IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 富士フイルム株式会社の特許一覧

特許7394718磁気テープカートリッジおよび磁気テープ装置
<>
  • 特許-磁気テープカートリッジおよび磁気テープ装置 図1
  • 特許-磁気テープカートリッジおよび磁気テープ装置 図2
  • 特許-磁気テープカートリッジおよび磁気テープ装置 図3
  • 特許-磁気テープカートリッジおよび磁気テープ装置 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-11-30
(45)【発行日】2023-12-08
(54)【発明の名称】磁気テープカートリッジおよび磁気テープ装置
(51)【国際特許分類】
   G11B 5/70 20060101AFI20231201BHJP
   G11B 5/78 20060101ALI20231201BHJP
   G11B 5/73 20060101ALI20231201BHJP
   G11B 5/738 20060101ALI20231201BHJP
   G11B 5/735 20060101ALI20231201BHJP
   G11B 5/84 20060101ALI20231201BHJP
   G11B 23/037 20060101ALI20231201BHJP
【FI】
G11B5/70
G11B5/78
G11B5/73
G11B5/738
G11B5/735
G11B5/84 C
G11B23/037
【請求項の数】 7
(21)【出願番号】P 2020124710
(22)【出願日】2020-07-21
(65)【公開番号】P2022021229
(43)【公開日】2022-02-02
【審査請求日】2022-08-19
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】110000109
【氏名又は名称】弁理士法人特許事務所サイクス
(72)【発明者】
【氏名】金子 裕亮
(72)【発明者】
【氏名】笠田 成人
【審査官】中野 和彦
(56)【参考文献】
【文献】特開2010-218651(JP,A)
【文献】国際公開第2019/159466(WO,A1)
【文献】特開2010-086617(JP,A)
【文献】特開2017-157252(JP,A)
【文献】特開2001-202614(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G11B 5/70
G11B 5/78
G11B 5/73
G11B 5/738
G11B 5/735
G11B 5/84
G11B 23/037
(57)【特許請求の範囲】
【請求項1】
磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジであって、
前記磁気テープカートリッジを温度32℃相対湿度80%の保管環境に10日間保管した後に測定される前記磁気テープの吸水量は、磁気テープの長さ1000m換算の値として、0.10g以上0.30g以下であり、
前記吸水量は、前記保管後1時間以内に温度21℃相対湿度50%の測定環境において測定される値である、磁気テープカートリッジ。
【請求項2】
前記磁気テープは、非磁性支持体と、強磁性粉末を含む磁性層と、を有し、
前記非磁性支持体は、ポリエステル支持体である、請求項1に記載の磁気テープカートリッジ。
【請求項3】
前記磁気テープは、前記非磁性支持体と前記磁性層との間に、非磁性粉末を含む非磁性層を更に有する、請求項に記載の磁気テープカートリッジ。
【請求項4】
前記磁気テープは、前記非磁性支持体の前記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有する、請求項またはに記載の磁気テープカートリッジ。
【請求項5】
前記磁気テープのテープ厚みは5.6μm以下である、請求項1~のいずれか1項に記載の磁気テープカートリッジ。
【請求項6】
前記磁気テープのテープ厚みは5.3μm以下である、請求項1~のいずれか1項に記載の磁気テープカートリッジ。
【請求項7】
請求項1~のいずれか1項に記載の磁気テープカートリッジを含む磁気テープ装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、磁気テープカートリッジおよび磁気テープ装置に関する。
【背景技術】
【0002】
磁気記録媒体にはテープ状のものとディスク状のものがあり、データバックアップ、アーカイブ等のデータストレージ用途には、テープ状の磁気記録媒体、即ち磁気テープが主に用いられている(例えば特許文献1参照)。
【先行技術文献】
【特許文献】
【0003】
【文献】特開2012-43495号公報
【発明の概要】
【発明が解決しようとする課題】
【0004】
磁気テープへのデータの記録および磁気テープに記録されたデータの再生は、通常、以下のように行われる。
磁気テープ装置内で磁気テープを走行させる。走行する磁気テープの表面(詳しくは磁性層の表面)と磁気ヘッドとを接触させ摺動させることによって、磁気ヘッドが、磁気テープへデータを記録し、および/または、磁気テープに記録されたデータを再生する。
【0005】
磁気テープは、通常、磁気テープカートリッジに収容された状態で、製品として出荷され、磁気テープ装置内で使用されるまで、かかる状態で保管される。また、データが記録された後の磁気テープは、通常、磁気テープカートリッジに収容された状態で保管される。それら保管は、温湿度管理されていない保管環境か、または厳しい温湿度管理が行われていない保管環境で行われることがある。
これに対し、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生は、保管環境と比べて温度および湿度がより厳しく管理されたデータセンターで行われることがある。
かかる状況下、磁気テープの使用形態として、高温高湿の保管環境から取り出した後、短期間のうちに、保管環境と比べて温度および湿度が大幅に低いデータセンター内で、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生を行うという使用形態があり得る。かかる使用形態において、磁気テープと磁気ヘッドとの摺動時の摩擦係数が高いことは、走行安定性低下の原因となる。したがって、上記使用形態における走行安定性を高めるために、磁気テープカートリッジに収容されている磁気テープには、短期間のうちに大きな温湿度変化(詳しくは、高温高湿環境から、温度および湿度がより低い環境への環境変化)に晒された状態で、摩擦特性に優れることが望まれる。
【0006】
以上に鑑み、本発明の一態様は、短期間のうちに上記の大きな温湿度変化に晒された状態で、摩擦特性に優れる磁気テープを備えた磁気テープカートリッジを提供することを目的とする。
【課題を解決するための手段】
【0007】
本発明の一態様は、
磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジであって、
上記磁気テープカートリッジを温度32℃相対湿度80%の保管環境に10日間保管した後に測定される上記磁気テープの吸水量は、磁気テープの長さ1000m換算の値として、0.30g以下であり、
上記吸水量は、上記保管後1時間以内に温度21℃相対湿度50%の測定環境において測定される値である、磁気テープカートリッジ、
に関する。
【0008】
一形態では、上記吸水量は、0.10g以上0.30g以下であることができる。
【0009】
一形態では、上記磁気テープは、非磁性支持体と、強磁性粉末を含む磁性層と、を有することができ、上記非磁性支持体は、ポリエステル支持体であることができる。
【0010】
一形態では、上記磁気テープは、上記非磁性支持体と上記磁性層との間に、非磁性粉末を含む非磁性層を更に有することができる。
【0011】
一形態では、上記磁気テープは、上記非磁性支持体の上記磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を更に有することができる。
【0012】
一形態では、上記磁気テープのテープ厚みは、5.6μm以下であることができる。
【0013】
一形態では、上記磁気テープのテープ厚みは、5.3μm以下であることができる。
【0014】
本発明の一態様は、上記磁気テープカートリッジを含む磁気テープ装置に関する。
【発明の効果】
【0015】
本発明の一態様によれば、高温高湿環境から温度および湿度がより低い環境への環境変化に短期間のうちに晒された状態で、摩擦特性に優れる磁気テープを備えた磁気テープカートリッジを提供することができる。また、本発明の一態様によれば、かかる磁気テープカートリッジを含む磁気テープ装置を提供することができる。
【図面の簡単な説明】
【0016】
図1】磁気テープカートリッジの一例の斜視図である。
図2】リールに磁気テープを巻回し始めるときの斜視図である。
図3】リールに磁気テープを巻回し終えたときの斜視図である。
図4】エッジウィーブの説明図である。
【発明を実施するための形態】
【0017】
[磁気テープカートリッジ]
本発明の一態様は、磁気テープがリールハブに巻回されて収容されている磁気テープカートリッジに関する。上記磁気テープカートリッジを温度32℃相対湿度80%の保管環境に10日間保管した後に測定される上記磁気テープの吸水量は、磁気テープの長さ1000m換算の値として、0.30g以下である。ここで、上記吸水量は、上記保管後1時間以内に温度21℃相対湿度50%の測定環境において測定される値であり、以下では、単に「吸水量」とも言う。また、特記しない限り、本発明および本明細書において、環境に関する温度は、かかる環境の雰囲気温度を言うものとする。
【0018】
磁気テープの摩擦特性に関して、従来、高温高湿環境では摩擦特性は低下し易いのに対し、温度および湿度がより低い環境では、摩擦特性は良化し易い傾向があると考えられてきた。しかるに、本発明者の検討によれば、磁気テープを備えた磁気テープカートリッジを、高温高湿環境で保管した後、短期間のうちに、温度および湿度がより低い環境においてデータの記録または再生のために使用すると、磁気テープの摩擦特性が低下する現象が見られた。本発明者は、かかる現象の発生原因は、高温高湿環境において、磁気テープカートリッジ内で磁気テープが多くの水分を吸収することにあると考えた。磁気テープが多くの水分を吸収した状態で、水分が十分に脱水される期間を経ることなく磁気テープカートリッジが使用されると、使用環境が、保管環境と比べて低温低湿環境だとしても、水分の影響によって磁気テープ表面と磁気ヘッドとの間に大きなせん断力が働くことにより摩擦特性は低下してしまうと、本発明者は推察した。そして本発明者は更に鋭意検討を重ねた結果、上記保管環境での磁気テープの吸水量が上記範囲であれば、保管環境より低温低湿の環境での使用において、優れた摩擦特性が得られることを新たに見出した。上記保管環境の温度および湿度は、高温高湿の一例として採用したものであって、上記磁気テープカートリッジが保管される環境は、上記保管環境に限定されるものではない。また、吸水量の測定を、保管後1時間以内に行う理由は、保管後、短期間のうちに使用される際の磁気テープの状態に対応する値を得ることを意図したものである。また、上記測定環境の温度および湿度は、高温高湿の保管環境の温度および湿度より低い値の一例として採用したものであって、上記磁気テープカートリッジが使用される環境は、上記測定環境に限定されるものではない。
【0019】
<吸水量>
本発明および本明細書における上記吸水量は、以下の方法によって求められる。
測定のためには、磁気テープ装置に装着されていない未使用の磁気テープカートリッジを使用する。
未使用の磁気テープカートリッジを合計2巻準備する。これら2巻の磁気テープカートリッジは、同一処方および同一条件で製造された磁気テープカートリッジであることができ、または、同一ロットの製品もしくは同一製品名の製品から無作為に抽出された2巻であることができる。尚、上記の同一処方および同一条件について、製造工程において通常生じ得る誤差があることは許容されるものとする。
2巻の磁気テープカートリッジのうちの1巻から、内部に収容されている磁気テープを引き出して除去する。この磁気テープカートリッジを、「テープなしカートリッジ」と呼ぶ。他の1巻の磁気テープカートリッジは、磁気テープを収容した状態のままとする。この磁気テープカートリッジを、「テープ含有カートリッジ」と呼ぶ。テープなしカートリッジについて、磁気テープに連結されている付属物(例えば、ピン、スプライシングテープ等)がある場合、付属物も磁気テープとともに磁気テープカートリッジから引き出されて除去される。以下のようにテープ含有カートリッジとテープなしカートリッジとを用いることによって磁気テープの吸水量を求めるに際し、吸水量に対する付属物の吸水の影響は皆無であるか十分無視できるほどわずかであるため、考慮不要である。
テープ含有カートリッジおよびテープなしカートリッジを、温度21℃相対湿度50%の測定環境に5日間以上置き、同測定環境に馴染ませる。5日間以上経過した後、同測定環境において、磁気テープカートリッジの質量を測定する。ここで測定されたテープ含有カートリッジの質量を「A1」とし、テープなしカートリッジの質量を「B1」とする。
上記測定後のテープ含有カートリッジおよびテープなしカートリッジを、温度32℃相対湿度80%の保管環境に10日間保管する。
上記保管後、1時間以内に、温度21℃相対湿度50%の測定環境において、磁気テープカートリッジの質量を測定する。ここで測定されたテープ含有カートリッジの質量を「A2」とし、テープなしカートリッジの質量を「B2」とする。
テープ含有カートリッジの吸水量Xは、「X=A2-A1」として算出される。
テープなしカートリッジの吸水量Yは、「Y=B2-B1」として算出される。
XからYを差し引いた値「X-Y」は、磁気テープカートリッジに収容されている磁気テープの吸水量と言うことができる。この「X-Y」の値と、磁気テープカートリッジに収容されている磁気テープの全長L(単位:m)から、磁気テープの長さ1000mあたりの吸水量の換算値を、「((X-Y)×1000)/L」として求める。ここで、磁気テープの全長Lは、リーダーテープ等の記録領域以外の部分も含む磁気テープについては、それら部分も含む長さとする。
テープ含有カートリッジについては、上記方法によって、A1およびA2の測定を3回行う。こうして得られる吸水量(磁気テープの長さ1000mあたりの換算値)の算術平均を、磁気テープカートリッジを温度32℃相対湿度80%の保管環境に10日間保管した後に測定される、長さ1000m換算の磁気テープの吸水量とする。
【0020】
上記吸水量は、磁気テープカートリッジに収容された状態での磁気テープの吸水の程度の指標と言うことができる。上記磁気テープカートリッジについて測定される上記吸水量が0.30g以下であることが、高温高湿環境から温度および湿度がより低い環境への環境変化に短期間のうちに晒された状態で、優れた摩擦特性が得られることに寄与し得る。この点から、上記吸水量は、0.30g以下であり、0.20g以下であることがより好ましい。また、上記吸水量は、例えば、0g、0g以上、0g超または0.10g以上であることができる。上記吸水量の値が小さいほど、上記の摩擦特性向上の観点から好ましい。上記吸水量の制御のための手段については、後述する。
【0021】
以下、上記磁気テープカートリッジについて、更に詳細に説明する。
【0022】
<磁気テープカートリッジの構成>
磁気テープカートリッジには、カートリッジ本体内部に磁気テープがリールハブに巻回された状態で収容される。磁気テープカートリッジのリールは、少なくともリールハブから構成され、通常、リールハブの両端部にフランジがそれぞれ設けられている。リールは、カートリッジ本体内部に回転可能に備えられている。磁気テープカートリッジとしては、カートリッジ本体内部にリールを1つ具備する単リール型の磁気テープカートリッジおよびカートリッジ本体内部にリールを2つ具備する双リール型の磁気テープカートリッジが広く用いられている。単リール型の磁気テープカートリッジは、磁気テープへのデータの記録および/または再生のために磁気テープ装置に装着されると、磁気テープカートリッジから磁気テープが引き出されて磁気テープ装置側のリールに巻取られる。磁気テープカートリッジから巻取りリールまでの磁気テープ搬送経路には、磁気ヘッドが配置されている。磁気テープカートリッジのリール(供給リール)と磁気テープ装置のリール(巻取りリール)との間で、磁気テープの送り出しと巻取りが行われる。この間、磁気ヘッドと磁気テープの磁性層表面とが接触し摺動することにより、データの記録および/または再生が行われる。これに対し、双リール型の磁気テープカートリッジは、供給リールと巻取りリールの両リールが、磁気テープカートリッジ内部に具備されている。上記磁気テープカートリッジは、一形態では単リール型の磁気テープカートリッジであり、他の一形態では双リール型の磁気テープカートリッジである。一形態では、上記磁気テープカートリッジは、データストレージ分野で近年主に採用されている単リール型の磁気テープカートリッジであることが好ましい。
【0023】
以下に、図面を参照して磁気テープカートリッジの構成例について説明する。ただし、図面に示す形態は例示であり、かかる例示に本発明は限定されない。
【0024】
図1は、磁気テープカートリッジの一例の斜視図である。図1には、単リール型の磁気テープカートリッジが示されている。
【0025】
図1に示されている磁気テープカートリッジ10は、ケース12を有している。ケース12は、矩形の箱状に形成されている。ケース12は、通常、ポリカーボネート等の樹脂製である。ケース12の内部には、リール20が1つだけ回転可能に収容されている。
【0026】
図2は、リールに磁気テープを巻回し始めるときの斜視図である。図3は、リールに磁気テープを巻回し終えたときの斜視図である。
【0027】
リール20は、リールハブ22を有する。リールハブは、磁気テープカートリッジ内で磁気テープが巻回される軸心部を構成する円筒状部材である。
【0028】
リールハブ22の両端部には、リールハブ22の下端部および上端部からそれぞれ半径方向外側に張り出すフランジ(下フランジ24および上フランジ26)が設けられている。ここでは、「上」および「下」について、磁気テープカートリッジが磁気テープ装置に装着される際、上方に位置する側を「上」、下方に位置する側を「下」と記載する。下フランジ24および上フランジ26の一方または両方は、リールハブ22の上端部側および/または下端部側を補強する観点から、リールハブ22と一体的に構成されていることが好ましい。一体的に構成されているとは、別部材ではなく、1つの部材として構成されていることをいうものとする。第一の形態では、リールハブ22と上フランジ26とが1つの部材として構成され、この部材が、別部材として構成された下フランジ24と公知の方法で接合される。第二の形態では、リールハブ22と下フランジ24とが1つの部材として構成され、この部材が、別部材として構成された上フランジ26と公知の方法で接合される。上記磁気テープカートリッジのリールは、いずれの形態であってもよい。各部材は、射出成形等の公知の成形方法によって作製することができる。
【0029】
磁気テープTは、テープ内側末端Tf(図2参照)を起点として、リールハブ22の外周に巻回される。磁気テープをリールハブに巻回する際に磁気テープの長手方向にかけるテンション(以下、「巻取りテンション」とも呼ぶ。)を高くするほど、磁気テープをリールハブに強く巻付けることができる。磁気テープがリールハブに強く巻付いているほど、巻回状態で接している磁気テープの一方の面と他方の面との間の隙間が狭くなるか、または隙間が生じ難くなると考えられる。これにより、隙間から水分が入り込み磁気テープが吸水することを抑制することができると推察される。巻取りテンションは、0.60N(ニュートン)以上であることが好ましく、0.80N以上であることがより好ましく、1.00N以上であることが更に好ましい。また、巻取りテンションは、例えば2.00N以下または1.80N以下であることができる。本明細書に記載の磁気テープの長手方向にかけるテンションは、テンション制御機構で設定される設定値である。
【0030】
ケース12の側壁には、リール20に巻回された磁気テープTを引き出すための開口14があり、この開口14から引き出される磁気テープTのテープ外側末端Teには、磁気テープ装置(図示省略)の引出部材(図示省略)によって係止されつつ引き出し操作されるリーダーピン16が固着されている。
【0031】
また、開口14は、ドア18によって開閉されるようになっている。ドア18は、開口14を閉塞可能な大きさの矩形の板状に形成されており、その開口14を閉塞する方向へ付勢部材(図示省略)により付勢されている。そして、ドア18は、磁気テープカートリッジ10が磁気テープ装置に装着されると、付勢部材の付勢力に抗して開放されるようになっている。
【0032】
上記形態は例示であって、磁気テープカートリッジの詳細については、公知技術を適用することができる。磁気テープカートリッジに収容される磁気テープの全長は、特に限定されず、例えば800m~2500m程度の範囲であることができる。磁気テープカートリッジ1巻に収容されるテープ全長が長いほど、磁気テープカートリッジの高容量化の観点から好ましい。
【0033】
<磁性層>
(強磁性粉末)
上記磁気テープカートリッジに収容されている磁気テープは、非磁性支持体と、強磁性粉末を含む磁性層と、を有することができる。磁性層に含まれる強磁性粉末としては、各種磁気記録媒体の磁性層において用いられる強磁性粉末として公知の強磁性粉末を1種または2種以上組み合わせて使用することができる。強磁性粉末として平均粒子サイズの小さいものを使用することは記録密度向上の観点から好ましい。この点から、強磁性粉末の平均粒子サイズは50nm以下であることが好ましく、45nm以下であることがより好ましく、40nm以下であることが更に好ましく、35nm以下であることが一層好ましく、30nm以下であることがより一層好ましく、25nm以下であることが更に一層好ましく、20nm以下であることがなお一層好ましい。一方、磁化の安定性の観点からは、強磁性粉末の平均粒子サイズは5nm以上であることが好ましく、8nm以上であることがより好ましく、10nm以上であることが更に好ましく、15nm以上であることが一層好ましく、20nm以上であることがより一層好ましい。
【0034】
六方晶フェライト粉末
強磁性粉末の好ましい具体例としては、六方晶フェライト粉末を挙げることができる。六方晶フェライト粉末の詳細については、例えば、特開2011-225417号公報の段落0012~0030、特開2011-216149号公報の段落0134~0136、特開2012-204726号公報の段落0013~0030および特開2015-127985号公報の段落0029~0084を参照できる。
【0035】
本発明および本明細書において、「六方晶フェライト粉末」とは、X線回折分析によって、主相として六方晶フェライト型の結晶構造が検出される強磁性粉末をいうものとする。主相とは、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが帰属する構造をいう。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークが六方晶フェライト型の結晶構造に帰属される場合、六方晶フェライト型の結晶構造が主相として検出されたと判断するものとする。X線回折分析によって単一の構造のみが検出された場合には、この検出された構造を主相とする。六方晶フェライト型の結晶構造は、構成原子として、少なくとも鉄原子、二価金属原子および酸素原子を含む。二価金属原子とは、イオンとして二価のカチオンになり得る金属原子であり、ストロンチウム原子、バリウム原子、カルシウム原子等のアルカリ土類金属原子、鉛原子等を挙げることができる。本発明および本明細書において、六方晶ストロンチウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がストロンチウム原子であるものをいい、六方晶バリウムフェライト粉末とは、この粉末に含まれる主な二価金属原子がバリウム原子であるものをいう。主な二価金属原子とは、この粉末に含まれる二価金属原子の中で、原子%基準で最も多くを占める二価金属原子をいうものとする。ただし、上記の二価金属原子には、希土類原子は包含されないものとする。本発明および本明細書における「希土類原子」は、スカンジウム原子(Sc)、イットリウム原子(Y)、およびランタノイド原子からなる群から選択される。ランタノイド原子は、ランタン原子(La)、セリウム原子(Ce)、プラセオジム原子(Pr)、ネオジム原子(Nd)、プロメチウム原子(Pm)、サマリウム原子(Sm)、ユウロピウム原子(Eu)、ガドリニウム原子(Gd)、テルビウム原子(Tb)、ジスプロシウム原子(Dy)、ホルミウム原子(Ho)、エルビウム原子(Er)、ツリウム原子(Tm)、イッテルビウム原子(Yb)、およびルテチウム原子(Lu)からなる群から選択される。
【0036】
以下に、六方晶フェライト粉末の一形態である六方晶ストロンチウムフェライト粉末について、更に詳細に説明する。
【0037】
六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800~1600nmの範囲である。上記範囲の活性化体積を示す微粒子化された六方晶ストロンチウムフェライト粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。六方晶ストロンチウムフェライト粉末の活性化体積は、好ましくは800nm以上であり、例えば850nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、六方晶ストロンチウムフェライト粉末の活性化体積は、1500nm以下であることがより好ましく、1400nm以下であることが更に好ましく、1300nm以下であることが一層好ましく、1200nm以下であることがより一層好ましく、1100nm以下であることが更により一層好ましい。六方晶バリウムフェライト粉末の活性化体積についても、同様である。
【0038】
「活性化体積」とは、磁化反転の単位であって、粒子の磁気的な大きさを示す指標である。本発明および本明細書に記載の活性化体積および後述の異方性定数Kuは、振動試料型磁力計を用いて保磁力Hc測定部の磁場スイープ速度3分と30分とで測定し(測定温度:23℃±1℃)、以下のHcと活性化体積Vとの関係式から求められる値である。なお異方性定数Kuの単位に関して、1erg/cc=1.0×10-1J/mである。
Hc=2Ku/Ms{1-[(kT/KuV)ln(At/0.693)]1/2
[上記式中、Ku:異方性定数(単位:J/m)、Ms:飽和磁化(単位:kA/m)、k:ボルツマン定数、T:絶対温度(単位:K)、V:活性化体積(単位:cm)、A:スピン歳差周波数(単位:s-1)、t:磁界反転時間(単位:s)]
【0039】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。六方晶ストロンチウムフェライト粉末は、好ましくは1.8×10J/m以上のKuを有することができ、より好ましくは2.0×10J/m以上のKuを有することができる。また、六方晶ストロンチウムフェライト粉末のKuは、例えば2.5×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し好ましいため、上記例示した値に限定されるものではない。
【0040】
六方晶ストロンチウムフェライト粉末は、希土類原子を含んでいてもよく、含まなくてもよい。六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、鉄原子100原子%に対して、0.5~5.0原子%の含有率(バルク含有率)で希土類原子を含むことが好ましい。希土類原子を含む六方晶ストロンチウムフェライト粉末は、一形態では、希土類原子表層部偏在性を有することができる。本発明および本明細書における「希土類原子表層部偏在性」とは、六方晶ストロンチウムフェライト粉末を酸により部分溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子表層部含有率」または希土類原子に関して単に「表層部含有率」と記載する。)が、六方晶ストロンチウムフェライト粉末を酸により全溶解して得られた溶解液中の鉄原子100原子%に対する希土類原子含有率(以下、「希土類原子バルク含有率」または希土類原子に関して単に「バルク含有率」と記載する。)と、
希土類原子表層部含有率/希土類原子バルク含有率>1.0
の比率を満たすことを意味する。後述の六方晶ストロンチウムフェライト粉末の希土類原子含有率とは、希土類原子バルク含有率と同義である。これに対し、酸を用いる部分溶解は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部を溶解するため、部分溶解により得られる溶解液中の希土類原子含有率とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表層部における希土類原子含有率である。希土類原子表層部含有率が、「希土類原子表層部含有率/希土類原子バルク含有率>1.0」の比率を満たすことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。本発明および本明細書における表層部とは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面から内部に向かう一部領域を意味する。
【0041】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、希土類原子含有率(バルク含有率)は、鉄原子100原子%に対して0.5~5.0原子%の範囲であることが好ましい。上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることは、繰り返し再生における再生出力の低下を抑制することに寄与すると考えられる。これは、六方晶ストロンチウムフェライト粉末が上記範囲のバルク含有率で希土類原子を含み、かつ六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に希土類原子が偏在していることにより、異方性定数Kuを高めることができるためと推察される。異方性定数Kuは、この値が高いほど、いわゆる熱揺らぎと呼ばれる現象の発生を抑制すること(換言すれば熱的安定性を向上させること)ができる。熱揺らぎの発生が抑制されることにより、繰り返し再生における再生出力の低下を抑制することができる。六方晶ストロンチウムフェライト粉末の粒子表層部に希土類原子が偏在することが、表層部の結晶格子内の鉄(Fe)のサイトのスピンを安定化することに寄与し、これにより異方性定数Kuが高まるのではないかと推察される。
また、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末を磁性層の強磁性粉末として用いることは、磁気ヘッドとの摺動によって磁性層表面が削れることを抑制することにも寄与すると推察される。即ち、磁気テープの走行耐久性の向上にも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末が寄与し得ると推察される。これは、六方晶ストロンチウムフェライト粉末を構成する粒子の表面に希土類原子が偏在することが、粒子表面と磁性層に含まれる有機物質(例えば、結合剤および/または添加剤)との相互作用の向上に寄与し、その結果、磁性層の強度が向上するためではないかと推察される。
繰り返し再生における再生出力の低下をより一層抑制する観点および/または走行耐久性の更なる向上の観点からは、希土類原子含有率(バルク含有率)は、0.5~4.5原子%の範囲であることがより好ましく、1.0~4.5原子%の範囲であることが更に好ましく、1.5~4.5原子%の範囲であることが一層好ましい。
【0042】
上記バルク含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる含有率である。なお本発明および本明細書において、特記しない限り、原子について含有率とは、六方晶ストロンチウムフェライト粉末を全溶解して求められるバルク含有率をいうものとする。希土類原子を含む六方晶ストロンチウムフェライト粉末は、希土類原子として1種の希土類原子のみ含んでもよく、2種以上の希土類原子を含んでもよい。2種以上の希土類原子を含む場合の上記バルク含有率は、2種以上の希土類原子の合計について求められる。この点は、本発明および本明細書における他の成分についても同様である。即ち、特記しない限り、ある成分は、1種のみ用いてもよく、2種以上用いてもよい。2種以上用いられる場合の含有量または含有率とは、2種以上の合計についていうものとする。
【0043】
六方晶ストロンチウムフェライト粉末が希土類原子を含む場合、含まれる希土類原子は、希土類原子のいずれか1種以上であればよい。繰り返し再生における再生出力の低下をより一層抑制する観点から好ましい希土類原子としては、ネオジム原子、サマリウム原子、イットリウム原子およびジスプロシウム原子を挙げることができ、ネオジム原子、サマリウム原子およびイットリウム原子がより好ましく、ネオジム原子が更に好ましい。
【0044】
希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、偏在の程度は限定されるものではない。例えば、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末について、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は1.0超であり、1.5以上であることができる。「表層部含有率/バルク含有率」が1.0より大きいことは、六方晶ストロンチウムフェライト粉末を構成する粒子において、希土類原子が表層部に偏在(即ち内部より多く存在)していることを意味する。また、後述する溶解条件で部分溶解して求められた希土類原子の表層部含有率と後述する溶解条件で全溶解して求められた希土類原子のバルク含有率との比率、「表層部含有率/バルク含有率」は、例えば、10.0以下、9.0以下、8.0以下、7.0以下、6.0以下、5.0以下、または4.0以下であることができる。ただし、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末において、希土類原子は六方晶ストロンチウムフェライト粉末を構成する粒子の表層部に偏在していればよく、上記の「表層部含有率/バルク含有率」は、例示した上限または下限に限定されるものではない。
【0045】
六方晶ストロンチウムフェライト粉末の部分溶解および全溶解について、以下に説明する。粉末として存在している六方晶ストロンチウムフェライト粉末については、部分溶解および全溶解する試料粉末は、同一ロットの粉末から採取する。一方、磁気テープの磁性層に含まれている六方晶ストロンチウムフェライト粉末については、磁性層から取り出した六方晶ストロンチウムフェライト粉末の一部を部分溶解に付し、他の一部を全溶解に付す。磁性層からの六方晶ストロンチウムフェライト粉末の取り出しは、例えば、特開2015-91747号公報の段落0032に記載の方法によって行うことができる。
上記部分溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認できる程度に溶解することをいう。例えば、部分溶解により、六方晶ストロンチウムフェライト粉末を構成する粒子について、粒子全体を100質量%として10~20質量%の領域を溶解することができる。一方、上記全溶解とは、溶解終了時に液中に六方晶ストロンチウムフェライト粉末の残留が目視で確認されない状態まで溶解することをいう。
上記部分溶解および表層部含有率の測定は、例えば、以下の方法により行われる。ただし、下記の試料粉末量等の溶解条件は例示であって、部分溶解および全溶解が可能な溶解条件を任意に採用できる。
試料粉末12mgおよび1mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度70℃のホットプレート上で1時間保持する。得られた溶解液を0.1μmのメンブレンフィルタでろ過する。こうして得られたろ液の元素分析を誘導結合プラズマ(ICP;Inductively Coupled Plasma)分析装置によって行う。こうして、鉄原子100原子%に対する希土類原子の表層部含有率を求めることができる。元素分析により複数種の希土類原子が検出された場合には、全希土類原子の合計含有率を、表層部含有率とする。この点は、バルク含有率の測定においても、同様である。
一方、上記全溶解およびバルク含有率の測定は、例えば、以下の方法により行われる。
試料粉末12mgおよび4mol/L塩酸10mLを入れた容器(例えばビーカー)を、設定温度80℃のホットプレート上で3時間保持する。その後は上記の部分溶解および表層部含有率の測定と同様に行い、鉄原子100原子%に対するバルク含有率を求めることができる。
【0046】
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、希土類原子を含むものの希土類原子表層部偏在性を持たない六方晶ストロンチウムフェライト粉末は、希土類原子を含まない六方晶ストロンチウムフェライト粉末と比べてσsが大きく低下する傾向が見られた。これに対し、そのようなσsの大きな低下を抑制するうえでも、希土類原子表層部偏在性を有する六方晶ストロンチウムフェライト粉末は好ましいと考えられる。一形態では、六方晶ストロンチウムフェライト粉末のσsは、45A・m/kg以上であることができ、47A・m/kg以上であることもできる。一方、σsは、ノイズ低減の観点からは、80A・m/kg以下であることが好ましく、60A・m/kg以下であることがより好ましい。σsは、振動試料型磁力計等の磁気特性を測定可能な公知の測定装置を用いて測定することができる。本発明および本明細書において、特記しない限り、質量磁化σsは、磁場強度15kOeで測定される値とする。1[kOe]=10/4π[A/m]である。
【0047】
六方晶ストロンチウムフェライト粉末の構成原子の含有率(バルク含有率)に関して、ストロンチウム原子含有率は、鉄原子100原子%に対して、例えば2.0~15.0原子%の範囲であることができる。一形態では、六方晶ストロンチウムフェライト粉末は、この粉末に含まれる二価金属原子がストロンチウム原子のみであることができる。また他の一形態では、六方晶ストロンチウムフェライト粉末は、ストロンチウム原子に加えて1種以上の他の二価金属原子を含むこともできる。例えば、バリウム原子および/またはカルシウム原子を含むことができる。ストロンチウム原子以外の他の二価金属原子が含まれる場合、六方晶ストロンチウムフェライト粉末におけるバリウム原子含有率およびカルシウム原子含有率は、それぞれ、例えば、鉄原子100原子%に対して、0.05~5.0原子%の範囲であることができる。
【0048】
六方晶フェライトの結晶構造としては、マグネトプランバイト型(「M型」とも呼ばれる。)、W型、Y型およびZ型が知られている。六方晶ストロンチウムフェライト粉末は、いずれの結晶構造を取るものであってもよい。結晶構造は、X線回折分析によって確認することができる。六方晶ストロンチウムフェライト粉末は、X線回折分析によって、単一の結晶構造または2種以上の結晶構造が検出されるものであることができる。例えば一形態では、六方晶ストロンチウムフェライト粉末は、X線回折分析によってM型の結晶構造のみが検出されるものであることができる。例えば、M型の六方晶フェライトは、AFe1219の組成式で表される。ここでAは二価金属原子を表し、六方晶ストロンチウムフェライト粉末がM型である場合、Aはストロンチウム原子(Sr)のみであるか、またはAとして複数の二価金属原子が含まれる場合には、上記の通り原子%基準で最も多くをストロンチウム原子(Sr)が占める。六方晶ストロンチウムフェライト粉末の二価金属原子含有率は、通常、六方晶フェライトの結晶構造の種類により定まるものであり、特に限定されるものではない。鉄原子含有率および酸素原子含有率についても、同様である。六方晶ストロンチウムフェライト粉末は、少なくとも、鉄原子、ストロンチウム原子および酸素原子を含み、更に希土類原子を含むこともできる。更に、六方晶ストロンチウムフェライト粉末は、これら原子以外の原子を含んでもよく、含まなくてもよい。一例として、六方晶ストロンチウムフェライト粉末は、アルミニウム原子(Al)を含むものであってもよい。アルミニウム原子の含有率は、鉄原子100原子%に対して、例えば0.5~10.0原子%であることができる。繰り返し再生における再生出力低下をより一層抑制する観点からは、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子を含み、これら原子以外の原子の含有率が、鉄原子100原子%に対して、10.0原子%以下であることが好ましく、0~5.0原子%の範囲であることがより好ましく、0原子%であってもよい。即ち、一形態では、六方晶ストロンチウムフェライト粉末は、鉄原子、ストロンチウム原子、酸素原子および希土類原子以外の原子を含まなくてもよい。上記の原子%で表示される含有率は、六方晶ストロンチウムフェライト粉末を全溶解して求められる各原子の含有率(単位:質量%)を、各原子の原子量を用いて原子%表示の値に換算して求められる。また、本発明および本明細書において、ある原子について「含まない」とは、全溶解してICP分析装置により測定される含有率が0質量%であることをいう。ICP分析装置の検出限界は、通常、質量基準で0.01ppm(parts per million)以下である。上記の「含まない」とは、ICP分析装置の検出限界未満の量で含まれることを包含する意味で用いるものとする。六方晶ストロンチウムフェライト粉末は、一形態では、ビスマス原子(Bi)を含まないものであることができる。
【0049】
金属粉末
強磁性粉末の好ましい具体例としては、強磁性金属粉末を挙げることもできる。強磁性金属粉末の詳細については、例えば特開2011-216149号公報の段落0137~0141および特開2005-251351号公報の段落0009~0023を参照できる。
【0050】
ε-酸化鉄粉末
強磁性粉末の好ましい具体例としては、ε-酸化鉄粉末を挙げることもできる。本発明および本明細書において、「ε-酸化鉄粉末」とは、X線回折分析によって、主相としてε-酸化鉄型の結晶構造が検出される強磁性粉末をいうものとする。例えば、X線回折分析によって得られるX線回折スペクトルにおいて最も高強度の回折ピークがε-酸化鉄型の結晶構造に帰属される場合、ε-酸化鉄型の結晶構造が主相として検出されたと判断するものとする。ε-酸化鉄粉末の製造方法としては、ゲーサイトから作製する方法、逆ミセル法等が知られている。上記製造方法は、いずれも公知である。また、Feの一部がGa、Co、Ti、Al、Rh等の置換原子によって置換されたε-酸化鉄粉末を製造する方法については、例えば、J. Jpn. Soc. Powder Metallurgy Vol. 61 Supplement, No. S1, pp. S280-S284、J. Mater. Chem. C, 2013, 1, pp.5200-5206等を参照できる。ただし、上記磁気テープの磁性層において強磁性粉末として使用可能なε-酸化鉄粉末の製造方法は、ここで挙げた方法に限定されない。
【0051】
ε-酸化鉄粉末の活性化体積は、好ましくは300~1500nmの範囲である。上記範囲の活性化体積を示す微粒子化されたε-酸化鉄粉末は、優れた電磁変換特性を発揮する磁気テープの作製のために好適である。ε-酸化鉄粉末の活性化体積は、好ましくは300nm以上であり、例えば500nm以上であることもできる。また、電磁変換特性の更なる向上の観点から、ε-酸化鉄粉末の活性化体積は、1400nm以下であることがより好ましく、1300nm以下であることが更に好ましく、1200nm以下であることが一層好ましく、1100nm以下であることがより一層好ましい。
【0052】
熱揺らぎの低減、換言すれば熱的安定性の向上の指標としては、異方性定数Kuを挙げることができる。ε-酸化鉄粉末は、好ましくは3.0×10J/m以上のKuを有することができ、より好ましくは8.0×10J/m以上のKuを有することができる。また、ε-酸化鉄粉末のKuは、例えば3.0×10J/m以下であることができる。ただしKuが高いほど熱的安定性が高いことを意味し、好ましいため、上記例示した値に限定されるものではない。
【0053】
磁気テープに記録されたデータを再生する際の再生出力を高める観点から、磁気テープに含まれる強磁性粉末の質量磁化σsが高いことは望ましい。この点に関して、一形態では、ε-酸化鉄粉末のσsは、8A・m/kg以上であることができ、12A・m/kg以上であることもできる。一方、ε-酸化鉄粉末のσsは、ノイズ低減の観点からは、40A・m/kg以下であることが好ましく、35A・m/kg以下であることがより好ましい。
【0054】
本発明および本明細書において、特記しない限り、強磁性粉末等の各種粉末の平均粒子サイズは、透過型電子顕微鏡を用いて、以下の方法により測定される値とする。
粉末を、透過型電子顕微鏡を用いて撮影倍率100000倍で撮影し、総倍率500000倍になるように印画紙にプリントして粉末を構成する粒子の写真を得る。得られた粒子の写真から目的の粒子を選びデジタイザーで粒子の輪郭をトレースし粒子(一次粒子)のサイズを測定する。一次粒子とは、凝集のない独立した粒子をいう。
以上の測定を、無作為に抽出した500個の粒子について行う。こうして得られた500個の粒子の粒子サイズの算術平均を、粉末の平均粒子サイズとする。上記透過型電子顕微鏡としては、例えば日立製透過型電子顕微鏡H-9000型を用いることができる。また、粒子サイズの測定は、公知の画像解析ソフト、例えばカールツァイス製画像解析ソフトKS-400を用いて行うことができる。後述の実施例に示す平均粒子サイズは、特記しない限り、透過型電子顕微鏡として日立製透過型電子顕微鏡H-9000型、画像解析ソフトとしてカールツァイス製画像解析ソフトKS-400を用いて測定された値である。本発明および本明細書において、粉末とは、複数の粒子の集合を意味する。例えば、強磁性粉末とは、複数の強磁性粒子の集合を意味する。また、複数の粒子の集合とは、集合を構成する粒子が直接接触している形態に限定されず、後述する結合剤、添加剤等が、粒子同士の間に介在している形態も包含される。粒子との語が、粉末を表すために用いられることもある。
【0055】
粒子サイズ測定のために磁気テープから試料粉末を採取する方法としては、例えば特開2011-048878号公報の段落0015に記載の方法を採用することができる。
【0056】
本発明および本明細書において、特記しない限り、粉末を構成する粒子のサイズ(粒子サイズ)は、上記の粒子写真において観察される粒子の形状が、
(1)針状、紡錘状、柱状(ただし、高さが底面の最大長径より大きい)等の場合は、粒子を構成する長軸の長さ、即ち長軸長で表され、
(2)板状または柱状(ただし、厚みまたは高さが板面または底面の最大長径より小さい)の場合は、その板面または底面の最大長径で表され、
(3)球形、多面体状、不定形等であって、かつ形状から粒子を構成する長軸を特定できない場合は、円相当径で表される。円相当径とは、円投影法で求められるものを言う。
【0057】
また、粉末の平均針状比は、上記測定において粒子の短軸の長さ、即ち短軸長を測定し、各粒子の(長軸長/短軸長)の値を求め、上記500個の粒子について得た値の算術平均を指す。ここで、特記しない限り、短軸長とは、上記粒子サイズの定義で(1)の場合は、粒子を構成する短軸の長さを、同じく(2)の場合は、厚みまたは高さを各々指し、(3)の場合は、長軸と短軸の区別がないから、(長軸長/短軸長)は、便宜上1とみなす。
そして、特記しない限り、粒子の形状が特定の場合、例えば、上記粒子サイズの定義(1)の場合、平均粒子サイズは平均長軸長であり、同定義(2)の場合、平均粒子サイズは平均板径である。同定義(3)の場合、平均粒子サイズは、平均直径(平均粒径、平均粒子径ともいう)である。
【0058】
磁性層における強磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。磁性層において強磁性粉末の充填率が高いことは、記録密度向上の観点から好ましい。
【0059】
(結合剤)
上記磁気テープは塗布型の磁気テープであることができ、磁性層に結合剤を含むことができる。結合剤とは、1種以上の樹脂である。結合剤としては、塗布型磁気記録媒体の結合剤として通常使用される各種樹脂を用いることができる。例えば、結合剤としては、ポリウレタン樹脂、ポリエステル樹脂、ポリアミド樹脂、塩化ビニル樹脂、スチレン、アクリロニトリル、メチルメタクリレート等を共重合したアクリル樹脂、ニトロセルロース等のセルロース樹脂、エポキシ樹脂、フェノキシ樹脂、ポリビニルアセタール、ポリビニルブチラール等のポリビニルアルキラール樹脂等から選ばれる樹脂を単独で用いるか、または複数の樹脂を混合して用いることができる。これらの中で好ましいものはポリウレタン樹脂、アクリル樹脂、セルロース樹脂、および塩化ビニル樹脂である。これらの樹脂は、ホモポリマーでもよく、コポリマー(共重合体)でもよい。これらの樹脂は、後述する非磁性層および/またはバックコート層においても結合剤として使用することができる。
以上の結合剤については、特開2010-24113号公報の段落0028~0031を参照できる。結合剤として使用される樹脂の平均分子量は、重量平均分子量として、例えば10,000以上200,000以下であることができる。本発明および本明細書における重量平均分子量とは、ゲルパーミエーションクロマトグラフィー(GPC)によって、下記測定条件により測定された値をポリスチレン換算して求められる値である。後述の実施例に示す結合剤の重量平均分子量は、下記測定条件によって測定された値をポリスチレン換算して求めた値である。結合剤は、強磁性粉末100.0質量部に対して、例えば1.0~30.0質量部の量で使用することができる。
GPC装置:HLC-8120(東ソー社製)
カラム:TSK gel Multipore HXL-M(東ソー社製、7.8mmID(Inner Diameter)×30.0cm)
溶離液:テトラヒドロフラン(THF)
【0060】
(硬化剤)
結合剤として使用可能な樹脂とともに硬化剤を使用することもできる。硬化剤は、一態様では加熱により硬化反応(架橋反応)が進行する化合物である熱硬化性化合物であることができ、他の一態様では光照射により硬化反応(架橋反応)が進行する光硬化性化合物であることができる。硬化剤は、磁性層形成工程の中で硬化反応が進行することにより、少なくとも一部は、結合剤等の他の成分と反応(架橋)した状態で磁性層に含まれ得る。この点は、他の層を形成するために用いられる組成物が硬化剤を含む場合に、この組成物を用いて形成される層についても同様である。好ましい硬化剤は、熱硬化性化合物であり、ポリイソシアネートが好適である。ポリイソシアネートの詳細については、特開2011-216149号公報の段落0124~0125を参照できる。硬化剤は、磁性層形成用組成物中に、結合剤100.0質量部に対して例えば0~80.0質量部、磁性層の強度向上の観点からは好ましくは50.0~80.0質量部の量で使用することができる。
【0061】
(添加剤)
磁性層には、必要に応じて1種以上の添加剤が含まれていてもよい。添加剤としては、一例として、上記の硬化剤が挙げられる。また、磁性層に含まれる添加剤としては、非磁性粉末(例えば無機粉末、カーボンブラック等)、潤滑剤、分散剤、分散助剤、防黴剤、帯電防止剤、酸化防止剤等を挙げることができる。例えば、潤滑剤については、特開2016-126817号公報の段落0030~0033、0035および0036を参照できる。後述する非磁性層に潤滑剤が含まれていてもよい。非磁性層に含まれ得る潤滑剤については、特開2016-126817号公報の段落0030、0031、0034~0036を参照できる。分散剤については、特開2012-133837号公報の段落0061および0071を参照できる。分散剤を非磁性層形成用組成物に添加してもよい。非磁性層形成用組成物に添加し得る分散剤については、特開2012-133837号公報の段落0061を参照できる。また、磁性層に含まれ得る非磁性粉末としては、研磨剤として機能することができる非磁性粉末、磁性層表面に適度に突出する突起を形成する突起形成剤として機能することができる非磁性粉末(例えば非磁性コロイド粒子等)等が挙げられる。なお後述の実施例に示すコロイダルシリカ(シリカコロイド粒子)の平均粒子サイズは、特開2011-048878号公報の段落0015に平均粒径の測定方法として記載されている方法により求められた値である。添加剤は、所望の性質に応じて市販品を適宜選択して、または公知の方法で製造して、任意の量で使用することができる。研磨剤を含む磁性層に研磨剤の分散性を向上するために使用され得る添加剤の一例としては、特開2013-131285号公報の段落0012~0022に記載の分散剤を挙げることができる。
【0062】
以上説明した磁性層は、非磁性支持体表面上に直接、または非磁性層を介して間接的に、設けることができる。
【0063】
<非磁性層>
次に非磁性層について説明する。上記磁気テープは、非磁性支持体表面上に直接磁性層を有していてもよく、非磁性支持体表面上に非磁性粉末を含む非磁性層を介して磁性層を有していてもよい。非磁性層に使用される非磁性粉末は、無機物質の粉末でも有機物質の粉末でもよい。また、カーボンブラック等も使用できる。無機物質の粉末としては、例えば金属、金属酸化物、金属炭酸塩、金属硫酸塩、金属窒化物、金属炭化物、金属硫化物等の粉末が挙げられる。これらの非磁性粉末は、市販品として入手可能であり、公知の方法で製造することもできる。その詳細については、特開2011-216149号公報の段落0146~0150を参照できる。非磁性層に使用可能なカーボンブラックについては、特開2010-24113号公報の段落0040および0041も参照できる。非磁性層における非磁性粉末の含有量(充填率)は、好ましくは50~90質量%の範囲であり、より好ましくは60~90質量%の範囲である。
【0064】
非磁性層は、結合剤を含むことができ、添加剤を含むこともできる。非磁性層の結合剤、添加剤等のその他詳細については、非磁性層に関する公知技術を適用できる。また、例えば、結合剤の種類および含有量、添加剤の種類および含有量等に関しては、磁性層に関する公知技術も適用できる。
【0065】
本発明および本明細書において、非磁性層には、非磁性粉末とともに、例えば不純物として、または意図的に、少量の強磁性粉末を含む実質的に非磁性な層も包含されるものとする。ここで実質的に非磁性な層とは、この層の残留磁束密度が10mT以下であるか、保磁力が7.96kA/m(100Oe)以下であるか、または、残留磁束密度が10mT以下であり、かつ保磁力が7.96kA/m(100Oe)以下である層をいうものとする。非磁性層は、残留磁束密度および保磁力を持たないことが好ましい。
【0066】
<バックコート層>
上記磁気テープは、非磁性支持体の磁性層を有する表面側とは反対の表面側に、非磁性粉末を含むバックコート層を有することもでき、有さなくてもよい。バックコート層には、カーボンブラックおよび無機粉末のいずれか一方または両方が含有されていることが好ましい。バックコート層は、結合剤を含むことができ、添加剤を含むこともできる。バックコート層の結合剤および添加剤については、バックコート層に関する公知技術を適用することができ、磁性層および/または非磁性層の処方に関する公知技術を適用することもできる。例えば、特開2006-331625号公報の段落0018~0020および米国特許第7,029,774号明細書の第4欄65行目~第5欄38行目の記載を、バックコート層について参照できる。
【0067】
<非磁性支持体>
非磁性支持体(以下、単に「支持体」とも記載する。)としては、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリアミド、ポリアミドイミド、芳香族ポリアミド等の公知のものが挙げられる。これらの中でもポリエチレンテレフタレートおよびポリエチレンナフタレートが好ましい。
【0068】
上記磁気テープの非磁性支持体は、一形態では、ポリエステル支持体であることができる。本発明および本明細書において、「ポリエステル」とは、複数のエステル結合を含む樹脂を意味する。「ポリエステル支持体」とは、少なくとも1層のポリエステルフィルムを含む支持体を意味する。「ポリエステルフィルム」とは、このフィルムを構成する成分の中で質量基準で最も多くを占める成分がポリエステルであるフィルムをいうものとする。本発明および本明細書における「ポリエステル支持体」には、この支持体に含まれる樹脂フィルムがすべてポリエステルフィルムであるものと、ポリエステルフィルムと他の樹脂フィルムとを含むものとが包含される。ポリエステル支持体の具体的形態としては、単層のポリエステルフィルム、構成成分が同じ2層以上のポリエステルフィルムの積層フィルム、構成成分が異なる2層以上のポリエステルフィルムの積層フィルム、1層以上のポリエステルフィルムおよび1層以上のポリエステル以外の樹脂フィルムを含む積層フィルム等を挙げることができる。積層フィルムにおいて隣り合う2層の間に接着層等が任意に含まれていてもよい。また、ポリエステル支持体には、一方または両方の表面に蒸着等によって形成された金属膜および/または金属酸化物膜が任意に含まれていてもよい。以上については、本発明および本明細書における「芳香族ポリエステル支持体」、「ポリエチレンテレフタレート支持体」および「ポリエチレンナフタレート支持体」についても同様である。
【0069】
ポリエステル支持体は、芳香族ポリエステル支持体であることができる。本発明および本明細書において、「芳香族ポリエステル」とは、芳香族骨格および複数のエステル結合を含む樹脂を意味し、「芳香族ポリエステル支持体」とは、少なくとも1層の芳香族ポリエステルフィルムを含む支持体を意味する。
【0070】
芳香族ポリエステルが有する芳香族骨格に含まれる芳香環は特に限定されるものではない。芳香環の具体例としては、例えば、ベンゼン環、ナフタレン環等を挙げることができる。
例えば、ポリエチレンテレフタレート(PET)は、ベンゼン環を含むポリエステルであって、エチレングリコールとテレフタル酸および/またはテレフタル酸ジメチルとの重縮合によって得られる樹脂である。本発明および本明細書における「ポリエチレンテレフタレート」には、上記成分に加えて1種以上の他の成分(例えば、共重合成分、末端または側鎖に導入される成分等)を有する構造のものも包含される。
ポリエチレンナフタレート(PEN)は、ナフタレン環を含むポリエステルであって、2,6-ナフタレンジカルボン酸ジメチルとエチレングリコールとのエステル化反応を行い、その後にエステル交換反応および重縮合反応を行って得られる樹脂である。本発明および本明細書における「ポリエチレンナフタレート」には、上記成分に加えて1種以上の他の成分(例えば、共重合成分、末端または側鎖に導入される成分等)を有する構造のものも包含される。
【0071】
また、非磁性支持体は、二軸延伸フィルムであることができ、コロナ放電、プラズマ処理、易接着処理、熱処理等が施されたフィルムであってもよい。
【0072】
非磁性支持体の物性の指標としては、例えば、含水率が挙げられる。本発明および本明細書において、非磁性支持体の含水率は、以下の方法により求められる値である。後述の表に示されている含水率は、以下の方法によって求めた値である。
含水率を測定する対象の非磁性支持体から切り出した試料片(例えば数グラムの質量の試料片)を、温度180℃圧力100Pa(パスカル)以下の真空乾燥器内で恒量になるまで乾燥させる。こうして乾燥させた試料片の質量をW1とする。W1は、上記真空乾燥器から取り出した後に30秒以内に温度23℃相対湿度50%の測定環境において測定される値である。次に、この試料片を温度25℃相対湿度75%の環境下に48時間置いた後の質量をW2とする。W2は、上記環境から取り出した後に30秒以内に温度23℃相対湿度50%の測定環境において測定される値である。含水率は、以下の式により算出される。
含水率(%)=[(W2-W1)/W1]×100
例えば、磁気テープから磁性層等の非磁性支持体以外の部分を公知の方法(例えば有機溶媒を使用した脱膜等)によって除去した後、上記方法によって非磁性支持体の含水率を求めることもできる。
【0073】
上記磁気テープの非磁性支持体は、含水率が0.80%以下であることが好ましく、0.60%以下であることがより好ましい。また、上記磁気テープの非磁性支持体の含水率は、0%、0%以上、0%超または0.10%以上であることができる。上記方法によって求められる含水率が低い非磁性支持体を使用することは、磁気テープカートリッジについて先に記載した方法によって求められる吸水量の値を小さくすることに寄与し得ると本発明者は推察している。
【0074】
非磁性支持体の物性の指標としては、例えば、ヤング率が挙げられる。本発明および本明細書において、非磁性支持体のヤング率は、温度23℃相対湿度50%の測定環境において、以下の方法によって測定される値である。後述の表に示されているヤング率は、万能引張試験装置として東洋ボールドウィン社製テンシロンを使用して以下の方法によって求めた値である。
測定対象の非磁性支持体から切り出した試料片を、チャック間距離100mm、引張速度10mm/分およびチャート速度500mm/分の条件で、万能引張試験装置にて引っ張る。万能引張試験装置としては、例えば、東洋ボールドウィン社製テンシロン等の市販の万能引張試験装置または公知の構成の万能引張試験装置を使用することができる。こうして得られた荷重-伸び曲線の立ち上がり部の接線より、上記試料片の長手方向および幅方向のヤング率をそれぞれ算出する。ここで試料片の長手方向および幅方向とは、この試料片が磁気テープに含まれていたときの長手方向および幅方向を意味する。
例えば、磁気テープから磁性層等の非磁性支持体以外の部分を公知の方法(例えば有機溶媒を使用した脱膜等)によって除去した後、上記方法によって非磁性支持体の長手方向および幅方向のヤング率を求めることもできる。
【0075】
一形態では、上記磁気テープの非磁性支持体は、長手方向のヤング率が、例えば、3000MPa以上、5000MPa以上、または7000MPa以上であることができる。また、上記磁気テープの非磁性支持体の長手方向のヤング率は、例えば、15000MPa以下、13000MPa以下または11000MPa以下であることができる。幅方向については、上記磁気テープの非磁性支持体は、幅方向のヤング率が、例えば、2000MPa以上、3000MPa以上または4000MPa以上であることができる。また、上記磁気テープの非磁性支持体の幅方向のヤング率は、例えば、10000MPa以下、8000MPa以下または6000MPa以下であることができる。磁気テープの製造時、非磁性支持体は、通常、フィルムのMD方向(Machine direction)を長手方向、TD方向(Transverse diretion)を幅方向として使用される。一形態では、長手方向のヤング率が幅方向のヤング率より大きく、他の一形態では、長手方向のヤング率が幅方向のヤング率より小さく、また他の一形態では、長手方向のヤング率と幅方向のヤング率は同じ値である。
【0076】
非磁性支持体の含水率およびヤング率は、支持体を構成する成分の種類および混合比、支持体の製造条件等によって制御することができる。例えば、二軸延伸処理において各方向での延伸倍率を調整することによって、長手方向におけるヤング率と幅方向におけるヤング率をそれぞれ制御することができる。
【0077】
<各種厚み>
磁気テープの厚み(総厚)に関して、近年の情報量の莫大な増大に伴い、磁気テープには記録容量を高めること(高容量化)が求められている。高容量化のための手段としては、磁気テープの厚みを薄くし(以下、「薄型化」とも記載する。)、磁気テープカートリッジ1巻あたりに収容される磁気テープ長を増すことが挙げられる。この点から、上記磁気テープの厚み(総厚)は、5.6μm以下であることが好ましく、5.5μm以下であることがより好ましく、5.4μm以下であることがより好ましく、5.3μm以下であることが更に好ましく、5.2μm以下であることが一層好ましい。また、ハンドリングの容易性の観点からは、磁気テープの厚みは3.0μm以上であることが好ましく、3.5μm以上であることがより好ましい。
【0078】
磁気テープの厚み(総厚)は、以下の方法によって測定することができる。
磁気テープの任意の部分からテープサンプル(例えば長さ5~10cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定する。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとする。上記厚み測定は、0.1μmオーダーでの厚み測定が可能な公知の測定器を用いて行うことができる。
【0079】
非磁性支持体の厚みは、好ましくは3.0~5.0μmである。
磁性層の厚みは、用いる磁気ヘッドの飽和磁化量、ヘッドギャップ長、記録信号の帯域等により最適化することができ、一般には0.01μm~0.15μmであり、高密度記録化の観点から、好ましくは0.02μm~0.12μmであり、更に好ましくは0.03μm~0.1μmである。磁性層は少なくとも一層あればよく、磁性層を異なる磁気特性を有する二層以上に分離してもかまわず、公知の重層磁性層に関する構成が適用できる。二層以上に分離する場合の磁性層の厚みとは、これらの層の合計厚みとする。
非磁性層の厚みは、例えば0.1~1.5μmであり、0.1~1.0μmであることが好ましい。
バックコート層の厚みは、0.9μm以下が好ましく、0.1~0.7μmが更に好ましい。
磁性層の厚み等の各種厚みは、以下の方法により求めることができる。
磁気テープの厚み方向の断面を、イオンビームにより露出させた後、露出した断面において走査型電子顕微鏡による断面観察を行う。断面観察において任意の2箇所において求められた厚みの算術平均として、各種厚みを求めることができる。または、各種厚みは、製造条件等から算出される設計厚みとして求めることもできる。
【0080】
<エッジウィーブ量>
磁気テープカートリッジについて求められる上記吸水量は、一形態では、磁気テープのエッジウィーブ量によって制御することができる。
以下に、エッジウィーブ量およびエッジウィーブの周期について説明する。
図4は、エッジウィーブの説明図である。図4には、磁気テープTのテープエッジ1aおよび1bのうちの一方のテープエッジ1aを一部拡大して模式的に示している。図4中、X1-X2方向は、磁気テープの長手方向であり、走行方向ともいうことができる。Y1-Y2方向は、磁気テープの幅方向である。磁気テープのテープエッジには、エッジウィーブ(またはエッジウェーブ)と呼ばれる波打ち状の凹凸(磁気テープの幅方向の端面が長手方向に沿って波打った形状の凹凸)が存在し得る。エッジウィーブのエッジウィーブ量(図4中、α)は、テープエッジ1aまたは1bの無作為に選択した領域の長手方向50mにわたりエッジウィーブ量測定装置により測定される。また、エッジウィーブの周期(図4中、f)は、測定されたエッジウィーブ量をフーリエ解析することによって求めることができる。エッジウィーブ量測定装置としては、市販のエッジウィーブ量測定装置(例えばキーエンス社製)を使用することができる。測定環境は、雰囲気温度23℃相対湿度50%の環境とする。磁気テープは、通常、磁気テープカートリッジに収容されて流通される。測定対象の磁気テープとしては、磁気テープ装置に取り付けられていない未使用の磁気テープカートリッジから取り出された磁気テープが使用される。
【0081】
上記磁気テープの少なくとも一方の側のテープエッジのエッジウィーブ量は、上記吸水量の値を小さくする観点から、1.5μm以下であることが好ましく、1.4μm以下であることがより好ましく、1.3μm以下であることが更に好ましく、1.2μm以下であることが一層好ましい。磁気テープがリールハブに強く巻付いているほど、巻回状態で接している磁気テープの一方の面と他方の面との間の隙間が狭くなるか、または隙間が生じ難くなると考えられる。これにより、隙間から水分が入り込み磁気テープが吸水することを抑制することができると推察される。この点に関し、エッジウィーブ量が小さいことは、磁気テープをリールハブに巻回させる際に、磁気テープをリールハブに強く巻付けるうえで好ましいと本発明者は考えている。一方、長期保管後の電磁変換特性の低下を抑制する観点から、上記エッジウィーブ量は、0.1μm以上であることが好ましく、0.3μm以上であることがより好ましく、0.6μm以上であることが更に好ましく、0.8μm以上であることが一層好ましい。エッジウィーブ量が上記範囲のテープエッジは、磁気テープの一方の側のみのテープエッジであることができ、両側のテープエッジであることもできる。例えば、磁気テープは、通常、磁気テープ装置に備えられたガイドローラのフランジ内面によって磁気テープの幅方向の位置が規制され得る。このように幅方向の位置が規制されるテープエッジを、「走行基準側テープエッジ」と呼ぶと、走行基準側テープエッジにおけるエッジウィーブ量が上記範囲であることが好ましい。尚、磁気テープ装置としては、磁気テープの両側のテープエッジについて磁気テープの幅方向の位置を規制する構成の装置もあり、かかる装置では、両側のテープエッジをいずれも走行基準側テープエッジと呼ぶことができる。
【0082】
また、エッジウィーブ量が上記範囲であるエッジウィーブの周期は、長期保管後の電磁変換特性の低下を抑制する観点からは、130.0mm以下であることが好ましく、100.0mm以下であることがより好ましく、80.0mm以下であることが更に好ましい。また、同様の観点から、上記周期は、65.0mm以上であることが好ましく、70.0mm以上であることがより好ましく、80.0mm以上であることが更に好ましい。エッジウィーブの周期およびエッジウィーブ量は、磁気テープ製造時のスリット条件等により制御できる。制御方法については、特開2002-269711号公報の段落0030および同公報の実施例等も参照できる。
【0083】
<製造工程>
(各層形成用組成物の調製)
磁性層、非磁性層またはバックコート層を形成するための組成物を調製する工程は、通常、少なくとも混練工程、分散工程、およびこれらの工程の前後に必要に応じて設けた混合工程を含むことができる。個々の工程はそれぞれ二段階以上に分かれていてもかまわない。各層形成用組成物の調製に用いられる成分は、どの工程の最初または途中で添加してもかまわない。溶媒としては、塗布型磁気記録媒体の製造に通常用いられる各種溶媒の1種または2種以上を用いることができる。溶媒については、例えば特開2011-216149号公報の段落0153を参照できる。また、個々の成分を2つ以上の工程で分割して添加してもかまわない。例えば、結合剤を混練工程、分散工程および分散後の粘度調整のための混合工程で分割して投入してもよい。上記磁気テープを製造するためには、公知の製造技術を各種工程において用いることができる。混練工程ではオープンニーダ、連続ニーダ、加圧ニーダ、エクストルーダ等の強い混練力をもつものを使用することが好ましい。混練処理の詳細については、特開平1-106338号公報および特開平1-79274号公報を参照できる。分散機は公知のものを使用することができる。各層形成用組成物を調製する任意の段階において、公知の方法によってろ過を行ってもよい。ろ過は、例えばフィルタろ過によって行うことができる。ろ過に用いるフィルタとしては、例えば孔径0.01~3μmのフィルタ(例えばガラス繊維製フィルタ、ポリプロピレン製フィルタ等)を用いることができる。
【0084】
(塗布工程)
磁性層は、磁性層形成用組成物を、非磁性支持体表面上に直接塗布するか、または非磁性層形成用組成物と逐次もしくは同時に重層塗布することにより形成することができる。バックコート層は、バックコート層形成用組成物を、非磁性支持体の非磁性層および/または磁性層を有する(または非磁性層および/または磁性層が追って設けられる)表面とは反対側の表面に塗布することにより形成することができる。各層形成のための塗布の詳細については、特開2010-231843号公報の段落0066を参照できる。
【0085】
(その他の工程)
磁気テープの製造のためのその他の各種工程については、公知技術を適用できる。各種工程については、例えば特開2010-231843号公報の段落0067~0070を参照できる。例えば、磁性層形成用組成物の塗布層には、この塗布層が湿潤状態にあるうちに、配向ゾーンにおいて配向処理を行うことができる。配向処理については、特開2010-24113号公報の段落0052の記載をはじめとする各種公知技術を適用することができる。例えば、垂直配向処理は、異極対向磁石を用いる方法等の公知の方法によって行うことができる。配向ゾーンでは、乾燥風の温度、風量および/または配向ゾーンにおける搬送速度によって塗布層の乾燥速度を制御することができる。また、配向ゾーンに搬送する前に塗布層を予備乾燥させてもよい。
各種工程を経ることによって、長尺状の磁気テープ原反を得ることができる。得られた磁気テープ原反は、公知の裁断機によって、磁気テープカートリッジのリールハブに巻回すべき磁気テープの幅に裁断(スリット)される。上記の幅は規格にしたがい決定され、通常、1/2インチである。1/2インチ=12.65mmである。
スリットして得られた磁気テープには、通常、サーボパターンが形成される。サーボパターンについて、詳細は後述する。
【0086】
(熱処理)
一形態では、上記磁気テープは、以下のような熱処理を経て製造された磁気テープであることができる。また、他の一形態では、以下のような熱処理を経ずに製造された磁気テープであることができる。
【0087】
熱処理としては、スリットして規格にしたがい決定された幅に裁断された磁気テープを、芯状部材に巻付け、巻付けた状態で行う熱処理を行うことができる。
【0088】
一形態では、熱処理用の芯状部材(以下、「熱処理用巻芯」と呼ぶ。)に磁気テープを巻付けた状態で上記熱処理を行い、熱処理後の磁気テープを磁気テープカートリッジのカートリッジリールに巻取り、磁気テープがカートリッジリールに巻装された磁気テープカートリッジを作製することができる。
熱処理用巻芯は、金属製、樹脂製、紙製等であることができる。熱処理用巻芯の材料は、スポーキング等の巻故障の発生を抑制する観点から、剛性が高い材料であることが好ましい。この点から、熱処理用巻芯は、金属製または樹脂製であることが好ましい。また、剛性の指標として、熱処理用巻芯の材料の曲げ弾性率は0.2GPa(ギガパスカル)以上が好ましく、0.3GPa以上がより好ましい。他方、高剛性の材料は一般に高価であるため、巻故障の発生を抑制できる剛性を超える剛性を有する材料の熱処理用巻芯を用いることはコスト増につながる。以上の点を考慮すると、熱処理用巻芯の材料の曲げ弾性率は250GPa以下が好ましい。曲げ弾性率は、ISO(International Organization for Standardization)178にしたがい測定される値であり、各種材料の曲げ弾性率は公知である。また、熱処理用巻芯は中実または中空の芯状部材であることができる。中空状の場合、剛性を維持する観点から、肉厚は2mm以上であることが好ましい。また、熱処理用巻芯は、フランジを有していてもよく、有さなくてもよい。
熱処理用巻芯に巻付ける磁気テープとして最終的に磁気テープカートリッジに収容する長さ(以下、「最終製品長」と呼ぶ。)以上の磁気テープを準備し、この磁気テープを熱処理用巻芯に巻付けた状態で熱処理環境下に置くことにより熱処理を行うことが好ましい。熱処理用巻芯に巻付ける磁気テープ長は最終製品長以上であり、熱処理用巻芯等への巻取りの容易性の観点からは、「最終製品長+α」とすることが好ましい。このαは、上記の巻取りの容易性の観点からは5m以上であることが好ましい。熱処理用巻芯への巻取り時のテンションは、0.10N以上が好ましい。また、製造時に過度な変形が発生することを抑制する観点から、熱処理用巻芯への巻取り時のテンションは1.50N以下が好ましく、1.00N以下がより好ましい。熱処理用巻芯の外径は、巻付けの容易性およびコイリング(長手方向のカール)の抑制の観点から、20mm以上が好ましく、40mm以上がより好ましい。また、熱処理用巻芯の外径は100mm以下が好ましく、90mm以下がより好ましい。熱処理用巻芯の幅は、この巻芯に巻付ける磁気テープの幅以上であればよい。また、熱処理後、熱処理用巻芯から磁気テープを取り外す際には、取り外す操作中に意図しないテープ変形が生じることを抑制するために、磁気テープおよび熱処理用巻芯が十分冷却された後に磁気テープを熱処理用巻芯から取り外すことが好ましい。取り外した磁気テープは、一度別の巻芯(「一時巻取り用巻芯」と呼ぶ。)に巻取り、その後、一時巻取り用巻芯から磁気テープカートリッジのカートリッジリール(一般に外径は40~50mm程度)へ磁気テープを巻取ることが好ましい。これにより、熱処理時の磁気テープの熱処理用巻芯に対する内側と外側との関係を維持して、磁気テープカートリッジのカートリッジリールへ磁気テープを巻取ることができる。一時巻取り用巻芯の詳細およびこの巻芯へ磁気テープを巻取る際のテンションについては、熱処理用巻芯に関する先の記載を参照できる。上記熱処理を「最終製品長+α」の長さの磁気テープに施す形態においては、任意の段階で、「+α」の長さ分を切り取ればよい。例えば、一形態では、一時巻取り用巻芯から磁気テープカートリッジのリールへ最終製品長分の磁気テープを巻取り、残りの「+α」の長さ分を切り取ればよい。切り取って廃棄される部分を少なくする観点からは、上記αは20m以下であることが好ましい。
【0089】
上記のように芯状部材に巻付けた状態で行われる熱処理の具体的形態について、以下に説明する。
熱処理を行う雰囲気温度(以下、「熱処理温度」と呼ぶ。)は、40℃以上が好ましく、50℃以上がより好ましい。一方、過度な変形を抑制する観点からは、熱処理温度は75℃以下が好ましく、70℃以下がより好ましく、65℃以下が更に好ましい。
熱処理を行う雰囲気の重量絶対湿度は、0.1g/kg Dry air以上が好ましく、1g/kg Dry air以上がより好ましい。重量絶対湿度が上記範囲の雰囲気は、水分を低減するための特殊な装置を用いずに準備できるため好ましい。一方、重量絶対湿度は、結露が生じて作業性が低下することを抑制する観点からは、70g/kg Dry air以下が好ましく、66g/kg Dry air以下がより好ましい。熱処理時間は、0.3時間以上が好ましく、0.5時間以上がより好ましい。また、熱処理時間は、生産効率の観点からは、48時間以下が好ましい。
【0090】
(サーボパターン)
「サーボパターンの形成」は、「サーボ信号の記録」ということもできる。サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかかるテンションを調整して変化させることによって、磁気テープの幅方向の寸法を制御することができる。
【0091】
以下に、サーボパターンの形成について説明する。
【0092】
サーボパターンは、通常、磁気テープの長手方向に沿って形成される。サーボ信号を利用する制御(サーボ制御)の方式としては、タイミングベースサーボ(TBS)、アンプリチュードサーボ、周波数サーボ等が挙げられる。
【0093】
ECMA(European Computer Manufacturers Association)―319(June 2001)に示される通り、LTO(Linear Tape-Open)規格に準拠した磁気テープ(一般に「LTOテープ」と呼ばれる。)では、タイミングベースサーボ方式が採用されている。このタイミングベースサーボ方式において、サーボパターンは、互いに非平行な一対の磁気ストライプ(「サーボストライプ」とも呼ばれる。)が、磁気テープの長手方向に連続的に複数配置されることによって構成されている。サーボシステムとは、サーボ信号を利用してヘッドトラッキングを行うシステムである。本発明および本明細書において、「タイミングベースサーボパターン」とは、タイミングベースサーボ方式のサーボシステムにおけるヘッドトラッキングを可能とするサーボパターンをいう。上記のように、サーボパターンが互いに非平行な一対の磁気ストライプにより構成される理由は、サーボパターン上を通過するサーボ信号読み取り素子に、その通過位置を教えるためである。具体的には、上記の一対の磁気ストライプは、その間隔が磁気テープの幅方向に沿って連続的に変化するように形成されており、サーボ信号読み取り素子がその間隔を読み取ることによって、サーボパターンとサーボ信号読み取り素子との相対位置を知ることができる。この相対位置の情報が、データトラックのトラッキングを可能にする。そのために、サーボパターン上には、通常、磁気テープの幅方向に沿って、複数のサーボトラックが設定されている。
【0094】
サーボバンドは、磁気テープの長手方向に連続するサーボパターンにより構成される。このサーボバンドは、通常、磁気テープに複数本設けられる。例えば、LTOテープにおいて、その数は5本である。隣接する2本のサーボバンドに挟まれた領域が、データバンドである。データバンドは、複数のデータトラックで構成されており、各データトラックは、各サーボトラックに対応している。
【0095】
また、一形態では、特開2004-318983号公報に示されているように、各サーボバンドには、サーボバンドの番号を示す情報(「サーボバンドID(identification)」または「UDIM(Unique DataBand Identification Method)情報」とも呼ばれる。)が埋め込まれている。このサーボバンドIDは、サーボバンド中に複数ある一対のサーボストライプのうちの特定のものを、その位置が磁気テープの長手方向に相対的に変位するように、ずらすことによって記録されている。具体的には、複数ある一対のサーボストライプのうちの特定のもののずらし方を、サーボバンド毎に変えている。これにより、記録されたサーボバンドIDはサーボバンド毎にユニークなものとなるため、一つのサーボバンドをサーボ信号読み取り素子で読み取るだけで、そのサーボバンドを一意に(uniquely)特定することができる。
【0096】
尚、サーボバンドを一意に特定する方法には、ECMA―319(June 2001)に示されているようなスタッガード方式を用いたものもある。このスタッガード方式では、磁気テープの長手方向に連続的に複数配置された、互いに非平行な一対の磁気ストライプ(サーボストライプ)の群を、サーボバンド毎に磁気テープの長手方向にずらすように記録する。隣接するサーボバンド間における、このずらし方の組み合わせは、磁気テープ全体においてユニークなものとされているため、2つのサーボ信号読み取り素子によりサーボパターンを読み取る際に、サーボバンドを一意に特定することも可能となっている。
【0097】
また、各サーボバンドには、ECMA―319(June 2001)に示されている通り、通常、磁気テープの長手方向の位置を示す情報(「LPOS(Longitudinal Position)情報」とも呼ばれる。)も埋め込まれている。このLPOS情報も、UDIM情報と同様に、一対のサーボストライプの位置を、磁気テープの長手方向にずらすことによって記録されている。ただし、UDIM情報とは異なり、このLPOS情報では、各サーボバンドに同じ信号が記録されている。
【0098】
上記のUDIM情報およびLPOS情報とは異なる他の情報を、サーボバンドに埋め込むことも可能である。この場合、埋め込まれる情報は、UDIM情報のようにサーボバンド毎に異なるものであってもよいし、LPOS情報のようにすべてのサーボバンドに共通のものであってもよい。
また、サーボバンドに情報を埋め込む方法としては、上記以外の方法を採用することも可能である。例えば、一対のサーボストライプの群の中から、所定の対を間引くことによって、所定のコードを記録するようにしてもよい。
【0099】
サーボパターン形成用ヘッドは、サーボライトヘッドと呼ばれる。サーボライトヘッドは、通常、上記一対の磁気ストライプに対応した一対のギャップを、サーボバンドの数だけ有する。通常、各一対のギャップには、それぞれコアとコイルが接続されており、コイルに電流パルスを供給することによって、コアに発生した磁界が、一対のギャップに漏れ磁界を生じさせることができる。サーボパターンの形成の際には、サーボライトヘッド上に磁気テープを走行させながら電流パルスを入力することによって、一対のギャップに対応した磁気パターンを磁気テープに転写させて、サーボパターンを形成することができる。各ギャップの幅は、形成されるサーボパターンの密度に応じて適宜設定することができる。各ギャップの幅は、例えば、1μm以下、1~10μm、10μm以上等に設定可能である。
【0100】
磁気テープにサーボパターンを形成する前には、磁気テープに対して、通常、消磁(イレース)処理が施される。このイレース処理は、直流磁石または交流磁石を用いて、磁気テープに一様な磁界を加えることによって行うことができる。イレース処理には、DC(Direct Current)イレースとAC(Alternating Current)イレースとがある。ACイレースは、磁気テープに印加する磁界の方向を反転させながら、その磁界の強度を徐々に下げることによって行われる。一方、DCイレースは、磁気テープに一方向の磁界を加えることによって行われる。DCイレースには、更に2つの方法がある。第一の方法は、磁気テープの長手方向に沿って一方向の磁界を加える、水平DCイレースである。第二の方法は、磁気テープの厚み方向に沿って一方向の磁界を加える、垂直DCイレースである。イレース処理は、磁気テープ全体に対して行ってもよいし、磁気テープのサーボバンド毎に行ってもよい。
【0101】
形成されるサーボパターンの磁界の向きは、イレースの向きに応じて決まる。例えば、磁気テープに水平DCイレースが施されている場合、サーボパターンの形成は、磁界の向きがイレースの向きと反対になるように行われる。これにより、サーボパターンが読み取られて得られるサーボ信号の出力を、大きくすることができる。尚、特開2012-53940号公報に示されている通り、垂直DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、単極パルス形状となる。一方、水平DCイレースされた磁気テープに、上記ギャップを用いた磁気パターンの転写を行った場合、形成されたサーボパターンが読み取られて得られるサーボ信号は、双極パルス形状となる。
【0102】
上記磁気テープカートリッジは、高温高湿環境で保管された後、短期間のうちに、保管環境と比べて温度および湿度が大幅に低い使用環境で、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生を行うという使用形態に適する磁気テープカートリッジであることができる。上記保管環境の温度は、例えば30~50℃程度であることができる。上記保管環境の湿度は、相対湿度として、例えば60~100%程度であることができる。また、上記使用環境の温度は、例えば15~25℃程度であることができる。上記使用環境の湿度は、相対湿度として、例えば30~60%程度であることができる。また、上記保管環境から取り出された後、使用環境において、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生が行われるまでの期間は、例えば、30分間~2時間程度であることができる。
ただし、上記使用形態は例示に過ぎず、上記磁気テープカートリッジは、かかる使用形態で使用されるものに限定されるものではない。
【0103】
[磁気テープ装置]
本発明の一態様は、磁気テープカートリッジを含む磁気テープ装置に関する。
【0104】
本発明および本明細書において、「磁気テープ装置」とは、磁気テープへのデータの記録および磁気テープに記録されたデータの再生の少なくとも一方を行うことができる装置を意味するものとする。かかる装置は、一般にドライブと呼ばれる。上記磁気テープ装置は、一形態では、摺動型の磁気テープ装置であることができる。摺動型の磁気テープ装置とは、磁気テープへのデータの記録および/または記録されたデータの再生を行う際に磁性層表面と磁気ヘッドとが接触し摺動する装置をいう。
【0105】
上記磁気テープ装置は、磁気テープカートリッジを着脱可能に含むことができる。更に、上記磁気テープ装置は、磁気ヘッドを含むことができる。かかる磁気ヘッドは、磁気テープへのデータの記録を行うことができる記録ヘッドであることができ、磁気テープに記録されたデータの再生を行うことができる再生ヘッドであることもできる。また、上記磁気テープ装置は、一形態では、別々の磁気ヘッドとして、記録ヘッドと再生ヘッドの両方を含むことができる。他の一形態では、上記磁気テープ装置に含まれる磁気ヘッドは、データの記録のための素子(記録素子)とデータの再生のための素子(再生素子)の両方を1つの磁気ヘッドに備えた構成を有することもできる。以下において、データの記録のための素子および再生のための素子を、「データ用素子」と総称する。再生ヘッドとしては、磁気テープに記録されたデータを感度よく読み取ることができる磁気抵抗効果型(MR;Magnetoresistive)素子を再生素子として含む磁気ヘッド(MRヘッド)が好ましい。MRヘッドとしては、AMR(Anisotropic Magnetoresistive)ヘッド、GMR(Giant Magnetoresistive)ヘッド、TMR(Tunnel Magnetoresistive)ヘッド等の公知の各種MRヘッドを用いることができる。また、データの記録および/またはデータの再生を行う磁気ヘッドには、サーボ信号読み取り素子が含まれていてもよい。または、データの記録および/またはデータの再生を行う磁気ヘッドとは別のヘッドとして、サーボ信号読み取り素子を備えた磁気ヘッド(サーボヘッド)が上記磁気テープ装置に含まれていてもよい。例えば、データの記録および/または記録されたデータの再生を行う磁気ヘッド(以下、「記録再生ヘッド」とも呼ぶ。)は、サーボ信号読み取り素子を2つ含むことができ、2つのサーボ信号読み取り素子のそれぞれが、隣接する2つのサーボバンドを同時に読み取ることができる。2つのサーボ信号読み取り素子の間に、1つまたは複数のデータ用素子を配置することができる。
【0106】
上記磁気テープ装置において、磁気テープへのデータの記録および/または磁気テープに記録されたデータの再生は、磁気テープの磁性層表面と磁気ヘッドとを接触させて摺動させることにより行うことができる。上記磁気テープ装置は、本発明の一態様にかかる磁気テープカートリッジを含むものであればよく、その他については公知技術を適用することができる。
【0107】
例えば、サーボパターンが形成された磁気テープへのデータの記録および/または記録されたデータの再生の際には、まず、サーボパターンを読み取って得られるサーボ信号を用いたトラッキングが行われる。すなわち、サーボ信号読み取り素子を所定のサーボトラックに追従させることによって、データ用素子が、目的とするデータトラック上を通過するように制御される。データトラックの移動は、サーボ信号読み取り素子が読み取るサーボトラックを、テープ幅方向に変更することにより行われる。
また、記録再生ヘッドは、他のデータバンドに対する記録および/または再生を行うことも可能である。その際には、先に記載したUDIM情報を利用してサーボ信号読み取り素子を所定のサーボバンドに移動させ、そのサーボバンドに対するトラッキングを開始すればよい。
一形態では、サーボ信号を利用して走行中の磁気テープの幅方向の寸法情報を取得し、取得された寸法情報に応じて磁気テープの長手方向にかけるテンションを調整することによって、磁気テープの幅方向の寸法を制御することもできる。このようなテンション調整を行うことは、記録または再生時、磁気テープの幅変形によってデータを記録または再生するための磁気ヘッドが狙いのトラック位置からずれてデータの記録または再生を行ってしまうことを抑制することに寄与し得る。
【実施例
【0108】
以下に、本発明の一形態を実施例に基づき説明する。但し、本発明は実施例に示す形態に限定されるものではない。以下に記載の「部」、「%」の表示は、特に断らない限り、「質量部」、「質量%」を示す。「eq」は、当量(equivalent)であり、SI単位に換算不可の単位である。
また、以下の各種工程および操作は、特記しない限り、温度20~25℃および相対湿度40~60%の環境において行った。
【0109】
[非磁性支持体]
表1中、「PEN」はポリエチレンナフタレート支持体を示し、「PET」はポリエチレンテレフタレート支持体を示す。
【0110】
[強磁性粉末]
表1中、強磁性粉末の種類の欄における「BaFe」は、 平均粒子サイズ(平均板径)21nmの六方晶バリウムフェライト粉末を示す。
【0111】
表1中、強磁性粉末の種類の欄における「SrFe1」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
SrCOを1707g、HBOを687g、Feを1120g、Al(OH)を45g、BaCOを24g、CaCOを13g、およびNdを235g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1390℃で溶融し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ローラーで圧延急冷して非晶質体を作製した。
作製した非晶質体280gを電気炉に仕込み、昇温速度3.5℃/分にて635℃(結晶化温度)まで昇温し、同温度で5時間保持して六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
上記で得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは18nm、活性化体積は902nm、異方性定数Kuは2.2×10J/m、質量磁化σsは49A・m/kgであった。
上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって部分溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子の表層部含有率を求めた。
別途、上記で得られた六方晶ストロンチウムフェライト粉末から試料粉末を12mg採取し、この試料粉末を先に例示した溶解条件によって全溶解して得られたろ液の元素分析をICP分析装置によって行い、ネオジム原子のバルク含有率を求めた。
上記で得られた六方晶ストロンチウムフェライト粉末の鉄原子100原子%に対するネオジム原子の含有率(バルク含有率)は、2.9原子%であった。また、ネオジム原子の表層部含有率は8.0原子%であった。表層部含有率とバルク含有率との比率、「表層部含有率/バルク含有率」は2.8であり、ネオジム原子が粒子の表層に偏在していることが確認された。
【0112】
上記で得られた粉末が六方晶フェライトの結晶構造を示すことは、CuKα線を電圧45kVかつ強度40mAの条件で走査し、下記条件でX線回折パターンを測定すること(X線回折分析)により確認した。上記で得られた粉末は、マグネトプランバイト型(M型)の六方晶フェライトの結晶構造を示した。また、X線回折分析により検出された結晶相は、マグネトプランバイト型の単一相であった。
PANalytical X’Pert Pro回折計、PIXcel検出器
入射ビームおよび回折ビームのSollerスリット:0.017ラジアン
分散スリットの固定角:1/4度
マスク:10mm
散乱防止スリット:1/4度
測定モード:連続
1段階あたりの測定時間:3秒
測定速度:毎秒0.017度
測定ステップ:0.05度
【0113】
表1中、強磁性粉末の種類の欄における「SrFe2」は、以下のように作製された六方晶ストロンチウムフェライト粉末を示す。
SrCOを1725g、HBOを666g、Feを1332g、Al(OH)を52g、CaCOを34g、BaCOを141g秤量し、ミキサーにて混合し原料混合物を得た。
得られた原料混合物を、白金ルツボで溶融温度1380℃で溶解し、融液を撹拌しつつ白金ルツボの底に設けた出湯口を加熱し、融液を約6g/秒で棒状に出湯させた。出湯液を水冷双ロールで圧延急冷して非晶質体を作製した。
得られた非晶質体280gを電気炉に仕込み、645℃(結晶化温度)まで昇温し、同温度で5時間保持し六方晶ストロンチウムフェライト粒子を析出(結晶化)させた。
次いで六方晶ストロンチウムフェライト粒子を含む上記で得られた結晶化物を乳鉢で粗粉砕し、ガラス瓶に粒径1mmのジルコニアビーズ1000gと濃度1%の酢酸水溶液を800mL加えてペイントシェーカーにて3時間分散処理を行った。その後、得られた分散液をビーズと分離させステンレスビーカーに入れた。分散液を液温100℃で3時間静置させてガラス成分の溶解処理を行った後、遠心分離器で沈澱させてデカンテーションを繰り返して洗浄し、炉内温度110℃の加熱炉内で6時間乾燥させて六方晶ストロンチウムフェライト粉末を得た。
得られた六方晶ストロンチウムフェライト粉末の平均粒子サイズは19nm、活性化体積は1102nm、異方性定数Kuは2.0×10J/m、質量磁化σsは50A・m/kgであった。
【0114】
表1中、強磁性粉末の種類の欄における「ε-酸化鉄」は、以下のように作製されたε-酸化鉄粉末を示す。
純水90gに、硝酸鉄(III)9水和物8.3g、硝酸ガリウム(III)8水和物1.3g、硝酸コバルト(II)6水和物190mg、硫酸チタン(IV)150mg、およびポリビニルピロリドン(PVP)1.5gを溶解させたものを、マグネチックスターラーを用いて撹拌しながら、大気雰囲気中、雰囲気温度25℃の条件下で、濃度25%のアンモニア水溶液4.0gを添加し、雰囲気温度25℃の温度条件のまま2時間撹拌した。得られた溶液に、クエン酸1gを純水9gに溶解させて得たクエン酸水溶液を加え、1時間撹拌した。撹拌後に沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で乾燥させた。
乾燥させた粉末に純水800gを加えて再度粉末を水に分散させて分散液を得た。得られた分散液を液温50℃に昇温し、撹拌しながら濃度25%アンモニア水溶液を40g滴下した。50℃の温度を保ったまま1時間撹拌した後、テトラエトキシシラン(TEOS)14mLを滴下し、24時間撹拌した。得られた反応溶液に、硫酸アンモニウム50gを加え、沈殿した粉末を遠心分離によって採集し、純水で洗浄し、炉内温度80℃の加熱炉内で24時間乾燥させ、強磁性粉末の前駆体を得た。
得られた強磁性粉末の前駆体を、大気雰囲気下、炉内温度1000℃の加熱炉内に装着し、4時間の熱処理を施した。
熱処理した強磁性粉末の前駆体を、4mol/Lの水酸化ナトリウム(NaOH)水溶液中に投入し、液温を70℃に維持して24時間撹拌することにより、熱処理した強磁性粉末の前駆体から不純物であるケイ酸化合物を除去した。
その後、遠心分離処理により、ケイ酸化合物を除去した強磁性粉末を採集し、純水で洗浄を行い、強磁性粉末を得た。
得られた強磁性粉末の組成を高周波誘導結合プラズマ発光分光分析(ICP-OES;Inductively Coupled Plasma-Optical Emission Spectrometry)により確認したところ、Ga、CoおよびTi置換型ε-酸化鉄(ε-Ga0.28Co0.05Ti0.05Fe1.62)であった。また、先に六方晶ストロンチウムフェライト粉末SrFe1に関して記載した条件と同様の条件でX線回折分析を行い、X線回折パターンのピークから、得られた強磁性粉末が、α相およびγ相の結晶構造を含まない、ε相の単相の結晶構造(ε-酸化鉄型の結晶構造)を有することを確認した。
得られたε-酸化鉄粉末の平均粒子サイズは12nm、活性化体積は746nm、異方性定数Kuは1.2×10J/m、質量磁化σsは16A・m/kgであった。
【0115】
上記の六方晶ストロンチウムフェライト粉末およびε-酸化鉄粉末の活性化体積および異方性定数Kuは、各強磁性粉末について、振動試料型磁力計(東英工業社製)を用いて、先に記載の方法により求められた値である。
また、質量磁化σsは、振動試料型磁力計(東英工業社製)を用いて磁場強度1194kA/m(15kOe)で測定された値である。
【0116】
[実施例1]
<磁気テープカートリッジの作製>
(1)アルミナ分散物の調製
アルファ化率約65%、BET(Brunauer-Emmett-Teller)比表面積20m/gのアルミナ粉末(住友化学社製HIT-80)100.0部に対し、3.0部の2,3-ジヒドロキシナフタレン(東京化成社製)、極性基としてSONa基を有するポリエステルポリウレタン樹脂(東洋紡社製UR-4800(極性基量:80meq/kg))の32%溶液(溶媒はメチルエチルケトンとトルエンの混合溶媒)を31.3部、溶媒としてメチルエチルケトンとシクロヘキサノン1:1(質量比)の混合溶液570.0部を混合し、ジルコニアビーズ存在下で、ペイントシェーカーにより5時間分散させた。分散後、メッシュにより分散液とビーズとを分け、アルミナ分散物を得た。
【0117】
(2)磁性層形成用組成物処方
(磁性液)
強磁性粉末(表1参照) 100.0部
SONa基含有ポリウレタン樹脂 14.0部
重量平均分子量:70,000、SONa基:0.2meq/g
シクロヘキサノン 150.0部
メチルエチルケトン 150.0部
(研磨剤液)
上記(1)で調製したアルミナ分散物 6.0部
(シリカゾル(突起形成剤液))
コロイダルシリカ(平均粒子サイズ120nm) 2.0部
メチルエチルケトン 1.4部
(その他の成分)
ステアリン酸 2.0部
ステアリン酸アミド 0.2部
ブチルステアレート 2.0部
ポリイソシアネート(東ソー社製コロネート(登録商標)L) 2.5部
(仕上げ添加溶媒)
シクロヘキサノン 200.0部
メチルエチルケトン 200.0部
【0118】
(3)非磁性層形成用組成物処方
非磁性無機粉末:α-酸化鉄 100.0部
平均粒子サイズ(平均長軸長):0.15μm
平均針状比:7
BET比表面積:52m/g
カーボンブラック 20.0部
平均粒子サイズ:20nm
SONa基含有ポリウレタン樹脂 18.0部
重量平均分子量:70,000、SONa基:0.2meq/g
ステアリン酸 2.0部
ステアリン酸アミド 0.2部
ブチルステアレート 2.0部
シクロヘキサノン 300.0部
メチルエチルケトン 300.0部
【0119】
(4)バックコート層形成用組成物処方
カーボンブラック 100.0部
DBP(Dibutyl phthalate)吸油量74cm/100g
ニトロセルロース 27.0部
スルホン酸基および/またはその塩を含有するポリエステルポリウレタン樹脂
62.0部
ポリエステル樹脂 4.0部
アルミナ粉末(BET比表面積:17m/g) 0.6部
メチルエチルケトン 600.0部
トルエン 600.0部
ポリイソシアネート(東ソー社製コロネートL) 15.0部
【0120】
(5)各層形成用組成物の調製
磁性層形成用組成物を、以下の方法により調製した。上記磁性液の各種成分をバッチ式縦型サンドミルを用いて24時間分散(ビーズ分散)することにより、磁性液を調製した。分散ビーズとしては、ビーズ径0.5mmのジルコニアビーズを使用した。上記サンドミルを用いて、調製した磁性液、上記研磨剤液ならびに他の成分(シリカゾル、その他の成分および仕上げ添加溶媒)を混合し5分間ビーズ分散した後、バッチ型超音波装置(20kHz、300W)で0.5分間処理(超音波分散)を行った。その後、0.5μmの孔径を有するフィルタを用いてろ過を行い磁性層形成用組成物を調製した。
非磁性層形成用組成物を、以下の方法により調製した。潤滑剤(ステアリン酸、ステアリン酸アミドおよびブチルステアレート)を除く上記成分を、オープンニーダにより混練および希釈処理し、その後、横型ビーズミル分散機により分散処理を実施した。その後、潤滑剤(ステアリン酸、ステアリン酸アミドおよびブチルステアレート)を添加して、ディゾルバー撹拌機にて撹拌および混合処理を施して非磁性層形成用組成物を調製した。
バックコート層形成用組成物を、以下の方法により調製した。ポリイソシアネートを除く上記成分を、ディゾルバー撹拌機に導入し、周速10m/秒で30分間撹拌した後、横型ビーズミル分散機により分散処理を実施した。その後、ポリイソシアネートを添加して、ディゾルバー撹拌機にて撹拌および混合処理を施し、バックコート層形成用組成物を調製した。
【0121】
(6)磁気テープおよび磁気テープカートリッジの作製方法
表1に記載の種類および厚みの二軸延伸された支持体の表面上に、乾燥後の厚みが表1に記載の値となるように上記(5)で調製した非磁性層形成用組成物を塗布および乾燥させて非磁性層を形成した。次いで、非磁性層上に乾燥後の厚みが表1に記載の値となるように上記(5)で調製した磁性層形成用組成物を塗布して塗布層を形成した。その後に、磁性層形成用組成物の塗布層が湿潤状態にあるうちに、磁場強度0.3Tの磁場を塗布層の表面に対し垂直方向に印加して垂直配向処理を行った後、乾燥させ、磁性層を形成した。その後、支持体の非磁性層および磁性層を形成した表面とは反対側の表面に、乾燥後の厚みが表1に記載の厚みとなるように上記(5)で調製したバックコート層形成用組成物を塗布および乾燥させてバックコート層を形成した。
その後、金属ロールのみから構成されるカレンダロールを用いて、速度100m/分、線圧300kg/cm、および90℃のカレンダ温度(カレンダロールの表面温度)にて、表面平滑化処理(カレンダ処理)を行った。
その後、長尺状の磁気テープ原反を雰囲気温度70℃の熱処理炉内に保管することにより熱処理を行った(熱処理時間:36時間)。熱処理後、磁気テープ原反をスリットし、1/2インチ幅の磁気テープを得た。スリットは、特開2002-269711号公報の図4に示されている構成を有するスリッティング装置において行った。スリッティング装置のサクション吸引部の周期は13.5mmであり、サクション吸引部に多孔金属を埋め込みメッシュサクションとした。スリッティング装置の刃物駆動部に動力を伝達する動力伝達装置の駆動ベルトおよびカップリング材料として表1に示すものを使用し、サクション吸引圧、テンションカットローラに対する磁気テープ原反の巻付角度およびスリット速度を表1に示す値としてスリットを行った。
上記スリット後、得られた磁気テープの磁性層に市販のサーボライターによってサーボ信号を記録することにより、LTO(Linear Tape-Open) Ultriumフォーマットにしたがう配置でデータバンド、サーボバンド、およびガイドバンドを有し、かつサーボバンド上にLTO Ultriumフォーマットにしたがう配置および形状のサーボパターン(タイミングベースサーボパターン)を有する磁気テープを得た。こうして形成されたサーボパターンは、JIS(Japanese Industrial Standards) X6175:2006およびStandard ECMA-319(June 2001)の記載にしたがうサーボパターンである。
上記サーボ信号記録後の磁気テープ(長さ960m)を熱処理用巻芯に巻取り、この巻芯に巻付けた状態で熱処理した。熱処理用巻芯としては、曲げ弾性率0.8GPaの樹脂製の中実状の芯状部材(外径:50mm)を使用し、巻取り時のテンションは0.60Nとした。熱処理は、熱処理温度55℃で5時間行った。熱処理を行った雰囲気の重量絶対湿度は、10g/kg Dry airであった。
上記熱処理後、磁気テープおよび熱処理用巻芯が十分冷却された後に磁気テープを熱処理用巻芯から取り外し、一時巻取り用巻芯に巻取り、その後、一時巻取り用巻芯から磁気テープカートリッジ(LTO Ultrium7データカートリッジ)のリール(リール外径:44mm)へ最終製品長さ分(950m)の磁気テープを巻取り(巻取りテンション:表1参照)、残り10m分は切り取り、切り取り側の末端に、市販のスプライシングテープによって、Standard ECMA(European Computer Manufacturers Association)-319(June 2001) Section 3の項目9にしたがうリーダーテープ(長さ1m)を接合させた。一時巻取り用巻芯としては、熱処理用巻芯と同じ材料製で同じ外径を有する中実状の芯状部材を使用し、巻取り時のテンションは0.60Nとした。
以上により、リーダーテープを含む全長が951mの磁気テープがリールに巻装された単リール型の実施例1の磁気テープカートリッジを作製した。
以上の工程を繰り返し、複数の磁気テープカートリッジを作製し、それぞれ、下記(7)~(10)のために使用した。
【0122】
(7)吸水量の測定
上記磁気テープカートリッジについて、温度32℃相対湿度80%の保管環境に10日間保管した後に測定される、磁気テープの長さ1000m換算の吸水量を、先に記載の方法によって求めた。磁気テープカートリッジの質量は、島津製作所製 UX2200Hを使用して測定した。
【0123】
(8)エッジウィーブ量αおよび周期f
市販のサーボライターにエッジウィーブ量測定装置(キーエンス社製)を取り付け、走行基準側となる一方の側のテープエッジにおいて、テープ長さ50mにわたってエッジウィーブ量を連続測定した。得られたエッジウィーブ量αのフーリエ解析を行い、エッジウィーブの周期fを求めた。
【0124】
(9)テープ厚み
磁気テープカートリッジから取り出した磁気テープの任意の部分からテープサンプル(長さ5cm)を10枚切り出し、これらテープサンプルを重ねて厚みを測定した。厚みの測定は、MARH社製Millimar 1240コンパクトアンプとMillimar 1301誘導プローブのデジタル厚み計を用いて行った。測定された厚みを10分の1して得られた値(テープサンプル1枚当たりの厚み)を、テープ厚みとした。
【0125】
(10)摩擦係数
高温高湿環境から温度および湿度がより低い環境への環境変化に短期間のうちに晒された状態での摩擦特性を評価するために、以下の方法によって摩擦係数を求めた。
磁気テープカートリッジを、温度21℃相対湿度50%の測定環境に5日間以上置き、同測定環境に馴染ませる。
上記磁気テープカートリッジを、温度32℃相対湿度80%の保管環境に10日間保管する。
上記保管後、1時間以内に、温度21℃相対湿度50%の測定環境において、以下の方法によって磁気ヘッドに対する摩擦係数を求める。磁気ヘッドとしては、IBM社製LTO(Linear Tape-Open)8ヘッドを使用した。
磁気テープカートリッジから取り出した磁気テープを、互いに離間して平行に配置された直径1インチ(1インチ=2.54cm)の円柱状の2本のガイドロールに、磁性層表面が接触するように載せる。測定対象の磁気テープの無作為に抽出した部分において、磁気テープの磁性層表面をLTO8ヘッドに対して摺動させ、摺動中に生じる抵抗力をストレインゲージにて検出する。往復摺動を100回実施する。測定条件について、ラップ角θは6°とし、摺動速度は30mm/秒とする。摺動時に磁気テープの長手方向にかけるテンションは、1.50Nとする。往路および復路の各摺動距離は5cmとする。100回目の往路における摩擦係数(動摩擦係数)を求める。上記測定時、測定対象の磁気テープの長手方向における両端のうち、一端をストレインゲージとつなぎ、他端に1.50Nのテンションを付与する。ここで付与するテンションをT(単位:N)とし、ストレインゲージによって検出される抵抗力をT(単位:N)として、摩擦係数μ値は、以下の式によって算出される。即ち、T=1.50として、摩擦係数μ値が算出される。
【0126】
【数1】
【0127】
[実施例2~36、比較例1~15]
表1中の項目を表1に示されているように変更した点以外、実施例1と同様に磁気テープカートリッジの作製および各種評価を行った。
【0128】
表1中、「ダイレクトドライブ」の欄に「有」と記載されている実施例については、ベルトを用いた動力伝達装置を使用せず、刃物駆動部をモーターで直接駆動させてスリットを行った。また、「サクション吸引部」の欄に「メッシュなし」と記載されている比較例については、スリッティング装置のサクション吸引部に多孔金属を埋め込まずにスリットを行った。
【0129】
以上の結果を、表1(表1-1~表1-6)に示す。
【0130】
【表1-1】
【0131】
【表1-2】
【0132】
【表1-3】
【0133】
【表1-4】
【0134】
【表1-5】
【0135】
【表1-6】
【0136】
表1に示すように、実施例で求められた摩擦係数は、比較例で求められた摩擦係数より小さかった。この結果から、実施例の磁気テープカートリッジが、高温高湿環境から温度および湿度がより低い環境への環境変化に短期間のうちに晒された状態で、摩擦特性に優れる磁気テープを備えた磁気テープカートリッジであることが確認できる。
【産業上の利用可能性】
【0137】
本発明の一態様は、データストレージ用途において有用である。
図1
図2
図3
図4