(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-28
(45)【発行日】2023-12-06
(54)【発明の名称】屈曲基材
(51)【国際特許分類】
C03B 23/025 20060101AFI20231129BHJP
C03B 23/035 20060101ALI20231129BHJP
【FI】
C03B23/025
C03B23/035
(21)【出願番号】P 2022033707
(22)【出願日】2022-03-04
(62)【分割の表示】P 2018092506の分割
【原出願日】2018-05-11
【審査請求日】2022-03-04
(31)【優先権主張番号】P 2017095985
(32)【優先日】2017-05-12
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000000044
【氏名又は名称】AGC株式会社
(74)【代理人】
【識別番号】110002000
【氏名又は名称】弁理士法人栄光事務所
(72)【発明者】
【氏名】藤井 誠
(72)【発明者】
【氏名】金杉 諭
【審査官】永田 史泰
(56)【参考文献】
【文献】米国特許出願公開第2014/0065366(US,A1)
【文献】特開2014-210692(JP,A)
【文献】特開2009-167086(JP,A)
【文献】特表2016-521245(JP,A)
【文献】特開2015-163574(JP,A)
【文献】国際公開第2015/174428(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C03B23/02-23/037
C03C15/00-23/00
(57)【特許請求の範囲】
【請求項1】
少なくとも一部に屈曲部を有し、ガラスからなる屈曲基材であって、
前記屈曲部は、印刷層が形成された印刷面を有し、
前記屈曲基材は一方の主面と、前記一方の主面に対向する他方の主面とを有し、
前記屈曲基材の前記一方の主面における前記屈曲部の表面粗さは、前記一方の主面における前記屈曲部以外の表面粗さより大き
く、算術平均粗さとして、1nm以上5000nm以下であり、
前記他方の主面における前記屈曲部の表面粗さは、前記他方の主面における前記屈曲部以外の表面粗さより大きく、算術平均粗さとして4nm以上50nm以下である
ことを特徴とする屈曲基材。
【請求項2】
前記屈曲部の板厚t1と前記屈曲部以外の板厚t2の比t1/t2が、0.8以上1.0以下である
請求項1に記載の屈曲基材。
【請求項3】
前記一方の主面と前記他方の主面の前記屈曲部における表面粗さは、前記一方の主面と前記他方の主面の前記屈曲部以外における表面粗さより大きい請求項
1又は2に記載の屈曲基材。
【請求項4】
前記屈曲基材の前記一方の主面における前記屈曲部が凹面であり、前記屈曲基材の前記他方の主面における前記屈曲部が前記凹面に対応する凸面である、請求項1
~請求項3のいずれか一項に記載の屈曲基材。
【請求項5】
前記屈曲部の板厚は、前記屈曲部以外の板厚よりも小さい請求項1~請求項4のいずれか一項に記載の屈曲基材。
【請求項6】
端面の表面粗さは、前記屈曲部の表面粗さより小さい請求項1~請求項5のいずれか一項に記載の屈曲基材。
【請求項7】
少なくとも1つの前記屈曲部において、曲率半径が互いに異なる部位が存在する、請求項1~請求項6のいずれか一項に記載の屈曲基材。
【請求項8】
前記一方の主面のβ-OH値は、前記他方の主面のβ-OH値より大きい請求項1~請求項7のいずれか一項に記載の屈曲基材。
【請求項9】
前記屈曲部のβ-OH値は、前記屈曲部以外の部位のβ-OH値より大きい請求項8に記載の屈曲基材。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、屈曲基材に関する。
【背景技術】
【0002】
平坦状のガラスを加熱して所望の形状に成形する技術が知られている(例えば特許文献1~3参照)。特許文献1には、従来法より相対的に低い温度に変形部分を加熱し、かつ平滑面に相当する部分を更に、低温に保って、従来法より低速に制御された変形スピードでガラス板を成形する技術が記載されている。
また、特許文献2には、ガラス板を加熱する加熱工程と、ガラス板のうち屈曲部となる領域を局所加熱する局所加熱工程と、局所加熱工程中又は局所加熱工程後に、ガラス板を屈曲部となる領域で自重により折り曲げる曲げ工程と、を含むフラットパネルディスプレイ用のカバーガラスの製造方法が記載されている。
更に、特許文献3には、材料シートを第1温度範囲まで加熱するステップと、材料シートの再成形可能領域を第2温度範囲まで加熱するステップと、材料シートの再成形可能領域を自重により垂下させる、又は、再成形可能領域の外側か再成形可能領域の境界近傍で、材料シートに力を加えることで、材料シートの再成形可能領域を選択された形状に再成形するステップとを有して、成形物品とする方法が記載されている。
【先行技術文献】
【特許文献】
【0003】
【文献】特公平4-63817号公報
【文献】特許第5831591号公報
【文献】特許第5897594号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、特許文献1の方法は、上下型によるプレス成形や真空成形によりガラスの厚さを薄くさせつつ変形させるため、ガラス板の厚さ変動が依然として大きくなるおそれがある。
また、特許文献2の方法は、自重により曲げ工程を実施するため、複雑な屈曲部を有するガラス板を精度よく作製することが難しい課題があった。
更に、特許文献3の方法は、外力を印加しガラス板を積極的に変形しているため、ガラス板にシワなどが生じやすく、複雑な屈曲部を有するガラス板を精度よく作製することが難しい課題があった。
そして、いずれの方法により屈曲した基材を作成しても、屈曲基材を最終製品に組み込む際に屈曲基材を変形させると、屈曲部が撓むことがある。そのとき、屈曲部に例えば印刷層や樹脂層を設ける場合には、印刷層や樹脂層を欠損させるおそれがある。
【0005】
そこで本発明は、印刷層や樹脂層等を屈曲部に強固に固着させて、印刷層や樹脂層の欠損を抑制できる屈曲基材を提供することを目的とする。
【課題を解決するための手段】
【0006】
本発明は下記構成からなる。
少なくとも一部に屈曲部を有し、ガラスからなる屈曲基材であって、
前記屈曲基材は一方の主面と、前記一方の主面に対向する他方の主面とを有し、
前記屈曲基材の前記一方の主面における前記屈曲部の表面粗さは、前記一方の主面における前記屈曲部以外の表面粗さより大きいことを特徴とする屈曲基材。
【発明の効果】
【0007】
本発明によれば、印刷層や樹脂層等を屈曲部に強固に固着させて、印刷層や樹脂層の欠損を抑制できる。
【図面の簡単な説明】
【0008】
【
図1】
図1は屈曲基材の外観を模式的に示す斜視図である。
【
図4】
図4の(A)~(D)は屈曲部の成形手順を順に示す工程説明図である。
【
図5】
図5は成形工程により得られた屈曲基材の斜視図である。
【
図6】
図6は切断線が形成された屈曲基材の平面図である。
【
図7】
図7はプッシャーにより基材の第2領域を屈曲させる様子を示す工程説明図である。
【発明を実施するための形態】
【0009】
以下、本発明の実施形態の一例について、図面を参照して詳細に説明する。
図1は屈曲基材10の外観を模式的に示す斜視図であり、
図2は
図1のII-II線断面図である。
屈曲基材10は、一方の主面11(図中の下面)と、他方の主面12(図中の主面11の反対面である上面)と、を有する板材である。この屈曲基材10は、三次元に湾曲した形状を有する基材であり、少なくとも一部に屈曲部を有する。「屈曲部」とは、その平均曲率半径が無限大ではない部分を意味し、1000mm以下である部位を意味する。「平坦部」とは、曲率半径が1000mm超である部位とする。本構成の屈曲基材10は、主面11と主面12の屈曲部以外の向かい合う平坦部は互いに平行であるが、必ずしも平行である必要はない。
【0010】
本構成の屈曲基材10は、Y方向一端から他端に向けて、XY面に平行な第一平面部10aと、第一平面部10aに接続されZ方向(図中下方)に屈曲する屈曲部10bと、屈曲部10bに接続されY方向他端(図中右方)までの間に延在する第二平面部10cと、を有する。
【0011】
そして、屈曲基材10の一方の主面11は、第一平面部10a、屈曲部10b、及び第二平面部10cに対応するように、XY面に平行な第一平面部11a、第一平面部11aに接続されZ方向(図中下方)に屈曲する屈曲部11bと、屈曲部11bに接続されY方向他端(図中右方)までの間に延在する第二平面部11cと、を有する。
【0012】
同様に、屈曲基材10の他方の主面12は、第一平面部10a、屈曲部10b、及び第二平面部10cに対応するように、XY面に平行な第一平面部12a、第一平面部12aに接続されZ方向(図中下方)に屈曲する屈曲部12bと、屈曲部12bに接続されY方向他端(図中右方)までの間に延在する第二平面部12cと、を有する。
【0013】
屈曲部10bの曲率半径は、500mm以下が好ましく、100mm以下がより好ましく、20mm以下が更に好ましい。従来、成形しにくい曲率半径の小さい屈曲基材を成形する場合であっても、後述する屈曲基材の製造方法により、精度の高い屈曲部10bを形成した屈曲基材10が得られる。
屈曲部10bの曲率半径の下限値は特に制限はないが、1mm以上が好ましく、5mm以上がより好ましく、10mm以上が更に好ましい。屈曲部の曲率半径が下限値以上であれば、屈曲基材の周辺部にある他部材と屈曲基材が、滑らかに接続したデザインが得られる。また、屈曲部10bに物が衝突した場合でも、応力集中を軽減できるため、屈曲部10bの耐衝撃性が向上する。
【0014】
ここで、第一平面部10a、屈曲部10b、及び第二平面部10cを有する屈曲基材10のX方向寸法をa、Y方向寸法をb、板厚をtとする。また、
図2に示すように、屈曲基材10が曲げられた方向(本例ではZ方向)における、屈曲基材10の両端間の距離を曲げ深さhとする。なお、曲げ深さhは、屈曲部を有する基材の厚さ方向断面視で、同一の主面における2つの端部P1,P2を結ぶ直線L
aと、この直線L
aと平行となる直線のうち、屈曲部に接する接線L
bとの距離をいう。
【0015】
屈曲部10bの曲げ深さhは1000mm以下が好ましく、800mm以下がより好ましく、500mm以下がさらに好ましく、200mm以下が特に好ましい。上限値以下の曲げ深さを有する屈曲基材10であれば、これまで成形しにくかった深い曲げの屈曲基材10であっても、後述の製造方法により精度の高い屈曲部10bを形成した屈曲基材10が得られる。
【0016】
屈曲部10bの曲げ深さhは特に制限はないが、3mm以上が好ましく、5mm以上がより好ましく、10mm以上が更に好ましく、20mm以上が特に好ましい。屈曲部の曲げ深さhが下限値以上であれば、屈曲基材の周辺部にある他部材と屈曲基材が滑らかに接続したデザインが得られる。また屈曲基材の材質がガラスの場合、屈曲基材の剛性が向上し、組み付け工程時の変形や、使用時の指での押し圧による不用意な変形を抑制できる。
【0017】
なお、屈曲基材10には少なくとも一つの屈曲部10bが形成されればよく、屈曲部10bの位置、数、及び形状等は限定されない。例えば、屈曲部10bは、
図1に示すような一方の主面11が凹面となる凹曲形状ではなく、一方の主面11が凸面となる凸曲形状であってもよい。
【0018】
また、
図2に示すように、一方の主面11の第一平面部11aと第二平面部11cのそれぞれの面の延長線が交差する交点で形成される角度を「開き角γ」とする。この屈曲基材10の開き角γは、45°以上315°以下が好ましく、90°以上270°以下がより好ましい(180°の場合を除く)。
【0019】
本構成の屈曲基材10は、屈曲部10bの形状がX方向に沿って変化する、ひねり構造を有する。ここでいう「ひねり」とは、屈曲部10bにおける曲率半径が一定である必要はなく、開き角γが一定である必要もない、という条件により得られる形状を示す。具体的には、
図1の屈曲基材10をYZ平面と平行な面でX軸と垂直となる切断面を観察した場合、屈曲基材10はX方向の各位置で異なる曲率半径と開き角を有する。
【0020】
つまり、屈曲基材10の一方の主面11の屈曲部11bは、X方向一端部である
図1の手前側では、曲率半径R
1で開き角γ
1の湾曲形状を有し、X方向他端部である
図1の奥側では、曲率半径R
1より小さい曲率半径R
2で開き角γ
2の湾曲形状を有する。この屈曲部11bは、X方向に沿って曲率半径がR
1からR
2に連続的に変化する形状であり、
例えば平板板材にひねりを加えて折り曲げて得られる形状となっている。
【0021】
また、本構成の屈曲基材10が、厚さ方向断面視で、少なくとも1つの凸曲形状の屈曲部10bと、少なくとも1つの凹曲形状の屈曲部10bと、を有してもよい。本構成の屈曲基材10は、例えば、屈曲基材10の厚さ方向断面視で、いわゆる「S字構造」を有してもよい。ここでいう「S字」とは、屈曲部10bの曲率半径が一定で無い場合、屈曲基材10の厚さ方向断面において屈曲部10bの形状を100等分し、連続する3点から近似曲率を算出し並べた場合、その近似曲率半径の中心点が主面12に対してZ方向にプラスの位置をとる場合と、主面12に対してZ方向にマイナスの位置をとる場合の両者が混在することを言う。
【0022】
屈曲基材10のX方向寸法a、Y方向寸法b、板厚tは特に限定されない。板厚tは、屈曲基材10の全域で略一定にするのが好ましい。また、板厚tは、部分的に変化してもよく、屈曲基材10の全域で変化しても良い。
【0023】
屈曲基材10としては、ガラスや、セラミクス、樹脂、木材、金属等の板が挙げられるが、ガラスが好ましい。ガラスとしては、無色透明の非晶質ガラスの他、結晶化ガラスや色ガラス等が挙げられる。
【0024】
更に詳細には、ガラスとして、例えば、無アルカリガラス、ソーダライムガラス、ソーダライムシリケートガラス、アルミノシリケートガラス、ボロンシリケートガラス、リチウムアルミノシリケートガラス、ホウケイ酸ガラスを使用できる。厚さが薄くても後述する強化処理によって大きな応力が入りやすく薄くても高強度なガラスが得られ、画像表示装置の視認側に配置される物品として好適である点から、アルミノシリケートガラスが好ましい。
【0025】
ガラス組成の具体例としては、酸化物基準のモル%で表示した組成で、SiO2を50~80%、Al2O3を0.1~25%、Li2O+Na2O+K2Oを3~30%、MgOを0~25%、CaOを0~25%及びZrO2を0~5%含むガラスが挙げられるが、
特に限定されない。より具体的には、以下のガラスの組成が挙げられる。なお、例えば、「MgOを0~25%含む」とは、MgOは必須ではないが25%まで含んでもよい、の意である。
(i)酸化物基準のモル%で表示した組成が、SiO2を63~73%、Al2O3を0.1~5.2%、Na2Oを10~16%、K2Oを0~1.5%、Li2Oを0~5%、MgOを5~13%及びCaOを4~10%含むガラス。
(ii)酸化物基準のモル%で表示した組成が、SiO2を50~74%、Al2O3を1~10%、Na2Oを6~14%、K2Oを3~11%、Li2Oを0~5%、MgOを2~15%、CaOを0~6%及びZrO2を0~5%含有し、SiO2及びAl2O3の含有量の合計が75%以下、Na2O及びK2Oの含有量の合計が12~25%、MgO及びCaOの含有量の合計が7~15%であるガラス。
(iii)酸化物基準のモル%で表示した組成が、SiO2を68~80%、Al2O3を4~10%、Na2Oを5~15%、K2Oを0~1%、Li2Oを0~5%、MgOを4~15%及びZrO2を0~1%含有するガラス。
(iv)酸化物基準のモル%で表示した組成が、SiO2を67~75%、Al2O3を0~4%、Na2Oを7~15%、K2Oを1~9%、Li2Oを0~5%、MgOを6~14%及びZrO2を0~1.5%含有し、SiO2及びAl2O3の含有量の合計が71~75%、Na2O及びK2Oの含有量の合計が12~20%であり、CaOを含有する場合その含有量が1%未満であるガラス。
(v)酸化物基準の質量%で表示した組成が、SiO2を60~75%、Al2O3を0.5~8%、Na2Oを10~18%、K2Oを0~5%、MgOを6~15%、CaOを0~8%含むガラス。
(vi)酸化物基準の質量%で表示した組成が、SiO2を63~75%、Al2O3を3~12%、MgOを3~10%、CaOを0.5~10%、SrOを0~3%、BaOを0~3%、Na2Oを10~18%、K2Oを0~8%、ZrO2を0~3%、Fe2O3を0.005~0.25%含有し、R2O/Al2O3(式中、R2OはNa2O+K2Oである)が2.0以上4.6以下であるガラス。
(vii)酸化物基準の質量%で表示した組成が、SiO2を66~75%、Al2O3を0~3%、MgOを1~9%、CaOを1~12%、Na2Oを10~16%、K2Oを0~5%含有するガラス。
【0026】
屈曲基材10として使用するガラス板は、後述の化学強化処理を適切に行うため、そのガラス組成におけるLi2OとNa2Oの含有量の合計は12モル%以上が好ましい。更に、ガラス組成におけるLi2Oの含有率が増加するにしたがって、ガラス転移点が下がり成形が容易となるため、Li2Oの含有率は0.5モル%以上が好ましく、1モル%以上がより好ましく、2モル%以上が更に好ましい。更に、表面圧縮応力(Compressive Stress;以下、CSとも略す)層及び表面圧縮応力層深さ(Depth of Layer;以下、DOLとも略す)を大きくするため、ガラス組成がSiO2を60モル%以上、Al2O3を8モル%以上含有することが好ましい。
【0027】
更に、ガラス板に着色を行い使用する際は、所望の化学強化特性の達成を阻害しない範囲において着色剤を添加してもよい。例えば、可視域に吸収を持つ、Co、Mn、Fe、Ni、Cu、Cr、V、Bi、Se、Ti、Ce、Er、及びNdの金属酸化物である、Co3O4、MnO、MnO2、Fe2O3、NiO、CuO、Cu2O、Cr2O3、
V2O5、Bi2O3、SeO2、TiO2、CeO2、Er2O3、Nd2O3等が挙げられる。
【0028】
ガラス板に着色ガラスを用いる場合、ガラス中に酸化物基準のモル百分率表示で、着色成分(Co、Mn、Fe、Ni、Cu、Cr、V、Bi、Se、Ti、Ce、Er、及びNdの金属酸化物からなる群より選択される少なくとも1成分)を7%以下の範囲で含有してよい。着色成分が7%を超えると、ガラスが失透しやすくなる。この含量は5%以下が好ましく、3%以下がより好ましく、1%以下が更に好ましい。また、ガラス板は溶融の際の清澄剤として、SO3、塩化物、フッ化物などを適宜含有してよい。
【0029】
ここで、屈曲基材10の素材として使用できる平板状ガラスの製造方法について説明する。まず、各成分の原料を前述した組成となるように調合し、ガラス溶融窯で加熱溶融する。バブリング、撹拌、清澄剤の添加等によりガラスを均質化し、公知の成形法により所定の厚さのガラス板を作製し、徐冷する。ガラスの作製法としては、例えば、フロート法、プレス法、フュージョン法、ダウンドロー法及びロールアウト法が挙げられる。特に、大量生産に適したフロート法が好適である。また、フロート法以外の連続作製法、すなわち、フュージョン法及びダウンドロー法も好適である。任意の作製法により平板状に作製されたガラス板は、徐冷後、所望のサイズに切断され、平板状ガラスが得られる。なお、より正確な寸法精度が必要な場合等には、切断後のガラス板に後述の研磨・研削加工や端面加工、孔あけ加工を施してもよい。これにより、加熱工程などでのハンドリングにおいて割れや欠けを低減でき歩留まりを向上できるようになる。
【0030】
屈曲基材10は、処理層を有していてもよい。処理層には特に制限はない。処理層としては、例えば、反射光を散乱させ、光源の映り込みによる反射光の眩しさを低減する効果をもたらす防眩層が挙げられる。処理層は屈曲基材10自体の主面を加工して形成してもよく、別途堆積処理方法により形成してもよい。処理層の形成方法として、例えば、屈曲基材10の少なくとも一部に化学的処理あるいは物理的処理により表面処理を施せばよい。防眩層の場合、所望の表面粗さの凹凸形状を形成する方法を使用できる。また、処理液を塗布あるいは噴霧する堆積処理方法や、成形等の熱的処理方法により屈曲基材10の少なくとも一部に凹凸形状を形成してもよい。処理層として、その他、反射防止層(AR層)や耐指紋拭取層(AFP層)を形成してよい。
【0031】
屈曲基材10がガラスである場合には、成形に使用するガラスの厚さtとしては0.5mm以上5mm以下が好ましい。この下限値以上の厚さを備えたガラスであれば、高い強度と良好な質感を有する屈曲基材10が得られる。また、ガラスの厚さtとしては0.7mm以上3mm以下がより好ましく、1mm以上3mm以下が更に好ましい。
【0032】
(成形装置)
次に、上記のような屈曲基材10を製造する成形装置の一例を説明する。
成形装置は、屈曲基材10の素材である平坦な基材の一端部を折り曲げて、
図1に示すようなひねり構造を形成する。
【0033】
図3は成形装置100の概略的な構成図である。
成形装置100は、支持部材21と、支持部材21の上方に配置されたヒーター23と、を備える。また、成形装置100には、各部を統括して制御する不図示の制御部が接続されていてもよい。支持部材21は、ベース部25と、ベース部25の一端部から延設された屈曲形成部27と、を有する。ベース部25と屈曲形成部27の上面には、屈曲基材の素材となる平坦な基材31が配置される。
【0034】
ベース部25は、上面が基材支持面33であり、基材31の屈曲部を形成する領域(成形対象である第2領域31a)以外の第1領域31bを支持する。基材支持面33には、基材31を真空吸引により吸着させる凹部である溝35が形成される。溝35は、基材支持面33の面上で基材31の外縁に沿って連続して形成され、図示例では平面視U字形に配置される。溝35は、不図示の真空ポンプVPに接続され、真空ポンプVPの駆動により、基材31の真空吸着が可能になっている。
【0035】
支持部材21の材質はステンレス鋼等の耐酸化性のある金属、ヒューズドシリカガラスなどのガラス、セラミック、カーボン等が好ましく、ヒューズドシリカガラスなどのガラス及びカーボンがより好ましい。ヒューズドシリカガラスは高温かつ酸化雰囲気での耐性が高く、また接触する基材31に欠点を形成しにくく、そのため傷の少ない表面の屈曲ガラスが得られる。カーボンは熱伝導率が高く屈曲ガラスを効率的に生産できる。なお、支持部材21の基材31に対面する表面には、金属や酸化物、カーボン等の被膜が形成されていてもよい。
【0036】
また、基材支持面33には、基材31のずれを防止するピン39が立設される。ピン39は、少なくとも基材31の2辺に当接して、面内方向の移動を規制する。
【0037】
ベース部25には、冷却流路となる冷却用貫通孔37が、基材支持面33の下方に複数形成される。冷却用貫通孔37には、不図示のポンプから水、油、又は冷却空気等の冷却媒体CMが供給される。複数の冷却用貫通孔37は、それぞれ断面積が同じにされ、等間隔に配置されることで、基材支持面33を均等に冷却する。冷却用貫通孔37の流入側の流路入口、流出側の流路出口は、圧力損失を低くしてベース部の冷却効率を高めるため、流れ方向断面視で円形や楕円形としている。
【0038】
屈曲形成部27は、ベース部25から薄肉となって延出され、上面の型面41が、屈曲基材の屈曲部と同じ曲面形状を有する。基材31は、第2領域31aをこの型面41に対面させた状態でベース部25に支持される。
【0039】
屈曲形成部27の型面41には、凹部である溝43が形成される。溝43は、基材の第2領域31aの外縁形状に対応して、外縁により覆われるように連続して形成される。図示例では平面視U字形に溝43が配置される。溝43は、溝35と同様に不図示の真空ポンプVPに接続される。
【0040】
上記の溝35,43では、手動で又は制御部からの指令に基づき、それぞれに設けた電磁弁の開閉により、真空吸引の開始、停止が制御される。なお、溝35,43による真空吸引は必ずしも実施する必要はなく、必要に応じて実施される。
【0041】
屈曲形成部27の先端部には、基材31の位置ずれ防止用のストッパー45が設けられる。ストッパー45は、図示例の単純なピン以外にも、板状、ブロック状等の形状であってもよい。
【0042】
屈曲形成部27は、ベース部25よりも薄肉に形成された肉抜き構造であるため、熱容量がベース部25と比較して小さくなり、屈曲形成部27との接触による基材13の温度変化を抑制できる。
【0043】
上記のベース部25と屈曲形成部27を有する支持部材21は、不図示の傾斜ステージに配置して、全体を任意の方向に傾斜可能な構成としてもよい。
【0044】
ヒーター23は、シーズヒーター、石英管ヒーター、ニクロム線ヒーター、鉄クロム線ヒーター、ハロゲンヒーター、近赤外線ヒーターや中赤外線ヒーターなどの輻射ヒーター等、各種のヒーターを使用できる。加熱効率が高い、短波長赤外線ヒーターを好適に使用できる。
【0045】
また、ヒーター23が、複数箇所に配置された局所ヒーターからなる場合には、それぞれの局所ヒーターで設定温度を変えてよい。例えば、局所ヒーターの設定温度を、ベース部25に近い側の設定温度よりも、屈曲形成部27の先端に近づくにつれて高く設定してもよい。これにより、基材31の第1領域31bの加熱を抑えつつ、第2領域31aを集中加熱できる。さらに、ヒーター23と基材31との距離を適宜調整してよい。
【0046】
なお、上記した基材31の第1領域31bは、平坦のままでもよく、低温での成形を実施することにより、緩い曲面を形成してもよい。
【0047】
(屈曲部の成形)
次に、基材に屈曲部を成形する手順について説明する。なお、本願の屈曲部の成形方法は、ひねり構造や厚さ方向断面視でS字形状を有する屈曲基材10において、屈曲部の曲率半径や、屈曲基材の寸法を精度よく作製できる。特に、短辺200mm以上となる大きい屈曲基材10を作製する際に好ましい。
図4の(A)~(D)は屈曲部の成形手順の一例を順に示す工程説明図である。
まず、
図4の(A)に示すように、長方形状の基材31を支持部材21上に移動又は搬送し、基材31のいずれか一方の主面が支持部材21に接触するように、基材31を支持部材21に載置する。このときの基材31は、ピン39や適宜な鉤状部材(不図示)により第1領域31bの短軸方向の端面が位置決めされる。また、ベース部25を傾けることで、重力を利用して基材31の長軸方向の端面がピンに突き当たる位置に位置決めする。
【0048】
その後、必要に応じて支持部材21の周囲をカバーにより覆う等の準備をする。支持部材21を覆うカバーは、支持部材21の周辺をクリーンに維持する上で有効であり、例えば、ステンレス鋼等の金属板で構成できる。また、ガラスやガラスセラミック等の材料でもよく、支持部材21の材料と同じ組成の材料であってもよい。
【0049】
基材31を支持部材21に載置した後、基材31の予熱を実施してもよい。また、予熱は、予め加熱した支持部材21に基材31を載置して実施してもよい。
【0050】
基材31の予熱では、例えば、軟化点より低い500℃程度、平衡粘性で1017Pa・s程度になるまで基材31を加熱する。これにより、基材31を軟化点付近まで急速加熱する場合に発生する割れ等の損傷の発生を未然に防止できる。
【0051】
予熱時においては、支持部材21を予め加熱する場合、支持部材21の屈曲形成部27の温度が、支持部材21のベース部25の温度に比べ高くなるように設定する。支持部材21の屈曲形成部27とベース部25とで温度差をつけるために、例えば、屈曲形成部27をベース部25に比べて高い温度に加熱する、ベース部25を屈曲形成部27に比べて低い温度に冷却する、等で温度を制御できる。支持部材21の温度としては、例えば、屈曲形成部27では400~500℃、ベース部25では300~400℃となるように制御する。これは、後工程における成形の加熱時に、第2領域31aと第1領域31bの温度差をより大きくするのに有効であり、かつ第2領域31aと第1領域31bの温度差でガラスが熱割れしない温度範囲となる。
【0052】
次に、
図4の(B)に示すように、ヒーター23を加熱して、基材31の第2領域31aをガラス転移点温度以上、融点以下、又は基材31の平衡粘性が10
17Pa・s以下になるまで加熱する。なお、基材31の第1領域31bの加熱は、ガラス転移点温度以下に留める。
【0053】
ヒーター23による基材31の加熱温度は、基材31がガラスの場合、600~1100℃にすることが好ましく、650~850℃がより好ましい。また、基材31の平衡粘性が103.9~1011.9Pa・sとなるように加熱することが好ましい。これにより加熱された基材31は、所望の形状が付与された屈曲ガラスとなる。なお、最終的に得られる屈曲ガラスが良好な光学品質を有し、所望のデザイン寸法からの形状偏差を小さくするには、650~900℃の温度、平衡粘性としては、105.5~1010Pa・sがより好ましい。
【0054】
基材31の第2領域31aは、ガラス転移点温度以上に加熱されると軟化して、自重によって下方へ垂れ下がる。そして、
図4の(C)に示すように、屈曲形成部27の型面41に一部が接触して、型面41に沿った形状に変形する。
【0055】
より詳細には、基材31の第1領域31bは、例えば、670℃以下の温度、平衡粘性で109.5Pa・s以上となるように加熱することが好ましい。これにより、第1領域31bの平坦性を保持できる。更には、基材31の第1領域31bは、550℃以下の温度、平衡粘性で1014.3Pa・s以上となるように加熱することがより好ましい。この際、基材31の割れを抑制するため、基材31の第1領域31bは、400℃以上の温度、平衡粘性で1033.6Pa・s以下となるように加熱することがより好ましい。
【0056】
一方、第2領域31aは、例えば、600~1100℃の温度、平衡粘性で103.9~1011.9Pa・sとなるように加熱することが好ましい。
更に、支持部材21の屈曲形成部27の温度を、基材31の第2領域31a所望の温度に比べ、高温となるように制御することが好ましい。
【0057】
第2領域31aが自重により垂下し、その中の最下点における鉛直方向の変形速度を垂下速度とすると、垂下速度が5mm/秒以下となるまでは、自重で変形させる。これにより、後工程で外力を使用する際に、屈曲部に過大な外力を掛けることによる、しわ等の影響を低減でき、効率よく屈曲ガラスが得られる。第2領域31aが自重により垂下する際の垂下速度の上限値は1mm/s以下がより好ましく、0.5mm/s以下が更に好ましい。
【0058】
第2領域31aが自重により垂下する際の垂下速度の下限値は、特に制限はないが、0.01mm/s以上が好ましく、0.05mm/s以上がより好ましい。
【0059】
上記した垂下速度は、例えば、成形装置100を外側から撮影するカメラや、各種公知のセンサにより基材31の動きを検出し、検出された動き量を制御部が演算することで求められる。制御部は、求めた垂下速度に応じて、真空ポンプ、電磁弁、ヒーター等の各部の駆動タイミングを調整する。また、制御部は、ヒーター23の設定温度を変更する等、垂下速度をアクティブに増減制御させてもよい。
【0060】
上記の通り第2領域31aの自重による変形が終了した後、外力を使用する成形法により基材31を変形させる。使用できる変形手段は、差圧成形法(真空成形法)、プレス成形法などから、最終的に得たい屈曲ガラスの形状に応じて所望の成形法を選択すればよい。
【0061】
本構成では一例として差圧成形法を使用する。基材31の第2領域31aの垂下速度が5mm/s以下となったタイミングで、屈曲形成部27の溝43から真空吸引することで、第2領域31aを型面41に密着させる。基材31は、屈曲形成部27に密着した状態で冷却され、型面41の曲面形状が第2領域31aに転写される。
【0062】
上記した基材31の変形においては、加熱の方法として、輻射加熱又は対流加熱を利用することが好ましい。
輻射加熱とは、被加熱体がヒーター等の熱源から放射されるエネルギーを吸収することにより加熱される手法である。これにより屈曲ガラスを量産する際に、加熱-冷却サイクルの短縮化を実現できるため、変形のタクトタイムの短縮化を実現でき、結果として屈曲ガラスの生産効率を向上できる。
対流加熱とは、被加熱体が雰囲気の気体の対流により加熱される手法である。これにより、基材31の面内温度分布を均一化でき、最終的に得られる屈曲ガラス上の処理層の特性を維持しやすくなり、結果として屈曲ガラスの生産効率を向上できる。
【0063】
基材31を変形させた後、屈曲ガラスを取り出すため、室温程度といったハンドリングできるような温度まで屈曲ガラスを冷却する。冷却は段階的に実施することが好ましく、冷却速度を制御した徐冷工程を経て、冷却速度を制御しない急冷工程を有することが好ましい。
【0064】
徐冷工程では、成形温度から、600℃以下(平衡粘性で1011.9Pa・s以上)となるまで、冷却速度を制御して冷却する。これにより面内の残留応力を低減でき後工程で割れにくくなるという効果が得られる。徐冷工程の終着温度は570℃以下(平衡粘性で1013.2Pa・s以上)まで実施することがより好ましい。
徐冷工程における冷却速度は、15℃/分以下にすることが好ましい。これは面内の残留応力を低減でき後工程で割れにくくなるためである。冷却速度は、10℃/分以下がより好ましく、5℃/分以下が更に好ましい。
【0065】
急冷工程では、徐冷工程における終着温度に達してから、特に冷却速度を制御せず、屈曲ガラスを取り出し可能な温度まで冷却を行う。取り出し可能な温度としては室温以上400℃以下が好ましい。
【0066】
基材31の冷却工程においては、基材31がハンドリングに支障のない温度に冷却されるまで、溝43からの真空吸引を続けることで、基材31の屈曲形状の精度を向上できる。また、冷却工程に入った段階で真空吸引を停止することで、基材31の型面41との接触を低減でき、ガラス表面の凹凸を低減できる。更に、冷却工程の途中で真空吸引を停止することで、屈曲形状の精度を向上しつつ、ガラス表面の凹凸を低減できる。
【0067】
以上の工程により、平坦状の基材31から、第2領域31aを所望の屈曲形状に成形され、第1領域31bを平坦状に維持された屈曲基材が得られる。
【0068】
なお、上記の成形工程を終え、所望の形状が付与された屈曲ガラスにアニール工程を実施してよい。
本発明では、屈曲ガラスを作製する際に、同一ガラス内で温度履歴が異なる状態となる。このため応力歪みの影響で成形後に自然に割れたり、後加工で割れることがある。特に、本発明における屈曲ガラスのように、ひねり構造や、厚さ方向断面視S字構造といった複雑で、大型なガラスでは顕著となる。また、屈曲ガラスを化学強化する際、CSやDOLの入り方にむらができるおそれがある。これらの問題はアニール工程を実施することで解決できる。アニール工程を実施することで、成形後の後切りを可能とし、むらのない化学強化も可能となるため、外形状精度が良く応力にむらのない屈曲ガラスが得られる。よって、例えば車載用ディスプレイ前面板等の輸送機の内装部品に使用するガラスのような大きなガラスでも、高品質で外形状精度よく均質に作製できる。
【0069】
アニール工程では、ガラス基材を所望の温度まで加熱する昇温、ガラス基材を所望の温度で保持する保温、保温したガラス基材を徐々に冷却する徐冷を実施する。アニール工程は、ガラス基材内の残留ひずみや残留応力を除去できる効果を有する。ガラス基材に成形工程で所望の形状を付与した場合、大きな残留応力が発生することがある。残留応力のあるガラス基材では、強化処理が不均一となる等の不都合が生じるため、ガラス基材にアニール工程を実施することで残留ひずみを除き、均質なガラスにできる。
【0070】
アニール工程における加熱の方法として、輻射加熱または対流加熱を利用することが好ましい。輻射加熱を使用すると、屈曲ガラスを量産する際に、加熱-冷却サイクルの短縮化を実現できるため、アニール工程におけるタクトタイムの短縮化を実現でき、結果として屈曲ガラスの生産効率を向上できる。対流加熱を使用すると、基材31の面内温度分布を均一化でき、最終的に得られる屈曲ガラスの面内応力を均一に除去でき、結果として個体差の少ない屈曲ガラスの生産を実現できる。なお、輻射加熱と対流加熱との両者を同時に使用してもよい。
【0071】
アニール工程の昇温では、基材31の平衡粘性が1012.5~1017Pa・sになるように加熱することが好ましい。アニール工程における所望のアニール温度としては、
例えば550℃程度が好ましい。
【0072】
アニール工程の保温では、アニール温度に加熱された基材31を、例えば、10~60分保持することが好ましい。これはクリープ変形を抑制しつつ室温まで冷却できるためである。場合により、昇温での加熱温度より保温温度を低く設定して保温を実施してもよい。なお、「クリープ変形」とは、例えば、基材31の平衡粘性が1012.5~1017Pa・sになるように加熱し保持したとき、時間経過とともに基材31の形状が変形する現象を示す。
【0073】
アニール工程の徐冷では、例えば、基材31を0.3~10℃/分の降温速度で冷却するのが好ましく、0.3~5℃/分の降温速度がより好ましい。これにより基材31内に温度分布を生じなくなり、温度分布による残留応力の発生を抑制できる。徐冷の終点は、例えば、基材31が室温となるまでであり、平衡粘性としては1017.8Pa・s以上である。
【0074】
図5は、上記工程により得られた屈曲基材10の斜視図である。
この屈曲基材10は、Y方向の一端部に屈曲部10bを有する。図示例の屈曲基材10においては、一方の主面11(図中の上面)が、前述した支持部材21(
図3参照)に接触する面で、他方の主面12(図中の下面)が、非接触面となる。
【0075】
屈曲基材10の一方の主面11における屈曲部11bの表面粗さRa1は、一方の主面11における第一平面部11aの表面粗さRa2より大きい。
【0076】
これにより、屈曲部11bにおいては、印刷層や樹脂層の形成に使用する樹脂や溶剤等に対する濡れ性が、第一平面部11aよりも高くなる。よって、屈曲部11bに樹脂や溶剤等が濡れやすくなり、印刷層や接着層とガラスとの接触面積が増えて、アンカー効果により強固に固定される。そのため、屈曲部11bを印刷層が形成される印刷面にすると、印刷層の固着が良好となって有利となる。例えば、印刷層を形成した屈曲基材10を、最終製品に組み込むときに、屈曲基材10を変形させる必要がある。この際に、屈曲部10bを撓ませることがあり、印刷層を欠損してしまうことがある。上述の通り、印刷層を屈曲部11bに強固に固着させることで印刷層の欠損を大幅に抑制できる。
なお、第二平面部11cは、第一平面部11aや屈曲部11bのいずれかの金型(成形装置100の支持部材21)接触面の粗さと同一であってよく、金型と接触させずに粗さを抑制してもよい。第二平面部11cを金型と接触させない方法としては、支持部材21の型面41を、基材31の第2領域31aに対して短く設定することや、第二平面部11cが型面に接触しないように温度制御すること等が挙げられる。
【0077】
粗さRa1は算術平均粗さとして、1nm以上が好ましい。これにより、アンカー効果による接着力の向上と、印刷層の濡れ性を改善できる。また、上限値は5000nm以下が好ましい。これは外観を良好に保つためである。同様の効果をより強く得るためには、5nm以上1000nm以下がさらに好ましい。
【0078】
粗さRa2は算術平均粗さとして、下限について特に制限はないが、0.1nm以上が好ましい。また、上限については50nm以下が好ましい。これは、外観の維持のため、及びコーティング等の光学設計が容易となるためである。同様の効果をより強く得るためには、0.5nm以上5.0nm以下がさらに好ましい。
【0079】
また、屈曲基材10の他方の主面12については、次の特性を有する。
他方の主面12は、金型非接触面であって、屈曲部12bの粗さRa3は、第一平面部12a、第二平面部12cの粗さRa4よりも大きい。
【0080】
これにより、屈曲部12bに防眩性を付与できる。また、第一平面部12a,第二平面部12cと、屈曲部12bの外観に立体感を付与できる。更に、使用者接触面に皮脂や指紋を付きにくくするAFP(anti-finger print)効果が向上する。その他にも、加飾フィルム等の樹脂シートを外表面に貼る場合に、シート接着性を向上できる。
【0081】
上記した粗さRa3は、算術平均粗さとして4nm以上が好ましい。これは防眩性を付与できるためである。更には、50nm以下が好ましい。これは外観が優れるためである。同様の効果をより強く得るためには、5nm以上10nm以下がさらに好ましい。また、粗さRa4は、算術平均粗さとして1nm以上が好ましい。これは外観が優れるためである。また、10nm以下が好ましい。これは、平坦部分にはディスプレイを貼合される場合が多く、ぎらつきを抑制できるためである。同様の効果をより強く得るためには、2nm以上5nm以下がさらに好ましい。
【0082】
また、屈曲基材10の端面の表面粗さは、屈曲部12bの表面粗さより小さいことが好ましい。その場合、端面の外観からの見栄えがきれいで、かつ面内よりも端面強度が向上できる。
【0083】
また、
図5において、曲率半径の差の絶対値を|R
1-R
2|、R
1とR
2を測定した部位のx軸方向の距離をaとしたとき、曲率勾配|R
1-R
2|/aは、0.01以上8以下が好ましい。これは周辺部材とのデザインの適合性が高いためである。また、構造体として剛性が高くなり、組み付け時や使用時の不用意な変形を抑制できる。同様の効果をより強く得るためには、0.1以上6以下がさらに好ましい。
【0084】
また、屈曲基材10の屈曲部10bの板厚は、屈曲部10b以外の板厚よりも小さくてもよい。これにより、形状により剛性が強くなる屈曲部10bは、相対的に薄肉化でき、軽量化が図れ、屈曲基材10を通じた視認性も向上する。また、外部からの衝撃に対して柔軟に変形するため、割れにくくなる利点もある。
【0085】
屈曲部10bの板厚t1と、屈曲部10b以外の第一平面部10a,第二平面部10cの板厚t2の比(t1/t2)は、0.8以上1.0以下が好ましい。これは屈曲基材10の強度が十分に確保できるためである。さらに、屈曲部10bをしなやかに変形できるようにすることで屈曲基材10を損傷させないようにできるため、t1/t2は、0.8以上0.95以下がより好ましく、0.85以上0.95以下がさらに好ましい。
【0086】
屈曲基材10の屈曲部10bの開始点を結んだ仮想線L1と、屈曲基材10の端面による一辺(図示例では、Y方向端部の端面S1,S2)との交差角αは、0°<α<90°となる。
【0087】
そして、金型接触面と金型非接触面とのβ-OH値の関係は、金型接触面のβ―OH値が、金型非接触面のβ―OH値より大きくすることが好ましい。
ここで、β-OH値とは、以下の(1)式で求められ、圧縮応力層の応力値CSや、その深さDOLを適正に制御したり軟化点を制御したりするための指標である。
【0088】
β-OH値 =(1/t)log10(T1/T2) ・・・(1)
t:ガラスの厚さ(mm)
T1:3846cm-1における光透過率(%)
T2:3500cm-1付近における最小光透過率(%)
【0089】
β-OH値は、フーリエ変換赤外分光光度計FT-IRを用いてガラスの透過率を測定し、上記(1)式により求められる。
【0090】
β-OH値の制御は、例えば下記のように実施できる。
(1)含水量の多い原料を使用する。
(2)原料中に水分を添加する。
(3)ガラス中の水分量を減少させる成分を低減あるいは使用しない。
(4)溶融の際、酸素燃焼を使用する。
(5)ガラス溶融設備内の水蒸気量を増加させる。
(6)溶融ガラス中に水蒸気をバブリングする。
【0091】
これにより、支持部材21との接触面と非接触面とでβ-OH値をそれぞれ適正値とすることで、化学強化特性を制御したり、機械強度を制御したりできる。得られたガラスを化学強化したガラスのβ-OH値が多い面を使用者面に向けることで耐擦傷性を向上でき、β-OH値が少ない面を使用者非接触面に向けることで、使用者接触面に強い衝撃を受けてもガラスが割れにくくできる。
【0092】
平坦部(第一平面部、第二平面部)と屈曲部とのβ-OH値の関係は、屈曲部を平坦部より大きくする。これは、成形時の加熱温度を、平坦部<屈曲部とすることで実現できる。なお、アニール工程では、屈曲ガラスの温度履歴をリセットできるが、β-OHは変わらない。
【0093】
また、上記した工程によれば、屈曲基材10の寸法、曲率半径や曲げ深さといったデザイン形状からの最大偏差と最小偏差との差を、0.6以下にできる。これによれば、屈曲基材10の組付時において、周囲部材とのデザイン追従性が良好となる。
【0094】
(他の成形方法)
上記した屈曲基材の成形方法は一例であって、その手順の一部を変更できる。
例えば、支持部材21の型面41の表面には、基材の粗切りライン等を転写可能とする溝を有していてもよい。つまり、屈曲部の成形を実現するための、真空引きの経路が基材に転写された境界歪みをアライメントマークとして利用してもよい。この境界歪みは、線状や円状の突起であるため、
図6に示すように、粗切り線や本切り線等の切断線CLに好適に利用できる。
【0095】
また、前述の成形装置100においては真空吸引により屈曲部を成形していたが、
図7に示すように、別途に基材31に外力を加えられるプッシャー51を使用して基材31に屈曲部を成形してもよい。その場合、プッシャー51を基材の外縁部に接触させ、この外縁部を最終的に切断面取りで除去することが好ましい。
【0096】
また、プッシャーは、基材31の第2領域31aを押し付けるプッシャー51の他に、基材31の第1領域31bを押し付けるプッシャー53を併用してもよい。プッシャーを用いる以外にも、基材31の上面と下面とで圧力差をつけて屈曲部を成形する構成であってもよい。
【0097】
上記したガラス板からなる屈曲基材は、様々な用途に使用できる。例えば、車載用部品(ヘッドライトカバー、サイドミラー、フロント透明基板、サイド透明基板、リア透明基板等)、メータ、建築窓、ショーウインドウ、建築用内装部材、建築用外装部材、前面板(ノート型パソコン、モニタ、LCD、PDP、ELD、CRT、PDA等)、LCDカラーフィルタ、タッチパネル用基板、ピックアップレンズ、CCD用カバー基板、太陽電池用透明基板(カバーガラス等)、携帯電話窓、有機EL発光素子部品、無機EL発光素子部品、蛍光体発光素子部品、光学フィルタ、照明ランプ、照明器具のカバー、反射防止フィルム、偏光フィルム等が挙げられる。屈曲基材は、特に、自動車、電車、船舶、航空機等の輸送機に搭載されるガラス板に好適に使用できる。これらの用途のガラス板は、サイズが大きく、曲げ深さが深く、ひねりを有する屈曲部を備えるガラスが求められ、本構成の屈曲基材が適している。また、ガラス板からなる屈曲基材10を、インストルメントパネル、ヘッドアップディスプレイ(HUD)、ダッシュボード、センターコンソール、シフトノブ、車載用ディスプレイ前面板といった輸送機の内装部品に使用すると、当該内装部品に高い意匠性や高級感等を付与でき、輸送機の内装のデザイン性を向上できる。
【0098】
このように、本発明は上記の実施形態に限定されるものではなく、実施形態の各構成を相互に組み合わせることや、明細書の記載、並びに周知の技術に基づいて、当業者が変更、応用することも本発明の予定するところであり、保護を求める範囲に含まれる。
【0099】
以上の通り、本明細書には次の事項が開示されている。
(1) 基材の少なくとも一部に屈曲部を成形する屈曲基材の製造方法であって、前記基材は、成形対象であって前記屈曲部を含む第2領域と、成形対象でない第1領域とを有し、
前記屈曲部と同じ曲面形状を有する型面と、前記第1領域を支持する基材支持面と、を有する支持部材のうち、前記型面に、前記基材の前記第2領域を対面させた状態で、前記基材支持面に、前記基材の前記第1領域を支持させ、
前記基材の前記第2領域を加熱し、前記加熱により前記基材の前記第2領域を軟化させ、
前記第2領域の自重により前記第2領域を前記支持部材の前記型面に沿わせた後、
外力により前記型面の曲面形状を前記第2領域に転写する、ことを特徴とする屈曲基材の製造方法。
この屈曲基材の製造方法によれば、板厚の大きな変化を伴うことなく屈曲基材が得られる。また、外力により第2領域を型面に密着させるため、高い精度で屈曲形状が転写される。更に、支持部材の型面を任意形状にできるため、屈曲部の形状の制約が少なくて済む。
【0100】
(2) 前記屈曲部は、ひねり構造を有する(1)に記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、屈曲部が複雑な3次元形状を有していても、平易に形成できる。
【0101】
(3) 前記ひねり構造は、少なくとも1つの前記屈曲部において、曲率半径が互いに異なる部位が存在することで構成される、(2)に記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、型面の形状を転写するため、屈曲部に曲率半径が異なる部位が存在しても平易に形成できる。
【0102】
(4) 前記ひねり構造は、前記屈曲基材の前記屈曲部の開始点を結んだ仮想線と、前記屈曲基材の端面による一辺との交差角αが、0°<α<90°となる構造である、(2)又は(3)に記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、屈曲部が、屈曲基材の端面に沿う方向と、その直交方向との間の角度で、屈曲開始する仮想線が傾斜する構成であっても平易に形成できる。
【0103】
(5) 前記屈曲基材は、前記屈曲基材の厚さ方向断面視でS字構造を有する、(1)~(4)のいずれか一つに記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、厚さ方向断面視でS字構造となる屈曲基材でも、屈曲部の曲率半径や、寸法を精度よく作製できる。
【0104】
(6) 前記基材の前記第2領域が前記型面に当接して垂下速度が5mm/s以下になってから、外力により前記型面の曲面形状を前記第2領域に転写する(1)~(5)のいずれか一つに記載の屈曲基材の製造方法。
ここで「当接」とは、前記基材の前記第2領域が、前記型面の平均曲率半径が1000mm以下となる部位に接触することで、成形が始まることを意味する。この屈曲基材の製造方法によれば、基材の垂下速度が5mm/sを超える速度で変形する間は、自重によって変形させることで、過大な外力を掛けることによるしわなどの影響を低減でき、効率よく屈曲基材が得られる。
【0105】
(7) 前記外力は、真空吸引により生じさせた力である(1)~(6)のいずれか一つに記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、基材を真空吸引する方式であるため、基材への局部的な接触を伴う外力を付与する場合と比較して、基材に外力作用点の痕跡が残りにくくなる。
【0106】
(8) 前記型面の曲面形状を前記第2領域に転写する際に、前記型面に形成された凹部内を真空吸引して前記第2領域を前記型面に密着させる(1)~(7)のいずれか一つに記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、凹部に屈曲基材が吸引されることで、吸引力を凹部に集中させ、効率よく基材を変形させられる。
【0107】
(9) 前記凹部は、前記基材の外縁形状に対応して形成される(8)に記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、第2領域の外縁形状に対応した位置に設けられた凹部で基材が吸引されるため、凹部内側の型面の形状を、基材に確実に転写できる。
【0108】
(10) 前記凹部は、前記基材の外縁に沿って連続した溝である(8)又は(9)に記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、基材の外縁に沿った連続した溝により、基材が吸引されて、基材と型面との密着性が高められる。これにより、形状転写の精度をより向上できる。
【0109】
(11) 前記型面の曲面形状を前記第2領域に転写した後、前記基材を前記溝との対面位置に沿って切断する(10)に記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、溝と対面した位置で切断することで、基材に生じる溝痕をアライメントマークとして利用できる。これにより、切断加工の位置精度を向上でき、基材の溝痕を切断により除去できる。
【0110】
(12) 前記外力は、前記基材を前記型面に向けて押し当てる押圧力である(1)~(11)のいずれか一つに記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、基材を直接的に押し当てて、より確実な変形が可能となる。
【0111】
(13) 前記基材はガラスからなる(1)~(12)のいずれか一つに記載の屈曲基材の製造方法。
この屈曲基材の製造方法によれば、加工方法に制約の多いガラスを、板厚の大きな変化を伴うことなく、任意の形状に高い精度で形成できる。
【0112】
(14) 少なくとも一部に屈曲部を有する屈曲基材であって、
前記屈曲基材は一方の主面と、前記一方の主面に対向する他方の主面とを有し、
前記屈曲基材の前記一方の主面における前記屈曲部の表面粗さは、前記一方の主面における前記屈曲部以外の表面粗さより大きいことを特徴とする屈曲基材。
この屈曲基材によれば、一方の主面において、屈曲部の表面粗さが他の部分より大きいことで、屈曲部に形成する印刷層や樹脂層の固着を良好にできる。
【0113】
(15) 前記他方の主面における前記屈曲部の表面粗さは、前記他方の主面における前記屈曲部以外の表面粗さより大きい(14)に記載の屈曲基材。
この屈曲基材によれば、屈曲部に防眩性、AFP効果を付与でき、更に、樹脂シートの貼り付けの際のシート接着性を向上できる。
【0114】
(16) 前記一方の主面と前記他方の主面の前記屈曲部における表面粗さは、前記一方の主面と前記他方の主面の前記屈曲部以外における表面粗さより大きい(15)に記載の屈曲基材。
この屈曲基材によれば、屈曲部以外の基材表面を屈曲部よりも平坦にでき、他部材への組み付けが容易となり、表面性状の美観が保たれる。
【0115】
(17) 前記屈曲基材の前記一方の主面における前記屈曲部が凹面であり、前記屈曲基材の前記他方の主面における前記屈曲部が前記凹面に対応する凸面である、(15)又は(16)に記載の屈曲基材。
この屈曲基材は、屈曲部と屈曲部以外とが、成形対象である板状の基材に簡易に得られる。一方の主面は、屈曲部の表面粗さが他の部分より大きいことで、屈曲部に形成する印刷層や樹脂層の固着を良好にできる。また他方の主面には、屈曲部に防眩性、AFP効果を付与でき、更に、樹脂シートの貼り付けの際のシート接着性を向上できる。
【0116】
(18) 前記屈曲部の板厚は、前記屈曲部以外の板厚よりも小さい(14)~(17)のいずれか一つに記載の屈曲基材。
この屈曲基材によれば、軽量化が図れ、屈曲基材を通じた視認性も向上する。また、外部からの衝撃に対して柔軟に変形するため、割れにくくなる。
【0117】
(19) 端面の表面粗さは、前記屈曲部の表面粗さより小さい(14)~(18)のいずれか一つに記載の屈曲基材。
この屈曲基材によれば、端面の見栄えが向上し、かつ端面強度が上昇し、端面から割れにくくなる。
【0118】
(20) 少なくとも1つの前記屈曲部において、曲率半径が互いに異なる部位が存在する、(14)~(19)のいずれか一つに記載の屈曲基材。
この屈曲基材によれば、曲率半径が異なる複雑な屈曲部の形状にできる。
【0119】
(21) 前記一方の主面のβ-OH値は、前記他方の主面のβ-OH値より大きい(14)~(20)のいずれか一つに記載の屈曲基材。
この屈曲基材によれば、金型接触面と金型非接触面とでβ-OH値をそれぞれ適正値とすることで、化学強化特性を制御したり、機械強度を制御したりできる。
【0120】
(22) 前記屈曲部のβ-OH値は、前記屈曲部以外の部位のβ-OH値より大きい(21)に記載の屈曲基材。
この屈曲基材によれば、屈曲基材の屈曲部において、β-OH値が少ない面を使用者面に向けることで耐擦傷性を向上でき、β-OH値が多い面を使用者非接触面に向けることで、使用者接触面に強い衝撃を受けても割れにくくできる。
【0121】
(23) ガラスからなる(14)~(22)のいずれか一つに記載の屈曲基材。
この屈曲基材によれば、加工方法に制約の多いガラスを、板厚の大きな変化を伴うことなく、任意の形状に高い精度で形成できる。
【符号の説明】
【0122】
10 屈曲基材
11 主面
11a 第一平面部
11b 屈曲部
11c 第二平面部
12 主面
12a 第一平面部
12b 屈曲部
12c 第二平面部
21 支持部材
23 ヒーター
27 屈曲形成部
31 基材
31a 第2領域
31b 第1領域
33 基材支持面
35 溝(凹部)
41 型面
43 溝(凹部)
51,53 プッシャー
100 成形装置
R1 曲率半径
R2 曲率半径