IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 株式会社ディスコの特許一覧

<>
  • 特許-ウェーハの加工方法 図1
  • 特許-ウェーハの加工方法 図2
  • 特許-ウェーハの加工方法 図3
  • 特許-ウェーハの加工方法 図4
  • 特許-ウェーハの加工方法 図5
  • 特許-ウェーハの加工方法 図6
  • 特許-ウェーハの加工方法 図7
  • 特許-ウェーハの加工方法 図8
  • 特許-ウェーハの加工方法 図9
  • 特許-ウェーハの加工方法 図10
  • 特許-ウェーハの加工方法 図11
  • 特許-ウェーハの加工方法 図12
  • 特許-ウェーハの加工方法 図13
  • 特許-ウェーハの加工方法 図14
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-11
(45)【発行日】2023-12-19
(54)【発明の名称】ウェーハの加工方法
(51)【国際特許分類】
   H01L 21/301 20060101AFI20231212BHJP
   H01L 21/3065 20060101ALI20231212BHJP
【FI】
H01L21/78 S
H01L21/302 101B
H01L21/302 105A
【請求項の数】 4
(21)【出願番号】P 2018148311
(22)【出願日】2018-08-07
(65)【公開番号】P2020025003
(43)【公開日】2020-02-13
【審査請求日】2021-06-16
【審判番号】
【審判請求日】2023-03-20
(73)【特許権者】
【識別番号】000134051
【氏名又は名称】株式会社ディスコ
(74)【代理人】
【識別番号】110001014
【氏名又は名称】弁理士法人東京アルパ特許事務所
(72)【発明者】
【氏名】朴 美玉
(72)【発明者】
【氏名】小田中 健太郎
(72)【発明者】
【氏名】若原 匡俊
(72)【発明者】
【氏名】尾上 わか奈
(72)【発明者】
【氏名】藍 麗華
【合議体】
【審判長】瀧内 健夫
【審判官】中野 浩昌
【審判官】松永 稔
(56)【参考文献】
【文献】特開2015-95508(JP,A)
【文献】特開平7-221051(JP,A)
【文献】特開2013-93619(JP,A)
【文献】特開2005-340423(JP,A)
【文献】特開2016-207737(JP,A)
【文献】特開2009-123988(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/301
H01L21/3065
(57)【特許請求の範囲】
【請求項1】
基板と該基板の表面に積層されデバイスを構成するデバイス層とを備え、交差する複数のストリートによって区画された各領域にそれぞれ該デバイスが形成されたウェーハの加工方法であって、
ウェーハの裏面側から該基板に該ストリートに沿ったエッチング溝を形成するためのマスクをウェーハの該裏面に形成するマスク形成ステップと、
該マスク形成ステップを実施した後、該マスクを介してウェーハの該裏面側からプラズマエッチングを施して該ストリートに沿った複数のエッチング溝を該基板に形成するプラズマエッチングステップと、
該プラズマエッチングステップを実施した後、ウェーハの表面側を載置面上に載置した状態で、ウェーハの該裏面に高圧流体を噴射してウェーハの該エッチング溝で囲繞された領域を押圧し、該エッチング溝に対応するデバイス層を破断するか、又は、該デバイス層に亀裂若しくは歪みを形成する押圧ステップと、
少なくとも該押圧ステップを実施する前までに、ウェーハの該表面にテープを貼着するテープ貼着ステップと、を備え、該押圧ステップの実施後に該テープから該デバイスを剥離する、ウェーハの加工方法。
【請求項2】
少なくとも前記押圧ステップと前記テープ貼着ステップとを実施する前に、前記デバイス層に切削ブレードまたはレーザビームでウェーハの表面側から前記ストリートに沿って前記基板に至らないガイド溝を形成するガイド溝形成ステップを更に備える、請求項1に記載のウェーハの加工方法。
【請求項3】
前記マスク形成ステップでは、ウェーハの前記裏面に水溶性樹脂層を形成した後、前記ストリートに沿って該水溶性樹脂層を除去する、請求項1または2に記載のウェーハの加工方法。
【請求項4】
前記マスク形成ステップでは、ウェーハの前記裏面にダイアタッチ材からなるダイアタッチ層を形成した後、前記ストリートに沿って該ダイアタッチ層を除去する、請求項1または2に記載のウェーハの加工方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、基板と基板の表面に積層されデバイスを構成するデバイス層とを備え、交差する複数のストリートによって区画された各領域にそれぞれデバイスが形成されたウェーハの加工方法に関する。
【背景技術】
【0002】
表面にストリート(分割予定ライン)として設定される幅を縮小してウェーハ毎のチップの取り数を増やすため、及び加工時間を短縮するために、プラズマエッチングを利用して被加工物であるウェーハを分割する所謂プラズマダイシングが従来から用いられている。
【0003】
一方、デバイスが形成されたウェーハでは、デバイスを構成する回路層(金属層)と絶縁層とからなるデバイス層がストリート上にも存在するため、シリコン(基板)をエッチングするのに適したエッチングガスでは、ストリート上のデバイス層をエッチングすることが非常に難しいという問題がある。また、ストリート上に主にアルミニウム又は銅等の金属で構成されるTEG(Test Element Group)を有したウェーハでも同様の問題がある。
【0004】
この問題を解決するための方法として、ウェーハの表面に水溶性樹脂層を形成した後、ストリート上の水溶性樹脂層をデバイス層及びTEGとともにレーザビームの照射により除去した後、ウェーハの表面側からプラズマダイシングを行う手法が特許文献1に開示されている。
【先行技術文献】
【特許文献】
【0005】
【文献】特開2016-207737号公報
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、レーザビームの照射によってTEGやデバイス層等を完全に除去しようとすると相当のパワーが必要であり、レーザビームの照射によって基板に変質領域が生成されて、分割により形成されるデバイスチップの抗折強度が低下するという問題がある。
【0007】
また、ウェーハの表面側からプラズマダイシングをする場合、デバイスを保護するマスクの厚みが均一に形成されていないと、マスクが薄い領域においてプラズマエッチング中にマスクが除去されウェーハ表面が露出しデバイスが損傷してしまうおそれがある。
【0008】
よって、基板と基板の表面に積層されデバイスを構成するデバイス層とを備え、交差する複数のストリートによって区画された各領域にそれぞれデバイスが形成されたウェーハをチップに分割する場合には、レーザビーム照射によるチップの抗折強度の低下を防ぎ、また、プラズマダイシングにおいてデバイスの損傷が発生しないようにするという課題がある。
【課題を解決するための手段】
【0009】
上記課題を解決するための本発明は、基板と該基板の表面に積層されデバイスを構成するデバイス層とを備え、交差する複数のストリートによって区画された各領域にそれぞれ該デバイスが形成されたウェーハの加工方法であって、ウェーハの裏面側から該基板に該ストリートに沿ったエッチング溝を形成するためのマスクをウェーハの該裏面に形成するマスク形成ステップと、該マスク形成ステップを実施した後、該マスクを介してウェーハの該裏面側からプラズマエッチングを施して該ストリートに沿った複数のエッチング溝を該基板に形成するプラズマエッチングステップと、該プラズマエッチングステップを実施した後、ウェーハの表面側を載置面上に載置した状態で、ウェーハの該裏面に高圧流体を噴射してウェーハの該エッチング溝で囲繞された領域を押圧し、該エッチング溝に対応するデバイス層を破断するか、又は、該デバイス層に亀裂若しくは歪みを形成する押圧ステップと、少なくとも該押圧ステップを実施する前までに、ウェーハの該表面にテープを貼着するテープ貼着ステップと、を備え、該押圧ステップの実施後に該テープから該デバイスを剥離する、ウェーハの加工方法である。
【0010】
本発明に係るウェーハの加工方法においては、少なくとも前記押圧ステップと前記テープ貼着ステップとを実施する前に、前記デバイス層に切削ブレードまたはレーザビームでウェーハの表面側から前記ストリートに沿って前記基板に至らないガイド溝を形成するガイド溝形成ステップを更に備えると好ましい。
【0011】
前記マスク形成ステップでは、ウェーハの前記裏面に水溶性樹脂層を形成した後、前記ストリートに沿って該水溶性樹脂層を除去すると好ましい。
【0012】
前記マスク形成ステップでは、ウェーハの前記裏面にダイアタッチ材からなるダイアタッチ層を形成した後、前記ストリートに沿って該ダイアタッチ層を除去すると好ましい。
【発明の効果】
【0013】
本発明に係るウェーハの加工方法は、ウェーハの裏面側から基板にストリートに沿ったエッチング溝を形成するためのマスクをウェーハの裏面に形成するマスク形成ステップと、マスク形成ステップを実施した後、表面側ではなくマスクを介してウェーハの裏面側からプラズマエッチングを施してストリートに沿った複数のエッチング溝を基板に形成するプラズマエッチングステップとを実施することで、マスクが薄い領域でエッチング中にウェーハ表面が露出しデバイスが損傷してしまうといった事態を生じさせない。さらに、プラズマエッチングステップを実施した後、ウェーハの表面側を載置面上に載置した状態で、ウェーハの裏面に高圧流体を噴射してウェーハのエッチング溝で囲繞された領域を押圧する押圧ステップと、少なくとも押圧ステップを実施する前までに、ウェーハの表面にテープを貼着するテープ貼着ステップと、を実施することで、プラズマエッチングで加工されなかったデバイス層やTEGは高圧流体を利用してウェーハ裏面側から押圧力が付与され破断されたりクラックが形成されたりする。そして、押圧ステップの実施後にテープからデバイスを剥離(例えば、チップのピックアップ)することで、デバイスチップを得ることができる。よって、強パワーのレーザビームの照射によるチップの抗折強度の低下を生じさせるおそれもない。
【0014】
本発明に係るウェーハの加工方法においては、少なくとも押圧ステップとテープ貼着ステップとを実施する前に、デバイス層に切削ブレードまたはレーザビームでウェーハの表面側からストリートに沿って基板に至らないガイド溝を形成するガイド溝形成ステップを更に備えるものとすることで、押圧ステップにおいて該ガイド溝を起点にしてデバイス層に亀裂が生成される、又はデバイス層が破断されるため、デバイスの損傷を防ぐことができ、また、デバイス層のサイズがエッチング溝で囲繞された領域(チップ領域)より大きくなる(デバイス層のはみ出し部分が大きくなる)ことを防ぐことができる。
【図面の簡単な説明】
【0015】
図1】ウェーハの一例を示す斜視図である。
図2】ウェーハの一例を示す断面図である。
図3】レーザビームを照射してウェーハの表面側からストリートに沿って基板に至らないガイド溝を形成している状態を説明する断面図である。
図4】ウェーハに形成された基板に至らないガイド溝を拡大して示す断面図である。
図5】表面にテープが貼着され環状フレームで支持されたウェーハを示す斜視図である。
図6】スピンコータを用いてウェーハの裏面に水溶性樹脂層を形成している状態を示す断面図である。
図7】裏面に水溶性樹脂層が形成されたウェーハの一部を拡大して示す断面図である。
図8】ストリートに沿ってウェーハの水溶性樹脂層にレーザビームを照射して、水溶性樹脂層を除去してウェーハの裏面にマスクを形成している状態を示す断面図である。
図9】裏面にマスクが形成されたウェーハの一部を拡大して示す断面図である。
図10】ウェーハにプラズマエッチングを施すプラズマエッチング装置の一例を示す断面図である。
図11】プラズマエッチングが施されたウェーハの一部を示す断面図である。
図12】ウェーハの裏面側に高圧流体を噴射してウェーハのエッチング溝で囲繞された領域を押圧している状態を説明する断面図である。
図13】高圧流体が噴射されエッチング溝で囲繞された領域が押圧されているウェーハの一部を拡大して示す断面図である。
図14】テープからデバイスを剥離している状態を説明する断面図である。
【発明を実施するための形態】
【0016】
以下に、本発明に係るウェーハの加工方法を実施して図1に示すウェーハWをデバイスDを備えるチップへと分割する場合の、加工方法の各ステップについて説明していく。
【0017】
図1、2に示すウェーハWは、例えば、シリコンからなる基板W1を備える円形の半導体ウェーハである。図2に示すように、基板W1の表面W1aのストリートS上にはデバイス層D1が積層されており、該デバイス層D1によって複数のデバイスDがマトリックス状に形成されている。なお、デバイス層D1は、金属からなる回路層と、回路間を絶縁する絶縁層(例えば、low-k膜)とから構成されている。各デバイスDは、それぞれ直交差するように基板W1の表面W1aに設定された複数の該ストリートSによって区画されている。デバイスDの表面とデバイス層D1の表面とからなるウェーハWの表面Waに対して反対側の面となるウェーハWの裏面Wb(基板W1の裏面)は、例えば図示しない保護テープが貼着されて保護されていてもよい。
【0018】
上記ストリートS上には、例えば、所定の金属で構成される図示しないTEGがデバイス層D1と共に形成されていてもよい。また、デバイスDの外周縁に沿って図示しないガードリングが設けられていてもよい。ガードリングは、金属により構成された数μm程度の幅を有する領域であって、デバイス層D1の破断時等においてチッピングやクラックがデバイスDに到達するのを防ぐためのものである。
なお、基板W1はシリコン以外にガリウムヒ素、サファイア、窒化ガリウム又はシリコンカーバイド等で構成されていてもよい。
【0019】
(1)ガイド溝形成ステップ
本実施形態においては、例えば、まず、デバイス層D1にレーザビームでウェーハWの表面Wa側からストリートSに沿って基板W1に至らないガイド溝を形成する。
【0020】
ウェーハWは、例えば、図3に示すレーザ加工装置1に搬送される。レーザ加工装置1は、ウェーハWを吸引保持するチャックテーブル10と、チャックテーブル10に保持されたウェーハWのデバイス層D1に対して吸収性を有する波長のレーザビームを照射可能なレーザビーム照射手段11とを少なくとも備えている。
【0021】
チャックテーブル10は、Z軸方向の軸心周りに回転可能であるとともに、図示しない移動手段によって加工送り方向であるX軸方向及び割り出し送り方向であるY軸方向に往復移動可能となっている。チャックテーブル10は、例えば、その外形が円形状であり、ポーラス部材からなりウェーハWを吸着する平坦な保持面10aを備えている。そして保持面10aに連通する図示しない吸引源が生み出す吸引力が保持面10aに伝達されることで、チャックテーブル10は保持面10a上でウェーハWを吸引保持できる。
【0022】
レーザビーム照射手段11は、レーザビーム発振器119から発振されたレーザビームを、伝送光学系を介して集光器111の内部の集光レンズ111aに入光させることで、チャックテーブル10で保持されたウェーハWのデバイス層D1にレーザビームを正確に集光して照射できる。レーザビームの集光点の高さ位置は、図示しない集光点位置調整手段によりZ軸方向に調整可能となっている。
【0023】
レーザ加工装置1は、装置全体の制御を行う図示しない制御手段を備えている。CPU及びメモリ等の記憶素子等で構成される制御手段の下で、チャックテーブル10のX軸方向及びY軸方向における移動動作や、レーザビーム照射手段11が照射するレーザビームの平均出力等が制御される。
【0024】
レーザ加工装置1において、ウェーハWは表面Waを上側に向けた状態で、チャックテーブル10の保持面10a上で吸引保持される。次いで、レーザビームをデバイス層D1に照射するための基準となるストリートSの位置が、図3に示すアライメント手段15によって検出される。即ち、例えば、カメラ等の撮像手段150によりウェーハWの表面WaのストリートSが撮像され、形成された撮像画像に基づき、アライメント手段15がパターンマッチング等の画像処理を行い、ウェーハWのストリートSの座標位置を検出する。
【0025】
ストリートSの位置の検出結果が図示しない制御手段に入力されるのに伴って、制御手段がチャックテーブル10の移動方向や移動量を制御する。即ち、チャックテーブル10がY軸方向に割り出し送りされ、レーザビームを照射するストリートSと集光器111とのY軸方向における位置合わせがなされる。この位置合わせは、例えば、集光器111の集光点直下にストリートSの中心線が位置するように行われる。
該位置合わせが行われた後、さらにチャックテーブル10がY軸方向に僅かにオフセットした位置まで移動することで、集光器111の集光点直下が、ストリートSの中心線の位置から僅かにずれて該中心線からオフセット距離だけY軸方向に離れた位置となる。
【0026】
なお、該オフセット距離は、ストリートSの幅の値等を考慮して定められており、予め図示しない制御手段に記憶されている。なお、該オフセット距離をストリートSの幅の情報に加えて、後述するマスク形成ステップにおいて形成される各マスク間の距離の情報(理論値や実験値)、及びプラズマエッチングステップにおいて形成されるエッチング溝の幅情報(理論値や実験値)を加味して設定することで、2条のガイド溝M(図4参照)を破線で示すエッチング溝形成予定位置とほとんどずれることなくデバイス層D1に形成できる。
【0027】
さらに、集光レンズ111aによって集光されるレーザビームの集光点の高さ位置が、例えば、デバイス層D1の上面の高さ位置よりも僅かに下方に合わせられる。そして、レーザビーム発振器119がデバイス層D1に吸収性を有する波長のレーザビームを発振し、レーザビームをデバイス層D1に集光し照射する。なお、レーザビームの平均出力は、形成するガイド溝が基板W1に至らないようにするため、例えば低く設定されている。
【0028】
また、ウェーハWが往方向である-X方向(紙面奥側)に所定の加工送り速度で送られ、レーザビームがストリートSに沿ってデバイス層D1に照射されていき、デバイス層D1がアブレーションされて、ストリートSに沿って基板W1に至らないガイド溝Mが形成される。
【0029】
ストリートSに沿ってレーザビームを照射し終える所定の位置までウェーハWが-X方向に進行すると、レーザビームの照射が停止される。さらに、チャックテーブル10が、ストリートSの中心線側に向かってY軸方向に例えばオフセット距離の二倍の距離だけ移動される。その結果、ストリートSの中心線を基準として先に形成されたガイド溝MのY軸位置と対称の位置(ストリートSの中心線からオフセット距離だけY軸方向に離れた位置)に、集光器111の集光点直下が位置付けられる。
【0030】
ウェーハWが復方向である+X方向(紙面手前側)へ加工送りされ、往方向でのレーザビーム照射と同様に、デバイス層D1がアブレーションされて、ストリートSに沿って基板W1に至らないガイド溝Mが形成される。したがって、本実施形態においては、1本のストリートSに対するデバイス層D1に、ストリートSの中心線を挟んで対称な2条のガイド溝Mが形成される。順次同様のレーザビーム照射をX軸方向に延びる全ストリートSに沿って行った後、チャックテーブル10を90度回転させて同様のレーザビームの照射を行うと、基板W1の表面W1aの全ストリートSに対応するデバイス層D1に、ストリートSの中心線を挟んで対称な2条のガイド溝Mが形成される。
なお、レーザビームの平均出力を低く設定しており、ガイド溝Mは基板W1に至らぬように形成されるため、本加工方法によって最終的に形成されるデバイスチップの抗折強度の低下等は起きない。
【0031】
ガイド溝形成ステップは、本実施形態のように1本のストリートSに対するデバイス層D1に2条のガイド溝Mを形成すると好ましいが、例えば、1本のストリートSに対するデバイス層D1にストリートSの中心線上を通る1条のガイド溝Mを形成してもよい。
【0032】
また、本実施形態においては、チャックテーブル10の往方向と復方向との加工送りで、1本のストリートSに対するデバイス層D1に2条のガイド溝Mを形成しているが、チャックテーブル10の往方向(又は、復方向)の加工送りで1本のストリートSに対するデバイス層D1に2条のガイド溝Mを一度に形成するものとしてもよい。この場合には、例えば、レーザビーム発振器119から発振されたレーザビームを、1/2波長板、ビームスプリッタ、及びミラー等からなる分岐手段によって2光路に分岐させてから集光レンズ111aに入射させ、2光路のレーザビームをデバイス層D1に集光し照射する。
【0033】
ガイド溝形成ステップは、本実施形態のようなレーザビーム照射によってなされるのではなく、切削装置を用いて行われてもよい。この場合においては、極細厚の回転する切削ブレードをウェーハWの表面Wa側からストリートSに沿ってデバイス層D1に切り込ませ、基板W1に至らないガイド溝を形成する。
【0034】
(2)テープ貼着ステップ
ガイド溝Mが形成されたウェーハWは、例えば、図5に示すように表面WaにテープTが貼着される。テープTは、ウェーハWよりも大径の円形のテープであり、例えばポリオレフィン系樹脂等からなる基材Td(図6参照)と、基材Td上の糊層Tcとからなる。糊層Tcは、紫外線照射により硬化して粘着力が低下するUV硬化糊が用いられてもよい。
【0035】
例えば、図示しない貼り付けテーブル上に載置されたウェーハWの中心と環状フレームFの開口の中心とが略合致するように、ウェーハWに対して環状フレームFが位置付けられる。そして、貼り付けテーブル上でプレスローラー等によりウェーハWの表面WaにテープTの糊層Tcが押し付けられて貼着される。同時に、糊層Tcの外周部を環状フレームFにも貼着することで、ウェーハWはテープTを介して環状フレームFに支持され、環状フレームFを介したハンドリングが可能になる。なお、ウェーハWだけに先にテープTをプレスローラー等で貼着した後、環状フレームFに対してウェーハWを適切に位置付けて、環状フレームFにテープTを貼着してもよい。
例えば、環状フレームF及びテープTは、後のプラズマエッチングステップで使用されるエッチングガス(例えば、SFガスやCガス)に対する耐性を備えているものを用いると好ましい。即ち、例えば、環状フレームFはSUSで形成されており、テープTはポリオレフィン等で形成されていると好ましい。
【0036】
(3-1)マスク形成ステップにおける水溶性樹脂層の形成
次いで、ウェーハWの裏面Wb側から基板W1にストリートSに沿ったエッチング溝を形成するためのマスクを、該裏面Wbに形成する。本実施形態においては、まず、ウェーハWの裏面Wbに水溶性樹脂層を形成する。
環状フレームFによるハンドリングが可能となったウェーハWは、例えば、図6に示すスピンコータ4に搬送される。スピンコータ4は、例えば、ウェーハWを保持する保持テーブル40と、保持テーブル40を回転させる回転手段42と、上端側に開口を備え保持テーブル40を収容する有底円筒状のケーシング44とを備えている。
【0037】
保持テーブル40は、例えば、その外形が円形状であり、ポーラス部材等からなり図示しない吸引源に連通する保持面40aを備えている。保持テーブル40の周囲には、環状フレームFを固定する固定クランプ401が周方向に所定間隔を空けて均等配置されている。保持テーブル40は、ウェーハWが載置される際は上昇して搬入・搬出高さ位置に位置付けられ、吸引保持したウェーハWに液状の水溶性樹脂が塗布される際は、ケーシング44内における塗布高さ位置まで下降する。また、保持テーブル40は、下方に配設された回転手段42によりZ軸方向の軸心周りに回転可能となっている。
【0038】
ケーシング44は、保持テーブル40を囲繞する外側壁440と、外側壁440の下部に連接し中央に回転手段42の回転軸が挿通される開口を有する底板441と、底板441の開口の内周縁から立設する内側壁442とから構成される。保持テーブル40の下面とケーシング44の内側壁442の上端面との間には、該回転軸に挿嵌され回転軸と底板441の開口との隙間に異物を入り込ませないようにするカバー444が配設されている。
【0039】
ケーシング44内には、保持面40aで保持されたウェーハWに液状の水溶性樹脂を滴下するノズル45が配設されている。ノズル45は、底板441から立設しており、側面視略L字状の外形を備え、Z軸方向の軸心周りに旋回可能である。ノズル45の先端部分に形成された供給口450は、保持テーブル40の保持面40aに向かって開口している。
【0040】
ノズル45は、液状の水溶性樹脂を蓄えた水溶性樹脂供給源47に配管47a及び図示しないロータリージョイントを介して連通している。水溶性樹脂供給源47に蓄えられた水溶性樹脂は、例えば、ポリビニルピロリドン(PVP)又はポリビニルアルコール(PVA)等であるが、レジスト液等であってもよい。
【0041】
ウェーハWが、テープTを介して保持テーブル40の保持面40a上に載置され、保持テーブル40によりウェーハWが吸引保持される。また、各固定クランプ401により環状フレームFが固定される。次いで、ウェーハWを保持した保持テーブル40がケーシング44内の塗布高さ位置まで下降する。また、ノズル45が旋回し、供給口450がウェーハWの中央上方に位置付けられる。
【0042】
次いで、水溶性樹脂供給源47が水溶性樹脂をノズル45に供給し、ウェーハWの裏面Wbに所定量の水溶性樹脂が滴下される。そして、保持テーブル40が低速で回転することで、滴下された水溶性樹脂が遠心力により裏面Wbの中心から外周側に流れて全面にいきわたり、図6、7に示すほぼ一様な厚さの水溶性樹脂層Jが形成される。その後、回転を継続して水溶性樹脂層Jを回転乾燥させる。なお、水溶性樹脂層Jの乾燥は、保持テーブル40の上方に配置したヒータやキセノンフラッシュランプによって、水溶性樹脂層Jを加熱して行ってもよい。
【0043】
(3-2)マスク形成ステップにおけるマスクの形成
水溶性樹脂層Jが形成されたウェーハWは、図8に示すように、レーザ加工装置1に搬送され、テープTを介してチャックテーブル10の保持面10a上で吸引保持される。レーザ加工装置1は、チャックテーブル10の周囲に、環状フレームFを固定する固定クランプ103を周方向に所定間隔を空けて均等に備えており、環状フレームFが該固定クランプ103で挟持固定される。
【0044】
そして、レーザビームをウェーハWに照射するための基準となるストリートSの位置がアライメント手段15によって検出される。即ち、例えば、撮像手段150(例えば、赤外線カメラ)によりウェーハWの裏面Wb側から透過させて表面WaのストリートSが撮像され、形成された撮像画像に基づき、アライメント手段15がパターンマッチング等の画像処理を行い、ウェーハWのストリートSの座標位置を検出する。
【0045】
ストリートSが検出されるのに伴って、図示しない制御手段による制御の下でチャックテーブル10がY軸方向に移動し、ストリートSとレーザビーム照射手段11の集光器111との位置合わせがなされる。次いで、集光レンズ111aによって集光されるレーザビームの集光点位置が水溶性樹脂層Jの高さ位置に合わせられる。レーザビーム発振器119が水溶性樹脂層Jに吸収性を有する波長のレーザビームを発振し、レーザビームを水溶性樹脂層Jに集光し照射する。また、ウェーハWが往方向である-X方向(紙面奥側)に所定の加工送り速度で送られ、レーザビームがストリートSに沿って水溶性樹脂層Jに照射されていき、水溶性樹脂層Jが溶融・蒸発して除去されて、ストリートSに対応する基板W1の裏面Wbが露出する。
【0046】
ストリートSに沿ってレーザビームを照射し終える所定の位置までウェーハWが-X方向に進行すると、レーザビームの照射を停止するとともチャックテーブル10がY軸方向に移動され、-X方向での加工送りにおいて基準となったストリートSに隣接するストリートSと集光器111とのY軸方向における位置合わせが行われる。次いで、ウェーハWが復方向である+X方向(紙面手前側)へ加工送りされ、往方向でのレーザビーム照射と同様に、水溶性樹脂層Jが除去されストリートSに対応する基板W1の裏面Wbが露出する。順次同様のレーザビーム照射をX軸方向に延びる全ストリートSに沿って行った後、チャックテーブル10を90度回転させて同様のレーザビームの照射を行うと、基板W1の裏面WbのストリートSに対応する領域以外の領域に図9に示すマスクJ1が形成される。
【0047】
なお、マスク形成ステップは、上記例に限定されるものではない。例えば、マスクJ1は水溶性樹脂ではなく、レジストで構成されていてもよい。また、ウェーハWと略同径以上の円形シート状のダイアタッチ材(DAF)を、ウェーハWの裏面Wbに貼着してダイアタッチ層を形成し、その後、ストリートSに沿ってレーザビームを裏面Wb側からDAFに照射して、ストリートSに対応した基板W1を露出させてマスクを形成するものとしてもよい。なお、シート状のDAFに代えて、液DAFを使用して、水溶性樹脂からなるマスクJ1を形成したのと略同様の手順でDAFのマスクを形成してもよい。
又は、例えば、マスクはフォトリソグラフィでウェーハWの裏面Wbに形成されてもよい。
【0048】
(4)プラズマエッチングステップ
上記マスクJ1を形成した後、例えば、図10に示すプラズマエッチング装置9を用いて、マスクJ1を介してウェーハWの基板W1にプラズマエッチングを施してストリートSに沿ったエッチング溝を形成する。
【0049】
図10に示すプラズマエッチング装置9は、ウェーハWを保持する保持手段90と、ガスを噴出するガス噴出ヘッド91と、保持手段90及びガス噴出ヘッド91を内部に収容したチャンバ92とを備えている。なお、プラズマエッチング装置は、誘電コイルにプラズマ発生用の高周波電力を印加し、誘電コイルに形成された磁場との相互作用によりエッチングガスをプラズマ化する誘導結合型プラズマ方式のエッチング装置であってもよい。
【0050】
例えば、保持手段90は、静電チャックであり、セラミック等の誘電体で形成されており、支持部材900により下方から支持されている。保持手段90の内部には、電圧の印加により電荷を発生する円板状の電極901が保持手段90の保持面90aと平行に配設されており、電極901は整合器94a及びバイアス高周波電源95aに接続されている。
例えば、保持手段90の内部には、図示しない通水路が形成されており、該通水路を循環する冷却水により保持手段90が内部から所定温度に冷却される。また、保持面90aと保持面90aで保持されたウェーハWとの間には、冷却水によるウェーハWの吸熱効率を向上させるために、Heガス等の熱伝達ガスが所定の圧力で流れるようになっている。
なお、例えば、保持手段90は、図例の単極型の静電チャックに限定されるものではなく、双極型の静電チャックであってもよい。
【0051】
チャンバ92の上部に軸受け919を介して昇降自在に配設されたガス噴出ヘッド91の内部には、ガス拡散空間910が設けられており、ガス拡散空間910の上部にはガス導入口911が連通し、ガス拡散空間910の下部にはガス吐出口912が複数連通している。各ガス吐出口912の下端は保持手段90の保持面90aに向かって開口している。
ガス導入口911に接続されたガス供給部93には、例えばSF、CF、C、C等のフッ素系ガスがエッチングガスとして蓄えられている。
【0052】
ガス噴出ヘッド91には、整合器94を介して高周波電源95が接続されている。高周波電源95から整合器94を介してガス噴出ヘッド91に高周波電力を供給することで、ガス吐出口912から吐出されたエッチングガスをプラズマ化できる。
プラズマエッチング装置9は、図示しない制御部を備えており、該制御部によりガスの吐出量や時間、高周波電力等の条件が制御される。
【0053】
チャンバ92の底には排気口96が形成されており、この排気口96には排気装置97が接続されている。排気装置97を作動させることで、チャンバ92内部を減圧し真空雰囲気とすることができる。また、チャンバ92の側部には、搬入出口920と、この搬入出口920を開閉するゲートバルブ921とが設けられている。
【0054】
チャンバ92の内部には、プラズマエッチング中の環状フレームFの加熱を防ぐためのフレーム加熱防止ガード98が配設されている。フレーム加熱防止ガード98は、例えば、エッチングガスに対する耐性を備えるSUS等を環状の平板状に形成したものであり、チャンバ92の内側壁に径方向内側に延出するように配設されている。
【0055】
本実施形態における基板W1に対するエッチング溝の形成は、例えば、SFガスによるプラズマエッチングとCガスによる溝側壁等に対する保護膜堆積(デポジション)とを交互に繰り返すボッシュ法により行うと好ましい。なお、SFガス単体によるプラズマエッチングで基板W1にエッチング溝を形成してもよい。
本ステップでは、まず、搬入出口920からウェーハWをチャンバ92内に搬入し、マスクJ1側を上側に向けてウェーハWを保持手段90の保持面90a上に載置する。そして、ゲートバルブ921を閉じ、排気装置97によりチャンバ92内を真空雰囲気とする。ウェーハWを支持する環状フレームFの上方は、フレーム加熱防止ガード98で覆われる。
【0056】
ガス噴出ヘッド91を所定の高さ位置まで下降させ、ガス供給部93からSFガスをガス拡散空間910に供給し、ガス吐出口912から下方に噴出させる。また、高周波電源95からガス噴出ヘッド91に高周波電力を印加して、ガス噴出ヘッド91と保持手段90との間に高周波電界を生じさせ、SFガスをプラズマ化させる。これに並行して、電極901にバイアス高周波電源95aから電圧を印加して、保持手段90の保持面90aとウェーハWとの間に誘電分極現象を発生させ、電荷の分極により生じる静電吸着力によってウェーハWを保持面90a上でテープTを介して吸着保持する。
【0057】
プラズマ化したSFガスは、ウェーハWの裏面WbのマスクJ1が形成されている領域はほとんどエッチングせず、基板W1のストリートSに対応する領域を等方性エッチングしていく。プラズマ化したSFガスによる環状フレームFに対する熱影響は、環状フレームFの上方を覆うフレーム加熱防止ガード98によって抑えられる。
【0058】
次に、ガス供給部93からCガスをガス拡散空間910に供給し、ガス吐出口912から下方に噴出させる。高周波電源95からガス噴出ヘッド91に高周波電力を印加し、さらに、電極901にバイアス高周波電源95aから高周波電力を印加して、Cガスをプラズマ化させ、等方性エッチングで形成されたエッチング溝の側壁と底とに保護膜としてフルオロカーボン膜を堆積させる。再び、SFガスをチャンバ92内に供給しプラズマ化させ、エッチング溝の底の保護膜のみを除去する異方性エッチングを行い、次いで、エッチング溝の底に露出した基板W1の等方性エッチングを再び行う。上記等方性エッチングと保護膜堆積と異方性エッチングとを1サイクルとし、例えば数十サイクル実施して、基板W1の垂直な深掘りを高速かつ所望のアスペクト比で実現し、図11に示すストリートSに沿った格子状のエッチング溝Meを基板W1に形成していく。
【0059】
フッ素系のエッチングガスは、金属等からなるデバイス層D1をエッチングしない。そのため、エッチング溝Meの底がデバイス層D1内に至らず、かつ、エッチング溝Meの底にデバイス層D1の上面が露出するまでプラズマエッチングを行った後、プラズマエッチングを終了させる。即ち、チャンバ92内へのエッチングガス等の導入及びガス噴出ヘッド91への高周波電力の供給を停止し、また、チャンバ92内のエッチングガスを排気装置97に排気し、チャンバ92内部にエッチングガスが存在しない状態とする。その結果、図11に示すストリートSに沿ったエッチング溝Me(フルカット溝)が基板W1に形成され、基板W1にエッチング溝Meで囲繞された領域Cが画成される。
なお、エッチング溝Meの底に基板W1がエッチング残し部として僅かな厚みで残存した状態となるまで、プラズマエッチングを行ってもよい。この場合のエッチング残し部の厚さは、10μm以下であると好ましい。
ボッシュ法では、SFガスとCガスとを交互にチャンバ92内に流すときの各パラメータを変えることで、エッチング溝Meのアスペクト比を制御できるため、エッチング溝Meの両壁の位置を2条のガイド溝Mの各位置に略合致するように、エッチング溝Meを形成できる。
【0060】
なお、マスクJ1が水溶性樹脂からなるものでない場合(例えば、レジスト膜である場合)には、次に行う押圧ステップを行った後に、本プラズマエッチング装置9によるアッシング等によってマスクJ1が基板W1から除去される。
【0061】
(5)押圧ステップ
エッチング溝Meが基板W1に形成されたウェーハWは、例えば、図12に示す保持テーブル50に搬送される。ウェーハWがマスクJ1を上側に向けた状態で、保持テーブル50の円形状の載置面50a(例えば、ポーラス部材等からなる吸引保持面)に載置される。図示しない吸引源が駆動して生み出される吸引力が載置面50aに伝達され、保持テーブル50が載置面50a上でウェーハWを吸引保持する。なお、載置面50aでウェーハWを吸引保持しなくてもよい。
例えば、保持テーブル50の周囲には、環状フレームFを固定する固定クランプ500が周方向に均等間隔を空けて配設されており、環状フレームFが固定クランプ500によって挟持固定される。
【0062】
保持テーブル50の上方には、高圧流体噴射ノズル51が配設されており、高圧流体噴射ノズル51と保持テーブル50とは相対的にY軸方向及びX軸方向へ移動可能となっている。高圧流体噴射ノズル51は、高圧流体として例えば高圧水を供給する高圧水供給源52に連通しており、保持テーブル50の載置面50aに向く噴射口51aをその下端に有している。
【0063】
例えば、押圧ステップにおいては、高圧流体をウェーハWに噴射するための基準となるストリートSに沿って形成されたエッチング溝Meの座標位置が、図示しないアライメント手段によって検出される。該検出が行われるのに伴って、高圧流体噴射ノズル51と保持テーブル50とが相対的にY軸方向に移動し、ウェーハWと高圧流体噴射ノズル51との位置合わせがなされる。該位置合わせは、高圧流体噴射ノズル51の噴射口51aが、基板W1のエッチング溝Meで囲繞された領域Cの中心上方に位置するように行われてもよいし、高圧流体噴射ノズル51の噴射口51aがエッチング溝Meの上方に位置するように行われてもよい。
【0064】
ウェーハWを保持する保持テーブル50が、往方向である-X方向側(図12における紙面奥側)に所定の送り速度で送り出されるとともに、高圧水供給源52が、例えば、圧力18MPa~25MPa、水量0.5mL/分で高圧流体(高圧水)を高圧流体噴射ノズル51に供給する。そして、噴射口51aから下方に向かって噴射された高圧流体が、ストリートSに沿ってウェーハWの裏面Wb側からエッチング溝Meで囲繞された領域C(即ち、チップ)に衝突する。例えば、噴射口51aとウェーハWのマスクJ1との間の距離は、20mm~30mmとなっている。また、ウェーハWのマスクJ1上における高圧水のスポット径が10mm~15mmとなる。よって、プラズマエッチングで形成されたエッチング溝Meの幅に比べてスポット径が大きくなるため、エッチング溝Meの両隣の各領域C(2ライン上の各領域C)に高圧流体(高圧水)が衝突する。
なお、噴射口51aの口径を図示しないスライド部材によって所望の大きさに可変として、スポット径の大きさ等を調整して、1ライン上のエッチング溝Meで囲繞された領域Cのみに高圧流体が衝突するものとしてもよいし、3本以上のライン上の該領域Cに高圧流体が衝突するようにしてもよい。
【0065】
図13に示すように、高圧流体がウェーハWのエッチング溝Meで囲繞された領域Cに衝突することで該領域Cに押圧力が加えられるため、デバイス層D1に該領域Cの外周縁に沿って亀裂や歪みが生成される、又はデバイス層D1が該領域Cの外周縁に沿って破断される。即ち、該領域Cに高圧流体からの押圧力が加わることで、該領域CがテープTの糊層Tcに僅かに沈み込み、エッチング溝Meに対応するデバイス層D1に破断、又は亀裂や歪みが形成される。または、エッチング溝Meに対応するデバイス層D1に鉛直方向のせん断応力や疲労が生じることで、エッチング溝Meに対応するデバイス層D1に破断、又は亀裂や歪みが形成される。なお、本押圧ステップにおいて、デバイス層D1の該領域Cの外周縁に沿って亀裂や歪みが発生した箇所は、例えば、後述するテープTからのデバイスDの剥離によって破断される。
【0066】
ストリートSに沿って該領域Cに高圧流体を噴射し終える所定の位置までウェーハWが-X方向に進行すると、保持テーブル50が-Y方向に例えばインデックスサイズ分だけ移動され、-X方向での加工送りにおいて高圧流体が噴射された該領域Cの隣に位置する該領域Cと高圧流体噴射ノズル51との位置合わせが行われる。ウェーハWが復方向である+X方向(紙面手前側)へ加工送りされ、往方向での高圧流体の噴射と同様に、該領域Cに高圧流体(高圧水)が噴射されて押圧力が加えられ、デバイス層D1に該領域Cの外周縁に沿って亀裂や歪みが生成される、又はデバイス層D1が該領域Cの外周縁に沿って破断される。
なお、保持テーブル50がX軸方向に加工送りされている最中に、エッチング溝Meの1ライン毎に該領域Cのスキャンをゆっくりと行いつつ、保持テーブル50がY軸方向に適宜移動しながら、該領域Cに高圧流体が噴射されるものとしてもよい。
【0067】
順次同様の高圧流体の噴射をX軸方向に延びる全てのストリートSに沿って該各領域Cに対して行った後、さらに、保持テーブル50を90度回転させてから同様の高圧流体の噴射を行って、押圧ステップを終了する。
なお、高圧流体の噴射は、上記の形態に限定されない。例えば、高圧流体の噴射軌跡がウェーハWのストリートSと水平面において略45度、又は略60度等で交差するように行われてもよい。またアライメント手段によるエッチング溝Meの位置の検出を行うことなく、即ち噴射方向を特に定めず噴射を行ってもよい。
【0068】
また、本実施形態においては、先にガイド溝形成ステップを実施してデバイス層D1にガイド溝Mを形成しているため、形成したガイド溝Mを起点にしてデバイス層D1に亀裂が生成される、又はデバイス層D1が破断されるため、デバイスDの損傷を防げ、また、デバイス層D1のサイズが該領域Cより大きくなる(デバイス層D1のはみ出し部分が大きくなる)ことを防ぐことができる。特に、本実施形態においては、1本のストリートSに対応するデバイス層D1に破断起点となる2条のガイド溝Mをエッチング溝Meの両壁に略合致するように形成しているため、デバイス層D1のはみ出し部分が最小限となる。
【0069】
デバイス層D1に該領域Cの外周縁に沿って亀裂や歪みを生成する、又はデバイス層D1を該領域Cの外周縁に沿って破断するのと並行して、該領域Cの水溶性樹脂からなるマスクJ1は、高圧流体によって溶解・除去されるものとしてもよい。
または、該領域CのマスクJ1は、押圧ステップを実施する前、又は、実施後に、図示しない他の洗浄装置によって洗浄除去されるものとしてもよい。
【0070】
(6)テープからのデバイスの剥離
デバイス層D1にエッチング溝Meで囲繞された領域Cの外周縁に沿って亀裂が生成された、又はデバイス層D1が該領域Cの外周縁に沿って破断されたウェーハWは、自然乾燥やブロー乾燥、又はスピン乾燥等された後、例えば図14に示すピックアップ装置6に搬送される。なお、テープTの糊層TcにUV硬化糊が用いられている場合には、ピックアップ装置6においてデバイスDのテープTからの剥離を行う前に、テープTに紫外線を照射して糊層Tcを硬化させ粘着力を低下させてもよい。
ピックアップ装置6では、図示しないクランプ等で環状フレームFが固定され、該領域CのマスクJ1が除去された上面が吸引パッド61で吸引保持されて上方に持ち上げられることで、デバイスDがテープTから剥離される。ここで、デバイス層D1に該領域Cの外周縁に沿って亀裂が生成されている箇所は、ピックアップによってデバイス層D1が該領域Cの外周縁に沿って破断される。なお、該剥離時においては、例えば、Z軸方向に昇降可能な図示しないニードルで、デバイスDを下側からテープTを介して突き上げてもよい。
その結果、図14に示すように、デバイスD及びデバイス層D1を有するデバイスチップC1を形成することができる。
【0071】
なお、例えば、マスクJ1がDAFからなる場合には、前記押圧ステップでマスクJ1は該領域Cから除去されず、該領域CのDAFが吸引パッド61で吸引保持されて上方に持ち上げられることで、デバイスDがテープTから剥離される。その結果、DAFによって他の基板に実装・積層可能でありデバイスD及びデバイス層D1を有するデバイスチップC1を形成できる。
テープTからのデバイスDの剥離は、上記のようなデバイスチップC1を形成するピックアップに限定されるものではない。例えば、図14に示すテープTとは別の円形のテープをウェーハWの裏面Wb全体に貼着して、ウェーハWをテープTから該別途のテープに対して転写することで、テープTから各デバイスDを一体的に剥離してもよい。
【0072】
上記に説明してきたように、本発明に係るウェーハの加工方法においては、押圧ステップの実施後にテープTからデバイスDを剥離(例えば、該領域Cのピックアップ)することで、デバイスチップC1を得ることができる。また、本発明に係る加工方法のいずれのステップにおいても、強パワーのレーザビームの照射をウェーハWの基板W1に対して行わないため、デバイスチップC1の抗折強度の低下を生じさせるおそれもない。
【0073】
本発明に係るウェーハの加工方法の各ステップは上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。また、添付図面に図示されているレーザ加工装置1やプラズマエッチング装置9等の構成要素についても、これに限定されず、本発明の効果を発揮できる範囲内で適宜変更可能である。
【0074】
ガイド溝形成ステップは、少なくとも押圧ステップとテープ貼着ステップとを実施する前に実施していればよいが、本実施形態のように加工方法の最初に行うと、後の各ステップを実施していくにあたってウェーハWの表面Waと裏面Wbとの上下反転作業の回数を減らすことができるため好ましい。
また、ガイド溝形成ステップは必須のステップではない。これは、デバイス層D1の厚みや構成によっては、ガイド溝がデバイス層D1に形成されていなくても、押圧ステップにおいて高圧流体の噴射により押圧力を加えた際にデバイス層D1はエッチング溝Meに沿って破断等可能であるためである。特に、被加工物がデバイスDの外周縁に沿って図示しないガードリングが設けられているウェーハである場合等においては、ガイド溝形成ステップを実施する必要性はさらに低下する。なぜならば、例えば、ガイド溝がデバイス層D1に形成されていないことで、押圧ステップにおいて押圧力を付与してもデバイス層D1が完全に分割されず、それ故、テープTからのデバイスDの剥離においてチップをピックアップすることでデバイス層D1を分割する場合はあり得る。この場合には、デバイス層D1が引きちぎられることになるので、デバイス層D1の種類によってはストリートSを越えてデバイス層D1が剥離してしまうこともある。しかし、ガードリングがデバイスDの外周縁に沿って設けられていれば、ストリートSを越えるデバイス層D1の剥離が防がれる。
【0075】
テープ貼着ステップは、少なくとも、押圧ステップを実施する前段階までに実施されていればよいが、本実施形態のように、マスク形成ステップやプラズマエッチングステップを実施する前に行うと好ましい。これは、マスク形成ステップやプラズマエッチングステップにおいて、ウェーハWのハンドリングを環状フレームFを用いて容易に行うためである。
【符号の説明】
【0076】
W:ウェーハ W1:基板 Wa:ウェーハの表面 S:ストリート D:デバイス
D1:デバイス層 Wb:ウェーハの裏面 T:テープ Td:基材 Tc:糊層
F:環状フレーム
1:レーザ加工装置 10:チャックテーブル 11:レーザビーム照射手段
111:集光器 119:レーザビーム発振器 15:アライメント手段 150:撮像手段 M:デバイス層に形成されたガイド溝
4:スピンコータ 40:保持テーブル 401:固定クランプ 42:回転手段
44:ケーシング 45:ノズル 47:水溶性樹脂供給源 J:水溶性樹脂層
J1:マスク
9:プラズマエッチング装置
90:保持手段 900:支持部材 901:電極 91:ガス噴出ヘッド 910:ガス拡散空間 911:ガス導入口 912:ガス吐出口 92:チャンバ 920:搬入出口 921:ゲートバルブ 93:ガス供給部 94,94a:整合器 95、95a:高周波電源、バイアス高周波電源 96:排気口 97:排気装置 98:フレーム加熱防止ガード Me:エッチング溝
50:保持テーブル 50a:載置面 500:固定クランプ
51:高圧流体噴射ノズル 51a:噴射口 52:高圧水供給源
6:ピックアップ装置 61:吸引パッド
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14