAPI(青色)、抗SST(somatostatin)抗体(赤色)/抗C-ペプチド抗体(緑色)、抗SST(somatostatin)抗体(赤色)/抗C-ペプチド抗体(緑色)/DAPI(青色)で、各々、共免疫染色した結果を示す。(d)CD82陽性細胞クラスター(CD82+)およびCD82陰性細胞クラスター(CD82-)から分泌されたヒトc-ペプチド(human c-peptide)のELISAによる測定結果である。 データは平均値±SEM(N=4)として示した。
図4】CD82を既知の膵内分泌細胞マーカーと比較検討した結果を示す。(a)は、抗CD142抗体/抗CD82抗体、抗CD200抗体/抗CD82抗体、抗GP2抗体/抗CD82抗体、抗Susd2抗体/抗CD82抗体で、各々、共免疫染色した培養後22日(Day 22)のEP細胞をフローサイトメトリーで分析した結果である。(b)は、CD142陽性細胞、CD200陽性細胞およびCD82陽性細胞において、既報のEPマーカー遺伝子(PDX1、NKX6.1、NGN3、GLUCAGON、NEUROD1、MAFA、INSULINおよびPAX4.1)の発現量をqRT-PCR法で測定した結果を示す。(c)CD142陽性細胞/陰性細胞、CD200陽性細胞/陰性細胞、Susd2陽性細胞/陰性細胞およびCD82陽性細胞/陰性細胞、各々から、インビトロにおいて分泌されるヒトc-ペプチドの量をELISAで測定した結果を示す。データは平均値±SEM(N=3)として示した。
図5】ヒト成熟膵島におけるCD82陽性細胞の特徴を検討した結果を示す。(a)は、ヒト膵臓由来の組織切片を、抗GCG抗体(赤色)、抗SST抗体(赤色)、抗INS抗体(緑色)、抗CD82抗体(グレー)およびDAPIで免疫染色した結果を示す。スケールバーは50μm。(b)単離したヒト膵島を抗CD82抗体で免疫染色し、フローサイトメトリーで分析した結果を示す。(c)抗c-ペプチド抗体および抗UCN3抗体で免疫染色した、ヒト膵島由来のCD82陽性細胞およびCD82陰性細胞をフローサイトメトリーで分析した結果を示す。(d)単離したCD82陽性細胞/陰性細胞とHUVEC細胞を共培養して調製した細胞クラスターの明視野像を示す。(e)は、(d)で調製したヒト膵島由来の細胞クラスターのGSIS測定結果である。 代表的な3ドナー膵島の結果を示した。 データは平均値±SEM(N=3~4)として示した。(f)は、ヒト膵島由来の細胞クラスターを、抗INS抗体(緑色)、抗GCG抗体(赤色)、抗SST抗体(赤色)およびDAPI(青色)で染色した結果を示す。
図6】インビボにおけるCD82の発現時期を検討した結果を示す。上のパネルは、マウス胎児由来の膵臓組織(E16.5およびE18.5)を、抗CD82抗体(緑色)、PDX1(赤色)およびDAPI(青色)で免疫染色した結果を示す。スケールバーは50μm。下のパネルは、マウス成体由来の膵臓組織を、抗CD82抗体(緑色)、PDX1(赤色)およびDAPI(青色)で免疫染色した結果を示す。スケールバーは100μm。
図7】CD82がβ細胞のインスリン分泌能へ与える影響について検討した結果を示す。(a)は、ヒトiPS細胞から誘導したNgn3高発現細胞(代表的な2バッチ(iPS-islet1、iPS-islet2)、n=4細胞)のCD82をsiRNAでノックダウンし、GSISを評価した結果である。GSISは、低グルコース濃度の値を1とし、その倍率で示した。データは平均値±SEM(N=4)として示した。(b)は、CD82阻害抗体の49Fおよび市販の抗体(LSbio)を用いたNgn3高発現細胞のCD82の機能を阻害し、GSISを評価した結果である。GSISは、低グルコース濃度の値を1とし、その倍率で示した。データは平均値±SEM(N=4)として示した。
【発明を実施するための形態】
【0013】
本発明の第1の実施形態は、幹細胞から膵島細胞へ分化する過程で出現する細胞であって、CD82陽性であることを特徴とする膵前駆細胞(以下「本発明の膵前駆細胞」とも記載する)である。
本発明において、「膵前駆細胞」とは、膵島細胞に特異的に分化する細胞のことである。膵島細胞は、膵島(pancreatic islet)を構成する細胞、すなわち、グルカゴンを分泌するα細胞、インスリンを分泌するβ細胞、ソマトスタチンを分泌するδ細胞、グレリンを分泌するε細胞および膵ペプチドを分泌するF細胞などの総称である。本実施形態において、特に好ましい膵前駆細胞は、膵β細胞に特異的に分化する膵前駆細胞である。本発明の膵前駆細胞が由来する動物種は特に限定されず、ラット、マウスおよびモルモットなどの齧歯類、ウサギなどのウサギ目、ウシ、ブタ、ヤギおよびヒツジなどの有蹄目、イヌおよびネコなどのネコ目、ヒト、サル、チンパンジー、ゴリラおよびオランウータンなどの霊長類に属する動物種を挙げることができる。特に好ましい動物種はヒトである。
【0014】
「CD82陽性」とはCD82(cluster of differentiation 82)を細胞表面上に発現していることを意味する。CD82を発現しているかどうかは、CD82を特異的に認識する分子(例えば、抗体、アプタマー(ペプチドまたは核酸))を使用した方法、例えば、フローサイトメトリー、免疫組織化学、ウエスタンブロッティング法、ELISA法、RIA法などおよびこれらの変法により、細胞表面上におけるCD82の存在を確認することができる。
【0015】
本発明の各実施形態にかかる「幹細胞」とは、種々の細胞に分化する能力と自己複製能を併せ持つ細胞のことで、その分化能力に応じて、例えば、多能性幹細胞(pluripotent stem cell:生体を構成する全ての組織および細胞へ分化する能力を有する細胞)、分化複能性幹細胞(multipotent stem cell:全ての種類ではないが、複数種の組織や細胞へ分化する能力を有する細胞)などを挙げることができる。
【0016】
多能性幹細胞としては、例えば、iPS細胞(induced pluripotent stem cell)、胚性幹細胞(embryonic stem cell:ES細胞)、胚性生殖幹細胞(embryonic germ cell:EG細胞)などを挙げることができ、特に好ましい多能性幹細胞としてiPS細胞およびES細胞を挙げることができる。また、分化複能性幹細胞としては、膵臓を構成する各種細胞へ分化することができる膵臓幹細胞(例えば、WO2017/156076:H Liuら, Cell Res. Oct;24(10):1181-200. 2014:J Ameriら, Cell Rep. Apr 4;19(1):36-49. 2017:OG Kellyら, Nat Biotechnol. Jul 31;29(8):750-6. 2011など)の他、多能性幹細胞から膵島細胞へ分化させる過程で出現する細胞などを挙げることができる。
【0017】
「iPS細胞」は、体細胞(例えば、線維芽細胞や皮膚細胞など)への分化多能性を付与する数種類の転写因子(以下、ここでは「分化多能性因子」と称する)を導入することにより作製することができる。分化多能性因子としては、すでに多くの因子が報告されており、限定はしないが、例えば、Octファミリー(例えば、Oct3/4)、SOXファミリー(例えば、SOX2、SOX1、SOX3、SOX15およびSOX17など)、Klfファミリー(例えば、Klf4、Klf2など)、MYCファミリー(例えば、c-MYC、N-MYC、L-MYCなど)、NANOG、LIN28などを挙げることができる。iPS細胞の樹立方法については、多くの文献が発行されているので、それらを参考にすることができる(例えば、Takahashiら, Cell 126:663-676 2006、Okitaら, Nature 448:313-317 2007、Wernigら, Nature 448:318-324 2007、Maheraliら, Cell Stem Cell 1:55-70 2007、Parkら, Nature 451:141-146 2007、Nakagawaら, Nat Biotechnol 26:101-106 2008、Wernigら, Cell Stem Cell 2:10-12 2008、Yuら, Science 318:1917-1920 2007、Takahashiら, Cell 131:861-872 2007およびStadtfeldら, Science 322:945-949 2008などを参照のこと)。
【0018】
本発明で使用されるES細胞は、特に限定されるものではなく、一般的には、胚盤胞期の受精卵をフィーダー細胞と共に一緒に培養し、増殖した内部細胞クラスター由来の細胞をばらばらにして、さらに、植え継ぐ操作を繰り返し、最終的にES細胞株として樹立することができる。ES細胞の調製方法については、例えば、US5,843,780、US6,200,806などを参照のこと。
【0019】
幹細胞から膵島細胞へ分化誘導する方法は、当業者であれば既知の方法および既知の方法に修正を加えた方法などから、目的に適した方法を適宜選択することができる。このような方法としては、特に限定はしないが、例えば、FW Pagliucaら, Oct 9;159(2):428-39 2014、HA Russら, EMBO J. Jul 2;34(13):1759-72. 2015、A Rezaniaら, Nat Biotechnol. Nov;32(11):1121-33. 2014およびGG NairらNat Cell Biol. Feb;21(2):263-274 2019.などに記載の方法およびこれらの方法の変法などを挙げることができる。
【0020】
幹細胞の培養は、適当な動物細胞培養用培養液(例えば、DMEM、EMEM、IMDM、PRMI 1640、F-12など)に、必要なサプリメント(例えば、CHIR99021、B27、Dorsomorphin、EC23、SB431542、RepSox、IGF1、Folskolin、DAPTなど)を分化過程の適切なタイミングで添加した培養液中にて行うことができる。幹細胞の培養温度は、当業者であれば適宜選択可能で、例えば、30℃~40℃、好ましくは37℃程度である。
【0021】
本発明の膵前駆細胞は細胞群(細胞集団)として、後述の治療剤(本発明の第2の実施形態)としても使用することができる。ここで、本発明の膵前駆細胞群に含まれるCD82陽性細胞の比率は、使用目的によって異なるが、例えば、30%以上、40%以上、50%以上、60%以上、70%以上、80%以上、85%以上、好ましくは、90%以上、好ましくは、95%以上である。
【0022】
本発明の第2の実施形態は、本発明の膵前駆細胞を含む、血糖値異常症の治療剤(以下「本発明の治療剤」とも記載する)である。
本発明の治療剤は、膵島細胞に特異的に分化する本発明の膵前駆細胞を有効成分として含み、好ましくは、当該膵前駆細胞群を高純度(例えば、80%以上、好ましくは90%以上)で含むものである。また、本発明の治療剤に含まれる膵前駆細胞本発明の治療剤は、本発明の膵前駆細胞を含む状態で患者に投与し、インビボにおいて膵内分泌細胞へ分化させてもよいが、疾患の治療に特に必要な膵内分泌細胞(膵β細胞など)にまで分化誘導した後、患者に投与してもよい。例えば、インスリン分泌能およびグルカゴン分泌能の両方の回復を目的とする場合には、膵前駆細胞を含む状態で本発明の治療剤を投与してもよい。
【0023】
本明細書において、「血糖値異常症」とは、膵内分泌細胞の異常(機能不全、細胞数の減少などに起因する)によって引き起こされる、健常者の平均的な血糖値と比較して、高血糖または低血糖と判断される状態、およびこれらの状態の原因または結果となる疾患、例えば、糖尿病などを含む概念である。本発明の治療剤は、膵島細胞の移植のために使用することができる。膵島細胞の移植は、例えば、本発明の治療剤を、膵前駆細胞を含む状態で、あるいは、膵内分泌細胞(または膵島細胞)にまで分化誘導させた細胞を含む状態で、門脈に注入することにより、行うことができる。インスリン分泌能、グルカゴン分泌能およびソマトスタチン分泌能の回復のためには、本発明の治療剤に含まれる膵前駆細胞を、各々、膵β細胞、膵α細胞、膵δ細胞に分化させたのち、移植することが効果的である。
【0024】
本発明の第3の実施形態は、本発明の治療剤を患者に投与することを含む、血糖値異常症の治療方法(以下「本発明の治療方法」とも記載する)である。
ここで「治療」とは、すでに血糖値異常症に罹患した患者において、その病態の進行および悪化を阻止または緩和することを意味し、これによって血糖値異常の進行および悪化を阻止または緩和することを目的とする処置のことである。ここで、「治療」には予防的治療も含まれる。
本発明の治療方法の対象は、血糖値異常症と判断されるほ乳動物であれば特に限定されない。特に、好ましい治療対象は、ヒトである。
【0025】
本発明の第4の実施形態は、幹細胞から膵島細胞へ分化する過程で出現するCD82陽性細胞を分離することを含む、膵前駆細胞(または膵前駆細胞群)および/または膵β細胞を調製する方法である。
ここで、「CD82陽性細胞を分離する」とは、種々の細胞が含まれる細胞集団から、CD82を発現していない細胞を除去する、あるいは、CD82陽性細胞を単離することを意味する。このように分離したCD82陽性細胞は、成熟培養により膵島細胞(β細胞、α細胞など)へと分化する膵前駆細胞としての性質を有する。また、成熟膵島細胞から分離したCD82陽性細胞は、CD82陰性細胞と比べてインスリン分泌能が優れており、CD82は成熟培養後に成熟膵β細胞を分離するためのマーカーとしても使用することができる。
CD82陽性細胞の単離は、CD82を特異的に認識する分子(例えば、抗体、アプタマー(ペプチドまたは核酸))に、直接または間接的に標識(蛍光分子または放射性分子など、特に限定はしない)等を行い、FACS(Fluorescence activated cell sorting)法、MACS(Magnetic cell sorting)法など、当業者において周知の方法を用いて容易に行うことができる。
【0026】
幹細胞から膵島細胞へ分化する過程において、CD82陽性細胞が誘導される時期は、分化誘導過程において経時的に細胞培養サンプルを採取し、細胞表面におけるCD82タンパク質の発現の有無を検出することで、確認することができる。
分化誘導過程において、CD82陽性細胞を分離する時期は、上述の方法でCD82陽性細胞が確認した時期以降に行えばよい。分化誘導方法や培養条件によって、その時期は異なるため、一概に特定することはできないが、通常の幹細胞から膵島への分化誘導処理後、例えば、8~30日目、好ましくは15~27日目、より好ましくは20~24日目である。
【0027】
本明細書が英語に翻訳されて、単数形の「a」、「an」および「the」の単語が含まれる場合、文脈から明らかにそうでないことが示されていない限り、単数のみならず複数のものも含むものとする。
以下に実施例を示してさらに本発明の説明を行うが、本実施例は、あくまでも本発明の実施形態の例示にすぎず、本発明の範囲を限定するものではない。
【実施例
【0028】
1.材料および方法
1-1.細胞培養
未分化のiPS細胞は、37℃、5%CO2のインキュベーター中で、マトリゲルコーティングディッシュに接着して培養した。維持培地はmTeSR1(VERITAS)およびStemFlex(Thermo Fisher)を用いた。ヒトIPS細胞株DKI hIveNry #9-15(Yzumiら、Scientific Reports 6:35908 2016)およびTK-D-4M株(東京大学医科学研究所ステムセルバンクより入手)を全ての実験に使用した。EP細胞は、すでに公知のプロトコール(D'Amourら, Nat Biotechnol. 24:1392-1401 2006. Kroonら, Nat Biotechnol. 26:443-452 2008. Rezaniaら, Diabetes. 61:2016-2029 2012. Rezaniaら, Nat Biotechnol. 32:1121-1133 2014. Pagliucaら, 159:428-439 2014.等)に変更を加えた方法を用いて調製した。具体的な手順を以下に示す。
【0029】
細胞を膵島細胞に分化誘導するため、ヒトiPS細胞(HiPSC)をStemFlex培地中にて80%コンフルエントになるように播種し、培養した。細胞分化のステージにおいて(図1a参照)過程において、以下に示す組成の異なる培地中で培養した。
・培養1日目(stage1):
RPMI1640培地(FUJIFILM)+100 ng/ml アクチビンA(PeproTech)+10 μM CHIR99021(FUJIFILM)
・培養2~4日目(Stage2):
RPMI1640培地+100 ng/ml アクチビンA+10 % B27 supplement(GIBCO)
・培養5~7日目(Stage3A):
DMEM(high-glucose、FUJIFILM)+50 μM FGF10(PeproTech)(5日目のみ)+0.25 μM Sant1(SIGMA)+700 μM EC23(Reinnervate)+6 μM SB431542+1 μM Dorsomorphin(FUJIFILM)+10 % B27 supplement
・培養8~4日目(Stage 3B):
Stage3Aの培地に+5 μM RepSox(Abcam)
・培養15~25日目(Stage 4):
DMEM(high-glucose)+50 μM FGF10(15日目のみ)+0.25 μM Sant1+1 μM Dorsomorphin +5 μM RepSox+50 ng/ml IGF-1(ペプチド研究所)+Exendin-4(ペプチド研究所)+10 μM DAPT(東京化成)+10 μM Folskolin(FUJIFILM)+10 % B27 supplement
・26~36日目(Stage5):
DMEM/F12(FUJIFILM)+10% B27 supplement+0.5 mM HEPES(GIBCO)+ 1x PSG(GIBCO)+2 μM Nicotinamide(FUJIFILM)+55 μM β-mercaptetol (GIBCO)+50 ng/ml IGF-1(FUJIFILM)+Exendin-4(ペプチド研究所)+GLP1(ペプチド研究所)+5 μM RepSox +0.25 μM Sant1+2 nM Caspase-3 Inhibitor Z-DEVD-FMK(R&D)+10 μM Folskolin.
細胞の解析は、36日目以降に行った。細胞は、使用するまでStage 5の培地で維持した。
Min6 マウスβ細胞株(特開2002-125661)は、以前に記載されているように接着して培養した。
【0030】
1-2.グルコース刺激インスリン分泌(glucose-stimulated insulin secretion:GSIS)
単離したヒト膵島または分化誘導した膵島細胞をサンプリングした。細胞クラスターをKrebs-ringer液で2回洗浄し、次いで、低濃度(2.8 mM)グルコースKrebs-ringer液中で2時間プレインキュベートした。細胞クラスターを、グルコースを含まないKrebs-ringer液で2回洗浄し、低濃度グルコースKrebs-ringer液中で45分間インキュベートした後、上清を回収した。次に、高濃度グルコース(28 mM)Krebs-ringer液中で45分間インキュベートした後、上清を回収した。場合によって、再度、低濃度グルコースKrebs-ringer液中で45分間インキュベートした。最後に、細胞クラスターを2 mM グルコースおよび30 mM KClを含有する低濃度グルコースKrebs-ringer液中で45分間インキュベート(脱分極チャレンジ)し、次いで、上清を回収した。分泌されたインスリンを含む上清サンプルを、Human Ultrasensitive C-peptide ELISA および Human C-peptide ELISA(Mercodia)で検出した。
【0031】
1-3.ヒト由来の膵島細胞の調製
遺体の膵臓から単離されたヒト膵島は、アルバータ大学(エドモントン、カナダ)から分与された。ヒト膵島の使用許可は、東京大学の健康調査倫理委員会によって承認された。
ヒト膵島は、到着後速やかに、1 x TrypLETM Select (1X)中、37℃で10分間インキュベートし、続いてピペッテイングにより膵島を解離させた。細胞を、セルソーター MoFlo XDP(Beckman coulter)を使用して分離した。分離した膵島細胞に1:1の割合でHUVEC細胞を加え、20,000細胞/ウェルの割合で低吸着性の96ウェルプレート(住友ベークライト)に添加した。培地は10% FBS(GIBCO)、1 % PSG(GIBCO)を添加したフェノールレッドフリーRPMI培地(MMM)を使用した。翌日、細胞クラスターを回収した。
【0032】
1-4.免疫組織化学
免疫組織化学的解析を行うために、膵島の細胞クラスターを、4 % PFAで、4℃にて1時間固定した後、洗浄し、パラフィンに包埋して、膵島細胞クラスターの切片を作製した。作製した切片は、PBS+10 % ロバ血清(Dako)で、室温にて1時間ブロッキングした後、1次抗体を含むブロッキング緩衝液中で、4℃にて1晩インキュベートし、その後、PBSで洗浄した。2次抗体は37℃にて2時間インキュベートした後、PBSで洗浄した。代表的な画像は、Olympus FV3000 confocal Microscopeを用いて撮影した。
ホールマウント染色を行う場合は、細胞クラスターを4 % PFAで、室温にて1時間固定し、洗浄した。染色を行う前に、0.5 % Triton溶液で、室温にて1時間処理した。染色は、組織切片の染色と同様の方法で行った。
【0033】
1-5.フローサイトメトリーと細胞選別
分化した細胞クラスターまたは膵島は、TrypLETMExpress中で、37℃にて10分間インキュベートすることにより単細胞懸濁液に分散させた。
細胞選別のために、10 % FBSを含むDMEM培地に再懸濁した。次に、細胞を、1次抗体を含むブロッキング緩衝液に再懸濁し、4℃にて10分間インキュベートした。その後、細胞を培地で2回洗浄し、次いで、2次抗体と共に4℃にて10分間インキュベートした。その後、細胞を2回洗浄し、MoFlo XDPを用いて細胞のソーティングを行った。結果の分析はFlowJoソフトウェアを用いて行った。Intracellular Stainingを必要とするFACSでは、BD Cytofix/CytopermTM Kit(BD Biosciences)を用いて細胞を調製した。
【0034】
1-6.RNA抽出とリアルタイムqPCR
トータルRNAは、RNeasy Micro Kit(Qiagen)を用いて抽出した。cDNAは、TAKARA PrimeScriptTM II 1st strand cDNA Synthesis Kitを用いて調製した。リアルタイムPCR測定は、各プライマーおよび0.125 x SYBR Green I(Life Technologies)を用いて、行った。データは、平均発現量±SEMとして示す。相対的遺伝子発現は、ハウスキーピング遺伝子としてGAPDH発現を用いて決定した。
【0035】
1-7.マイクロアレイによる遺伝子発現解析
セルソーターで純化したNgn3高発現細胞とNgn3低発現細胞について、マイクロアレイによる遺伝子発現解析を行った。純化直後、細胞からQIAshredder(Qiagen)およびRNeasy Mini Kit(Qiagen)を用いて全RNAを単離した。Low Input Quick Amp Labeling Kit(Agilent)を用いて全RNAの逆転写および増幅を行なった。SurePrint G3 Human Gene Expression v3 8x60K Microarray kit (Agilent)でハイブリダイズし、染色後スキャンした。マイクロアレイデータはDAVID(https://david.ncifcrf.gov/home.jsp)のfunctional annotation機能を使って解析した。富化された機能は、P値0.05以下を有意として検討した。
【0036】
1-8.分化したヒトiPS細胞におけるCD82のsiRNAノックダウン
CD82陽性細胞およびNgn3陽性細胞に、Human Stem Cell NucleofectorTM Kit 1(Lonza)を用いて20 nM CD82 Stealth RNAiTM Oligo(Thermo Fisher)またはblock it fluorescent control(Thermo Fisher)をトランスフェクトした。トランスフェクションの翌日に培地を交換した。10日後、細胞のグルコース刺激インスリン分泌アッセイと蛍光免疫染色を行なった。
【0037】
1-9.CD82陽性およびNgn3陽性細胞におけるCD82の阻害実験
CD82陽性およびNgn3細胞をMoFlo XDPを用いて純化したのちに、培地中に中和抗体である抗CD82 mAb 4F9抗体およびCD82antibody LS-C742189 (LSbio)またはマウスIgGを10mg/mlの濃度で添加して3日間培養した。その後7日間はstage5培地で培養した。10日後GSIS分析を行なった。
【0038】
2.結果
2-1.Ngn3高発現細胞から膵内分泌細胞への分化誘導
膵内分泌細胞を単離するために、膵内分泌前駆細胞(Endocrine progenitor cells:EPC)マーカーであるNgn3-mcherryおよびβ細胞マーカーであるINS-VenusをダブルノックインしたiPS細胞を、発明者らの多段階プロトコールを用いて、EP細胞(EPCs)に分化させた(図1a)。分化後22日目に、EP期の細胞をmcherry発現強度に基づくフローサイトメトリーを用いて分析した。 EP細胞には、約12.3%のNgn3高発現細胞集団および10.9%のNgn3低発現細胞集団が含まれていた(図1d)。 EP細胞のmcherryシグナル特異性を確認するために、選別された細胞画分に対する遺伝子発現分析を行った。qRT-PCR分析の結果から、Ngn3高発現細胞分画由来の細胞は、Ngn3陰性細胞分画およびNgn3低発現細胞分画由来の細胞よりも高レベルのEP期細胞マーカー遺伝子、PDX1、Ngn3、NeuroD1、Nkx6.1およびMafAを発現することが明らかになった(図1e)。これらの結果は、EP期細胞集団には、Ngn3高発現細胞が多く含まれていることを示唆している。また純化Ngn3陽性細胞を用いた以前の結果とも一致している(H Liuら, Cell Res. Oct;24(10):1181-200. 2014)。
【0039】
次に、単離されたNgn3-高発現EP細胞およびNgn3-低発現EP細胞が成熟膵内分泌細胞に分化する能力を評価するために、上述の多段階プロトコールによりこれらの細胞を膵内分泌細胞に分化させた(図1b)。 Ngn3高発現細胞、Ngn3低発現細胞、Ngn3陰性細胞および非選別細胞を懸濁培養システムで10日間培養した。その結果、Ngn3高発現細胞とNgn3低発現細胞の培養系において、均一な形状の細胞クラスターの形成が観察された(図1f)。これらの細胞クラスターのインスリン分泌能について、C-ペプチドの分泌量を指標にして分析したところ、Ngn3高発現細胞由来の細胞クラスターのインスリン分泌能は、Ngn3低発現細胞由来のクラスターより高いことが明らかになった(図1g)。細胞クラスター中の成熟β細胞の割合を決定するために、Nkx6.1およびインスリン共発現細胞(Nkx6.1/INS)の割合をフローサイトメトリーで分析した(図1h)。その結果、Ngn3高発現細胞クラスターではNkx6.1 / INS二重陽性細胞は25.1%であり、Ngn3低発現細胞クラスターでは12.2%であった。
以上の結果は、EP期細胞は、Ngn3高発現細胞の単離(分離)によって精製(純化)することが可能であり、精製された細胞がインスリン分泌β細胞に分化し得ることを示唆する。
【0040】
2-2.CD82の膵内分泌前駆細胞マーカーとしての機能の検討
Ngn3高発現細胞で強く発現するマーカー遺伝子を同定するために、Ngn3高発現細胞とNgn3低発現細胞の遺伝子発現パターンをマイクロアレイで解析した。マイクロアレイ解析の結果、Ngn3高発現細胞はNgn3低発現細胞と比較して、膵臓発生マーカー遺伝子の発現が高い傾向にあることが明らかになった(図2a)。EP期マーカーのCD200およびCD142(F3)はNgn3-high 細胞に発現していたが、同じくEPマーカーであるSusd2およびGP2の発現は低かった。
Ngn3高発現細胞で発現する遺伝子のうち、Ngn3低発現細胞での発現量より5倍以上高発現する517個の遺伝子を解析した。GO-term analysisは、Ngn3高発現細胞において、シグナルペプチド関連、膜タンパク関連、グルコースホメオスタシス関連遺伝子の発現が高いことを示した(図2b)。また、インスリン分泌関連因子に富んでいた。
次に、Ngn3高発現細胞に強発現する細胞膜マーカーを選定するために、GO term ‘membrane’および’signal’でfilterをかけて解析したところ、72の遺伝子がヒットした。この72遺伝子のリストをもとに、市販の抗体を用いて、細胞表面における発現状況をFACSにより解析を行ったところ、Cd82を見出した。CD82は、4回膜貫通型タンパク質であるTetraspaninタンパクファミリーに属し、膵臓がんなどの抑制因子として知られている(WM Liuら, Cancer Lett. Aug 28;240(2):183-94. 2005:CM Termini ら, Front Cell Dev Biol. Apr 6;5:34. 2017等)。
【0041】
膵臓へ分化する過程における、CD82陽性細胞の存在比率を調べるために、FACS解析を行なった。CD82は分化誘導開始から6日目(day6)および9日目(day9)の細胞にはほとんど発現していなかったが、22日目(day22)の細胞に強く発現していた(図2c)。また、この結果は細胞株の違いには依存しなかった。CD82がEP細胞に発現するか検証するために、CD82+/-分画のqRT-PCR解析を行った(図2d)。 CD82陰性分画の細胞と比較してCD82陽性分画の細胞では、PDX1、Nkx6.1、Mnx1、Pax4、MafA、InsおよびNeuroD1などの膵内分泌前駆細胞マーカー、特に膵β細胞マーカーの高発現が認められた。さらに、CD82陽性細胞分画およびCD82陰性細胞分画において、PDX1およびNkx6.1の発現をFACSで調べた(図2e)。その結果、CD82陰性細胞において, Nkx6.1/PDX1 ダブルポジティブ(double positive)の細胞が0.84%であったのに対し、CD82陽性細胞においては21.1%であった (図2e)。また、day22の細胞において、CD82陽性細胞の全てがPDX1およびNeuroD1陽性細胞であった。しかし、全てのPDX1発現細胞およびNeurod1発現細胞がCD82を発現しているわけではなかった(図2f)。この結果は、CD82陽性細胞が膵内分泌前駆細胞の特定のサブセットである可能性があることを示唆している。
以上の結果より、CD82陽性細胞に優位に内分泌前駆細胞のサブセットが濃縮されることが示唆された。
【0042】
2-3.CD82陽性細胞から成熟内分泌細胞への分化誘導の検討
次に、CD82陽性細胞が成熟した膵内分泌細胞に分化できるかを検討するために、セルソーターで純化したCD82陽性細胞とCD82陰性細胞を成熟培養した。Ngn3陽性細胞と同様に、CD82陽性細胞は均一な細胞クラスターを形成した(図3a)。CD82陽性細胞分画およびCD82陰性細胞分画に含まれる内分泌前駆細胞の割合を調べるために、フローサイトメトリー解析を行った(図3b)。CD82陽性細胞分画には、33%のC-Pep(C-PEPTIDE)/PDX1ダブルポジティブ細胞、38.1%のC-pep/ND1(NEUROD1)ダブルポジティブ細胞が含まれていた。これに対し、CD82陰性細胞分画には、1.65%のC-Pep/PDX1ダブルポジティブ細胞、1.6%のC-Pep/ND1ダブルポジティブ細胞が含まれていた。また、GCG(glucagon)陽性細胞はCD82陽性細胞分画で5.71%、CD82陰性細胞で1.46%であった。
これまでに報告されている膵臓分化プロトコールの多くは、グルカゴンとインスリンを同時発現する未成熟ポリホルモン細胞を生成するということが報告されている(E Kroonら, Nat Biotechnol. Apr;26(4):443-52. 2008:JE Bruinら, Stem Cell Res. Jan;12(1):194-208. 2014:MC Nostroら, Development 138, 861?871, 2011.)。INS/GCGダブルポジティブ細胞の存在割合は、CD82陽性細胞由来の細胞クラスターで2.32%、CD82陰性細胞由来の細胞クラスターで0.97%であった。
以上の結果は、CD82陽性細胞を成熟させた細胞クラスターは、ほとんどポリホルモン細胞を含まず、成熟β細胞およびその他の成熟内分泌細胞で構成されていることを示している。これに対し、CD82陰性細胞由来の細胞クラスターは、PDX1陽性細胞を含むが、β細胞をほとんど含まないことがわかった。
さらに、細胞クラスター中における内分泌細胞の局在を免疫染色で調べた(図3c)。その結果、CD82陽性細胞由来の細胞クラスターは単一ホルモン産生性のβ細胞、α細胞およびδ細胞(somatostatin:SST産生細胞)で構成されていた。これに対しCD82陰性細胞由来の細胞クラスターは、内部に空洞が形成され、INS陽性細胞はほとんど存在していなかった。
【0043】
2-4.CD82と既知の膵内分泌細胞マーカーとの比較
これまでに、膵島前駆細胞の特異的なマーカーとして。CD200、GP2およびsusd2など複数の遺伝子マーカーが報告されている(H Liuら, Cell Res. Oct;24(10):1181-200. 2014:J Ameriら, Cell Rep. Apr 4;19(1):36-49. 2017:OG Kellyら, Nat Biotechnol. Jul 31;29(8):750-6. 2011)。これらのマーカー発現細胞は、インビトロまたはインビボで成熟膵内分泌細胞に分化可能であることが示されている。
そこで、EP期細胞におけるCD82と他のマーカー遺伝子の発現量の比較を行った(図4a)。FACS解析の結果から、EP期細胞においてCD82は、CD200、CD142、GP2および Susd2陽性細胞に発現しないか、一部の細胞にのみ発現していることが分かった。この結果は、CD82陽性細胞は既報の膵内分泌前駆細胞マーカー陽性細胞とは異なる細胞であることを示唆している。
選別された細胞集団(CD142、CD200およびCD82で選別された細胞集団)における既報のEPマーカー遺伝子発現量を、qRT-PCR法で分析したところ、CD82陽性細胞に発現するEPマーカー遺伝子発現量は、CD142およびCD200で選別された細胞集団における発現量と同等であった(図4b)。
次に、CD142、CD200、Susd2発現細胞と、CD82発現細胞を、図1aに示すプロトコールで成熟培養し、c-ペプチドの分泌量を測定した。その結果、これまでの報告と一致して、CD142、CD200およびSusd2で分取した細胞において、グルコース濃度応答性インスリン分泌能が確認されたが、各マーカーの陰性細胞と陽性細胞では、c-ペプチドの分泌量にそれほど大きな差は認められなかった。これに対し、CD82陽性細胞は、CD82陰性細胞よりも、グルコース濃度応答性インスリン分泌能が顕著に高いことが見いだされた。 この結果は、CD82陽性細胞分画は、既報の膵前駆細胞マーカー(CD142、CD200およびSusd2)で回収される細胞分画と異なり、成熟培養を行うことでより効率的にβ細胞に分化誘導されることを示している(図4c)。
【0044】
2-5.成熟膵島におけるCD82陽性細胞
CD82は膵臓癌で高発現することが知られており(Guo X, Cancer Res. 56:4876-4880, 1996))、細胞の移動能抑制など多様な細胞機能に関与することが示されている。また、CD82は正常膵臓にも発現するが、その役割は依然として決定されていない。CD82の正常膵島での発現パターンを調べるために、ヒト成人膵島切片におけるCD82発現を解析した。CD82は、島全体を染色し、各種内分泌細胞を区別しなかった(図5a)。また、CD82抗体による染色像から、CD82は主に細胞質および細胞膜に存在することが示されたが、この結果は、他の組織における報告と一致していた(R. Rotterudら, Histol Histopathol 22: 349-363, 2007)。
ヒト膵島細胞中のCD82陽性細胞の役割を検討した(図5b)。CD82陽性細胞は、膵島の全細胞の30-40%を占めていた。成熟β細胞マーカーであるC-peptideを発現する細胞は、CD82陰性細胞中40.2%、 CD82陽性細胞中65.02%存在していた。これらの細胞のうち、UCN3とC-peptideを共発現する細胞は、CD82陽性細胞中64.6%、CD82陰性細胞中15.1%であることが観察された(図5c)。これらの結果は、より成熟した性質を持つ膵β細胞がCD82陽性細胞画分に富んでいることを示唆している。
【0045】
CD82陽性細胞分画とCD82陰性細胞分画のグルコース刺激インスリン分泌(glucose-stimulated insulin secretion:GSIS)を測定した。単離した膵島細胞はインスリン分泌能を持たないため、細胞機能に必要なニッチ(niche)を再現する必要がある。これまでに、HUVEC細胞と間葉系幹細胞(Mesenchymal stem cell:MSC)が膵島組織および膵島細胞を凝集させる機能を持つことが報告されている(Takahashiら Cell Reports 23, 1620-1629, 2018)。これらの知見を元に、単離したCD82陽性/陰性細胞とHUVEC細胞を、1:1の比で共培養した。細胞は24時間後に細胞クラスターを形成した(図5d)。
CD82陽性細胞由来の擬似膵島クラスターは、低グルコース濃度より、高グルコース濃度において約2倍多くインスリンを分泌した(図5e)。これとは対照的に、CD82陰性細胞由来の膵島クラスターは、少量のインスリン分泌を示したものの、高グルコース濃度によるインスリン分泌の増強効果は示さなかった。この結果は、CD82陽性細胞の方が、CD82陰性細胞よりも、より効率的に機能的なβ細胞に分化し得ることを示している。CD82陽性//陰性細胞の免疫染色を行なったところ、CD82陽性細胞クラスターは、β細胞、およびα細胞、δ細胞で構成されているのに対し、CD82陰性細胞クラスターはβ細胞をほとんど含まないことが明らかになった。
【0046】
2-6.CD82の発現時期の検討
発生段階におけるCD82の発現時期の確認を行うために、マウスの膵臓発生過程におけるCD82の発現パターンを調べた。CD82陽性細胞はE18.5マウスのPDX1陽性膵臓部分で特異的に検出された(図6、上のパネル)。注目すべきことに、E16.5以前の膵臓ではいずれの部位においても検出できなかった。マウス胎児において、Ngn3陽性細胞はE13.5以降に出現するが、CD82の発現はこれと一致しない。また、成体のマウス膵臓において、CD82発現はほぼ全ての膵島細胞において検出された(図6、下のパネル)。これらの知見は、インビボにおいてCD82の発現がより成熟に近い膵島細胞に発現することを示唆している。
【0047】
2-7.CD82がβ細胞のインスリン分泌能へ与える影響
次に、CD82がiPS細胞由来膵島の機能、特にβ細胞機能に影響を与えるかどうか検討した。Ngn3高発現細胞のCD82の発現をノックダウンし、続いてβ細胞への成熟誘導を行なった後に、GSISを評価した。その結果、CD82をノックダウンすると、コントロールで認められたグルコース応答性が失われることがわかった(図7a)。さらに、HUVEC細胞におけるVEGF依存性の中皮細胞遊走機能および増殖能を阻害することが示されている抗CD82 mAb 4F9抗体(Iwataら, Eur. J. Immunol. 32: 1328-1337, 2002 Nomuraら, Biochemical and Biophysical Research Communications 474 111e117, 2016)を用いて、CD82の機能阻害を試みた。その結果、siRNAの結果と一致して、コントロールで認められたグルコース応答性が失われるという結果を得た(図7b、antibody 1)。また、市販のCD82阻害抗体(CD82antibody LS-C742189)を使用した結果でも同様の結果を得た(図7b、antibody 2)。興味深いことに、成熟培養後の細胞へ阻害抗体を添加しても、グルコース濃度応答性インスリン分泌能に影響がなかった。
以上の結果から、分化誘導過程においてCD82の発現がβ細胞のGSISを調節する可能性が考えられる。
【産業上の利用可能性】
【0048】
本発明の膵前駆細胞(群)は、未分化細胞や不要な細胞から分離して調製できるため、成熟培養の効率がよく、また、がん化の可能性を回避できることから、移植治療などの医療分野における利用が期待される。
図1
図2
図3
図4
図5
図6
図7