(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-20
(45)【発行日】2023-11-29
(54)【発明の名称】セラミックス接合体、静電チャック装置、セラミックス接合体の製造方法
(51)【国際特許分類】
H01L 21/683 20060101AFI20231121BHJP
H01L 21/3065 20060101ALI20231121BHJP
C04B 37/00 20060101ALI20231121BHJP
【FI】
H01L21/68 R
H01L21/302 101G
C04B37/00 Z
(21)【出願番号】P 2022557253
(86)(22)【出願日】2021-08-31
(86)【国際出願番号】 JP2021031940
(87)【国際公開番号】W WO2022085307
(87)【国際公開日】2022-04-28
【審査請求日】2022-11-24
(31)【優先権主張番号】P 2020176425
(32)【優先日】2020-10-21
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000183266
【氏名又は名称】住友大阪セメント株式会社
(74)【代理人】
【識別番号】100161207
【氏名又は名称】西澤 和純
(74)【代理人】
【識別番号】100196058
【氏名又は名称】佐藤 彰雄
(74)【代理人】
【識別番号】100206999
【氏名又は名称】萩原 綾夏
(72)【発明者】
【氏名】有川 純
(72)【発明者】
【氏名】日▲高▼ 宣浩
(72)【発明者】
【氏名】三浦 幸夫
【審査官】杢 哲次
(56)【参考文献】
【文献】特開2011-148687(JP,A)
【文献】特開2004-103648(JP,A)
【文献】特開2005-57214(JP,A)
【文献】特開2020-25072(JP,A)
【文献】特開2017-178663(JP,A)
【文献】特開2005-159334(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/683
H01L 21/3065
C04B 37/00
(57)【特許請求の範囲】
【請求項1】
一対のセラミックス板と、
前記一対のセラミックス板の間に介在する電極層と、を備え、
前記電極層は、前記一対のセラミックス板の少なくとも一方に埋設され、
前記電極層の外縁において、前記一対のセラミックス板の少なくとも一方と前記電極層との接合面が、前記一対のセラミックス板及び前記電極層の厚さ方向に対して傾きを有し、
前記電極層は、絶縁性セラミックスと導電性セラミックスから構成され
、
前記電極層の外縁の相対密度は、前記電極層の中心の相対密度よりも低密度であるセラミックス接合体。
【請求項2】
一対のセラミックス板と、
前記一対のセラミックス板の間に介在する電極層と、
前記一対のセラミックス板の間において、前記電極層の周囲に配置された絶縁層と、を備え、
前記電極層の外縁において、前記電極層と前記絶縁層との接合面が、前記一対のセラミックス板、前記電極層及び前記絶縁層の厚さ方向に対して傾きを有し、
前記電極層の外縁の相対密度は、前記電極層の中心の相対密度よりも低密度である、セラミックス接合体。
【請求項3】
前記電極層は、絶縁性セラミックスと導電性セラミックスから構成される、請求項
2に記載のセラミックス接合体。
【請求項4】
前記絶縁性セラミックスは、Al
2O
3、AlN、Si
3N
4、Y
2O
3、YAG、SmAlO
3、MgO及びSiO
2からなる群から選択される少なくとも1種である、請求項1
または3に記載のセラミックス接合体。
【請求項5】
前記導電性セラミックスは、SiC、TiO
2、TiN、TiC、W、WC、Mo、Mo
2C及びCからなる群から選択される少なくとも1種である、請求項1
,3,4のいずれか1項に記載のセラミックス接合体。
【請求項6】
前記一対のセラミックス板の材料が、互いに同じである請求項1から
5のいずれか1項に記載のセラミックス接合体。
【請求項7】
セラミックスからなる静電チャック部材と、金属からなる温度調整用ベース部材とを、接着剤層を介して接合してなる静電チャック装置であって、
前記静電チャック部材は、請求項1から
6のいずれか1項に記載のセラミックス接合体からなる、静電チャック装置。
【請求項8】
一対のセラミックス板の少なくとも一方に対して、前記一対のセラミックス板が重なる面に、前記一対のセラミックス板の厚さ方向に対して傾く傾斜面を有する凹部を形成する工程と、
前記凹部に、電極層形成用ペーストを塗布して電極層塗膜を形成する工程と、
前記電極層塗膜を形成した面が内側になる姿勢で、前記一対のセラミックス板を積層する工程と、
前記一対のセラミックス板及び前記電極層塗膜を含む積層体を、加熱しながら、厚さ方向に加圧する工程と、を有し、
前記電極層塗膜は、絶縁性セラミックスと導電性セラミックスから構成されるセラミックス接合体の製造方法。
【請求項9】
一対のセラミックス板の少なくとも一方に対して、前記一対のセラミックス板が重なる面に、電極層形成用ペーストを塗布して電極層塗膜を形成するとともに、前記電極層塗膜の周囲を囲んで絶縁層形成用ペーストを塗布して絶縁層塗膜を形成する工程と、
前記電極層塗膜及び前記絶縁層塗膜を形成した面が内側になる姿勢で、前記一対のセラミックス板を積層する工程と、
前記一対のセラミックス板、前記電極層塗膜及び前記絶縁層塗膜を含む積層体を、加熱しながら、厚さ方向に加圧する工程と、を有し、
前記絶縁層塗膜を形成する工程では、前記電極層塗膜の外縁と前記絶縁層塗膜の内縁とが重なり、前記電極層塗膜と前記絶縁層塗膜との接触面が、前記一対のセラミックス板の厚さ方向に対して傾きを有し、
前記電極層塗膜から得られる電極層の外縁の相対密度は、前記電極層の中心の相対密度よりも低密度であるセラミックス接合体の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、セラミックス接合体、静電チャック装置及びセラミックス接合体の製造方法に関する。
本願は、2020年10月21日に出願された日本国特願2020-176425号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
従来、IC、LSI、VLSI等の半導体装置を製造する半導体製造工程においては、シリコンウエハ等の板状試料は、静電チャック機能を備えた静電チャック部材に静電吸着により固定されて所定の処理が施される。
【0003】
例えば、この板状試料にプラズマ雰囲気下にてエッチング処理等を施す場合、プラズマの熱により板状試料の表面が高温になり、表面のレジスト膜が張り裂ける(バーストする)等の問題が生じる。
【0004】
そこで、この板状試料の温度を所望の一定の温度に維持するために、冷却機能を有する静電チャック装置が用いられている。このような静電チャック装置は、上記の静電チャック部材と、金属製の部材の内部に温度制御用の冷却媒体を循環させる流路が形成された温度調整用ベース部材とを備えている。静電チャック部材と温度調整用ベース部材とは、静電チャック部材の下面において、シリコーン系接着剤を介して接合・一体化している。
【0005】
この静電チャック装置では、温度調整用ベース部材の流路に温度調整用の冷却媒体を循環させて熱交換を行い、静電チャック部材の上面に固定された板状試料の温度を望ましい一定の温度に維持しつつ静電吸着できる。そのため、上記静電チャック装置を用いると、静電吸着する板状試料の温度を維持しながら、板状試料に各種のプラズマ処理を施すことができる。
【0006】
静電チャック部材としては、一対のセラミックス板と、それらの間に介在する電極層とを備えたセラミックス接合体を含む構成が知られている。このようなセラミックス接合体の製造方法としては、例えば、一方のセラミックス焼結体に溝を掘って、その溝の中に導電層を形成し、セラミックス焼結体とともに導電層を研削、鏡面研磨した後、ホットプレスにより、一方のセラミックス焼結体に他方のセラミックス焼結体を接合する方法が知られている(例えば、特許文献1参照)。
【先行技術文献】
【特許文献】
【0007】
【発明の概要】
【発明が解決しようとする課題】
【0008】
特許文献1では、一対のセラミックス板を貼り合わせる界面(接合界面)に、微小な空間(ボイド)が残存することがあり、この機構により静電チャック部材の耐電圧が低下する、すなわち絶縁破壊するおそれが指摘されている。このようなボイドを有する静電チャック部材は、誘電層(セラミックス板)に高い電圧を印加すると、ボイドに電荷が溜まり、放電するよりセラミックス板が絶縁破壊すると予想される。
【0009】
しかしながら、特許文献1に記載の方法では、電極層とセラミックス板の間にボイドが生じることを充分に抑制することができなかった。
【0010】
本発明は、上記事情に鑑みてなされたものであって、高い電圧を印加した場合に、放電によりセラミックス板の絶縁破壊が発生することを抑制したセラミックス接合体、セラミックス接合体を含む静電チャック装置、及びセラミックス接合体の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0011】
上記の課題を解決するため、本発明は以下の態様を包含する。
【0012】
[1]一対のセラミックス板と、前記一対のセラミックス板の間に介在する電極層と、を備え、前記電極層は、前記一対のセラミックス板の少なくとも一方に埋設され、前記電極層の外縁において、前記一対のセラミックス板の少なくとも一方と前記電極層との接合面が、前記一対のセラミックス板及び前記電極層の厚さ方向に対して傾きを有する、セラミックス接合体。
【0013】
[2]一対のセラミックス板と、前記一対のセラミックス板の間に介在する電極層と、前記一対のセラミックス板の間において、前記電極層の周囲に配置された絶縁層と、を備え、前記電極層の外縁において、前記電極層と前記絶縁層との接合面が、前記一対のセラミックス板、前記電極層及び前記絶縁層の厚さ方向に対して傾きを有する、セラミックス接合体。
【0014】
[3]前記電極層は、絶縁性セラミックスと導電性セラミックスから構成される、[1]又は[2]に記載のセラミックス接合体。
【0015】
[4]前記絶縁性セラミックスは、Al2O3、AlN、Si3N4、Y2O3、YAG、SmAlO3、MgO及びSiO2からなる群から選択される少なくとも1種である、[3]に記載のセラミックス接合体。
【0016】
[5]前記導電性セラミックスは、SiC、TiO2、TiN、TiC、W、WC、Mo、Mo2C及びCからなる群から選択される少なくとも1種である、[3]又は[4]に記載のセラミックス接合体。
【0017】
[6]前記電極層の外縁の相対密度は、前記電極層の中心の相対密度よりも低密度である[1]から[5]のいずれか1項に記載のセラミックス接合体。
【0018】
[7]前記一対のセラミックス板の材料が、互いに同じである[1]から[6]のいずれか1項に記載のセラミックス接合体。
【0019】
[8]セラミックスからなる静電チャック部材と、金属からなる温度調整用ベース部材とを、接着剤層を介して接合してなる静電チャック装置であって、前記静電チャック部材は、[1]から[7]のいずれか1項に記載のセラミックス接合体からなる、静電チャック装置。
【0020】
[9]一対のセラミックス板の少なくとも一方に対して、前記一対のセラミックス板が重なる面に、前記一対のセラミックス板の厚さ方向に対して傾く傾斜面を有する凹部を形成する工程と、前記凹部に、電極層形成用ペーストを塗布して電極層塗膜を形成する工程と、前記電極層塗膜を形成した面が内側になる姿勢で、前記一対のセラミックス板を積層する工程と、前記一対のセラミックス板及び前記電極層塗膜を含む積層体を、加熱しながら、厚さ方向に加圧する工程と、を有するセラミックス接合体の製造方法。
【0021】
[10]一対のセラミックス板の少なくとも一方に対して、前記一対のセラミックス板が重なる面に、電極層形成用ペーストを塗布して電極層塗膜を形成するとともに、前記電極層塗膜の周囲を囲んで絶縁層形成用ペーストを塗布して絶縁層塗膜を形成する工程と、前記電極層塗膜及び前記絶縁層塗膜を形成した面が内側になる姿勢で、前記一対のセラミックス板を積層する工程と、前記一対のセラミックス板、前記電極層塗膜及び前記絶縁層塗膜を含む積層体を、加熱しながら、厚さ方向に加圧する工程と、を有し、前記絶縁層塗膜を形成する工程では、前記電極層塗膜の外縁と前記絶縁層塗膜の内縁とが重なり、前記電極層塗膜と前記絶縁層塗膜との接触面が、前記一対のセラミックス板の厚さ方向に対して傾きを有するセラミックス接合体の製造方法。
【発明の効果】
【0022】
本発明によれば、高い電圧を印加した場合に、放電によりセラミックス板の絶縁破壊が発生することを抑制したセラミックス接合体、セラミックス接合体を含む静電チャック装置、及びセラミックス接合体の製造方法を提供することができる。
【図面の簡単な説明】
【0023】
【
図1】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図2】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図3】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図4】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図5】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図6】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図7】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図8】本発明の一実施形態に係るセラミックス接合体を示す断面図である。
【
図9】本発明の一実施形態に係る静電チャック装置を示す断面図である。
【発明を実施するための形態】
【0024】
本発明のセラミックス接合体、静電チャック装置、及びセラミックス接合体の製造方法の実施の形態について説明する。
なお、本実施の形態は、発明の趣旨をより良く理解させるために具体的に説明するものであり、特に指定のない限り、本発明を限定するものではない。
【0025】
[セラミックス接合体]
(第1の実施形態)
以下、
図1を参照しながら、本発明の一実施形態に係るセラミックス接合体について説明する。
図1において、紙面の左右方向(セラミックス接合体の幅方向)をX方向、紙面の上下方向(セラミックス接合体の厚さ方向)をY方向とする。
なお、以下の全ての図面においては、図面を見易くするため、各構成要素の寸法や比率等は適宜異ならせてある。
【0026】
図1は、本実施形態のセラミックス接合体を示す断面図である。
図1に示すように、本実施形態のセラミックス接合体1は、一対のセラミックス板2,3と、一対のセラミックス板2,3の間に介在する電極層4と、を備える。
【0027】
セラミックス接合体の内部は、部材間の界面や、電極層の内部が中実とならず、空間が形成されることがある。以下の説明において、セラミックス接合体の内部に発生する空間を、発生する位置及び大きさに基づいて、「ボイド」「隙間」「気孔」と称する。
【0028】
用語「空間」は、上記ボイド、隙間及び気孔を総称する表現である。
【0029】
用語「ボイド」は、第1セラミックス板と電極層との界面、又は第2のセラミックス板と電極層との界面に生じる空間であって、長径が50μm未満である空間を意味する。
【0030】
用語「隙間」は、第1セラミックス板と電極層との界面、又は第2のセラミックス板と電極層との界面に生じる空間であって、長径が50μm以上である空間を意味する。
【0031】
用語「気孔」は、電極層の内部に生じる空間を意味する。
【0032】
なお、ボイド及び隙間の長径は、各空間(ボイド又は隙間)にそれぞれ外接する最小の矩形の長辺の長さに相当する。
【0033】
図1に示す断面図は、平面視においてセラミックス接合体1に外接する円のうち最小の円を想定したとき、この円の中心を含む仮想面により、セラミックス接合体を切断した断面である。セラミックス接合体1が平面視で略円形である場合、上記円の中心と、平面視におけるセラミックス接合体の形状の中心とは凡そ一致する。
【0034】
なお、本明細書において「平面視」とは、セラミックス接合体の厚さ方向であるY方向から見た視野を指す。
また、本明細書において「外縁」とは、対象物を平面視したときの外周近傍の領域を指す。
【0035】
以下、セラミックス板2を第1のセラミックス板2、セラミックス板3を第2のセラミックス板3と言うことがある。
【0036】
図1に示すように、セラミックス接合体1は、第1のセラミックス板2と、電極層4と、第2のセラミックス板3とがこの順に積層されている。すなわち、セラミックス接合体1は、第1のセラミックス板2と第2のセラミックス板3が、電極層4を介して、接合一体化されてなる接合体である。
【0037】
セラミックス接合体1では、電極層4の外縁は、平面視で接合面5と重なり、且つセラミックス接合体1の外部に露出していない。また、電極層4の外縁において、第2のセラミックス板3と電極層4との接合面5が、一対のセラミックス板2,3及び電極層4の厚さ方向(
図1のY方向)に対して傾きを有する。その結果、Y方向において対向する電極層4の面4a,4bを比べると、第1のセラミックス板2と接する-Y側の面4aは、第2のセラミックス板3と接する+Y側の面4bよりも広い。
【0038】
第2のセラミックス板3には、第1のセラミックス板2との接合面3aから、接合面3aとは反対側の面3b側に向かって+Y方向に(第2のセラミックス板3の厚さ方向に)窪む凹部3Aが形成されている。凹部3Aは、+Y方向に開口径が漸減している。凹部3Aは、第2のセラミックス板3の面3bと平行な底面3cと、第2のセラミックス板3の厚さ方向に対して斜めに傾く傾斜面3dとを有する。凹部3Aの傾斜面3dは、底面3cから接合面3a側に傾く面である。
【0039】
電極層4は、凹部3Aに電極層形成用ペーストを塗布(充填)して形成した電極層塗膜からなる。従って、第2のセラミックス板3と電極層4との接合面5は、凹部3Aの傾斜面3dと同一の面である。電極層4は、第2のセラミックス板3の凹部3Aに埋設されている。
【0040】
電極層4の外縁は、第2のセラミックス板3の傾斜面3dと相補的な傾きを有し、接合面3aと相補的な傾きを有する。
【0041】
図1に示すように、第2のセラミックス板3と電極層4との接合面5(斜面)の長さL1は、電極層4の厚さT1よりも大きいことが好ましい。このようにすれば、第2のセラミックス板3と電極層4の間におけるボイド発生が抑制され、第2のセラミックス板3と電極層4を充分に密着させることができる。これにより、セラミックス接合体1に高い電圧を印加した場合に、第2のセラミックス板3と電極層4の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体1の絶縁破壊を抑制できる。
【0042】
なお、電極層4は、厚さ方向よりも厚さ方向と直交する方向に大きな広がりを有する薄型電極である。一例として、電極層4は、厚さ20μm、直径29cmの円盤状である。このような電極層4は、後述するように、電極層形成用ペーストを塗布し焼結することで形成される。焼結により電極層形成用ペーストが体積収縮する際には等方的に収縮しやすいことから、厚さ方向よりも、厚さ方向に直交する方向において相対的に収縮量が大きくなる。そのため、電極層4の外縁、すなわち電極層4と第2のセラミックス板3との界面では、構造的にボイドが発生しやすい。
【0043】
接合面5の長さL1と電極層4の厚さT1の比(L1/T1)は、1.7以上6.5以下が好ましく、2.0以上5.0以下がより好ましく、2.2以上4.5以下がさらに好ましい。なお、L1>T1である。
【0044】
長さL1は、セラミックス接合体1の断面における、面4aと接合面5との接する位置Aから、面4bと接合面5との接する位置Bまでの長さである。位置A及び位置Bは、それぞれ、断面において面4a,4bの接線を引いたときに、当該接線と接合面5とが交わる箇所として判断できる。後述する他の実施形態においても、接合面の長さの基準となる接合面の両端の位置は、同様の方法により判断する。
【0045】
上記比(L1/T1)が上記範囲内であれば、第2のセラミックス板3と電極層4の間におけるボイド発生が抑制され、第2のセラミックス板3と電極層4を充分に密着させることができる。これにより、セラミックス接合体1に高い電圧を印加した場合に、第2のセラミックス板3と電極層4の接合界面に電荷が溜まりにくい。その結果、接合界面に溜まる電界に起因した放電を抑制でき、放電によるセラミックス接合体1の絶縁破壊を抑制できる。
【0046】
上記比(L1/T1)が上記下限値未満では、接合時の接合面5(傾斜面3d)のY方向に対する傾きが小さくなるため、第2のセラミックス板3と電極層4の密着性が低下する。
【0047】
上記比(L1/T1)が上記上限値を超えると、接合面5のY方向に対する傾きが大きくなり、L1/T1が上記上限値以下のセラミックス接合体よりも、電極層4の外縁において電極層4の中央よりも薄い箇所(例えば、厚さが1/2T1よりも薄い箇所)が相対的に増える。このようなセラミックス接合体では電極層4に通電した際に、電極層4の中央における発熱量よりも電極層4の外縁における発熱量の方が多くなり、電極層4の外縁が高温になりやすい。そのため、L1/T1が上記上限値を超えるセラミックス接合体では、高周波電力印加時の面内温度均一性が低下する。
【0048】
本実施形態では、「セラミックス板3と電極層4との接合面5の接合割合」は、接合面5の任意の走査型電子顕微鏡写真から算出できる。
すなわち、無作為に選ばれた視野(セラミックス接合体1について無作為に作製した断面)にて拡大倍率1000倍の電子顕微鏡写真を撮影し、この電子顕微鏡写真に写された、傾斜面の長さを「接合面5の全長(L1)」とする。
【0049】
一方、上記電子顕微鏡写真においてセラミックス板3と電極層4との間に発生した各ボイドの長径長さを求め、この長径長さの合計を「接合面5に発生したボイド長さ(D1)」とする。
【0050】
このようにして求められた長さから、「接合面5に発生したボイド長さ(D1)」に対する「接合面5の全長(L1)」の割合を百分率で求め、求めた値を100%から引いた値を「セラミックス板3と電極層4との接合面5の接合割合」として算出する。
【0051】
セラミックス板3と電極層4との接合面5の接合割合は、25%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましく、60%以上がよりさらに好ましい。
セラミックス板3と電極層4との接合面5の接合割合が上記下限値以上であれば、セラミックス接合体1に高い電圧を印加した場合に、第2のセラミックス板3と電極層4の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体1の絶縁破壊を抑制できる。
【0052】
(セラミックス板)
第1のセラミックス板2及び第2のセラミックス板3は、その重ね合わせ面の外周の形状を同じくする。
第1のセラミックス板2及び第2のセラミックス板3の厚さは、特に限定されず、セラミックス接合体1の用途に応じて適宜調整される。
【0053】
第1のセラミックス板2及び第2のセラミックス板3は、同一組成又は主成分が同一である。第1のセラミックス板2及び第2のセラミックス板3は、絶縁性物質と導電性物質の複合体からなることが好ましいが、絶縁性物質であってもよい。
【0054】
第1のセラミックス板2及び第2のセラミックス板3に含まれる絶縁性物質は、特に限定されないが、例えば、酸化アルミニウム(Al2O3)、窒化アルミニウム(AlN)、酸化イットリウム(Y2O3)、イットリウム・アルミニウム・ガーネット(YAG)等が挙げられる。なかでも、Al2O3、AlNが好ましい。
【0055】
第1のセラミックス板2及び第2のセラミックス板3に含まれる導電性物質は導電性セラミックスであってもよく、炭素材料等の導電性材料であってもよい。第1のセラミックス板2及び第2のセラミックス板3に含まれる導電性物質は、特に限定されないが、例えば、炭化ケイ素(SiC)、酸化チタン(TiO2)、窒化チタン(TiN)、炭化チタン(TiC)、炭素材料、希土類酸化物、希土類フッ化物等が挙げられる。炭素材料としては、カーボンナノチューブ(CNT)、カーボンナノファイバーが挙げられる。なかでも、SiCが好ましい。
【0056】
第1のセラミックス板2及び第2のセラミックス板3の材料は、体積固有抵抗値が1013Ω・cm以上1017Ω・cm以下程度であり、機械的な強度を有し、しかも腐食性ガス及びそのプラズマに対する耐久性を有する材料であれば、特に限定されない。このような材料としては、例えば、Al2O3焼結体、AlN焼結体、Al2O3-SiC複合焼結体等が挙げられる。高温での誘電特性、高耐食性、耐プラズマ性、耐熱性の観点から、第1のセラミックス板2及び第2のセラミックス板3の材料は、Al2O3-SiC複合焼結体が好ましい。
【0057】
第1のセラミックス板2及び第2のセラミックス板3を構成する絶縁性物質の平均一次粒子径は、0.5μm以上3.0μm以下が好ましく、0.7μm以上2.0μm以下がより好ましく、1.0μm以上2.0μm以下がさらに好ましい。
【0058】
第1のセラミックス板2及び第2のセラミックス板3を構成する絶縁性物質の平均一次粒子径が0.5μm以上3.0μm以下であれば、緻密で耐電圧性が高く、耐久性の高い第1のセラミックス板2及び第2のセラミックス板3が得られる。
【0059】
第1のセラミックス板2及び第2のセラミックス板3を構成する絶縁性物質の平均一次粒子径の測定方法は、次の通りである。日本電子社製の電解放出型走査電子顕微鏡(FE-SEM。日本電子株式会社製、JSM-7800F-Prime)で10000倍に拡大して、第1のセラミックス板2及び第2のセラミックス板3の厚さ方向の切断面を観察し、インターセプト法により絶縁性物質200個の粒子径の平均を平均一次粒子径とする。
【0060】
(電極層)
電極層4は、高周波電力を通電してプラズマを発生させてプラズマ処理するためのプラズマ発生用電極、電荷を発生させて静電吸着力で板状試料を固定するための静電チャック用電極、通電発熱させて板状試料を加熱するためのヒータ電極等として用いられる構成である。電極層4の形状(電極層4を平面視した場合の形状)や、大きさ(厚さや、電極層4を平面視した場合の面積)は、特に限定されず、セラミックス接合体1の用途に応じて適宜調整される。
【0061】
電極層4は、絶縁性セラミックス(絶縁性物質)の粒子と導電性セラミックス(導電性物質)の粒子との複合材料(焼結体)から構成される。
【0062】
電極層4に含まれる絶縁性セラミックスは、特に限定されないが、例えば、Al2O3、AlN、窒化ケイ素(Si3N4)、Y2O3、YAG、サマリウム-アルミニウム酸化物(SmAlO3)、酸化マグネシウム(MgO)及び酸化ケイ素(SiO2)からなる群から選択される少なくとも1種が好ましい。
【0063】
電極層4に含まれる導電性セラミックス(導電性物質)は、SiC、TiO2、TiN、TiC、タングステン(W)、炭化タングステン(WC)、モリブデン(Mo)、炭化モリブデン(Mo2C)、炭素材料及び導電性複合焼結体からなる群から選択される少なくとも1種が好ましい。
【0064】
炭素材料としては、カーボンブラック、カーボンナノチューブ、カーボンナノファイバーが挙げられる。
【0065】
導電性複合焼結体としては、例えば、Al2O3-Ta4C5、Al2O3-W、Al2O3-SiC、AlN-W、AlN-Ta等が挙げられる。
【0066】
電極層4に含まれる導電性物質が前記物質からなる群から選択される少なくとも1種であることにより、電極層の導電率を担保できる。
【0067】
電極層4が、上述の導電性物質と絶縁性物質からなることにより、第1のセラミックス板2及び、第2のセラミックス板3との接合強度並びに、電極としての機械的強度が強くなる。
【0068】
電極層4に含まれる絶縁性物質が、Al2O3であることにより、高温での誘電特性、高耐食性、耐プラズマ性、耐熱性が保たれる。
【0069】
電極層4における導電性物質と絶縁性物質の含有量の比(配合比)は、特に限定されず、セラミックス接合体1の用途に応じて適宜調整される。
【0070】
電極層4は、全体が同じ相対密度であってもよい。また、電極層4は、外縁において、電極層4の中心よりも低密度であってもよい。電極層4の密度(相対密度)は、セラミックス接合体1の断面について撮像する顕微鏡写真に基づいて求められる。
【0071】
(電極層の相対密度の測定方法)
詳しくは、
図1と同様の断面について、顕微鏡(例えば、キーエンス社製デジタルマイクロスコープ(VFX-900F))を用い、拡大倍率1000倍の顕微鏡写真を撮像する。電極層4の外縁の相対密度を測定する場合、撮像範囲は、電極層4の外縁であって、平面視で接合面5と重なる領域である。
図1に示す断面図であれば、位置Bから第1のセラミックス板2に向けてY軸と並行な線を伸ばした場合に当該平行な線と第1のセラミックス板2とが交わる位置を位置Cとしたとき、位置A,B,Cで囲まれる電極層4の外縁部分が該当する。「位置A,B,Cで囲まれる電極層4の外縁部分」を、以下、「密度測定領域」と称する。
【0072】
上記顕微鏡写真によれば、電極層4の断面と重なる仮想面において、電極層4を構成する導電性セラミックス及び絶縁性セラミックスが存在する領域(物質が存在する領域。領域1)と、導電性セラミックス及び絶縁性セラミックスのいずれも存在しない「気孔」の領域(領域2)とが区別可能である。
【0073】
電極層4の外縁の相対密度は、密度測定領域の外輪郭内の面積、すなわち領域1と領域2との合計面積に対する領域1の面積の割合を、百分率で表した値である。電極層4に気孔が存在しない場合には、密度測定領域の相対密度は100%である。
【0074】
また、電極層4の中心の相対密度を測定する場合、撮像範囲は、電極層4のX方向の中央を含む領域(中心)である。なお、顕微鏡写真から、電極層4の中心と同様の密度を有すると合理的に判断できる場合には、撮像範囲は、厳密に電極層4の中央を含まなくてもよい。
【0075】
得られた顕微鏡写真において、X方向に幅150μmの範囲に含まれる電極層4を「密度測定領域」とし、電極層4の外縁の密度を測定する場合と同様に計算することで、電極層4の中心の相対密度が求められる。
【0076】
以上のように求められる相対密度を比較することで、電極層4の外縁において、電極層4の中心よりも低密度であるか否かを判断することができる。
【0077】
電極層4の外縁が低密度である場合、電極層4の外縁の相対密度は、50%以上が好ましく、55%以上がより好ましい。電極層4の外縁の相対密度が50%未満であると、高密度である場合と比べ抵抗発熱が生じやすく、高周波電力印加時の面内温度均一性が低下しやすい。対して、電極層4の外縁の相対密度が50%以上であるセラミックス接合体は、高周波電力印加時の面内温度均一性が保たれる。
【0078】
一例として、電極層4の相対密度が100%である領域は、X方向の中央を含み、全幅に対して95%以上であり、電極層4の相対密度が中心よりも低密度である領域は、X方向の両端部から2.5%ずつ、計5%以下である。
【0079】
本実施形態のセラミックス接合体1によれば、電極層4の外縁において、第2のセラミックス板3と電極層4との接合面5が、一対のセラミックス板2,3及び電極層4の厚さ方向(
図1のY方向)に対して傾きを有する。詳しくは後述するが、このような構成のセラミックス接合体1では、製造時に電極層4の外端面と第2のセラミックス板3との間が接合しやすく、第2のセラミックス板3と電極層4の間におけるボイド発生が抑制され、第2のセラミックス板3と電極層4を充分に密着させることができる。これにより、セラミックス接合体1に高い電圧を印加した場合に、第2のセラミックス板3と電極層4の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体1の絶縁破壊を抑制できる。
【0080】
[他の実施形態]
なお、本発明は、上記の実施形態に限定するものではない。
【0081】
例えば、
図2~
図4に示すような変形例を採用してもよい。なお、変形例では、第1実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
図2~
図4は、変形例のセラミックス接合体を示す断面図であり、
図1に対応する断面図である。
【0082】
(変形例1)
図2に示す変形例のセラミックス接合体10では、電極層4の外縁において、第2のセラミックス板3と電極層4との接合面5が、一対のセラミックス板2,3及び電極層4の厚さ方向(
図2のY方向)に対して傾きを有する。
【0083】
第2のセラミックス板3には、第1のセラミックス板2との接合面3aから、接合面3aとは反対側の面3b側に向かって(第2のセラミックス板3の厚さ方向に)窪む凹部3Aが形成されている。凹部3Aは、第2のセラミックス板3の面3bと平行な底面3cと、第2のセラミックス板3の厚さ方向に対して曲線状に傾く傾斜面3dとを有する。傾斜面3dは、+Y方向に凸である。
【0084】
電極層4は、凹部3Aに電極層形成用ペーストを塗布(充填)して形成した電極層塗膜からなる。従って、第2のセラミックス板3と電極層4との接合面5は、凹部3Aの傾斜面3dと同一の面である。
【0085】
電極層4の外縁は、第2のセラミックス板3の傾斜面3dと相補的な傾きを有し、接合面5と相補的な傾きを有する。
【0086】
図2に示すように、第2のセラミックス板3と電極層4との接合面5(曲面)の長さL2は、電極層4の厚さT1よりも大きいことが好ましい。長さL2は、上述の長さL1と同様の方法により規定できる。
【0087】
このようなセラミックス接合体10では、第2のセラミックス板3と電極層4の間におけるボイド発生が抑制され、第2のセラミックス板3と電極層4を充分に密着させることができる。これにより、セラミックス接合体10に高い電圧を印加した場合に、第2のセラミックス板3と電極層4の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体10の絶縁破壊を抑制できる。
【0088】
(変形例2)
図3に示す変形例のセラミックス接合体20では、電極層4の外縁において、第2のセラミックス板3と電極層4Aとの接合面5Aが、一対のセラミックス板2,3及び電極層4Aの厚さ方向(
図3のY方向)に対して傾きを有する。その結果、Y方向において対向する電極層4Aの面4Aa,4Abを比べると、-Y側の面4Aaは、第2のセラミックス板3と接する+Y側の面4bよりも広い。
【0089】
また、電極層4の外縁において、第1のセラミックス板2と電極層4Bとの接合面5Bが、一対のセラミックス板2,3及び電極層4Bの厚さ方向(
図3のY方向)に対して傾きを有する。その結果、Y方向において対向する電極層4Bの面4Ba,4Bbを比べると、+Y側の面4Baは、第1のセラミックス板2と接する-Y側の面4Bbよりも広い。
【0090】
電極層4Aと電極層4Bとは、第2のセラミックス板3における第1のセラミックス板2との接合面3a、及び第1のセラミックス板2における第2のセラミックス板3との接合面2aを含む仮想面において接している。電極層4Aと電極層4Bとは、上記仮想面において一体となっている。
【0091】
また、電極層4Aの先端(±X方向の端部)と電極層4Bの先端(±X方向の端部)とは、上記仮想面において接している。
【0092】
第2のセラミックス板3には、第1のセラミックス板2との接合面3aから、接合面3aとは反対側の面3b側に向かって+Y方向に(第2のセラミックス板3の厚さ方向に)窪む凹部3Aが形成されている。凹部3Aは、第2のセラミックス板3の面3bと平行な底面3cと、第2のセラミックス板3の厚さ方向に対して斜めに傾く傾斜面3dとを有する。
【0093】
第1のセラミックス板2には、第2のセラミックス板3との接合面2aから、接合面2aとは反対側の面2b側に向かって-Y方向に(第1のセラミックス板2の厚さ方向に)窪む凹部2Aが形成されている。凹部2Aは、-Y方向に開口径が漸減している。凹部2Aは、第1のセラミックス板2の面2bと平行な底面2cと、第1のセラミックス板2の厚さ方向に対して斜めに傾く傾斜面2dとを有する。凹部2Aの傾斜面2dは、底面2cから接合面2a側に傾く面である。
【0094】
電極層4Aは、凹部3Aに電極層形成用ペーストを塗布(充填)して形成した電極層塗膜からなる。従って、第2のセラミックス板3と電極層4Aとの接合面5Aは、凹部3Aの傾斜面3dと同一の面である。
【0095】
電極層4Bは、凹部2Aに電極層形成用ペーストを塗布(充填)して形成した電極層塗膜からなる。従って、第1のセラミックス板2と電極層4Bとの接合面5Bは、凹部2Aの傾斜面2dと同一の面である。
【0096】
電極層4Aの外縁は、第2のセラミックス板3の傾斜面3dと相補的な傾きを有し、接合面5Aと相補的な傾きを有する。また、電極層4Bの外縁は、第1のセラミックス板2の傾斜面2dと相補的な傾きを有し、接合面5Bと相補的な傾きを有する。
【0097】
図3に示すように、第2のセラミックス板3と電極層4Aとの接合面5A(斜面)の長さL3は、電極層4Aの厚さT1よりも大きいことが好ましい。長さL3は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体20では、第2のセラミックス板3と電極層4Aの間におけるボイド発生が抑制され、第2のセラミックス板3と電極層4Aを充分に密着させることができる。
【0098】
また、
図3に示すように、第1のセラミックス板2と電極層4Bとの接合面5B(斜面)の長さL4は、電極層4Bの厚さT2よりも大きいことが好ましい。長さL4は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体20では、第1のセラミックス板2と電極層4Bの間におけるボイド発生が抑制され、第1のセラミックス板2と電極層4Bを充分に密着させることができる。
【0099】
これらにより、セラミックス接合体20に高い電圧を印加した場合に、第2のセラミックス板3と電極層4Aの接合界面及び第1のセラミックス板2と電極層4Bの接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体1の絶縁破壊を抑制できる。
【0100】
(変形例3)
図4に示す変形例のセラミックス接合体30では、電極層4の外縁において、第2のセラミックス板3と電極層4との接合面5が、一対のセラミックス板2,3及び電極層4の厚さ方向(
図4のY方向)に対して傾きを有する。
【0101】
第1のセラミックス板2には、第2のセラミックス板3との接合面2aから、接合面2aとは反対側の面2b側に向かって(第1のセラミックス板2の厚さ方向に)窪む凹部2Aが形成されている。凹部2Aは、第1のセラミックス板2の面2bと平行な底面2cと、第1のセラミックス板2の厚さ方向に対して斜めに傾く傾斜面2dとを有する。
【0102】
電極層4は、凹部2Aに電極層形成用ペーストを塗布(充填)して形成した電極層塗膜からなる。従って、第1のセラミックス板2と電極層4との接合面5は、凹部2Aの傾斜面2dと同一の面である。
【0103】
電極層4の外縁は、第1のセラミックス板2の傾斜面2dと相補的な傾きを有し、接合面5と相補的な傾きを有する。
【0104】
図4に示すように、第1のセラミックス板2と電極層4との接合面5(斜面)の長さL5は、電極層4の厚さT2よりも大きいことが好ましい。長さL5は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体30では、第1のセラミックス板2と電極層4の間におけるボイド発生が抑制され、第1のセラミックス板2と電極層4を充分に密着させることができる。これにより、セラミックス接合体30に高い電圧を印加した場合に、第1のセラミックス板2と電極層4の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体30の絶縁破壊を抑制できる。
【0105】
[セラミックス接合体の製造方法]
本実施形態のセラミックス接合体の製造方法は、一対のセラミックス板の少なくとも一方に対して、前記一対のセラミックス板が重なる面に、前記一対のセラミックス板の厚さ方向に対して傾く傾斜面を有する凹部を形成する工程(以下、「第1の工程」と言う。)と、前記凹部に、電極層形成用ペーストを塗布して電極層塗膜を形成する工程(以下、「第2の工程」と言う。)と、前記電極層塗膜を形成した面が内側になるように、前記一対のセラミックス板を積層する工程(以下、「第3の工程」と言う。)と、前記一対のセラミックス板及び前記電極層塗膜を含む積層体を、加熱しながら、厚さ方向に加圧する工程(以下、「第4の工程」と言う。)と、を有する。
【0106】
以下、
図1を参照しながら、本実施形態のセラミックス接合体の製造方法について説明する。
【0107】
第1の工程では、例えば、第2のセラミックス板3の接合面3aに、第2のセラミックス板3の厚さ方向に対して傾く傾斜面3dを有する凹部3Aを形成する。
凹部3Aを形成するには、第2のセラミックス板3の接合面3aに研削加工又は研磨加工を施すとよい。
【0108】
第2の工程では、スクリーン印刷法等の塗工法により、凹部3Aに電極層形成用ペーストを塗布して、電極層4となる塗膜(電極層塗膜)を形成する。電極層塗膜の外縁は、第2のセラミックス板3の傾斜面3dと相補的な傾きを有する。
電極層形成用ペーストとしては、電極層4を形成する絶縁性セラミックスの粒子及び導電性セラミックスの粒子を、溶媒に分散させた分散液が用いられる。
電極層形成用ペーストに含まれる溶媒としては、イソプロピルアルコール等のアルコールが用いられる。
【0109】
第3の工程では、電極層塗膜を形成した面が内側になるように、第2のセラミックス板3の接合面3aに、第1のセラミックス板2を積層する。
【0110】
第4の工程では、第1のセラミックス板2、電極層塗膜、及び第2のセラミックス板3を含む積層体を、加熱しながら、厚さ方向に加圧する。
積層体を、加熱しながら、厚さ方向に加圧する際の雰囲気は、真空、あるいはAr、He、N2等の不活性雰囲気が好ましい。ここで、「真空」とは、JISZ8126-1:1999に記載されているように「通常の大気圧より低い圧力の気体で満たされた空間の状態」を意味する。
【0111】
前記の積層体を加熱する温度(熱処理温度)は、1400℃以上かつ1900℃以下が好ましく、1500℃以上かつ1850℃以下がより好ましい。
積層体を加熱する温度が1400℃以上かつ1900℃以下であれば、それぞれの塗膜に含まれる溶媒を揮発させて、第1のセラミックス板2と第2のセラミックス板3の間に、電極層4を形成できる。また、電極層4を介して、第1のセラミックス板2と第2のセラミックス板3を接合一体化することができる。
【0112】
前記の積層体を厚さ方向に加圧する圧力(加圧力)は、1.0MPa以上かつ50.0MPa以下が好ましく、5.0MPa以上かつ20.0MPa以下がより好ましい。
【0113】
積層体を厚さ方向に加圧する圧力が1.0MPa以上かつ50.0MPa以下であれば、第1のセラミックス板2と第2のセラミックス板3の間に、電極層4を形成できる。また、電極層4を介して、第1のセラミックス板2と第2のセラミックス板3を接合一体化することができる。
【0114】
例えば、電極層4の外端面がY軸に平行である場合、焼結時の加圧により第2のセラミックス板3を電極層4に向けて押し付ける応力が存在しない。そのため、電極層4の外端面と第2のセラミックス板3との間が接合し難い。
【0115】
対して、本実施形態のセラミックス接合体1では、電極層4は、第2のセラミックス板3の凹部3Aに埋設され、電極層4の外縁と、第2のセラミックス板3の傾斜面3dとが相補的な傾きを有している。そのため、焼結時の加圧により、電極層4の外縁には、第2のセラミックス板3の傾斜面3dから第2のセラミックス板3を押し付ける応力が加わる。これにより、電極層4の外端面と第2のセラミックス板3との間が接合しやすい。
【0116】
そのため、本実施形態のセラミックス接合体の製造方法によれば、電極層4の外縁において、第2のセラミックス板3と電極層4との接合面5におけるボイドの発生を抑制できる。これにより、本実施形態のセラミックス接合体の製造方法によれば、電極層4に高い電圧を印加した場合に、接合面5における放電を抑制でき、放電による絶縁破壊を抑制できるセラミックス接合体1を提供できる。
【0117】
[セラミックス接合体]
(第2の実施形態)
以下、
図5を参照しながら、本発明の一実施形態に係るセラミックス接合体について説明する。
図5において、紙面の左右方向(セラミックス接合体の幅方向)をX方向、紙面の上下方向(セラミックス接合体の厚さ方向)をY方向とする。
【0118】
なお、以下の全ての図面においては、図面を見やすくするため、各構成要素の寸法や比率等は適宜異ならせてある。
【0119】
図5は、本実施形態のセラミックス接合体を示す断面図であり、
図1に対応する断面図である。
図5に示すように、本実施形態のセラミックス接合体40は、一対のセラミックス板42,43と、一対のセラミックス板42,43の間に介在する電極層44及び絶縁層45と、を備える。
【0120】
以下、セラミックス板42を第1のセラミックス板42、セラミックス板43を第2のセラミックス板43と言う。
【0121】
図5に示すように、セラミックス接合体40は、第1のセラミックス板42と、電極層44及び絶縁層45と、第2のセラミックス板43とがこの順に積層されている。絶縁層45は、第1のセラミックス板42と第2のセラミックス板43との間において、電極層44の周囲に環状に配置されている。すなわち、セラミックス接合体40は、第1のセラミックス板42と第2のセラミックス板43が、電極層44及び絶縁層45を介して、接合一体化されてなる接合体である。
【0122】
本実施形態のセラミックス接合体40では、電極層44と絶縁層45が、同一面上に設けられている。電極層44と絶縁層45は、第1のセラミックス板42における第2のセラミックス板43と対向する面(一方の面)42a、及び第2のセラミックス板43における第1のセラミックス板42と対向する面(一方の面)43aの両方に接して設けられている。
【0123】
電極層44の外縁は、平面視で絶縁層45と重なり、且つ絶縁層45からセラミックス接合体1の外部に露出していない。電極層44の外縁において、電極層44と絶縁層45との接合面46は、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向(Y方向)に対して傾きを有する。その結果、Y方向において対向する電極層44の面44a,44bを比べると、第1のセラミックス板42と接する-Y側の面44aは、第2のセラミックス板43と接する+Y側の面44bよりも広い。
【0124】
接合面46は、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向(
図5のY方向)に対して斜めに傾く傾斜面である。接合面46は、面42aに面し、第2のセラミックス板43の一方の面43aから第1のセラミックス板42の一方の面42a側に傾く面である。
【0125】
電極層44の外縁は、第2のセラミックス板43の傾斜面と相補的な傾きを有し、接合面46と相補的な傾きを有する。
【0126】
図5に示すように、電極層44と絶縁層45との接合面46の長さL11は、電極層44の厚さT11よりも大きいことが好ましい。長さL11は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体40では、電極層44と絶縁層45の間におけるボイドの発生を抑制し、電極層44と絶縁層45を充分に密着させることができる。これにより、セラミックス接合体40に高い電圧を印加した場合に、電極層44と絶縁層45の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体40の絶縁破壊を抑制できる。
【0127】
なお、第1実施形態のセラミックス接合体1と同様に、電極層44と絶縁層45の間のボイドは、電極層44の外縁で発生し易い。
【0128】
接合面46の長さL11と電極層44の厚さT11の比(L11/T11)は、1.7以上6.5以下が好ましく、2.0以上5.0以下がより好ましく、2.2以上4.5以下がさらに好ましい。なお、L11>T11である。
【0129】
上記比(L11/T11)が上記範囲内であれば、電極層44と絶縁層45の間におけるボイド発生が抑制され、電極層44と絶縁層45を充分に密着させることができる。これにより、セラミックス接合体40に高い電圧を印加した場合に、電極層44と絶縁層45の接合界面に電荷が溜まりにくい。その結果、接合界面に溜まる電界に起因した放電を抑制でき、放電によるセラミックス接合体40の絶縁破壊を抑制できる。
【0130】
上記比(L11/T11)が上記下限値未満では、接合時の接合面46のY方向に対する傾きが小さくなるため、電極層44と絶縁層45の密着性が低下する。
【0131】
上記比(L11/T11)が上記上限値を超えると、接合面46のY方向に対する傾きが大きくなり、L11/T11が上記上限値以下のセラミックス接合体よりも、電極層44の外縁において電極層44の中央よりも薄い箇所(例えば、厚さが1/2T11よりも薄い箇所)が相対的に増える。このようなセラミックス接合体では電極層44に通電した際に、電極層44の中央における発熱量よりも電極層4の外縁における発熱量の方が多くなり、電極層44の外縁が高温になりやすい。そのため、L11/T11が上記上限値を超えるセラミックス接合体では、高周波電力印加時の面内温度均一性が低下する。
【0132】
上記比(L11/T11)が上記下限値以上であるセラミックス接合体は、電極層44と絶縁層45とが充分に密着する。また、L11/T11が上記上限値以下であるセラミックス接合体は、高周波電力印加時の面内温度均一性が保たれる。
【0133】
本実施形態では、「電極層44と絶縁層45との接合面46の接合割合」は、接合面46の任意の走査型電子顕微鏡写真から算出できる。
【0134】
すなわち、無作為に選ばれた視野(セラミックス接合体40について無作為に作製した断面)にて拡大倍率1000倍の電子顕微鏡写真を撮影し、この電子顕微鏡写真に写された、傾斜面の長さを「接合面46の全長(L11)」とする。
【0135】
一方、上記電子顕微鏡写真において電極層44と絶縁層45との間に発生した各ボイドの長径長さを求め、この長径長さの合計を「接合面46に発生したボイド長さ(D11)」とする。「長径長さ(D11)」は、各ボイドにそれぞれ外接する最小の矩形の長辺の長さに相当する。
【0136】
このようにして求められた長さから、「接合面46に発生したボイド長さ(D11)」に対する「接合面46の全長(L11)」の割合を百分率で求め、求めた値を100%から引いた値を「電極層44と絶縁層45との接合面46の接合割合」として算出する。
【0137】
電極層44と絶縁層と45との接合面46の接合割合は、25%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましく、60%以上がよりさらに好ましい。電極層44と絶縁層45との接合面46の接合割合が上記下限値以上であれば、セラミックス接合体40に高い電圧を印加した場合に、電極層44と絶縁層45の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体40の絶縁破壊を抑制できる。
【0138】
セラミックス板42,43は、上記のセラミックス板2,3と同様の構成である。
【0139】
電極層44は、上記の電極層4と同様の構成である。
【0140】
(絶縁層)
絶縁層45は、第1のセラミックス板42と第2のセラミックス板43の境界部、すなわち電極層44形成部以外の外縁部領域を接合するために設けられた構成である。絶縁層45の形状(絶縁層45を平面視した場合の形状)は、特に限定されず、電極層44の形状に応じて適宜調整される。
【0141】
本実施形態のセラミックス接合体40では、絶縁層45の厚さは、電極層44の厚さと等しくなっている。
【0142】
絶縁層45は、絶縁性物質からなる。
絶縁層45を構成する絶縁性物質は、特に限定されないが、第1のセラミックス板42及び第2のセラミックス板43の主成分と同じであることが好ましい。絶縁層45を構成する絶縁性物質は、例えば、Al2O3、AlN、Y2O3、YAG等が挙げられる。絶縁層45を構成する絶縁性物質は、Al2O3が好ましい。絶縁層45を構成する絶縁性物質が、Al2O3であることにより、高温での誘電特性、高耐食性、耐プラズマ性、耐熱性が保たれる。
【0143】
絶縁層45を構成する絶縁性物質の平均一次粒子径は、0.5μm以上3.0μm以下が好ましく、0.7μm以上2.0μm以下がより好ましい。
【0144】
絶縁層45を構成する絶縁性物質の平均一次粒子径が0.5μm以上であれば、充分な耐電圧性が得られる。一方、絶縁層45を構成する絶縁性物質の平均一次粒子径が3.0μm以下であれば、研削等の加工が容易である。
【0145】
絶縁層45を構成する絶縁性物質の平均一次粒子径の測定方法は、第1のセラミックス板42及び第2のセラミックス板43を構成する絶縁性物質の平均一次粒子径の測定方法と同様である。
【0146】
本実施形態のセラミックス接合体40によれば、電極層44の外縁において、電極層44と絶縁層45との接合面46が、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向に対して傾きを有する。このような構成のセラミックス接合体40では、上述のセラミックス接合体1と同様に、製造時に電極層4の外端面と第2のセラミックス板3との間が接合しやすく、電極層44と絶縁層45の間におけるボイド発生が抑制され、電極層44と絶縁層45を充分に密着させることができる。これにより、セラミックス接合体40に高い電圧を印加した場合に、電極層44と絶縁層45の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体40の絶縁破壊を抑制できる。
【0147】
[他の実施形態]
なお、本発明は、上記の実施形態に限定するものではない。
【0148】
例えば、
図6~
図8に示すような変形例を採用してもよい。なお、変形例では、第2実施形態における構成要素と同一の部分については同一の符号を付し、その説明を省略し、異なる点についてのみ説明する。
図6~
図8は、変形例のセラミックス接合体を示す断面図であり、
図5に対応する断面図である。
【0149】
(変形例1)
図6に示す変形例のセラミックス接合体50では、電極層44の外縁において、電極層44と絶縁層45との接合面46が、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向(
図6のY方向)に対して傾きを有する。
【0150】
接合面46は、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向(
図6のY方向)に対して曲線状に傾く傾斜面である。接合面46は、+Y方向に凸である。
【0151】
図6に示すように、電極層44と絶縁層45との接合面46(曲面)の長さL12は、電極層44の厚さT11よりも大きいことが好ましい。長さL11は、上述の長さL1と同様の方法により規定できる。
【0152】
このようなセラミックス接合体50では、電極層44と絶縁層45の間におけるボイド発生が抑制され、電極層44と絶縁層45を充分に密着させることができる。これにより、セラミックス接合体40に高い電圧を印加した場合に、電極層44と絶縁層45の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体40の絶縁破壊を抑制できる。
【0153】
(変形例2)
図7に示す変形例のセラミックス接合体60では、電極層44と絶縁層45との接合面46Aが、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向(
図7のY方向)に対して傾きを有する。
【0154】
第1のセラミックス板42には、その一方の面42aから、一方の面42aとは反対側の面42b側に向かって-Y方向に(第1のセラミックス板42の厚さ方向に)窪む凹部42Aが形成されている。凹部42Aは、-Y方向に開口径が漸減している。凹部42Aは、第1のセラミックス板42の面42bと平行な底面42cと、第1のセラミックス板42の厚さ方向に対して斜めに傾く傾斜面42dとを有する。凹部42Aの傾斜面42dは、第2のセラミックス板43に面し、底面42cから一方の面42a側に傾く面である。
【0155】
電極層44は、凹部42Aに電極層形成用ペーストを塗布(充填)して形成した電極層塗膜からなる電極層44Bと第2のセラミックス板43の一方の面43aに電極層形成用ペーストを塗布して形成した電極層塗膜からなる電極層44Aとから構成される。従って、第1のセラミックス板42と電極層44Bとの接合面46Bは、凹部42Bの傾斜面42dと同一の面である。
【0156】
図7に示すように、電極層44Aと絶縁層45との接合面46Aの長さL12は、電極層44Aの厚さT12よりも大きいことが好ましい。長さL12は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体60では、電極層44Aと絶縁層45の間におけるボイド発生が抑制され、電極層44Aと絶縁層45を充分に密着させることができる。
【0157】
また、
図7に示すように、第1のセラミックス板42と電極層44Bとの接合面46Bの長さL13は、電極層44Bの厚さT13よりも大きいことが好ましい。長さL13は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体60では、第1のセラミックス板42と電極層44Bの間におけるボイド発生が抑制され、第1のセラミックス板42と電極層44Bを充分に密着させることができる。
【0158】
これらにより、セラミックス接合体60に高い電圧を印加した場合に、電極層44Aと絶縁層45の接合界面及び第1のセラミックス板42と電極層44Bの接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体60の絶縁破壊を抑制できる。
【0159】
(変形例3)
図8に示す変形例のセラミックス接合体70では、電極層44の外縁において、電極層44と絶縁層45との接合面46が、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向に対して傾きを有する。接合面46は、一対のセラミックス板42,43、電極層44及び絶縁層45の厚さ方向(
図8のY方向)に対して斜めに傾く傾斜面である。接合面46は、第1のセラミックス板42の一方の面42aから第2のセラミックス板43の一方の面43a側に傾く面である。
【0160】
図8に示すように、電極層44と絶縁層45との接合面46の長さL14は、電極層44の厚さT11よりも大きいことが好ましい。長さL14は、上述の長さL1と同様の方法により規定できる。このようなセラミックス接合体70では、電極層44と絶縁層45の間におけるボイド発生が抑制され、電極層44と絶縁層45を充分に密着させることができる。これにより、セラミックス接合体70に高い電圧を印加した場合に、電極層44と絶縁層45の接合界面における放電を抑制できる。その結果、放電によるセラミックス接合体70の絶縁破壊を抑制できる。
【0161】
[セラミックス接合体の製造方法]
本実施形態のセラミックス接合体の製造方法は、一対のセラミックス板の少なくとも一方に対して、前記一対のセラミックス板が重なる面に、電極層形成用ペーストを塗布して電極層塗膜を形成するとともに、絶縁層形成用ペーストを塗布して絶縁層塗膜を形成する工程(以下、「第1の工程」と言う。)と、電極層塗膜及び絶縁層塗膜を形成した面が内側になる姿勢で、一対のセラミックス板を積層する工程(以下、「第2の工程」と言う。)と、一対のセラミックス板、電極層塗膜及び絶縁層塗膜を含む積層体を、加熱しながら、厚さ方向に加圧する工程(以下、「第3の工程」と言う。)と、を有する。
【0162】
以下、
図5を参照しながら、本実施形態のセラミックス接合体の製造方法について説明する。
【0163】
第1の工程では、例えば、スクリーン印刷法等の塗工法により、第1のセラミックス板42の一方の面42aに、電極層形成用ペーストを塗布して電極層塗膜を形成するとともに、絶縁層形成用ペーストを塗布して絶縁層塗膜を形成する。電極層塗膜と絶縁層塗膜とはいずれを先に形成してもよい。
【0164】
形成する電極層塗膜の外縁と、絶縁層塗膜の内縁とは平面視で重なっており、電極層塗膜と絶縁層塗膜との接触面は、第1のセラミックス板42の一方の面42aの厚さ方向に対して傾きを有する。ここでは、
図5に示すように、接合面46が、第2のセラミックス板43の一方の面43aから第1のセラミックス板42の一方の面42a側に傾くように、電極層塗膜と絶縁層塗膜を形成する。電極層塗膜の外縁は、絶縁層塗膜の内縁と相補的な傾きを有する。
【0165】
電極層形成用ペーストとしては、電極層44を形成する絶縁性セラミックス粒子及び導電性セラミックス粒子を、溶媒に分散させた分散液が用いられる。電極層形成用ペーストに含まれる溶媒としては、イソプロピルアルコール等のアルコールが用いられる。
【0166】
絶縁層形成用ペーストとしては、絶縁層45を形成する絶縁性セラミックスを、溶媒に分散させた分散液が用いられる。絶縁層形成用ペーストに含まれる溶媒としては、イソプロピルアルコール等のアルコールが用いられる。
【0167】
第2の工程では、電極層塗膜及び絶縁層塗膜を形成した面が内側になるように、第1のセラミックス板42の一方の面42aに、第2のセラミックス板43を積層する。
【0168】
第3の工程では、第1のセラミックス板42、電極層塗膜、絶縁層塗膜、及び第2のセラミックス板43を含む積層体を、加熱しながら、厚さ方向に加圧する。
積層体を、加熱しながら、厚さ方向に加圧する際の雰囲気は、真空、あるいはAr、He、N2等の不活性雰囲気が好ましい。
【0169】
前記の積層体を加熱する温度(熱処理温度)は、1600℃以上かつ1900℃以下が好ましく、1650℃以上かつ1850℃以下がより好ましい。
【0170】
積層体を加熱する温度が1600℃以上かつ1900℃以下であれば、それぞれの塗膜に含まれる溶媒を揮発させて、第1のセラミックス板42と第2のセラミックス板43の間に、電極層44と絶縁層45を形成できる。また、電極層44と絶縁層45を介して、第1のセラミックス板42と第2のセラミックス板43を接合一体化することができる。
【0171】
前記の積層体を厚さ方向に加圧する圧力(加圧力)は、1.0MPa以上かつ50.0MPa以下が好ましく、5.0MPa以上かつ20.0MPa以下がより好ましい。
積層体を厚さ方向に加圧する圧力が1.0MPa以上かつ50.0MPa以下であれば、第1のセラミックス板42と第2のセラミックス板43の間に、互いに密着した電極層44と絶縁層45を形成できる。また、電極層44と絶縁層45を介して、第1のセラミックス板42と第2のセラミックス板43を接合一体化することができる。
【0172】
そのため、本実施形態のセラミックス接合体の製造方法によれば、電極層44の外縁において、第2のセラミックス板43と電極層44との接合面46におけるボイドの発生を抑制できる。これにより、電極層44に高い電圧を印加した場合に、接合面46における放電を抑制でき、放電による絶縁破壊を抑制できるセラミックス接合体40を提供できる。
【0173】
[静電チャック装置]
以下、
図9を参照しながら、本発明の一実施形態に係る静電チャック装置について説明する。
【0174】
図9は、本実施形態の静電チャック装置を示す断面図である。なお、
図9において、上述のセラミックス接合体と同一の構成には同一の符号を付して、重複する説明を省略する。
【0175】
図9に示すように、本実施形態の静電チャック装置100は、円板状の静電チャック部材102と、静電チャック部材102を所望の温度に調整する円板状の温度調整用ベース部材103と、これら静電チャック部材102及び温度調整用ベース部材103を接合・一体化する接着剤層104と、を有している。本実施形態の静電チャック装置100では、静電チャック部材102が、例えば、上述の実施形態のセラミックス接合体1からなる。ここでは、静電チャック部材102がセラミックス接合体1からなる場合について説明する。
以下の説明においては、載置板111の載置面111a側を「上」、温度調整用ベース部材103側を「下」として記載し、各構成の相対位置を表すことがある。
【0176】
[静電チャック部材]
静電チャック部材102は、上面が半導体ウエハ等の板状試料を載置する載置面111aとされたセラミックスからなる載置板111と、載置板111の載置面111aとは反対の面側に設けられた支持板112と、これら載置板111と支持板112との間に挟持された静電吸着用電極113と、載置板111と支持板112とに挟持され静電吸着用電極113の周囲を囲む環状の絶縁材114と、静電吸着用電極113に接するように温度調整用ベース部材103の固定孔115内に設けられた給電用端子116と、を有している。
【0177】
静電チャック部材102において、載置板111が上記の第2のセラミックス板43に相当し、支持板112が上記の第1のセラミックス板42に相当し、静電吸着用電極113が上記の電極層44に相当し、絶縁材114が上記の絶縁層45に相当する。
【0178】
[載置板]
載置板111の載置面111aには、半導体ウエハ等の板状試料を支持するための多数の突起が立設され(図示略)ている。さらに、載置板111の載置面111aの周縁部には、ヘリウム(He)等の冷却ガスが漏れないように、この周縁部を一周するように、断面四角形状の環状突起部が設けられていてもよい。さらに、この載置面111a上の環状突起部に囲まれた領域には、環状突起部と高さが同一であり横断面が円形状かつ縦断面が略矩形状の複数の突起部が設けられていてもよい。
【0179】
載置板111の厚さは、0.3mm以上かつ3.0mm以下が好ましく、0.5mm以上かつ1.5mm以下がより好ましい。載置板111の厚さが0.3mm以上であれば、耐電圧性に優れる。一方、載置板111の厚さが3.0mm以下であれば、静電チャック部材102の静電吸着力が低下することがなく、載置板111の載置面111aに載置される板状試料と温度調整用ベース部材103との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
【0180】
[支持板]
支持板112は、載置板111と静電吸着用電極113を下側から支持している。
【0181】
支持板112の厚さは、0.3mm以上かつ3.0mm以下が好ましく、0.5mm以上かつ1.5mm以下がより好ましい。支持板112の厚さが0.3mm以上であれば、充分な耐電圧を確保できる。一方、支持板112の厚さが3.0mm以下であれば、静電チャック部材102の静電吸着力が低下することがなく、載置板111の載置面111aに載置される板状試料と温度調整用ベース部材103との間の熱伝導性が低下することもなく、処理中の板状試料の温度を好ましい一定の温度に保つことができる。
【0182】
[静電吸着用電極]
静電吸着用電極113では、電圧を印加することにより、載置板111の載置面111aに板状試料を保持する静電吸着力が生じる。
【0183】
静電吸着用電極113の厚さは、5μm以上かつ200μm以下が好ましく、7μm以上かつ100μm以下がより好ましく、10μm以上かつ100μm以下がさらに好ましい。静電吸着用電極113の厚さが5μm以上であれば、充分な導電性を確保できる。一方、静電吸着用電極113の厚さが200μm以下であれば、載置板111の載置面111aに載置される板状試料と温度調整用ベース部材103との間の熱伝導性が低下することがなく、処理中の板状試料の温度を望ましい一定の温度に保つことができる。また、プラズマ透過性が低下することがなく、安定にプラズマを発生させることができる。
【0184】
[絶縁材]
絶縁材114は、静電吸着用電極113を囲繞して腐食性ガス及びそのプラズマから静電吸着用電極113を保護するための部材である。
絶縁材114により、載置板111と支持板112とが、静電吸着用電極113を介して接合一体化されている。
【0185】
[給電用端子]
給電用端子116は、静電吸着用電極113に電圧を印加するための部材である。
給電用端子116の数、形状等は、静電吸着用電極113の形態、すなわち単極型か、双極型かにより決定される。
【0186】
給電用端子116の材料は、耐熱性に優れた導電性材料であれば特に制限されない。給電用端子116の材料としては、熱膨張係数が静電吸着用電極113及び支持板112の熱膨張係数に近似した材料であることが好ましく、例えば、コバール合金、ニオブ(Nb)等の金属材料、各種の導電性セラミックスが好適に用いられる。
【0187】
[導電性接着層]
導電性接着層117は、温度調整用ベース部材103の固定孔115内及び支持板112の貫通孔118内に設けられている。また、導電性接着層117は、静電吸着用電極113と給電用端子116の間に介在して、静電吸着用電極113と給電用端子116を電気的に接続している。
【0188】
導電性接着層117を構成する導電性接着剤は、炭素繊維、金属粉等の導電性物質と樹脂を含む。
【0189】
導電性接着剤に含まれる樹脂としては、熱応力により凝集破壊を起こし難い樹脂であれば特に限定されず、例えば、シリコーン樹脂、アクリル樹脂、エポシキ樹脂、フェノール樹脂、ポリウレタン樹脂、不飽和ポリエステル樹脂等が挙げられる。
これらの中でも、伸縮度が高く、熱応力の変化によって凝集破壊し難い点から、シリコーン樹脂が好ましい。
【0190】
[温度調整用ベース部材]
温度調整用ベース部材103は、金属及びセラミックスの少なくとも一方からなる厚みのある円板状の部材である。温度調整用ベース部材103の躯体は、プラズマ発生用内部電極を兼ねた構成とされている。温度調整用ベース部材103の躯体の内部には、水、Heガス、N2ガス等の冷却媒体を循環させる流路121が形成されている。
【0191】
温度調整用ベース部材103の躯体は、外部の高周波電源122に接続されている。また、温度調整用ベース部材103の固定孔115内には、その外周が絶縁材料123により囲繞された給電用端子116が、絶縁材料123を介して固定されている。給電用端子116は、外部の直流電源124に接続されている。
【0192】
温度調整用ベース部材103を構成する材料は、熱伝導性、導電性、加工性に優れた金属、又はこれらの金属を含む複合材であれば特に制限されない。温度調整用ベース部材103を構成する材料としては、例えば、アルミニウム(Al)、銅(Cu)、ステンレス鋼(SUS)、チタン(Ti)等が好適に用いられる。
【0193】
温度調整用ベース部材103における少なくともプラズマに曝される面は、アルマイト処理又はポリイミド系樹脂による樹脂コーティングが施されていることが好ましい。また、温度調整用ベース部材103の全面が、前記のアルマイト処理又は樹脂コーティングが施されていることがより好ましい。
【0194】
温度調整用ベース部材103にアルマイト処理又は樹脂コーティングを施すことにより、温度調整用ベース部材103の耐プラズマ性が向上するとともに、異常放電が防止される。したがって、温度調整用ベース部材103の耐プラズマ安定性が向上し、また、温度調整用ベース部材103の表面傷の発生も防止できる。
【0195】
[接着剤層]
接着剤層104は、静電チャック部材102と、温度調整用ベース部材103とを接着一体化する構成である。
【0196】
接着剤層104の厚さは、100μm以上かつ200μm以下が好ましく、130μm以上かつ170μm以下がより好ましい。
接着剤層104の厚さが上記の範囲内であれば、静電チャック部材102と温度調整用ベース部材103との間の接着強度を充分に保持できる。また、静電チャック部材102と温度調整用ベース部材103との間の熱伝導性を充分に確保できる。
【0197】
接着剤層104は、例えば、シリコーン系樹脂組成物を加熱硬化した硬化体、アクリル樹脂、エポキシ樹脂等で形成されている。
シリコーン系樹脂組成物は、シロキサン結合(Si-O-Si)を有するケイ素化合物であり、耐熱性、弾性に優れた樹脂であるので、より好ましい。
【0198】
このようなシリコーン系樹脂組成物としては、特に、熱硬化温度が70℃~140℃のシリコーン樹脂が好ましい。
【0199】
ここで、熱硬化温度が70℃を下回ると、静電チャック部材102と温度調整用ベース部材103とを対向させた状態で接合する際に、接合過程で硬化が充分に進まず、作業性に劣るため好ましくない。一方、熱硬化温度が140℃を超えると、静電チャック部材102及び温度調整用ベース部材103との熱膨張差が大きく、静電チャック部材102と温度調整用ベース部材103との間の応力が増加し、これらの間で剥離が生じることがあるため好ましくない。
【0200】
すなわち、熱硬化温度が70℃以上であると、接合過程で作業性に優れ、熱硬化温度が140℃以下であると、静電チャック部材102と温度調整用ベース部材103との間で剥離し難いため好ましい。
【0201】
本実施形態の静電チャック装置100によれば、静電チャック部材102がセラミックス接合体1からなるため、静電チャック部材102において、絶縁破壊(放電)の発生を抑制できる。
【0202】
以下、本実施形態の静電チャック装置の製造方法について説明する。
【0203】
上述のようにして得られたセラミックス接合体1からなる静電チャック部材102を用意する。
【0204】
温度調整用ベース部材103の一主面103aの所定領域に、シリコーン系樹脂組成物からなる接着剤を塗布する。ここで、接着剤の塗布量を、静電チャック部材102と温度調整用ベース部材103とが接合一体化できる量に調整する。
この接着剤の塗布方法としては、ヘラ等を用いて手動で塗布する他、バーコート法、スクリーン印刷法等が挙げられる。
【0205】
温度調整用ベース部材103の一主面103aに接着剤を塗布した後、静電チャック部材102と、接着剤を塗布した温度調整用ベース部材103とを重ね合わせる。
また、立設した給電用端子116を、温度調整用ベース部材103中に穿孔された固定孔115に挿入し嵌め込む。
次いで、静電チャック部材102を温度調整用ベース部材103に対して所定の圧力にて押圧し、静電チャック部材102と温度調整用ベース部材103を接合一体化する。これにより、静電チャック部材102と温度調整用ベース部材103は、接着剤層104を介して接合一体化される。
【0206】
以上により、静電チャック部材102及び温度調整用ベース部材103は、接着剤層104を介して接合一体化された本実施形態の静電チャック装置100が得られる。
【0207】
なお、本実施形態に係る板状試料としては、半導体ウエハに限らず、例えば、液晶ディスプレイ(LCD)、プラズマディスプレイ(PDP)、有機ELディスプレイ等の平板型ディスプレイ(FPD)用ガラス基板等であってもよい。また、その基板の形状や大きさに合わせて本実施形態の静電チャック装置を設計すればよい。
【0208】
本発明は、以下の態様も包含する。
【0209】
[1-1]一対のセラミックス板と、前記一対のセラミックス板の間に介在する電極層と、を備え、前記一対のセラミックス板が、それぞれ絶縁性材料と導電性材料とから構成され、前記電極層は、絶縁性セラミックスの粒子と導電性セラミックスの粒子との焼結体からなり、前記一対のセラミックス板の少なくとも一方に埋設され、前記電極層の外縁において、前記一対のセラミックス板の少なくとも一方と前記電極層との接合面が、前記一対のセラミックス板及び前記電極層の厚さ方向に対して傾きを有する、セラミックス接合体。
【0210】
[1-2]前記一対のセラミックス板の材料が、互いに同じである[1-1]に記載のセラミックス接合体。
【0211】
[1-3]下記方法で求められる前記電極層の外縁の相対密度は、前記電極層の中心の相対密度よりも低い[1-2]に記載のセラミックス接合体。
(相対密度の測定方法)
前記セラミックス接合体の厚さ方向の切断面について、前記電極層の外縁であって平面視で前記接合面と重なる領域の、拡大倍率1000倍の顕微鏡写真を撮像する。前記範囲に含まれる電極層の外輪郭内の面積に対する、物質が存在する領域の割合を電極層の外縁の相対密度とする。
前記切断面において、電極層の中央を含む幅150μmの範囲の、拡大倍率1000倍の顕微鏡写真を撮像する。前記範囲に含まれる電極層の外輪郭内の面積に対する、物質が存在する領域の割合を電極層の中央の相対密度とする。
【0212】
[2-1]一対のセラミックス板と、前記一対のセラミックス板の間に介在する電極層と、前記一対のセラミックス板の間において、前記電極層の周囲に配置された絶縁層と、を備え、前記一対のセラミックス板が、それぞれ絶縁性材料と導電性材料とから構成され、前記電極層は、絶縁性セラミックスの粒子と導電性セラミックスの粒子との焼結体からなり、前記電極層の外縁において、前記電極層と前記絶縁層との接合面が、前記一対のセラミックス板、前記電極層及び前記絶縁層の厚さ方向に対して傾きを有する、セラミックス接合体。
【0213】
[2-2]前記一対のセラミックス板の材料が、互いに同じである[2-1]に記載のセラミックス接合体。
【0214】
[2-3]下記方法で求められる前記電極層の外縁の相対密度は、前記電極層の中心の相対密度よりも低い[2-2]に記載のセラミックス接合体。
(相対密度の測定方法)
前記セラミックス接合体の厚さ方向の切断面について、前記電極層の外縁であって平面視で前記接合面と重なる領域の、拡大倍率1000倍の顕微鏡写真を撮像する。前記範囲に含まれる電極層の外輪郭内の面積に対する、物質が存在する領域の割合を電極層の外縁の相対密度とする。
前記切断面において、電極層の中央を含む幅150μmの範囲の、拡大倍率1000倍の顕微鏡写真を撮像する。前記範囲に含まれる電極層の外輪郭内の面積に対する、物質が存在する領域の割合を電極層の中央の相対密度とする。
【実施例】
【0215】
以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。
【0216】
[実施例1]
91質量%の酸化アルミニウム粉末と、9質量%の炭化ケイ素粉末との混合粉末を成型、焼結し、直径450mm、厚さ5.0mmの円盤状の酸化アルミニウム-炭化ケイ素複合焼結体からなるセラミックス板(第1のセラミックス板、第2のセラミックス板)を作製した。
【0217】
第1のセラミックス板の一方の面(第2のセラミックス板との接合面)に研削加工を施して、第1のセラミックス板の一方の面に、第1のセラミックス板の厚さ方向に対して傾く傾斜面を有する凹部を形成した。形成した凹部は、第1のセラミックス板の厚さ方向に開口径が漸減していた。
【0218】
次いで、スクリーン印刷法により、第1のセラミックス板に形成した凹部に電極層形成用ペーストを塗布し、電極層塗膜を形成した。電極層塗膜の厚みは、凹部の最深部において深さの120%とし、他の部分電極層塗膜の厚みは、凹部の最深部における電極層塗膜の表面と、高さ位置を揃えることで調整した。
なお、「凹部の深さ」は、第1のセラミックス板の一方の面を基準面として、基準面から凹部底部に垂線を下したときの、基準面から凹部底部までの距離を指す。
【0219】
電極層形成用ペーストとしては、酸化アルミニウム粉末と炭化モリブデン粉末を、イソプロピルアルコールに分散させた分散液を用いた。電極層形成用ペーストにおける酸化アルミニウム粉末の含有量を25質量%とし、炭化モリブデン粉末の含有量を25質量%とした。
【0220】
次いで、電極層塗膜を形成した面が内側になるように、第1のセラミックス板の一方の面に、第2のセラミックス板を積層した。
【0221】
次いで、第1のセラミックス板、電極層塗膜及び第2のセラミックス板を含む積層体を、アルゴン雰囲気下、加熱しながら、厚さ方向に加圧した。熱処理温度を1700℃、加圧力を10MPa、熱処理及び加圧する時間を2時間とした。
以上の工程により、
図4に示すような実施例1のセラミックス接合体を得た。
【0222】
(絶縁性評価)
以下のようにして、セラミックス接合体の絶縁性を評価した。
第1のセラミックス板に、貫通電極を形成した。貫通電極は、第1のセラミックス板を厚さ方向に貫通し、第1のセラミックス板の電極層と接する面とは反対側の面から電極層に至る電極である。
【0223】
側面耐電圧測定では、セラミックス接合体の側面(セラミックス接合体の厚さ方向の側面)において、第1のセラミックス板、電極層及び第2のセラミックス板に接する姿勢でカーボンテープを貼付した。カーボンテープと貫通電極を介して、セラミックス接合体に電圧を印加し、セラミックス接合体が絶縁破壊する電圧を測定した。
【0224】
誘電層耐電圧測定では、第2のセラミックス板(誘電層)の上面にプローブを固定し、このプローブと貫通電極を介して、セラミックス接合体に電圧を印加し、セラミックス接合体が絶縁破壊する電圧を測定した。
【0225】
具体的には、側面耐電圧測定及び誘電層耐電圧測定において、3000Vの電圧を印加した状態でRF電圧を印加し10分保持し、その後500Vずつ徐々に電圧を印加して、10分保持し、測定した電流値が0.1mA(ミリアンペア)を超えたところを絶縁破壊とした。結果を表1に示す。
【0226】
(接合面の接合割合)
「第1のセラミックス板の電極層との接合面の接合割合」は、接合面の任意の走査型電子顕微鏡写真から算出した。すなわち、無作為に選ばれた視野にて拡大倍率1000倍の電子顕微鏡写真を撮影し、この電子顕微鏡写真に写された、傾斜面の長さを「接合面の全長(L1)」とした。接合面の全長(L1)については、明細書に記載の方法で規定して測定した。
【0227】
一方、上記電子顕微鏡写真において第1のセラミックス板と電極層との間に発生した各ボイドの長径長さを求め、この長径長さの合計を「接合面に発生したボイド長さ(D1)」とした。
【0228】
このようにして求められた長さから、「接合面に発生したボイド長さ(D1)」に対する「接合面の全長(L1)」の割合を百分率で求め、求めた値を100%から引いた値を「第1のセラミックス板と電極層との接合面の接合割合」として算出した。
その結果、実施例1のセラミックス接合体において、第1のセラミックス板と電極層との接合面の接合割合は62%であった。
【0229】
[比較例]
スクリーン印刷法により、研削加工を施していない第1のセラミックス板の一方の面に、電極層形成用ペーストを塗布し、電極層塗膜を形成したこと以外は、実施例1と同様にして、比較例のセラミックス接合体を得た。
実施例1と同様にして、セラミックス接合体の絶縁性を評価した。結果を表1に示す。
【0230】
(接合面の接合割合)
実施例1と同様にして、第1のセラミックス板と電極層との接合面の接合割合を算出した結果、0%であった。
【0231】
【0232】
表1の結果から、実施例1のセラミックス接合体は、比較例のセラミックス接合体よりも絶縁耐圧が高いことが分かった。
【0233】
[実施例2]
電極層作製時に、凹部の最深部における電極層塗膜の厚みを、深さの80%としたこと以外は実施例1と同様にして、実施例2のセラミックス接合体を得た。
【0234】
実施例1と同様にして、第1のセラミックス板と電極層との接合面の接合割合を算出した結果、44%であった。
【0235】
(電極層の密度)
電極層の密度は、上記(電極層の相対密度の測定方法)に記載の方法で求めた。
【0236】
各評価結果を表2に示す。
【0237】
【0238】
電極層の中心の密度は、ほぼ100%であることを確認した。表2の結果から、実施例2のセラミックス接合体は、実施例1のセラミックス接合体と比べ電極層の外縁が相対的に低密度であるが、実施例1と遜色ない耐電圧特性を示し、比較例のセラミックス接合体よりも絶縁耐圧が高いことが分かった。
【産業上の利用可能性】
【0239】
本発明のセラミックス接合体は、一対のセラミックス板と、前記一対のセラミックス板の間に介在する電極層と、を備え、前記電極層の外縁において、前記一対のセラミックス板の少なくとも一方と前記電極層との接合面が、前記一対のセラミックス板及び前記電極層の厚さ方向に対して傾きを有する。そのため、本発明のセラミックス接合体は、セラミックス板と導電層の接合界面において、絶縁破壊(放電)が抑制される。このようなセラミックス接合体は、静電チャック装置の静電チャック部材に好適に用いられ、その有用性は非常に大きいものである。
【符号の説明】
【0240】
1,10,20,30,40,50,60,70 セラミックス接合体
2,42 セラミックス板(第1のセラミックス板)
3,43 セラミックス板(第2のセラミックス板)
4,44 電極層
5,46 接合面
45 絶縁層
100 静電チャック装置
102 静電チャック部材
103 温度調整用ベース部材
104 接着剤層
111 載置板
112 支持板
113 静電吸着用電極
114 絶縁材
115 固定孔
116 給電用端子
117 導電性接着層
118 貫通孔
121 流路
122 高周波電源
123 絶縁材料
124 直流電源