(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-13
(45)【発行日】2023-12-21
(54)【発明の名称】偏光子および画像表示装置
(51)【国際特許分類】
G02B 5/30 20060101AFI20231214BHJP
【FI】
G02B5/30
(21)【出願番号】P 2022159387
(22)【出願日】2022-10-03
(62)【分割の表示】P 2020527410の分割
【原出願日】2019-06-17
【審査請求日】2022-10-04
(31)【優先権主張番号】P 2018122454
(32)【優先日】2018-06-27
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】306037311
【氏名又は名称】富士フイルム株式会社
(74)【代理人】
【識別番号】100152984
【氏名又は名称】伊東 秀明
(74)【代理人】
【識別番号】100148080
【氏名又は名称】三橋 史生
(72)【発明者】
【氏名】星野 渉
(72)【発明者】
【氏名】▲高▼田 佳明
(72)【発明者】
【氏名】石綿 靖宏
(72)【発明者】
【氏名】藤木 優壮
(72)【発明者】
【氏名】齋藤 健吾
【審査官】池田 博一
(56)【参考文献】
【文献】特開2011-237513(JP,A)
【文献】特開2011-215336(JP,A)
【文献】国際公開第2010/038817(WO,A1)
【文献】国際公開第2017/154907(WO,A1)
【文献】国際公開第2017/154695(WO,A1)
【文献】特開2013-210624(JP,A)
【文献】米国特許出願公開第2017/0031074(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G02B 5/30
(57)【特許請求の範囲】
【請求項1】
液晶性化合物と、
455nm以上560nm未満の範囲に最大吸収波長を有する第1の二色性物質と、
560nm以上700nm以下の範囲に最大吸収波長を有する第2の二色性物質と、
380nm以上455nm未満の範囲に最大吸収波長を有する第3の二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
前記第1の二色性物質が、下記式(2)で表される構造を有する二色性色素化合物であり、
前記第2の二色性物質が、下記式(3)で表される構造を有する二色性色素化合物であり、
前記第1の二色性物質から形成される配列構造と、前記第2の二色性物質から形成される配列構造とを有する、偏光子。
【化1】
式(2)中、
mは、1または2を表す。
Ar
1
およびAr
2
は、それぞれ独立に、置換基を有していてもよいフェニレン基を表す。
Ar
3
は、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基または置換基を有していてもよい複素環基を表す。
R
1
は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、または、アルキルシリル基を表す。
R
2
およびR
3
は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表し、R
2
およびR
3
は、互いに結合して環を形成せず、R
2
またはR
3
は、Ar
3
と結合して環を形成しない。
【化2】
前記式(3)中、
R
4
およびR
5
は、置換基を表し、R
6
およびR
7
は、それぞれ独立に、水素原子または置換基を表す。
Ar
4
およびAr
5
は、それぞれ独立に、置換基を有していてもよい2価の芳香族基を表す。
Eは、単結合、または、窒素原子、酸素原子および硫黄原子のいずれかの原子を表す。
Qは、酸素原子または硫黄原子を表す。
Lは、単結合、-N=N-、-CR=N-、-CR=CR’-、または、-C(=O)-NR-を表す。RおよびR’は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、または、炭素数1~6のアルキル基を表す。
nは、0または1を表す。ただし、Eが、単結合または酸素原子もしくは硫黄原子である場合には、nは0であり、Eが、窒素原子である場合には、nは1である。
【請求項2】
液晶性化合物と、455nm以上560nm未満の範囲に最大吸収波長を有する第1の二色性物質と、560nm以上700nm以下の範囲に最大吸収波長を有する第2の二色性物質と、380nm以上455nm未満の範囲に最大吸収波長を有する第3の二色性物質とを含有する偏光子形成用組成物から形成される偏光子であって、
前記第1の二色性物質が、下記式(2)で表される構造を有する二色性色素化合物であり、
前記第2の二色性物質が、下記式(3)で表される構造を有する二色性色素化合物であり、
前記第1の二色性物質から形成される配列構造と、前記第2の二色性物質から形成される配列構造とを有する、偏光子。
【化3】
式(2)中、
mは、1または2を表す。
Ar
1
およびAr
2
は、それぞれ独立に、置換基を有していてもよいフェニレン基を表す。
Ar
3
は、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基または置換基を有していてもよい複素環基を表す。
R
1
は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、または、アルキルシリル基を表す。
R
2
およびR
3
は、それぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表し、R
2
およびR
3
は、互いに結合して環を形成してもよいし、R
2
またはR
3
は、Ar
3
と結合して環を形成してもよい。
【化4】
前記式(3)中、
R
4
は、置換基を表し、R
6
およびR
7
は、それぞれ独立に、水素原子または置換基を表す。
R
5
は、炭素数1~20のアルキル基を表す。ただし、前記アルキル基を構成する少なくとも1つの炭素原子は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH
3
)
2
-O-Si(CH
3
)
2
-、-N(R)-、-N(R)-CO-、-CO-N(R)-、-N(R)-C(O)-O-、-O-C(O)-N(R)-、-N(R)-C(O)-N(R’)-、-CH=CH-、-C≡C-、-N=N-、-C(R)=N-、-C(R)=CH-C(O)-または-O-C(O)-O-、によって置換されている。RおよびR’は、アルキル基を表す。
Ar
4
およびAr
5
は、それぞれ独立に、置換基を有していてもよい2価の芳香族基を表す。
Eは、単結合、または、窒素原子、酸素原子および硫黄原子のいずれかの原子を表す。
Qは、酸素原子または硫黄原子を表す。
Lは、単結合、-N=N-、-CR=N-、-CR=CR’-、または、-C(=O)-NR-を表す。RおよびR’は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、または、炭素数1~6のアルキル基を表す。
nは、0または1を表す。ただし、Eが、単結合または酸素原子もしくは硫黄原子である場合には、nは0であり、Eが、窒素原子である場合には、nは1である。
【請求項3】
前記第1の二色性物質から形成される配列構造において、前記第1の二色性物質が会合体を形成し、前記第2の二色性物質から形成される配列構造において、前記第2の二色性物質が会合体を形成している、請求項1
または2に記載の偏光子。
【請求項4】
下記式(I)および(II)を満たす、請求項1~
3のいずれか1項に記載の偏光子。
|λM-λ1|≦5nm ・・・(I)
|λ1-λ1’|≧5nm ・・・(II)
ここで、前記式(I)および(II)中、
λMは、前記第1の二色性物質、前記第2の二色性物質
、前記第3の二色性物質および前記液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、前記第1の二色性物質
および前記第3の二色性物質を含有せず、前記第2の二色性物質および前記液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、の差スペクトルにおける最大吸収波長をいい、
λ1は、前記第2の二色性物質
および前記第3の二色性物質を含有せず、前記第1の二色性物質および前記液晶性化合物を含有する組成物から形成される膜の吸収スペクトルにおける最大吸収波長をいい、
λ1’は、前記第1の二色性物質を溶解させた溶液の吸収スペクトルにおける最大吸収波長をいう。
【請求項5】
下記式(III)および(IV)を満たす、請求項1~
4のいずれか1項に記載の偏光子。
|λC-λ2|≦5nm ・・・(III)
|λ2-λ2’|≧5nm ・・・(IV)
ここで、前記式(III)および(IV)中、
λCは、前記第1の二色性物質、前記第2の二色性物質および前記液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、前記第2の二色性物質を含有せず、前記第1の二色性物質および前記液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、の差スペクトルにおける最大吸収波長をいい、
λ2は、前記第1の二色性物質を含有せず、前記第2の二色性物質および前記液晶性化合物を含有する組成物から形成される膜の吸収スペクトルにおける最大吸収波長をいい、
λ2’は、前記第2の二色性物質を溶解させた溶液の吸収スペクトルにおける最大吸収波長をいう。
【請求項6】
前記第1の二色性物質から形成される配列構造において、前記第1の二色性物質が結晶構造を形成し、前記第2の二色性物質から形成される配列構造において、前記第2の二色性物質が結晶構造を形成している、請求項1~
5のいずれか1項に記載の偏光子。
【請求項7】
下記式(V)を満たす、請求項1~
6のいずれか1項に記載の偏光子。
0.9≦MO/M≦1.1 ・・・(V)
ここで、前記式(V)中、
MOは、前記第1の二色性物質、前記第2の二色性物質および前記液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける前記第1の二色性物質の周期構造に由来するピークの強度をいい、
Mは、前記第2の二色性物質を含有せず、前記第1の二色性物質および前記液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける前記第1の二色性物質の周期構造に由来するピークの強度をいう。
【請求項8】
下記式(VI)を満たす、請求項1~
7のいずれか1項に記載の偏光子。
0.9≦CO/C≦1.1 ・・・(VI)
ここで、前記式(VI)中、
COは、前記第1の二色性物質、前記第2の二色性物質および前記液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける前記第2の二色性物質の周期構造に由来するピークの強度をいい、
Cは、前記第1の二色性物質を含有せず、前記第2の二色性物質および前記液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける前記第2の二色性物質の周期構造に由来するピークの強度をいう。
【請求項9】
前記第1の二色性物質の側鎖のlogP値と、前記第2の二色性物質の側鎖のlogP値との差の絶対値が、1.1以上である、請求項1~
8のいずれか1項に記載の偏光子。
【請求項10】
請求項1~
9のいずれか1項に記載の偏光子を有する、画像表示装置。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、偏光子および画像表示装置に関する。
【背景技術】
【0002】
従来、レーザー光または自然光を含む照射光の減衰機能、偏光機能、散乱機能、または、遮光機能等が必要となった際には、それぞれの機能ごとに異なった原理によって作動する装置を利用していた。そのため、上記の機能に対応する製品も、それぞれの機能別に異なった製造工程によって製造されていた。
例えば、画像表示装置(例えば、液晶表示装置)では、表示における旋光性または複屈折性を制御するために直線偏光子または円偏光子が用いられている。また、有機発光ダイオード(Organic Light Emitting Diode:OLED)においても、外光の反射防止のために円偏光子が使用されている。
【0003】
従来、これらの偏光子には、ヨウ素が二色性物質として広く使用されてきたが、ヨウ素の代わりに有機色素を二色性物質として使用する偏光子についても検討されている。
例えば、特許文献1には、高分子液晶性化合物と二色性物質とを含有する偏光子形成用組成物が開示されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
このようななか、本発明者らが特許文献1の実施例を参考に偏光子を作製し、その配向度を評価したところ、今後予想される画像表示装置等の性能向上を鑑みると、配向度をさらに向上させることが望ましいことが明らかになった。
【0006】
そこで、本発明は、上記実情を鑑みて、配向度の高い偏光子および上記偏光子を有する画像表示装置を提供することを課題とする。
【課題を解決するための手段】
【0007】
本発明者らは、上記課題について鋭意検討した結果、液晶性化合物と第1の二色性物質と第2の二色性物質とを含有する偏光子形成用組成物から形成される偏光子が、第1の二色性物質から形成される配列構造と、第2の二色性物質から形成される配列構造とを有していれば、配向度が向上することを見出し、本発明に至った。
すなわち、本発明者らは、以下の構成により上記課題が解決できることを見出した。
【0008】
[1] 液晶性化合物と、第1の二色性物質と、第2の二色性物質と、を含有する偏光子形成用組成物から形成される偏光子であって、
第1の二色性物質から形成される配列構造と、第2の二色性物質から形成される配列構造とを有する、偏光子。
【0009】
[2] 第1の二色性物質から形成される配列構造において、第1の二色性物質が会合体を形成し、第2の二色性物質から形成される配列構造において、第2の二色性物質が会合体を形成している、[1]に記載の偏光子。
【0010】
[3] 下記式(I)および(II)を満たす、[1]または[2]に記載の偏光子。
|λM-λ1|≦5nm ・・・(I)
|λ1-λ1’|≧5nm ・・・(II)
ここで、上記式(I)および(II)中、
λMは、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、の差スペクトルにおける最大吸収波長をいい、
λ1は、第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物から形成される膜の吸収スペクトルにおける最大吸収波長をいい、
λ1’は、第1の二色性物質を溶解させた溶液の吸収スペクトルにおける最大吸収波長をいう。
【0011】
[4] 下記式(III)および(IV)を満たす、[1]~[3]のいずれかに記載の偏光子。
|λC-λ2|≦5nm ・・・(III)
|λ2-λ2’|≧5nm ・・・(IV)
ここで、上記式(III)および(IV)中、
λCは、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物から形成される膜の吸収スペクトルと、の差スペクトルにおける最大吸収波長をいい、
λ2は、第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜の吸収スペクトルにおける最大吸収波長をいい、
λ2’は、第2の二色性物質を溶解させた溶液の吸収スペクトルにおける最大吸収波長をいう。
【0012】
[5] 第1の二色性物質から形成される配列構造において、第1の二色性物質が結晶構造を形成し、第2の二色性物質から形成される配列構造において、第2の二色性物質が結晶構造を形成している、[1]~[4]のいずれかに記載の偏光子。
【0013】
[6] 下記式(V)を満たす、[1]~[5]のいずれかに記載の偏光子。
0.9≦MO/M≦1.1 ・・・(V)
ここで、上記式(V)中、
MOは、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける第1の二色性物質の周期構造に由来するピークの強度をいい、
Mは、第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける第1の二色性物質の周期構造に由来するピークの強度をいう。
【0014】
[7] 下記式(VI)を満たす、[1]~[6]のいずれかに記載の偏光子。
0.9≦CO/C≦1.1 ・・・(VI)
ここで、上記式(VI)中、
COは、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける第2の二色性物質の周期構造に由来するピークの強度をいい、
Cは、第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜のX線回折スペクトルにおける第2の二色性物質の周期構造に由来するピークの強度をいう。
【0015】
[8] 第1の二色性物質が、455nm以上560nm未満の範囲に最大吸収波長を有する二色性物質であり、
第2の二色性物質が、560nm以上700nm以下の範囲に最大吸収波長を有する二色性物質である、[1]~[7]のいずれかに記載の偏光子。
[9] 偏光子形成用組成物が、更に、380nm以上455nm未満の範囲に最大吸収波長を有する第3の二色性物質を含有する、[8]に記載の偏光子。
[10] 第1の二色性物質の側鎖のlogP値と、第2の二色性物質の側鎖のlogP値との差の絶対値が、1.1以上である、[1]~[9]のいずれかに記載の偏光子。
[11] [1]~[10]のいずれかに記載の偏光子を有する、画像表示装置。
【発明の効果】
【0016】
以下に示すように、本発明によれば、配向度の高い偏光子および上記偏光子を有する画像表示装置を提供できる。
【図面の簡単な説明】
【0017】
【
図1】第1の二色性物質から形成される配列構造と、第2の二色性物質から形成される配列構造とを有する状態の一例を示す概念図である。
【
図3】実施例1の偏光子1(膜1)に対応するXRD(X‐ray diffraction)スペクトルを示す図である。
【
図4】偏光子1-1(膜1-1)に対応するXRDスペクトルを示す図である。
【
図5】偏光子1-3(膜1-3)に対応するXRDスペクトルを示す図である。
【発明を実施するための形態】
【0018】
以下に、本発明について詳細に説明する。
以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
また、各成分は、各成分に該当する物質を1種単独でも用いても、2種以上を併用してもよい。ここで、各成分について2種以上の物質を併用する場合、その成分についての含有量とは、特段の断りが無い限り、併用した物質の合計の含有量を指す。
また、「(メタ)アクリレート」は、「アクリレート」または「メタクリレート」を表す表記であり、「(メタ)アクリル」は、「アクリル」または「メタクリル」を表す表記であり、「(メタ)アクリロイル」は、「アクリロイル」または「メタクリロイル」を表す表記である。
【0019】
[偏光子]
本発明の偏光子は、液晶性化合物と、第1の二色性物質と、第2の二色性物質と、を含有する偏光子形成用組成物から形成される偏光子である。
また、本発明の偏光子は、第1の二色性物質から形成される配列構造(以下、「第1配列構造」とも略す。)と、第2の二色性物質から形成される配列構造(以下、「第2配列構造」とも略す。)とを有する。すなわち、本発明の偏光子は、第1配列構造と第2配列構造とを別々に有するものである。
【0020】
本発明において、第1配列構造とは、偏光子中において、第1の二色性物質の2つ以上の分子が集まって集合体を形成し、集合体中で第1の二色性物質の分子が周期的に配列している状態を意味する。同様に、第2配列構造とは、偏光子中において、第2の二色性物質の2つ以上の分子が集まって集合体を形成し、集合体中で第2の二色性物質の分子が周期的に配列している状態を意味する。
図1は、第1の二色性物質から形成される配列構造と、第2の二色性物質から形成される配列構造とを有する状態の一例を示す概念図である。
図1に示す偏光子Pは、第1の二色性物質の分子Mと、第2の二色性物質の分子Cと、液晶性化合物の分子Lと、を有する。
また、
図1に示すように、2分子以上の分子Mを含む集合体G、および、2以上の分子Cを含む集合体Gが形成されており、これらの集合体Gにおいて、分子Mまたは分子Cの長軸方向が同一方向に沿って並んでおり、分子M同士または分子C同士が幅wの周期でずれるように配置されている。
また、第1配列構造および第2配列構造は、
図1の配列構造に限定されず、例えば、
図2に示すように、分子M(第2配列構造においては分子C)が角度aの周期でずれるように配置されていてもよい。
なお、偏光子中において、第1の二色性物質は重合していてもよい。同様に、偏光子中において、第2の二色性物質は重合していてもよい。
【0021】
〔偏光子形成用組成物〕
本発明の偏光子の形成に用いる偏光子形成用組成物(以下、「本組成物」ともいう。)は、液晶性化合物と、第1の二色性物質と、第2の二色性物質と、を含有する。本組成物は、必要に応じて、第3の二色性物質、溶媒、重合開始剤、界面改良剤、または、これら以外の他の成分を含有していてもよい。
以下、各成分について説明する。
【0022】
<液晶性化合物>
本組成物は、液晶性化合物を含有する。液晶性化合物を含有することで、二色性物質の析出を抑止しながら、二色性物質を高い配向度で配向させることができる。
液晶性化合物は、二色性を示さない液晶性化合物である。
液晶性化合物としては、低分子液晶性化合物および高分子液晶性化合物のいずれも用いることができる。ここで、「低分子液晶性化合物」とは、化学構造中に繰り返し単位を有さない液晶性化合物のことをいう。また、「高分子液晶性化合物」とは、化学構造中に繰り返し単位を有する液晶性化合物のことをいう。
低分子液晶性化合物としては、例えば、特開2013-228706号公報に記載されている液晶性化合物が挙げられる。
高分子液晶性化合物としては、例えば、特開2011-237513号公報に記載されているサーモトロピック液晶性高分子が挙げられる。また、高分子液晶性化合物は、末端に架橋性基(例えば、アクリロイル基およびメタクリロイル基)を有していてもよい。
液晶性化合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
液晶性化合物の含有量は、本組成物中の二色性物質の含有量100質量部に対して、25~2500質量部が好ましく、33~2000質量部がより好ましく、50~1000質量部がさらに好ましい。液晶性化合物の含有量が上記範囲内にあることで、偏光子の配向度がより向上する。
なお、「本組成物中の二色性物質の含有量」とは、第1の二色性物質および第2の二色性物質の合計量を意味し、本組成物が第3の二色性物質を含有する場合には、第3の二色性物質の含有量も合計量に含めるものとする。
【0023】
液晶性化合物は、得られる偏光子の配向度がより高くなる理由から、下記式(1)で表される繰り返し単位(以下、「繰り返し単位(1)」とも言う)を含む高分子液晶性化合物であることが好ましい。なお、以下の説明において、「得られる偏光子の配向度がより高くなる」ことを「本発明の効果がより優れる」とも言う。
【0024】
【0025】
上記式(1)中、P1は繰り返し単位の主鎖を表し、L1は単結合または2価の連結基を表し、SP1はスペーサー基を表し、M1はメソゲン基を表し、T1は末端基を表す。
【0026】
P1が表す繰り返し単位の主鎖としては、具体的には、例えば、下記式(P1-A)~(P1-D)で表される基が挙げられ、なかでも、原料となる単量体の多様性および取り扱いが容易である観点から、下記式(P1-A)で表される基が好ましい。
【0027】
【0028】
上記式(P1-A)~(P1-D)において、「*」は、上記式(1)におけるL1との結合位置を表す。
上記式(P1-A)~(P1-D)において、R1、R2、R3およびR4は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基または炭素数1~10のアルキル基、炭素数1~10のアルコキシ基を表す。上記アルキル基は、直鎖または分岐のアルキル基であってもよいし、環状構造を有するアルキル基(シクロアルキル基)であってもよい。また、上記アルキル基の炭素数は、1~5が好ましい。
上記式(P1-A)で表される基は、(メタ)アクリル酸エステルの重合によって得られるポリ(メタ)アクリル酸エステルの部分構造の一単位であることが好ましい。
上記式(P1-B)で表される基は、エポキシ基を有する化合物のエポキシ基を開環重合して形成されるエチレングリコール単位であることが好ましい。
上記式(P1-C)で表される基は、オキセタン基を有する化合物のオキセタン基を開環重合して形成されるプロピレングリコール単位であることが好ましい。
上記式(P1-D)で表される基は、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物の縮重合によって得られるポリシロキサンのシロキサン単位であることが好ましい。ここで、アルコキシシリル基およびシラノール基の少なくとも一方の基を有する化合物としては、式SiR14(OR15)2-で表される基を有する化合物が挙げられる。式中、R14は、(P1-D)におけるR14と同義であり、複数のR15はそれぞれ独立に、水素原子または炭素数1~10のアルキル基を表す。
【0029】
上記式(1)中、L1は、単結合または2価の連結基である。
L1が表す2価の連結基としては、-C(O)O-、-OC(O)-、-O-、-S-、-C(O)NR3-、-NR3C(O)-、-SO2-、および、-NR3R4-などが挙げられる。式中、R3およびR4はそれぞれ独立に、水素原子、置換基を有していてもよい炭素数1~6のアルキル基を表わす。
P1が式(P1-A)で表される基である場合には、本発明の効果がより優れる理由から、L1は-C(O)O-で表される基が好ましい。
P1が式(P1-B)~(P1-D)で表される基である場合には、本発明の効果がより優れる理由から、L1は単結合が好ましい。
【0030】
上記式(1)中、SP1が表すスペーサー基は、液晶性を発現しやすいことや、原材料の入手性などの理由から、オキシエチレン構造、オキシプロピレン構造、ポリシロキサン構造およびフッ化アルキレン構造からなる群より選択される少なくとも1種の構造を含むことが好ましい。
ここで、SP1が表すオキシエチレン構造は、*-(CH2-CH2O)n1-*で表される基が好ましい。式中、n1は1~20の整数を表し、*は、上記式(1)中のL1またはM1との結合位置を表す。n1は、本発明の効果がより優れる理由から、2~10の整数であることが好ましく、2~4の整数であることがより好ましく、3であることが最も好ましい。
また、SP1が表すオキシプロピレン構造は、本発明の効果がより優れる理由から、*-(CH(CH3)-CH2O)n2-*で表される基が好ましい。式中、n2は1~3の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すポリシロキサン構造は、本発明の効果がより優れる理由から、*-(Si(CH3)2-O)n3-*で表される基が好ましい。式中、n3は6~10の整数を表し、*はL1またはM1との結合位置を表す。
また、SP1が表すフッ化アルキレン構造は、本発明の効果がより優れる理由から、*-(CF2-CF2)n4-*で表される基が好ましい。式中、n4は6~10の整数を表し、*はL1またはM1との結合位置を表す。
【0031】
上記式(1)中、M1が表すメソゲン基とは、液晶形成に寄与する液晶分子の主要骨格を示す基である。液晶分子は、結晶状態と等方性液体状態の中間の状態(メソフェーズ)である液晶性を示す。メソゲン基については特に制限はなく、例えば、「Flussige Kristalle in Tabellen II」(VEB Deutsche Verlag fur Grundstoff Industrie,Leipzig、1984年刊)、特に第7頁~第16頁の記載、および、液晶便覧編集委員会編、液晶便覧(丸善、2000年刊)、特に第3章の記載、を参照することができる。
メソゲン基としては、例えば、芳香族炭化水素基、複素環基、および脂環式基からなる群より選択される少なくとも1種の環状構造を有する基が好ましい。
メソゲン基は、本発明の効果がより優れる理由から、芳香族炭化水素基を有するのが好ましく、2~4個の芳香族炭化水素基を有するのがより好ましく、3個の芳香族炭化水素基を有するのがさらに好ましい。
【0032】
メソゲン基としては、液晶性の発現、液晶相転移温度の調整、原料入手性および合成適性という観点、並びに、本発明の効果がより優れるから、下記式(M1-A)または下記式(M1-B)で表される基が好ましく、式(M1-B)で表される基がより好ましい。
【0033】
【0034】
式(M1-A)中、A1は、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。これらの基は、アルキル基、フッ化アルキル基、アルコキシ基又は置換基で置換されていてもよい。
A1で表される2価の基は、4~6員環であることが好ましい。また、A1で表される2価の基は、単環でも、縮環であってもよい。
*は、SP1またはT1との結合位置を表す。
【0035】
A1が表す2価の芳香族炭化水素基としては、フェニレン基、ナフチレン基、フルオレン-ジイル基、アントラセン-ジイル基およびテトラセン-ジイル基などが挙げられ、メソゲン骨格の設計の多様性や原材料の入手性などの観点から、フェニレン基またはナフチレン基が好ましく、フェニレン基がより好ましい。
【0036】
A1が表す2価の複素環基としては、芳香族または非芳香族のいずれであってもよいが、配向度がより向上するという観点から、2価の芳香族複素環基であることが好ましい。
2価の芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
2価の芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基、チアゾロチアゾール-ジイル基、チエノチオフェン-ジイル基、および、チエノオキサゾール-ジイル基などが挙げられる。
【0037】
A1が表す2価の脂環式基の具体例としては、シクロペンチレン基およびシクロへキシレン基などが挙げられる。
【0038】
式(M1-A)中、a1は1~10の整数を表す。a1が2以上である場合には、複数のA1は同一でも異なっていてもよい。
【0039】
式(M1-B)中、A2およびA3はそれぞれ独立に、芳香族炭化水素基、複素環基および脂環式基からなる群より選択される2価の基である。A2およびA3の具体例および好適態様は、式(M1-A)のA1と同様であるので、その説明を省略する。
式(M1-B)中、a2は1~10の整数を表し、a2が2以上である場合には、複数のA2は同一でも異なっていてもよく、複数のA3は同一でも異なっていてもよく、複数のLA1は同一でも異なっていてもよい。a2は、本発明の効果がより優れる理由から、2以上の整数であることが好ましく、2であることがより好ましい。
式(M1-B)中、a2が1である場合には、LA1は2価の連結基である。a2が2以上である場合には、複数のLA1はそれぞれ独立に、単結合または2価の連結基であり、複数のLA1のうち少なくとも1つが2価の連結基である。a2が2である場合、本発明の効果がより優れる理由から、2つのLA1のうち、一方が2価の連結基であり、他方が単結合であることが好ましい。
【0040】
式(M1-B)中、LA1が表す2価の連結基としては、-O-、-(CH2)g-、-(CF2)g-、-Si(CH3)2-、-(Si(CH3)2O)g-、-(OSi(CH3)2)g-(gは1~10の整数を表す。)、-N(Z)-、-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)2-C(Z’)2-、-C(O)-、-OC(O)-、-C(O)O-、-O-C(O)O-、-N(Z)C(O)-、-C(O)N(Z)-、-C(Z)=C(Z’)-C(O)O-、-O-C(O)-C(Z)=C(Z’)-、-C(Z)=N-、-N=C(Z)-、-C(Z)=C(Z’)-C(O)N(Z”)-、-N(Z”)-C(O)-C(Z)=C(Z’)-、-C(Z)=C(Z’)-C(O)-S-、-S-C(O)-C(Z)=C(Z’)-、-C(Z)=N-N=C(Z’)-(Z、Z’、Z”は独立に、水素、C1~C4アルキル基、シクロアルキル基、アリール基、シアノ基、または、ハロゲン原子を表す。)、-C≡C-、-N=N-、-S-、-S(O)-、-S(O)(O)-、-(O)S(O)O-、-O(O)S(O)O-、-SC(O)-、および、-C(O)S-などが挙げられる。なかでも、本発明の効果がより優れる理由から、-C(O)O-が好ましい。LA1は、これらの基を2つ以上組み合わせた基であってもよい。
【0041】
M1の具体例としては、例えば以下の構造が挙げられる。なお、下記具体例において、「Ac」は、アセチル基を表す。
【0042】
【0043】
【0044】
上記式(1)中、T1が表す末端基としては、水素原子、ハロゲン原子、シアノ基、ニトロ基、ヒドロキシ基、炭素数1~10のアルキル基、炭素数1~10のアルコキシ基、炭素数1~10のアルキルチオ基、炭素数1~10のアルコキシカルボニルオキシ基、炭素数1~10のアルコキシカルボニル基(ROC(O)-:Rはアルキル基)、炭素数1~10のアシルオキシ基、炭素数1~10のアシルアミノ基、炭素数1~10のアルコキシカルボニルアミノ基、炭素数1~10のスルホニルアミノ基、炭素数1~10のスルファモイル基、炭素数1~10のカルバモイル基、炭素数1~10のスルフィニル基、および、炭素数1~10のウレイド基、(メタ)アクリロイルオキシ基含有基などが挙げられる。上記(メタ)アクリロイルオキシ基含有基としては、例えば、-L-A(Lは単結合又は連結基を表す。連結基の具体例は上述したL1及びSP1と同じである。Aは(メタ)アクリロイルオキシ基を表す)で表される基が挙げられる。
T1は、本発明の効果がより優れる理由から、炭素数1~10のアルコキシ基が好ましく、炭素数1~5のアルコキシがより好ましく、メトキシ基がさらに好ましい。これらの末端基は、これらの基、または、特開2010-244038号公報に記載の重合性基によって、さらに置換されていてもよい。
T1の主鎖の原子数は、本発明の効果がより優れる理由から、1~20が好ましく、1~15がより好ましく、1~10がさらに好ましく、1~7が特に好ましい。T1の主鎖の原子数が20以下であることで、偏光子の配向度がより向上する。ここで、T1おける「主鎖」とは、M1と結合する最も長い分子鎖を意味し、水素原子はT1の主鎖の原子数にカウントしない。例えば、T1がn-ブチル基である場合には主鎖の原子数は4であり、T1がsec-ブチル基である場合の主鎖の原子数は3である。
【0045】
繰り返し単位(1)の含有量は、本発明の効果がより優れる理由から、高分子液晶性化合物が有する全繰り返し単位100質量%に対して、20~100質量%が好ましい。
本発明において、高分子液晶性化合物に含まれる各繰り返し単位の含有量は、各繰り返し単位を得るために使用される各単量体の仕込み量(質量)に基づいて算出される。
繰り返し単位(1)は、高分子液晶性化合物中において、1種単独で含まれていてもよいし、2種以上含まれていてもよい。なかでも、本発明の効果がより優れる理由から、繰り返し単位(1)が高分子液晶性化合物中に2種含まれているのがよい。
【0046】
高分子液晶性化合物が繰り返し単位(1)を2種含む場合、本発明の効果がより優れる理由から、一方(繰り返し単位A)においてT1が表す末端基がアルコキシ基であり、他方(繰り返し単位B)においてT1が表す末端基がアルコキシ基以外の基であることが好ましい。
上記繰り返し単位BにおいてT1が表す末端基は、本発明の効果がより優れる理由から、アルコキシカルボニル基、シアノ基、又は、(メタ)アクリロイルオキシ基含有基であることが好ましく、アルコキシカルボニル基、又は、シアノ基であることがより好ましい。
高分子液晶性化合物中の上記繰り返し単位Aの含有量と高分子液晶性化合物中の上記繰り返し単位Bの含有量との割合(A/B)は、本発明の効果がより優れる理由から、50/50~95/5であることが好ましく、60/40~93/7であることがより好ましく、70/30~90/10であることがさらに好ましい。
【0047】
(重量平均分子量)
高分子液晶性化合物の重量平均分子量(Mw)は、本発明の効果がより優れる理由から、1000~500000が好ましく、2000~300000がより好ましい。高分子液晶性化合物のMwが上記範囲内にあれば、高分子液晶性化合物の取り扱いが容易になる。
特に、塗布時のクラック抑制の観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000以上が好ましく、10000~300000がより好ましい。
また、配向度の温度ラチチュードの観点から、高分子液晶性化合物の重量平均分子量(Mw)は、10000未満が好ましく、2000以上10000未満が好ましい。
ここで、本発明における重量平均分子量および数平均分子量は、ゲル浸透クロマトグラフ(GPC)法により測定された値である。
・溶媒(溶離液):N-メチルピロリドン
・装置名:TOSOH HLC-8220GPC
・カラム:TOSOH TSKgelSuperAWM-H(6mm×15cm)を3本接続して使用
・カラム温度:25℃
・試料濃度:0.1質量%
・流速:0.35mL/min
・校正曲線:TOSOH製TSK標準ポリスチレン Mw=2800000~1050(Mw/Mn=1.03~1.06)までの7サンプルによる校正曲線を使用
【0048】
(logP値)
本発明においては、後述する第1の二色性物質および第2の二色性物質との相溶性を調整しやすくなる理由から、液晶性化合物のlogP値が4.0~10であることが好ましく、4.3~9.5であることがより好ましく、4.3~5.5であることが更に好ましい。
ここで、logP値は、化学構造の親水性および疎水性の性質を表現する指標であり、親疎水パラメータと呼ばれることがある。logP値は、ChemBioDraw UltraまたはHSPiP(Ver.4.1.07)などのソフトウェアを用いて計算できる。また、OECD Guidelines for the Testing of Chemicals,Sections 1,Test No.117の方法などにより、実験的に求めることもできる。本発明では特に断りのない限り、HSPiP(Ver.4.1.07)に化合物の構造式を入力して算出される値をlogP値として採用する。
【0049】
<第1の二色性物質>
本組成物が含有する第1の二色性物質は、後述する第2の二色性物質と異なる化合物でれば特に限定されず、例えば、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば、量子ロッド)等の従来公知の二色性物質が挙げられる。
これらのうち、二色性物質の核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族炭化水素基およびアゾ基の両方を有する構造が好ましく、芳香族炭化水素基と2または3つのアゾ基とを有するビスアゾまたはトリスアゾ構造がより好ましい。
側鎖としては、特に限定されず、後述の式(2)のR1、R2およびR3で表される基が挙げられる。
【0050】
第1の二色性物質としては、下記式(2)で表される構造を有する二色性色素化合物が好適に挙げられる。
【化11】
【0051】
式(2)中、mは1または2を表す。
式(2)中、Ar1、Ar2およびAr3はそれぞれ独立に、置換基を有していてもよいフェニレン基、置換基を有していてもよいナフチレン基または置換基を有していてもよい複素環基を表す。
複素環基としては、芳香族または非芳香族のいずれであってもよい。
芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。
芳香族複素環基の具体例としては、例えば、ピリジレン基(ピリジン-ジイル基)、ピリダジン-ジイル基、イミダゾール-ジイル基、チエニレン(チオフェン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、オキサゾール-ジイル基、チアゾール-ジイル基、オキサジアゾール-ジイル基、ベンゾチアゾール-ジイル基、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チアゾロチアゾール-ジイル基、および、チエノチオフェン-ジイル基、などが挙げられる。
【0052】
式(2)中、R1は、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アルキルチオ基、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルカーボネート基、アルキルアミノ基、アシルアミノ基、アルキルカルボニルアミノ基、アルコキシカルボニルアミノ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルカルバモイル基、アルキルスルフィニル基、アルキルウレイド基、アルキルリン酸アミド基、アルキルイミノ基、アルキルシリル基、を表す。
上記アルキル基の炭素原子は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH3)2-O-Si(CH3)2-、-N(R1’)-、-N(R1’)-CO-、-CO-N(R1’)-、-N(R1’)-C(O)-O-、-O-C(O)-N(R1’)-、-N(R1’)-C(O)-N(R1’)-、-CH=CH-、-C≡C-、-N=N-、-C(R1’)=CH-C(O)-または-O-C(O)-O-、によって置換されていてもよい。
R1が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R1’)2、アミノ基、-C(R1’)=C(R1’)-NO2、-C(R1’)=C(R1’)-CN、または、-C(R1’)=C(CN)2、によって置換されていてもよい。
R1’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R1’が複数存在する場合、互いに同一であっても異なっていてもよい。
【0053】
式(2)中、R2およびR3はそれぞれ独立に、水素原子、炭素数1~20の置換基を有していてもよい直鎖もしくは分岐状のアルキル基、アルコキシ基、アシル基、アルキルオキシカルボニル基、アルキルアミド基、アルキルスルホニル基、アリール基、アリールカルボニル基、アリールスルホニル基、アリールオキシカルボニル基、または、アリールアミド基を表す。
上記アルキル基の炭素原子は、-O-、-S-、-C(O)-、-C(O)-O-、-O-C(O)-、-C(O)-S-、-S-C(O)-、-Si(CH3)2-O-Si(CH3)2-、-NR2’-、-NR2’-CO-、-CO-NR2’-、-NR2’-C(O)-O-、-O-C(O)-NR2’-、-NR2’-C(O)-NR2’-、-CH=CH-、-C≡C-、-N=N-、-C(R2’)=CH-C(O)-、または、-O-C(O)-O-、によって置換されていてもよい。
R2およびR3が水素原子以外の基である場合、各基が有する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-OH基、-N(R2’)2、アミノ基、-C(R2’)=C(R2’)-NO2、-C(R2’)=C(R2’)-CN、-C(R2’)=C(CN)2、によって置換されていてもよい。
R2’は、水素原子または炭素数1~6の直鎖もしくは分岐状のアルキル基を表す。各基において、R2’が複数存在する場合、互いに同一であっても異なっていてもよい。
R2およびR3は、互いに結合して環を形成してもよいし、R2またはR3は、Ar3と結合して環を形成してもよい。
【0054】
耐光性の観点からは、R1は電子吸引性基であることが好ましく、R2およびR3は電子供与性が低い基であることが好ましい。
このような基の具体例として、R1としては、アルキルスルホニル基、アルキルカルボニル基、アルキルオキシカルボニル基、アシルオキシ基、アルキルスルホニルアミノ基、アルキルスルファモイル基、アルキルスルフィニル基、および、アルキルウレイド基などが挙げられ、R2およびR3としては、下記の構造の基などが挙げられる。なお、下記の構造の基は、上記式(2)において、R2およびR3が結合する窒素原子を含む形で示す。
【0055】
【0056】
以下に、上記式(2)で表される構造を有する二色性色素化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0057】
【0058】
本発明においては、第1の二色性物質は、偏光子の色味調整の観点から、455nm以上560nm未満の範囲に最大吸収波長を有する二色性物質であることが好ましく、455~555nmの範囲に最大吸収波長を有する二色性物質であることがより好ましく、455~550nmの範囲に最大吸収波長を有する二色性物質であることが更に好ましい。
特に、455nm以上560nm未満の範囲に最大吸収波長を有する第1の二色性物質とともに、後述する第2の二色性物質として、560nm以上700nm以下の範囲に最大吸収波長を有する第2の二色性物質を用いれば、偏光子の色味調整がより容易になる。
ここで、二色性物質の最大吸収波長(nm)は、二色性物質を良溶媒中に溶解させた溶液を用いて、分光光度計によって測定される波長380~800nmの範囲における紫外可視光スペクトルから求められる。
【0059】
また、本発明においては、第1配列構造が形成され易くなる理由から、上述した液晶性化合物のlogP値と、第1の二色性物質のlogP値との差が、3.4以上となることが好ましく、4.6以上となることがより好ましい。
同様の理由から、第1の二色性物質のlogP値は、8~15であることが好ましく、9.2~13であることがより好ましい。
【0060】
<第2の二色性物質>
本組成物が含有する第2の二色性物質は、上述した第1の二色性物質と異なる化合物でれば特に限定されず、例えば、可視光吸収物質(二色性色素)、発光物質(蛍光物質、燐光物質)、紫外線線吸収物質、赤外線吸収物質、非線形光学物質、カーボンナノチューブ、および、無機物質(例えば、量子ロッド)等の従来公知の二色性物質が挙げられる。
これらのうち、二色性物質の核である発色団と、発色団の末端に結合する側鎖と、を有する化合物であることが好ましい。
発色団の具体例としては、芳香族環基(例えば、芳香族炭化水素基、芳香族複素環基)、アゾ基などが挙げられ、芳香族環基およびアゾ基の両方を有する構造が好ましく、芳香族複素環基(好ましくはチエノチアゾール基)と2つのアゾ基を有するビスアゾ構造がより好ましい。
側鎖としては、特に限定されず、後述の式(3)のR4、R5およびR6で表される基が挙げられる。
【0061】
第2の二色性物質としては、下記式(3)で表される構造を有する二色性色素化合物が好適に挙げられる。
【化15】
【0062】
式(3)中、R4およびR5は、置換基を表し、R6およびR7は、それぞれ独立に、水素原子または置換基を表す。
式(3)中、Ar4およびAr5は、それぞれ独立に、置換基を有していてもよい2価の芳香族基を表す。
式(3)中、Eは、単結合、または、窒素原子、酸素原子および硫黄原子のいずれかの原子を表す。
式(3)中、Qは、酸素原子または硫黄原子を表す。
式(3)中、Lは、単結合、-N=N-、-CR=N-、-CR=CR’-、または、-C(=O)-NR-を表す。RおよびR’は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、または、炭素数1~6のアルキル基を表す。
式(3)中、nは、0または1を表す。ただし、Eが、単結合または酸素原子もしくは硫黄原子である場合には、nは0であり、Eが、窒素原子である場合には、nは1である。
【0063】
上記式(3)中、R4およびR5が表す「置換基」について説明する。
上記置換基としては、色素としての色調を調節するために導入される電子供与性もしくは電子吸引性を有する基、または、配向を固定化するために導入される架橋性基(重合性基)を有する基が挙げられる。
【0064】
R4が表す置換基としては、例えば、上記式(2)中のR1と同様のものが挙げられる。
【0065】
R5が表す置換基としては、例えば、置換していてもよいアルキル基が挙げられる。
アルキル基としては、炭素数1~20のアルキル基が好適に挙げられる。
ここで、アルキル基を構成する炭素原子は、-O-、-CO-、-C(O)-O-、-O-C(O)-、-Si(CH3)2-O-Si(CH3)2-、-N(R)-、-N(R)-CO-、-CO-N(R)-、-N(R)-C(O)-O-、-O-C(O)-N(R)-、-N(R)-C(O)-N(R’)-、-CH=CH-、-C≡C-、-N=N-、-C(R)=N-、-C(R)=CH-C(O)-または-O-C(O)-O-、によって置換されていてもよい。RおよびR’は、アルキル基を表し、炭素数1~10のアルキル基が好ましい。
上記アルキル基の炭素原子に結合する水素原子は、ハロゲン原子、ニトロ基、シアノ基、-N(R)(R’)-、アミノ基、-C(R)=C(R’)-NO2、-C(R)=C(R’)-CN、または、-C(R)=C(CN)2、によって置換されていてもよい。RおよびR’は、アルキル基を表し、炭素数1~10のアルキル基が好ましい。
【0066】
上記式(3)中、R6およびR7が表す「水素原子または置換基」について説明する。
ここで、R6およびR7の一態様が表す「置換基」としては、式(3)中のR5が表す「置換基」と同様のものが挙げられる。なお、R6が置換基である場合、R5と連結して環構造を形成していてもよい。
【0067】
式(3)中、Ar4およびAr5が表す「置換基を有していてもよい2価の芳香族基」について説明する。
上記置換基としては、例えば、特開2011-237513号公報の[0237]~[0240]段落に記載された置換基群Gが挙げられ、中でも、ハロゲン原子、アルキル基、アルコキシ基、アルコキシカルボニル基(例えば、メトキシカルボニル、エトキシカルボニルなど)、アリールオキシカルボニル基(例えば、フェノキシカルボニル、4-メチルフェノキシカルボニル、4-メトキシフェニルカルボニルなど)等が好適に挙げられ、アルキル基がより好適に挙げられ、炭素数1~5のアルキル基がさらに好適に挙げられる。
一方、2価の芳香族基としては、例えば、2価の芳香族炭化水素基および2価の芳香族複素環基が挙げられる。
上記2価の芳香族炭化水素基としては、例えば、炭素数6~12のアリーレン基が挙げられ、具体的には、フェニレン基、クメニレン基、メシチレン基、トリレン基、キシリレン基等が挙げられる。中でもフェニレン基が好ましい。
また、上記2価の芳香族複素環基としては、単環または2環性の複素環由来の基が好ましい。芳香族複素環基を構成する炭素以外の原子としては、窒素原子、硫黄原子および酸素原子が挙げられる。芳香族複素環基が炭素以外の環を構成する原子を複数有する場合、これらは同一であっても異なっていてもよい。芳香族複素環基としては、具体的には、ピリジレン基(ピリジン-ジイル基)、キノリレン基(キノリン-ジイル基)、イソキノリレン基(イソキノリン-ジイル基)、ベンゾチアジアゾール-ジイル基、フタルイミド-ジイル基、チエノチアゾール-ジイル基(以下、「チエノチアゾール基」と略す。)等が挙げられる。
上記2価の芳香族基の中でも、2価の芳香族炭化水素基が好ましい。
【0068】
式(3)中、Eは、上述した通り、単結合、または、窒素原子、酸素原子および硫黄原子のいずれかの原子を表し、単結合または窒素原子であることが好ましい。
式(3)中、Qは、上述した通り、酸素原子または硫黄原子を表し、硫黄原子であることが好ましい。
式(3)中、Lは、上述した通り、単結合、-N=N-、-CR=N-、-CR=CR’-、または、-C(=O)-NR-を表し、RおよびR’は、それぞれ独立に、水素原子、ハロゲン原子、シアノ基、ニトロ基、または、炭素数1~6のアルキル基を表す。中でも、-N=N-、または、-C(=O)-NH-であることが好ましい。
【0069】
以下に、上記式(3)で表される構造を有する二色性色素化合物の具体例を示すが、本発明はこれらに限定されるものではない。
【0070】
【0071】
本発明においては、第2の二色性物質は、偏光子の色味調整の観点から、560nm以上700nm以下の範囲に最大吸収波長を有する二色性物質であることが好ましく、560~650nmの範囲に最大吸収波長を有する二色性物質であることがより好ましく、560~640nmの範囲に最大吸収波長を有する二色性物質であることが更に好ましい。
【0072】
また、本発明においては、第2配列構造が形成され易くなる理由から、上述した液晶性化合物のlogP値と、第2の二色性物質のlogP値との差が、4.3以上となることが好ましく、5.4以上となることがより好ましい。
同様の理由から、第2の二色性物質のlogP値は、8以上であることが好ましく、10以上であることがより好ましい。
【0073】
(logP値の差)
更に、本発明においては、第1配列構造とともに、第2配列構造が形成され易くなる理由から、第1の二色性物質の側鎖のlogP値と、第2の二色性物質の側鎖のlogP値との差(以下、「側鎖logP差」とも略す。)が、1.1以上であることが好ましく、1.3以上であることがより好ましい。
なお、第1の二色性物質または第2の二色性物質の側鎖が複数ある場合、少なくとも1つの側鎖logP差が上記値を満たすことが好ましい。
ここで、第1の二色性物質および第2の色性色素の側鎖とは、上述した発色団の末端に結合する基を意味する。例えば、第1の二色性物質が上記式(2)で表される化合物である場合、上記式(2)中のR1、R2およびR3が側鎖であり、第2の二色性物質が上記式(3)で表される化合物である場合、上記式(3)中のR4、R5およびR6が側鎖である。特に、第1の二色性物質が上記式(2)で表される化合物であり、第2の二色性物質が上記式(3)で表される化合物である場合、R1とR4とのlogP値の差、R1とR5とのlogP値の差、R2とR4とのlogP値の差、および、R3とR4とのlogP値の差のうち、少なくとも1つのlogPの差が上記値を満たすことが好ましい。
【0074】
<第3の二色性物質>
本組成物は、上述した第1の二色性物質および第2の二色性物質とは異なる第3の二色性物質を含有するのが好ましい。
本発明においては、第3の二色性物質は、偏光子の色味調整の観点から、380nm以上455nm未満の範囲に最大吸収波長を有する二色性物質であることが好ましく、385~454nmの範囲に最大吸収波長を有する二色性物質であることがより好ましい。
第3の二色性物質の具体例としては、国際公開第2017/195833号に記載の式(1)で表される化合物が挙げられる化合物のうち、上記第1の二色性物質および上記第2の二色性物質以外の化合物が挙げられる。
【0075】
<二色性物質の含有量>
本組成物中の二色性物質の含有量は、二色性物質と液晶性化合物との合計量100質量部に対して、0.1~99質量部が好ましく、1~60質量部がより好ましく、1.5~30質量部が特に好ましい。
第1の二色性物質の含有量は、本組成物中の二色性物質の含有量100質量に対して、6~50質量部が好ましく、8~45質量部がより好ましい。
第2の二色性物質の含有量は、本組成物中の二色性物質の含有量100質量部に対して、40~90質量部が好ましく、55~85質量部がより好ましい。
本組成物が第3の二色性物質を含有する場合、第3の二色性物質の含有量は、本組成物中の二色性物質の含有量100質量に対して、3~40質量部が好ましく、5~35質量部がより好ましい。
【0076】
<溶媒>
本組成物は、作業性等の観点から、溶媒を含有するのが好ましい。
溶媒としては、例えば、ケトン類(例えば、アセトン、2-ブタノン、メチルイソブチルケトン、シクロペンタノン、および、シクロヘキサノンなど)、エーテル類(例えば、ジオキサン、テトラヒドロフラン、テトラヒドロピラン、ジオキソラン、テトラヒドロフルフリルアルコール、および、シクロペンチルメチルエーテルなど)、脂肪族炭化水素類(例えば、ヘキサンなど)、脂環式炭化水素類(例えば、シクロヘキサンなど)、芳香族炭化水素類(例えば、ベンゼン、トルエン、キシレン、および、トリメチルベンゼンなど)、ハロゲン化炭素類(例えば、ジクロロメタン、トリクロロメタン(クロロホルム)、ジクロロエタン、ジクロロベンゼン、および、クロロトルエンなど)、エステル類(例えば、酢酸メチル、酢酸エチル、および、酢酸ブチル、炭酸ジエチルなど)、アルコール類(例えば、エタノール、イソプロパノール、ブタノール、および、シクロヘキサノールなど)、セロソルブ類(例えば、メチルセロソルブ、エチルセロソルブ、および、1,2-ジメトキシエタンなど)、セロソルブアセテート類、スルホキシド類(例えば、ジメチルスルホキシドなど)、アミド類(例えば、ジメチルホルムアミド、および、ジメチルアセトアミド、N-メチルピロリドン、N-エチルピロリドン、1,3-ジメチル-2-イミダゾリジノンなど)、および、ヘテロ環化合物(例えば、ピリジンなど)などの有機溶媒、ならびに、水が挙げられる。これらの溶媒は、1種単独で用いてもよく、2種以上を併用してもよい。
これらの溶媒のうち、本発明の効果がより優れる理由から、有機溶媒を用いることが好ましく、ハロゲン化炭素類またはケトン類を用いることがより好ましい。
本組成物が溶媒を含有する場合、溶媒の含有量は、本発明の効果がより優れる理由から、本組成物の全質量に対して、70~99.5質量%であることが好ましく、80~99質量%であることがより好ましく、85~98質量%であることがさらに好ましい。
【0077】
<界面改良剤>
本組成物は、界面改良剤を含むことが好ましい。界面改良剤を含むことにより、塗布表面の平滑性が向上し、配向度が向上したり、ハジキおよびムラを抑制して、面内の均一性の向上が見込まれる。
界面改良剤としては、液晶性化合物を水平配向させるものが好ましく、特開2011-237513号公報の[0253]~[0293]段落に記載の化合物(水平配向剤)を用いることができる。また、特開2007-272185号公報の[0018]~[0043]等に記載のフッ素(メタ)アクリレート系ポリマーも用いることができる。界面改良剤としては、これら以外の化合物を用いてもよい。
本組成物が界面改良剤を含有する場合、界面改良剤の含有量は、本発明の効果がより優れる理由から、本組成物中の液晶性化合物と二色性物質との合計100質量部に対し、0.001~5質量部が好ましく、0.01~3質量部が好ましい。
【0078】
<重合開始剤>
本組成物は、本発明の効果がより優れる理由から、重合開始剤を含有することが好ましい。
重合開始剤としては特に制限はないが、感光性を有する化合物、すなわち光重合開始剤であることが好ましい。
光重合開始剤としては、各種の化合物を特に制限なく使用できる。光重合開始剤の例には、α-カルボニル化合物(米国特許第2367661号、同2367670号の各明細書)、アシロインエーテル(米国特許第2448828号明細書)、α-炭化水素置換芳香族アシロイン化合物(米国特許第2722512号明細書)、多核キノン化合物(米国特許第3046127号および同2951758号の各明細書)、トリアリールイミダゾールダイマーとp-アミノフェニルケトンとの組み合わせ(米国特許第3549367号明細書)、アクリジンおよびフェナジン化合物(特開昭60-105667号公報および米国特許第4239850号明細書)、オキサジアゾール化合物(米国特許第4212970号明細書)、および、アシルフォスフィンオキシド化合物(特公昭63-40799号公報、特公平5-29234号公報、特開平10-95788号公報および特開平10-29997号公報)等が挙げられる。
このような光重合開始剤としては、市販品も用いることができ、BASF社製のイルガキュア184、イルガキュア907、イルガキュア369、イルガキュア651、イルガキュア819およびイルガキュアOXE-01等が挙げられる。
本組成物が重合開始剤を含有する場合、重合開始剤の含有量は、本発明の効果がより優れる理由から、本組成物中の液晶性化合物と二色性物質との合計100質量部に対し、0.01~30質量部が好ましく、0.1~15質量部がより好ましい。重合開始剤の含有量が0.01質量部以上であれば、偏光子の耐久性が良好となり、30質量部以下であることで、偏光子の配向がより良好となる。
【0079】
<置換基>
本明細書における置換基について説明する。
置換基としては、例えば、アルキル基(好ましくは炭素数1~20、より好ましくは炭素数1~12、特に好ましくは炭素数1~8のアルキル基であり、例えば、メチル基、エチル基、イソプロピル基、tert-ブチル基、n-オクチル基、n-デシル基、n-ヘキサデシル基、シクロプロピル基、シクロペンチル基、および、シクロヘキシル基などが挙げられる)、アルケニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルケニル基であり、例えば、ビニル基、アリール基、2-ブテニル基、および、3-ペンテニル基などが挙げられる)、アルキニル基(好ましくは炭素数2~20、より好ましくは炭素数2~12、特に好ましくは炭素数2~8のアルキニル基であり、例えば、プロパルギル基、および、3-ペンチニル基などが挙げられる)、アリール基(好ましくは炭素数6~30、より好ましくは炭素数6~20、特に好ましくは炭素数6~12のアリール基であり、例えば、フェニル基、2,6-ジエチルフェニル基、3,5-ジトリフルオロメチルフェニル基、スチリル基、ナフチル基、および、ビフェニル基などが挙げられる)、置換もしくは無置換のアミノ基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6のアミノ基であり、例えば、無置換アミノ基、メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、および、アニリノ基などが挙げられる)、アルコキシ基(好ましくは炭素数1~20、より好ましくは炭素数1~15であり、例えば、メトキシ基、エトキシ基、および、ブトキシ基などが挙げられる)、オキシカルボニル基(好ましくは炭素数2~20、より好ましくは炭素数2~15、特に好ましくは2~10であり、例えば、メトキシカルボニル基、エトキシカルボニル基、および、フェノキシカルボニル基などが挙げられる)、アシルオキシ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは2~6であり、例えば、アセトキシ基、ベンゾイルオキシ基、アクリロイル基、および、メタクリロイル基などが挙げられる)、アシルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、アセチルアミノ基、および、ベンゾイルアミノ基などが挙げられる)、アルコキシカルボニルアミノ基(好ましくは炭素数2~20、より好ましくは炭素数2~10、特に好ましくは炭素数2~6であり、例えば、メトキシカルボニルアミノ基などが挙げられる)、アリールオキシカルボニルアミノ基(好ましくは炭素数7~20、より好ましくは炭素数7~16、特に好ましくは炭素数7~12であり、例えば、フェニルオキシカルボニルアミノ基などが挙げられる)、スルホニルアミノ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルホニルアミノ基、および、ベンゼンスルホニルアミノ基などが挙げられる)、スルファモイル基(好ましくは炭素数0~20、より好ましくは炭素数0~10、特に好ましくは炭素数0~6であり、例えば、スルファモイル基、メチルスルファモイル基、ジメチルスルファモイル基、および、フェニルスルファモイル基などが挙げられる)、カルバモイル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のカルバモイル基、メチルカルバモイル基、ジエチルカルバモイル基、および、フェニルカルバモイル基などが挙げられる)、アルキルチオ基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メチルチオ基、および、エチルチオ基などが挙げられる)、アリールチオ基(好ましくは炭素数6~20、より好ましくは炭素数6~16、特に好ましくは炭素数6~12であり、例えば、フェニルチオ基などが挙げられる)、スルホニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メシル基、および、トシル基などが挙げられる)、スルフィニル基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、メタンスルフィニル基、および、ベンゼンスルフィニル基などが挙げられる)、ウレイド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、無置換のウレイド基、メチルウレイド基、および、フェニルウレイド基などが挙げられる)、リン酸アミド基(好ましくは炭素数1~20、より好ましくは炭素数1~10、特に好ましくは炭素数1~6であり、例えば、ジエチルリン酸アミド基、および、フェニルリン酸アミド基などが挙げられる)、ヒドロキシ基、メルカプト基、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子)、シアノ基、ニトロ基、ヒドロキサム酸基、スルフィノ基、ヒドラジノ基、イミノ基、アゾ基、ヘテロ環基(好ましくは炭素数1~30、より好ましくは炭素数1~12のヘテロ環基であり、例えば、窒素原子、酸素原子、硫黄原子等のヘテロ原子を有するヘテロ環基であり、例えば、エポキシ基、オキセタニル基、イミダゾリル基、ピリジル基、キノリル基、フリル基、ピペリジル基、モルホリノ基、マレイミド基、ベンゾオキサゾリル基、ベンズイミダゾリル基、および、ベンズチアゾリル基などが挙げられる)、シリル基(好ましくは、炭素数3~40、より好ましくは炭素数3~30、特に好ましくは、炭素数3~24のシリル基であり、例えば、トリメチルシリル基、および、トリフェニルシリル基などが挙げられる)、カルボキシ基、スルホン酸基、および、リン酸基などが挙げられる。
【0080】
〔偏光子における会合体〕
本発明においては、偏光子の配向度および耐光性がより向上し、偏光子の色味調整が容易になるという理由から、第1の二色性物質から形成される配列構造(第1配列構造)において、第1の二色性物質が会合体を形成し、第2の二色性物質から形成される配列構造(第2配列構造)において、第2の二色性物質が会合体を形成していることが好ましい。
【0081】
ここで、第1配列構造において第1の二色性物質が会合体を形成していることの検証方法としては、以下のようにして形成した膜を用いて測定される最大吸収波長に基づく方法が挙げられる。
なお、各膜(偏光子)の製造にあたって、各膜に含まれる二色性物質の種類を変える以外は、下層(例えば、基板)の種類、組成物の濃度および塗布条件を揃え、膜の面積および膜厚が同じになるように注意する。
【0082】
具体的には、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物を基板(例えば、青板ガラス)上にキャストして、ホットプレート上で本組成物を液晶状態になるまで加熱し、室温に冷却して、膜1(本発明の偏光子に相当する)を形成する。そして、波長380~800nmの範囲にて1nmピッチで、膜1の吸収スペクトルを測定する。
また、第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物を用いた以外は同様の方法で、膜1-2を形成する。そして、波長380~800nmの範囲にて1nmピッチで、膜1-2の吸収スペクトルを測定する。
次いで、膜1の吸収スペクトルから、膜1-2の吸収スペクトルを差し引くことで差スペクトルを求め、得られた差スペクトルの最大吸収波長λMを求める。
また、第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物を用いた以外は同様の方法で、膜1-1を形成する。そして、波長380~800nmの範囲にて1nmピッチで、膜1-1の吸収スペクトルを測定し、最大吸収波長λ1を測定する。
また、第1の二色性物質を溶解させた溶液の吸収スペクトルにおける最大吸収波長λ1’を求める。
【0083】
次いで、上述した最大吸収波長λM、最大吸収波長λ1および最大吸収波長λ1’が、下記式(I)および(II)を満たすことにより、以下に示す理由から、第1の二色性物質が会合体を形成していることを確認することができる。
|λM-λ1|≦5nm ・・・(I)
|λ1-λ1’|≧5nm ・・・(II)
すなわち、膜1と膜1-2との組成における相違点は、第1の二色性物質の有無である。そのため、膜1の吸収スペクトルと膜1-2の吸収スペクトルとの差スペクトルは、第1の二色性物質に由来する吸収スペクトルとほぼ一致することが予測される。
したがって、差スペクトルの最大吸収波長λMと、膜1-1の吸収スペクトルの最大吸収波長λ1とが、上記式(I)を満たす場合、膜1(偏光子)中で第1の二色性物質が、第2の二色性物質に取り込まれることなく存在しているといえる。
一方、第1の二色性物質を溶解させた溶液の吸収スペクトルは、第1の二色性物質の一分子における吸収スペクトルと解されるため、この吸収スペクトルの最大吸収波長λ1’と、膜1-1の吸収スペクトルの最大吸収波長λ1とが、上記式(II)を満たす場合、膜1-1中において第1の二色性物質同士が会合することにより、最大吸収波長がシフトしていると言える。
よって、上記式(I)および(II)を満たすことにより、第1の二色性物質が、第2の二色性物質と相互作用せず、第1の二色性物質同士で会合体を形成していると言える。
【0084】
一方、第2配列構造において第2の二色性物質が会合体を形成していることの検証方法としては、以下のようにして形成した膜を用いて測定される最大吸収波長に基づく方法が挙げられる。
なお、各膜(偏光子)の製造にあたって、各膜に含まれる二色性物質の種類を変える以外は、下層(例えば、基板)の種類、組成物の濃度および塗布条件を揃え、膜の面積および膜厚が同じになるように注意する。
【0085】
具体的には、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物を基板(例えば、青板ガラス)上にキャストして、ホットプレート上で本組成物を液晶状態になるまで加熱し、室温に冷却して、膜1(本発明の偏光子に相当する)を形成する。そして、波長380~800nmの範囲にて1nmピッチで、膜1の吸収スペクトルを測定する。
また、第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物を用いた以外は同様の方法で、膜1-1を形成する。そして、波長380~800nmの範囲にて1nmピッチで、膜1-1の吸収スペクトルを測定する。
次いで、膜1の吸収スペクトルから、膜1-1の吸収スペクトルを差し引くことで差スペクトルを求め、得られた差スペクトルの最大吸収波長λCを求める。
また、第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物を用いた以外は同様の方法で、膜1-2を形成する。そして、波長380~800nmの範囲にて1nmピッチで、膜1-2の吸収スペクトルを測定し、最大吸収波長λ2を測定する。
また、第2の二色性物質を溶解させた溶液の吸収スペクトルにおける最大吸収波長λ2’を求める。
【0086】
次いで、上述した最大吸収波長λC、最大吸収波長λ2および最大吸収波長λ2’が、下記式(III)および(IV)を満たすことにより、以下に示す理由から、第2の二色性物質が会合体を形成していることを確認することができる。
|λC-λ2|≦5nm ・・・(III)
|λ2-λ2’|≧5nm ・・・(IV)
すなわち、膜1と膜1-1との組成における相違点は、第2の二色性物質の有無である。そのため、膜1の吸収スペクトルと膜1-1の吸収スペクトルとの差スペクトルは、第2の二色性物質に由来する吸収スペクトルとほぼ一致することが予測される。
したがって、差スペクトルの最大吸収波長λCと、膜1-2の吸収スペクトルの最大吸収波長λ2とが、上記式(III)を満たす場合、膜1(偏光子)中で第2の二色性物質が、第1の二色性物質に取り込まれることなく存在しているといえる。
一方、第2の二色性物質を溶解させた溶液の吸収スペクトルは、第2の二色性物質の一分子における吸収スペクトルと解されるため、この吸収スペクトルの最大吸収波長λ2’と、膜1-2の吸収スペクトルの最大吸収波長λ2とが、上記式(IV)を満たす場合、膜1-2中において第2の二色性物質同士が会合することにより、最大吸収波長がシフトしていると言える。
よって、上記式(III)および(IV)を満たすことにより、第2の二色性物質が、第1の二色性物質と相互作用せず、第2の二色性物質同士で会合体を形成していると言える。
【0087】
〔偏光子における結晶構造〕
本発明においては、偏光子の配向度および耐光性がより向上し、偏光子の色味調整が容易になるという理由から、第1の二色性物質から形成される配列構造(第1配列構造)において、第1の二色性物質が結晶構造を形成し、第2の二色性物質から形成される配列構造(第2配列構造)において、第2の二色性物質が結晶構造を形成していることが好ましい。
【0088】
ここで、第1配列構造において第1の二色性物質が結晶構造を形成し、第2配列構造において第2の二色性物質が結晶構造を形成していることは、以下の偏光子(膜)のX線回折(XRD)スペクトルを対比することで確認することができる。
・偏光子1(膜1):第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜
・偏光子1-1(膜1-1):第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物から形成される膜
・偏光子1-2(膜1-2):第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜
・偏光子1-3(膜1-3):第1の二色性物質および第2の二色性物質を含有せず、液晶性化合物を含有する組成物から形成される膜
【0089】
<偏光子の作製>
上記偏光子は同様の方法で作製する。例えば、塗布液の濃度や塗布条件を揃え、膜の面積、および、膜厚を同じになるように注意する。
上記偏光子の作製方法は同様の方法であれば特に制限されないが、偏光子1(膜1)が界面改良剤を含有する場合には、他の偏光子は、偏光子1と同じ量の界面改良剤を含有する膜とする。
【0090】
<XRD測定>
上記偏光子について、同様の条件(例えば、膜厚、測定面積、測定条件を揃える)でXRD測定を行う。
例えば、以下のようにしてXRD測定を行う。
各偏光子について、インプレーン法を用いてX線回折分析行う。以下において、インプレーン法を用いて行われるX線回折分析を、「インプレーン XRD」とも記載する。インプレーン XRDは、薄膜X線回折装置を用いて、以下の条件で、偏光子層表面にX線を照射して行うものとする。そして、X線の入射方向と、液晶性化合物および二色性物質が長軸方向で配向した方向とが平行になるように偏光子を配置した状態を方位角(φ)0°とし、15°刻みで全方向のインプレーン XRDを行い、観測されたピークに対して行ったφスキャンにより、ピーク強度が最大となる基板平面内における向きを決定する。得られた向きにおけるインプレーン測定のスペクトルを用いて、後述するXRDスペクトルの対比を行う。ピーク強度については、X線入射角0.2°におけるX線侵入長に相当する膜厚として規格化した値を用いる。
【0091】
(条件)
・Cu線源使用(CuKα、出力45kV、200mA)
・X線入射角0.2°
・使用光学系:平行光学系(CBO(Cross Beam Optics)(PB(Parallel Beam))
・入射側 入射スリット0.2mm 入射平行スリットIn-plane PSC(Parallel Slit Collimator) 0.5deg(degree)、長手制限スリット 10mm
・受光側 受光スリット 20 mm、受光平行スリットIn-plane PSA(Parallel Slit Analyzer) 0.5deg
・検出器:リガク社製HyPix3000(0Dモード)
・2θχ/φスキャン Scan条件:1~40degreeの範囲を0.008degree/step、2.0degree/min(分)
・φスキャン Scan条件:-120~120degreeの範囲を0.5degree/step、9.6degree/min
【0092】
上記条件は、薄膜X線回折装置における設定値である。
また、薄膜X線回折装置としては、公知の装置を用いることができる。薄膜X線回折装置の一例としては、リガク社製SmartLabを挙げることができる。
【0093】
<XRDスペクトルの対比>
測定した偏光子1-1、偏光子1-2、および、偏光子1-3の各角度におけるX線ピークを比較する。
偏光子1-3になく、偏光子1-1に存在するピークを第1の二色性物質の結晶構造に由来するピークMとし、偏光子1-3になく、偏光子1-2に存在するピークを第2の二色性物質の結晶構造に由来するピークCとする。
次いで、偏光子1、偏光子1-1、および、偏光子1-2の各角度におけるX線ピークを比較する。
上述した偏光子1-1に存在する第1の二色性物質に由来するピークMと、偏光子1-2に存在する第2の二色性物質に由来するピークCとが、偏光子1において見られる場合、偏光子1中において、第1の二色性物質は単独で結晶構造を形成し、第2の二色性物質は単独で結晶構造を形成しているものとする。
【0094】
本発明の偏光子は、第1配列構造が形成され易くなる理由から、下記式(V)を満たしていることが好ましい。
0.9≦MO/M≦1.1 ・・・(V)
ここで、上記式(V)中、
MOは、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜(膜1)のX線回折スペクトルにおける第1の二色性物質の周期構造に由来するピークの強度をいい、
Mは、第2の二色性物質を含有せず、第1の二色性物質および液晶性化合物を含有する組成物から形成される膜(膜1-1)のX線回折スペクトルにおける第1の二色性物質の周期構造に由来するピークの強度をいう。
【0095】
本発明の偏光子は、第2配列構造が形成され易くなる理由から、下記式(VI)を満たしていることが好ましい。
0.9≦CO/C≦1.1 ・・・(VI)
ここで、上記式(VI)中、
COは、第1の二色性物質、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜(膜1)のX線回折スペクトルにおける第2の二色性物質の周期構造に由来するピークの強度をいい、
Cは、第1の二色性物質を含有せず、第2の二色性物質および液晶性化合物を含有する組成物から形成される膜(膜1-2)のX線回折スペクトルにおける第2の二色性物質の周期構造に由来するピークの強度をいう。
【0096】
〔偏光子の製造方法〕
本発明の偏光子を製造する方法は特に制限されないが、得られる偏光子の配向度がより高くなる理由から、配向膜上に上述した本組成物を塗布して塗布膜を形成する工程(以下、「塗布膜形成工程」ともいう。)と、上記塗布膜に含まれる二色性物質を配向させる工程(以下、「配向工程」ともいう。)と、をこの順に備える方法(以下、「本製造方法」ともいう。)が好ましい。
以下、各工程について説明する。
【0097】
<塗布膜形成工程>
塗布膜形成工程は、配向膜上に上述した本組成物を塗布して塗布膜を形成する工程である。塗布膜中の液晶性化合物は配向膜と(本組成物が界面改良剤を含有する場合には)界面改良剤との相互作用により水平配向する。
上述した溶媒を含有する本組成物を用いたり、本組成物を加熱などによって溶融液などの液状物としたものを用いたりすることにより、配向膜上に本組成物を塗布することが容易になる。
本組成物の塗布方法としては、ロールコーティング法、グラビア印刷法、スピンコート法、ワイヤーバーコーティング法、押し出しコーティング法、ダイレクトグラビアコーティング法、リバースグラビアコーティング法、ダイコーティング法、スプレー法、および、インクジェット法などの公知の方法が挙げられる。
【0098】
(配向膜)
配向膜は、本組成物に含有される液晶性化合物を水平配向させる膜であれば、どのような膜でもよい。
有機化合物(好ましくはポリマー)の膜表面へのラビング処理、無機化合物の斜方蒸着、マイクログルーブを有する層の形成、あるいはラングミュアブロジェット法(LB膜)による有機化合物(例、ω-トリコサン酸、ジオクタデシルメチルアンモニウムクロライド、ステアリル酸メチル)の累積のような手段で、設けることができる。さらに、電場の付与、磁場の付与あるいは光照射により、配向機能が生じる配向膜も知られている。なかでも、本発明では、配向膜のプレチルト角の制御し易さの点からはラビング処理により形成する配向膜が好ましく、配向の均一性の点からは光照射により形成する光配向膜も好ましい。
【0099】
(1)ラビング処理配向膜
ラビング処理により形成される配向膜に用いられるポリマー材料としては、多数の文献に記載があり、多数の市販品を入手することができる。本発明においては、ポリビニルアルコールまたはポリイミド、およびその誘導体が好ましく用いられる。配向膜については国際公開第2001/88574A1号公報の43頁24行~49頁8行の記載を参照することができる。配向膜の厚さは、0.01~10μmであることが好ましく、0.01~1μmであることがさらに好ましい。
【0100】
(2)光配向膜
光照射により形成される配向膜に用いられる光配向材料としては、多数の文献などに記載がある。本発明においては、例えば、特開2006-285197号公報、特開2007-76839号公報、特開2007-138138号公報、特開2007-94071号公報、特開2007-121721号公報、特開2007-140465号公報、特開2007-156439号公報、特開2007-133184号公報、特開2009-109831号公報、特許第3883848号、特許第4151746号に記載のアゾ化合物、特開2002-229039号公報に記載の芳香族エステル化合物、特開2002-265541号公報、特開2002-317013号公報に記載の光配向性単位を有するマレイミドおよび/またはアルケニル置換ナジイミド化合物、特許第4205195号、特許第4205198号に記載の光架橋性シラン誘導体、特表2003-520878号公報、特表2004-529220号公報、または、特許第4162850号に記載の光架橋性ポリイミド、ポリアミドもしくはエステルが好ましい例として挙げられる。より好ましくは、アゾ化合物、光架橋性ポリイミド、ポリアミド、または、エステルである。
【0101】
上記材料から形成した光配向膜に、直線偏光または非偏光照射を施し、光配向膜を製造する。
本明細書において、「直線偏光照射」「非偏光照射」とは、光配向材料に光反応を生じせしめるための操作である。用いる光の波長は、用いる光配向材料により異なり、その光反応に必要な波長であれば特に限定されるものではない。光照射に用いる光のピーク波長は、200nm~700nmが好ましく、光のピーク波長が400nm以下の紫外光がより好ましい。
【0102】
光照射に用いる光源は、通常使われる光源、例えばタングステンランプ、ハロゲンランプ、キセノンランプ、キセノンフラッシュランプ、水銀ランプ、水銀キセノンランプおよびカーボンアークランプなどのランプ、各種のレーザー[例、半導体レーザー、ヘリウムネオンレーザー、アルゴンイオンレーザー、ヘリウムカドミウムレーザーおよびYAG(イットリウム・アルミニウム・ガーネット)レーザー]、発光ダイオード、ならびに、陰極線管などを挙げることができる。
【0103】
直線偏光を得る手段としては、偏光板(例えば、ヨウ素偏光板、二色性物質偏光板、および、ワイヤーグリッド偏光板)を用いる方法、プリズム系素子(例えば、グラントムソンプリズム)もしくはブリュースター角を利用した反射型偏光子を用いる方法、または、偏光を有するレーザー光源から出射される光を用いる方法が採用できる。また、フィルタまたは波長変換素子などを用いて必要とする波長の光のみを選択的に照射してもよい。
【0104】
照射する光は、直線偏光の場合には、配向膜に対して上面、または裏面から配向膜表面に対して垂直、または斜めから光を照射する方法が採用される。光の入射角度は、光配向材料によって異なるが、0~90°(垂直)が好ましく、40~90°が好ましい。
非偏光の場合には、配向膜に対して、斜めから非偏光を照射する。その入射角度は、10~80°が好ましく、20~60°がより好ましく、30~50°がさらに好ましい。
照射時間は、1分~60分が好ましく、1分~10分がより好ましい。
【0105】
パターン化が必要な場合には、フォトマスクを用いた光照射をパターン作製に必要な回数施す方法、または、レーザー光走査によるパターンの書き込みによる方法を採用できる。
【0106】
<配向工程>
配向工程は、塗布膜に含有される二色性物質を配向させる工程である。これにより、本発明の偏光子が得られる。配向工程では、配向膜によって配向した液晶性化合物に沿って、二色性物質が配向するものと考えられる。
配向工程は、乾燥処理を有していてもよい。乾燥処理によって、溶媒などの成分を塗布膜から除去することができる。乾燥処理は、塗布膜を室温下において所定時間放置する方法(例えば、自然乾燥)によって行われてもよいし、加熱および/または送風する方法によって行われてもよい。
ここで、本組成物に含有される二色性物質は、上述した塗布膜形成工程または乾燥処理によって、配向する場合がある。例えば、本組成物が溶媒を含む塗布液として調製されている態様では、塗布膜を乾燥して、塗布膜から溶媒を除去することで、塗布膜に含有される二色性物質が配向して、本発明の偏光子が得られる場合がある。
【0107】
配向工程は、加熱処理を有することが好ましい。これにより、塗布膜に含まれる二色性物質がより配向し、得られる偏光子の配向度がより高くなる。
加熱処理は、製造適性などの面から10~250℃が好ましく、25~190℃がより好ましい。また、加熱時間は、1~300秒が好ましく、1~60秒がより好ましい。
【0108】
配向工程は、加熱処理後に実施される冷却処理を有していてもよい。冷却処理は、加熱後の塗布膜を室温(20~25℃)程度まで冷却する処理である。これにより、塗布膜に含有される二色性物質の配向がより固定され、得られる偏光子の配向度がより高くなる。冷却手段としては、特に限定されず、公知の方法により実施できる。
以上の工程によって、本発明の偏光子を得ることができる。
【0109】
<他の工程>
本製造方法は、上記配向工程後に、偏光子を硬化させる工程(以下、「硬化工程」ともいう。)を有していてもよい。
硬化工程は、例えば、加熱および/または光照射(露光)によって実施される。このなかでも、硬化工程は光照射によって実施されることが好ましい。
硬化に用いる光源は、赤外線、可視光または紫外線など、種々の光源を用いることが可能であるが、紫外線であることが好ましい。また、硬化時に加熱しながら紫外線を照射してもよいし、特定の波長のみを透過するフィルタを介して紫外線を照射してもよい。
また、露光は、窒素雰囲気下で行われてもよい。ラジカル重合によって偏光子の硬化が進行する場合において、酸素による重合の阻害が低減されるため、窒素雰囲気下で露光することが好ましい。
【0110】
[積層体]
本発明の積層体は、基材と、上記基材上に設けられた配向膜と、上記配向膜上に設けられた上述した本発明の偏光子とを有する。
また、本発明の積層体は、上記本発明の偏光子上に、λ/4板を有していてもよい。
さらに、本発明の積層体は、上記本発明の偏光子とλ/4板との間に、バリア層を有していてもよい。
以下、本発明の積層体を構成する各層について説明する。
【0111】
〔基材〕
基材としては、適宜選択することができ、例えば、ガラスおよびポリマーフィルムが挙げられる。基材の光透過率は、80%以上であるのが好ましい。
基材としてポリマーフィルムを用いる場合には、光学的等方性のポリマーフィルムを用いるのが好ましい。ポリマーの具体例および好ましい態様は、特開2002-22942号公報の[0013]段落の記載を適用できる。また、従来知られているポリカーボネートやポリスルホンのような複屈折の発現しやすいポリマーであっても国際公開第2000/26705号公報に記載の分子を修飾することで発現性を低下させたものを用いることもできる。
【0112】
〔配向膜〕
配向膜については、上述したとおりであるので、その説明を省略する。
【0113】
〔偏光子〕
本発明の偏光子については、上述したとおりであるので、その説明を省略する。
【0114】
〔λ/4板〕
「λ/4板」とは、λ/4機能を有する板であり、具体的には、ある特定の波長の直線偏光を円偏光に(または円偏光を直線偏光に)変換する機能を有する板である。
例えば、λ/4板が単層構造である態様としては、具体的には、延伸ポリマーフィルムや、支持体上にλ/4機能を有する光学異方性層を設けた位相差フィルムなどが挙げられ、また、λ/4板が複層構造である態様としては、具体的には、λ/4板とλ/2板とを積層してなる広帯域λ/4板が挙げられる。
λ/4板と本発明の偏光子とは、接して設けられていてもよいし、λ/4板と本発明の偏光子との間に、他の層が設けられていてもよい。このような層としては、密着性担保のための粘着層または接着層、およびバリア層が挙げられる。
【0115】
〔バリア層〕
本発明の積層体がバリア層を備える場合、バリア層は、本発明の偏光子とλ/4板との間に設けられる。なお、本発明の偏光子とλ/4板との間に、バリア層以外の他の層(例えば、粘着層または接着層)を備える場合には、バリア層は、例えば、本発明の偏光子と他の層との間に設けることができる。
バリア層は、ガス遮断層(酸素遮断層)とも呼ばれ、大気中の酸素等のガス、水分、または、隣接する層に含まれる化合物等から本発明の偏光子を保護する機能を有する。
バリア層については、例えば、特開2014-159124号公報の[0014]~[0054]段落、特開2017-121721号公報の[0042]~[0075]段落、特開2017-115076号公報の[0045]~[0054]段落、特開2012-213938号公報の[0010]~[0061]段落、特開2005-169994号公報の[0021]~[0031]段落の記載を参照できる。
【0116】
〔用途〕
本発明の積層体は、例えば、偏光素子(偏光板)として使用でき、例えば、直線偏光板または円偏光板として使用できる。
本発明の積層体が上記λ/4板などの光学異方性層を有さない場合には、積層体は直線偏光板として使用できる。
一方、本発明の積層体が上記λ/4板を有する場合には、積層体は円偏光板として使用できる。
【0117】
[画像表示装置]
本発明の画像表示装置は、上述した本発明の偏光子または上述した本発明の積層体を有する。
本発明の画像表示装置に用いられる表示素子は特に限定されず、例えば、液晶セル、有機エレクトロルミネッセンス(以下、「EL」と略す。)表示パネル、および、プラズマディスプレイパネルなどが挙げられる。
これらのうち、液晶セルまたは有機EL表示パネルであるのが好ましく、液晶セルであるのがより好ましい。すなわち、本発明の画像表示装置としては、表示素子として液晶セルを用いた液晶表示装置、表示素子として有機EL表示パネルを用いた有機EL表示装置であるのが好ましく、液晶表示装置であるのがより好ましい。
【0118】
〔液晶表示装置〕
本発明の画像表示装置の一例である液晶表示装置としては、上述した本発明の偏光子と、液晶セルと、を有する態様が好ましく挙げられる。より好適には、上述した本発明の積層体(ただし、λ/4板を含まない)と、液晶セルと、を有する液晶表示装置である。
なお、本発明においては、液晶セルの両側に設けられる偏光素子のうち、フロント側の偏光素子として本発明の積層体を用いるのが好ましく、フロント側およびリア側の偏光素子として本発明の積層体を用いるのがより好ましい。
以下に、液晶表示装置を構成する液晶セルについて詳述する。
【0119】
<液晶セル>
液晶表示装置に利用される液晶セルは、VA(Vertical Alignment)モード、OCB(Optically Compensated Bend)モード、IPS(In-Plane-Switching)モード、またはTN(Twisted Nematic)モードであることが好ましいが、これらに限定されるものではない。
TNモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に水平配向し、更に60~120゜にねじれ配向している。TNモードの液晶セルは、カラーTFT(Thin Film Transistor)液晶表示装置として最も多く利用されており、多数の文献に記載がある。
VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平2-176625号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech.Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集58~59(1998)記載)および(4)SURVIVALモードの液晶セル(LCDインターナショナル98で発表)が含まれる。また、PVA(Patterned Vertical Alignment)型、光配向型(Optical Alignment)、およびPSA(Polymer-Sustained Alignment)のいずれであってもよい。これらのモードの詳細については、特開2006-215326号公報、および特表2008-538819号公報に詳細な記載がある。
IPSモードの液晶セルは、棒状液晶性分子が基板に対して実質的に平行に配向しており、基板面に平行な電界が印加することで液晶分子が平面的に応答する。IPSモードは電界無印加状態で黒表示となり、上下一対の偏光板の吸収軸は直交している。光学補償シートを用いて、斜め方向での黒表示時の漏れ光を低減させ、視野角を改良する方法が、特開平10-54982号公報、特開平11-202323号公報、特開平9-292522号公報、特開平11-133408号公報、特開平11-305217号公報、特開平10-307291号公報などに開示されている。
【0120】
〔有機EL表示装置〕
本発明の画像表示装置の一例である有機EL表示装置としては、例えば、視認側から、上述した本発明の偏光子と、λ/4板と、有機EL表示パネルと、をこの順で有する態様が好適に挙げられる。
より好適には、視認側から、λ/4板を有する上述した本発明の積層体と、有機EL表示パネルと、をこの順に有する態様である。この場合には、積層体は、視認側から、基材、配向膜、本発明の偏光子、必要に応じて設けられるバリア層、および、λ/4板の順に配置されている。
また、有機EL表示パネルは、電極間(陰極および陽極間)に有機発光層(有機エレクトロルミネッセンス層)を挟持してなる有機EL素子を用いて構成された表示パネルである。有機EL表示パネルの構成は特に制限されず、公知の構成が採用される。
【実施例】
【0121】
以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容および処理手順等は、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
【0122】
[合成例1]
下記のルートに従い、第1の二色性物質M1を合成した。
【化20】
【0123】
ブチルアニリン10g、水(100mL)、メタノール(40mL)、および、塩酸(20mL)を混合し、氷浴で冷却しながら、亜硝酸ナトリウム(5.1g)、および、水(10mL)を添加して1時間撹拌した。
次いで、更にアミド硫酸(0.8g)を添加した後、更に30分撹拌し、反応液1を調製した。
アニリン保護体X(19.6g)、酢酸ナトリウム(22.0g)、水(200mL)、および、メタノール(50mL)を混合し、氷浴で冷却した。内温が5℃以下の状態で、先に調製した反応液1を滴下し、5℃以下で30分間、25℃で1時間撹拌した。
その後、水酸化ナトリウム(16.1g)、水(50mL)を添加し、80℃で1時間加熱撹拌した。冷却後、塩酸で中和し得られた固体を吸引ろ過で回収し、化合物M1-1を3.2g得た。
化合物M1-1(2.0g)、水(4mL)、メタノール(20mL)、塩酸(2.4mL)を混合し、氷浴で冷却し、亜硝酸ナトリウム(0.6g)、水(2mL)を添加して1時間撹拌した。さらにアミド硫酸(0.1g)を添加後、さらに30分撹拌し反応液2を調製した。
1-フェニルピロリジン(1.6g)、酢酸ナトリウム(2.6g)、水(40mL)、メタノール(40mL)を混合し、氷浴で冷却した。内温が5℃以下の状態で、反応液1を滴下し、5℃以下で30分間、25℃で1時間撹拌した。撹拌後、得られた固体を吸引ろ過で回収し、第1の二色性物質M1を1.6g得た。得られた第1の二色性物質M1の1H-NMR(Nuclear Magnetic Resonance)データを以下に示す。
1H-NMR(溶媒:CDCl3)δ(ppm):0.96(t、3H)、1.40(m、2H)、1.68(m、2H)、2.07(m、4H)、2.70(t、2H)、3.42(m、4H)、6.64(d、2H)、7.34(d、2H)、7.83-8.03(m、8H)
【0124】
[合成例2]
下記のルートに従い、第2の二色性物質C1を合成した。
【化21】
【0125】
4-ニトロフェノール27.8g、11-ブロモウンデカノール44.6g、および、炭酸カリウム30.4gを、N,N-ジメチルアセトアミド(DMAc)150mlに溶解させ、外設105℃で2時間攪拌した。その後、室温(23℃)まで降温し、酢酸エチルを用いた分液洗浄と、10%塩化アンモニウム水溶液を用いた分液洗浄を行った。その後、有機層を硫酸マグネシウムで乾燥後、濃縮し白色固体を得た。
次に、この固体にDMAcを150ml添加し、氷浴下で攪拌した。反応系の温度を15℃以下に維持してアクリル酸クロライド18.1gを滴下し、適下後に室温で1時間攪拌した。その後、酢酸エチルを用いた分液洗浄と、10%塩化アンモニウム水溶液を用いた分液洗浄を行った。その後、硫酸マグネシウムで乾燥後、濃縮し黄色固体C1-1を得た。
別途、Fe粉末89.4g(1.6mol)、塩化アンモニウム8.9g(166mmol)、2-プロパノール210ml、および、水88mlを混ぜ、外設105で還流させた。この還流させた系内へ、2-プロパノール88mlに加熱溶解させた黄色固体(A)を滴下した。滴下終了後、還流下、30分反応させた。室温まで降温後、セライトろ過により鉄粉を除去し、ろ液を、酢酸エチルを用いた分液洗浄と、水を用いた分液洗浄を行い、有機層を水で3回洗浄した。
有機層を硫酸ナトリウムで乾燥させた後、濃縮した。カラムで精製し、化合物C1-2を8.0gで得た。
【0126】
2-アミノチオフェンは、文献記載(Journal of Medicinal Chemistry、2005年、第48巻、5794ページ)の方法に従い、2-ニトロチオフェンより合成した。
上記で得られた化合物C-2の5.5gを12mol/L塩酸15ml、水30mlおよびTHF(テトラヒドロフラン)30mlの混合液に添加し、内温5℃以下となるよう冷却し、亜硝酸ナトリウム1.4gを水9mlに溶解させ滴下した。内温5℃以下で1時間攪拌し、ジアゾニウム溶液を調製した。
次に、2-アミノチオフェン塩酸塩2.4gを水12ml、塩酸6ml中に溶解させ、上記で調製したジアゾニウム溶液を、内温0℃にて滴下した。反応液を室温にまで上昇させて、2時間攪拌した。
析出した固体をろ別、乾燥させて、赤橙色固体C1-3を6.1g得た。
【0127】
上記で得られた赤橙色固体C1-3の5.6gを酢酸100mlに懸濁溶解させ、室温下でチオシアン酸ナトリウム1.5g加えた。水冷し内温を20℃以下に維持しながら臭素2.0g(24.8mmol)を滴下した。
室温で2時間攪拌後、水を100ml加え、得られた固体をろ別、乾燥させて、黒色固体C1-4を5.5g得た。
【0128】
上記で得られた黒色固体C1-4の4.7gを塩酸6mlと酢酸6mlに添加し、氷冷下、亜硝酸ナトリウム0.72gの水溶液5mlを0℃以下で滴下し、1時間攪拌後に0.52mgのアミド硫酸を添加しジアゾニウム溶液を得た。
N-エチル-N-(2-アクリロイルオキシエチル)アニリン2.3gの10mlメタノール溶液を0℃以下に維持しながら、ジアゾニウム溶液を滴下した。室温(23℃)まで昇温させ、1時間攪拌後、水を30ml添加し得られた固体をろ別した。カラムにより精製し、黒紫色固体の第2の二色性物質C1を0.51g得た。得られた第2の二色性物質C1の1H-NMRデータを以下に示す。
なお、N-エチル-N-(2-アクリロイルオキシエチル)アニリンは、N-エチルアニリンを原料にして、米国特許第7601849号および公知の方法により合成した。
1H-NMR(溶媒:CDCl3)δ(ppm):1.20-1.50(m、17H)、1.60-1.90(m、8H)3.40(t、2H)、3.50(t、2H)、4.05(t、2H)、4.10(t、2H)、4.20(t、2H)、5.80-5.85(d、2H)、6.10-6.15(dd、2H)、6.38―6.43(d×2、2H)、6.70(d、2H)、7.00(d、2H)、7.82(s、1H)7.88(d、2H)、7.95(d、2H)
【0129】
[合成例3]
下記のルートに従い、第3の二色性物質Y1を合成した。
【化22】
【0130】
まず、文献(Chem.Eur.J.2004.10.2011)にしたがって、化合物Y1-1を10g合成した。
化合物Y1-1(10g)を水(300mL)および塩酸(17mL)に溶解させて、氷浴で冷却し、亜硝酸ナトリウム(3.3g)を添加して30分撹拌した。さらにアミド硫酸(0.5g)を添加後、m-トルイジン(5.1g)を加え、室温(23℃)で1時間撹拌した。撹拌後、塩酸で中和し得られた固体を吸引ろ過で回収し、化合物Y1-2を3.2g得た。
化合物Y1-2(1.0g)を、テトラヒドロフラン(30mL、THF)、水(10mL)、および、塩酸(1.6mL)からなるTHF溶液に溶解させ、氷浴で冷却し、亜硝酸ナトリウム(0.3g)を添加し30分間撹拌した後、さらにアミド硫酸(0.5g)を添加した。別途、フェノール(0.4g)を炭酸カリウム(2.76g)および水(50mL)に溶解させて、氷浴で冷却した後、上記のTHF溶液を滴下し、室温(23℃)で1時間撹拌した。
撹拌後、水(200mL)を添加し、析出した個体を吸引ろ過によりろ別し、化合物Y1-3を1.7g得た。
化合物Y1-3(0.6g)、化合物y1(0.8g)および炭酸カリウム(0.95g)を、DMAc(30mL、ジメチルアセトアミド)に溶解させ、90℃で3.5時間撹拌した。撹拌後、水(300mL)を添加し、析出した個体を吸引ろ過によりろ別し、黄橙色固体の第3の二色性物質Y1を0.3g得た。得られた第3の二色性物質Y1の1H-NMRデータを以下に示す。
1H-NMR(溶媒:CDCl3)δ(ppm):1.93(m、8H)、4.11(m、4H)、4.29(m。4H)、5.83-5.87(d、2H)、6.10-6.18(dd、2H)、6.39―6.45(d、2H)、7.02(d、2H)、7.77-8.13(m、15H)
【0131】
[合成例4]
液晶性化合物L1は、以下の手順により作製した。
【0132】
【0133】
ブチルパラベン(201g)のN,N-ジメチルホルムアミド溶液(300mL)に2-クロロエトキシエトキシエタノール(244g)、および、炭酸カリウム(200g)を添加した。95℃で9時間攪拌した後、トルエン(262mL)と水(660mL)を添加して、濃塩酸(147g)を滴下した。10分撹拌した後に、静置し、分液操作により反応液を洗浄した。得られた有機層に、28wt%(28質量%)ナトリウムメトキシドメタノール溶液(500g)と水(402mL)を加え、50℃で2時間撹拌した。その後、濃縮により有機溶剤を留去し、水(402mL)を加え、重量が1.13kgになるまで50℃で再び濃縮を行った。得られた溶液に水(478mL)を添加し、濃塩酸(278g)を滴下した。そこに、酢酸エチル(1.45kg)を加え、30℃で10分撹拌し、分液操作により水層を除去した。次に、20wt%食塩水溶液(960mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。得られた有機層にN-メチルピロリドン(824g)を添加し、70℃で4時間濃縮操作を行い、化合物(L1-1)を含有するN-メチルピロリドン溶液を1.13kg得た。得られた(L1-1)を含有するN-メチルピロリドン溶液のうち、1085gを用いて次工程を実施した。得られた(L1-1)を含有するN-メチルピロリドン溶液(1085g)に、N,N-ジメチルアニリン(189g)と2,2,6,6-テトラメチルピペラジン(1.5g)を加え、内温を冷却した後に、内温が10℃を超えないように、アクリル酸クロリド(122g)を滴下した。内温10℃にて2時間撹拌した後に、メタノール(81g)を滴下し、30分攪拌した。そこに酢酸エチル(1.66kg)と、10wt%食塩水(700mL)と1N塩酸水(840mL)を加え、分液操作により水層を除去した。次に、10wt%食塩水溶液(800mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。次に、20wt%食塩水溶液(800mL)を加え、30℃で10分撹拌し、分液操作により水層を除去した。得られた有機層にヘキサン/イソプロピルアルコール(1780mL/900mL)の混合溶媒を添加し、5℃まで冷却して30分撹拌した後に、ろ過を行う事で、白色固体化合物(L1-2)を209g(3工程収率65%)得た。
【0134】
1H-NMR(溶媒:CDCl3)δ(ppm):3.67-3.78(m,6H),3.87-3.92(m,2H),4.18-4.23(m,2H),4.31-4.35(m,2H),5.80-5.85(m,1H),6.11-6.19(m,1H),6.40-6.46(m,1H),6.93-6.98(m,2H),8.02-8.07(m,2H)
【0135】
【0136】
メタンスルホニルクロリド(MsCl)(73.4mmol,5.7mL)のテトラヒドロフラン(THF)溶液(70mL)にジブチルヒドロキシトルエン(BHT)(200mg)を加え、内温を-5℃まで冷却した。そこに、化合物(L1-2)(66.7mmol,21.6g)とジイソプロピルエチルアミン(DIPEA)(75.6mmol,13.0mL)のTHF溶液を内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、N,N-ジメチル-4-アミノピリジン(DMAP)(200mg)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)と、4-ヒドロキシ-4’-メトキシビフェニル(60.6mmol,12.1g)のテトラヒドロフラン(THF)およびジメチルアセトアミド(DMAc)溶液を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。メタノール(5mL)を加えて反応を停止した後に、水と酢酸エチルを加えた。酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(L1-3)18.7g(収率61%)を得た。構造式中、Meはメチル基を表す。
【0137】
1H-NMR(溶媒:CDCl3)δ(ppm):3.65-3.82(m,6H),3.85(s,3H),3.85-3.95(m,2H),4.18-4.28(m,2H),4.28-4.40(m,2H),5.82(dd,1H),6.15(dd,1H),6.43(dd,1H),6.90-7.05(m,4H),7.20-7.30(m,2H),7.45-7.65(m,4H),8.10-8.20(m,2H)
【0138】
不純物としては、下記化合物(L1-b)が含まれる。
【化25】
【0139】
【0140】
4-(4-ヒドロキシフェニル)安息香酸メチルは、Jornal of Polymer Science,Part A:PolymerChemistry,2012,vol.50,p.3936-3943に記載の方法で合成を行った。
【0141】
メタンスルホニルクロリド(MsCl)(54.8mmol,6.27g)の酢酸エチル溶液(44mL)に2,2,6,6-テトラメチルピペリジン1-オキシル(68mg)を加え、内温を-5℃まで冷却した。そこに、上述のとおり合成した化合物(L1-2)(52.6mmol,17.1g)とジイソプロピルエチルアミン(DIPEA)(57.0mol,7.36g)のTHF溶液を内温が0℃以上に上昇しないように滴下した。-5℃で30分撹拌した後、4-(4-ヒドロキシフェニル)安息香酸メチル(43.8mmol,10.0g)のDMAc溶液、N-メチル-イミダゾール(NMI)(1.8g)を加え、ジイソプロピルエチルアミン(75.6mmol,13.0mL)を内温が0℃以上に上昇しないように滴下した。その後、室温で4時間撹拌した。水と酢酸エチルを加えて反応を停止した。分液を行い、酢酸エチルで抽出した有機層を、ロータリーエバポレーターで溶媒を除去し、酢酸エチルおよびヘキサンを用いたカラムクロマトグラフィーによる精製を行い、白色固体である化合物(L1-23)20.4g(収率87%)を得た。
【0142】
1H-NMR(溶媒:CDCl3)δ(ppm):3.68-3.80(m,6H),3.87-3.95(m,2H),3.95(s,3H),4.20-4.27(m,2H),4.31-4.37(m,2H),5.83(dd,1H),6.16(dd,1H),6.43(dd,1H),6.97-7.05(m,2H),7.28-7.35(m,2H),7.64-7.72(m,4H),8.08-8.20(m,4H)
【0143】
不純物としては、下記化合物(L1-b2)が含まれる。
【化27】
【0144】
【0145】
化合物(L1-3)(84g)、化合物(L1-23)(21g)、ジブチルヒドロキシトルエン(BHT)(158mg)をアニソール(337g)に溶解させた。そこに、2,2’-アゾビス(2-メチルプロピオン酸)ジメチル(1660mg)(商品名「V-601」)を室温で加え、撹拌した。得られたアニソール溶液を、窒素雰囲気化で80℃に加熱しておいたアニソール(84g)へと2時間かけて滴下し、滴下終了後、80℃で4時間撹拌した。得られた反応液を、メタノール(1080mL)へと滴下し、沈殿を濾過操作により集めた後に、アセトニトリルを用いて残渣の洗浄を行い、白色固体化合物(L1)100g(収率95%)を得た。得られたポリマーの重量平均分子量(Mw)は13300であった。
なお、分子量はゲルパーミエーションクロマトグラフィー(GPC)によりポリスチレン換算で算出、カラムはTOSOH TSKgelSuperAWM-H(東ソー社製)を3本接続して使用、溶媒はN-メチルピロリドンを使用した。
【0146】
[実施例1]
〔透明支持体1の作製〕
厚み40μmのTAC基材(TG40、富士フイルム社製)上に、下記の組成の配向膜塗布液9を#8のワイヤーバーで連続的に塗布した。その後、100℃の温風で2分間乾燥することにより、TAC基材上に厚み0.8μmのポリビニルアルコール(PVA)配向膜が形成された透明支持体1が得られた。
なお、変性ポリビニルアルコールは、固形分濃度が4wt%となるように配向膜塗布液中に加えた。
――――――――――――――――――――――――――――――――
配向膜塗布液1の組成
――――――――――――――――――――――――――――――――
・下記変性ポリビニルアルコール 2.00質量部
・水 74.08質量部
・メタノール 23.86質量部
・光重合開始剤
(IRGACURE2959、BASF社製) 0.06質量部
――――――――――――――――――――――――――――――――
【0147】
【0148】
〔配向膜1の形成〕
下記構造の光配向材料E-1の1質量部に、ブトキシエタノール41.6質量部、ジプロピレングリコールモノメチル41.6質量部、および、純水15.8質量部を加え、得られた溶液を0.45μmメンブレンフィルターで加圧ろ過することで光配向膜用塗布液1を調製した。
次いで、得られた光配向膜用塗布液1を透明支持体1上に塗布し、60℃で1分間乾燥した。その後、得られた塗布膜に、偏光紫外線露光装置を用いて直線偏光紫外線(照度4.5mW、照射量500mJ/cm2)を照射し、配向膜1を作製した。
【0149】
【0150】
〔偏光子1の作製〕
得られた配向膜1上に、下記の偏光子形成用組成物1を#7のワイヤーバーで連続的に塗布し、塗布膜1を形成した。
次いで、塗布膜1を140℃で90秒間加熱し、塗布膜1を室温(23℃)になるまで冷却した。
次いで、90℃で60秒間加熱し、再び室温になるまで冷却した。
その後、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射することにより、配向膜1上に偏光子1を作製した。
――――――――――――――――――――――――――――――――
偏光子形成用組成物1の組成
――――――――――――――――――――――――――――――――
・下記液晶性化合物L1 5.258質量部
・下記二色性物質M1 0.263質量部
・下記二色性物質C1 0.711質量部
・下記二色性物質Y1 0.167質量部
・下記界面改良剤F1 0.050質量部
・重合開始剤I1
(IRGACURE819:BASF社製) 0.051質量部
・シクロペンタノン 65.450質量部
・テトラヒドロフラン 28.050質量部
――――――――――――――――――――――――――――――――
【0151】
【0152】
〔偏光子1-1~1-3の作製〕
得られた配向膜1上に、下記の偏光子形成用組成物1-1~1-3を、#7のワイヤーバーで連続的に塗布し、塗布膜1-1~1-3を形成した。
次いで、各塗布膜を140℃で90秒間加熱し、その後、各塗布膜を室温(23℃)になるまで冷却した。
次いで、90℃で60秒間加熱し、再び室温になるまで冷却した。
その後、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射することにより、配向膜1上に、偏光子1-1(膜1-1)、偏光子1-2(膜1-2)、偏光子1-3(膜1-3)を作製した。
【0153】
―――――――――――――――――――――――――――――――――
偏光子形成用組成物1-1の組成
―――――――――――――――――――――――――――――――――
・上記液晶性化合物L1 6.079質量部
・上記二色性物質M1 0.304質量部
・上記界面改良剤F1 0.058質量部
・重合開始剤I1
(IRGACURE819:BASF社製) 0.059質量部
・シクロペンタノン 65.450質量部
・テトラヒドロフラン 28.050質量部
―――――――――――――――――――――――――――――――――
【0154】
―――――――――――――――――――――――――――――――――
偏光子形成用組成物1-2の組成
―――――――――――――――――――――――――――――――――
・上記液晶性化合物L1 5.630質量部
・上記二色性物質C1 0.761質量部
・上記界面改良剤F1 0.054質量部
・重合開始剤I1
(IRGACURE819:BASF社製) 0.055質量部
・シクロペンタノン 65.450質量部
・テトラヒドロフラン 28.050質量部
―――――――――――――――――――――――――――――――――
【0155】
―――――――――――――――――――――――――――――――――
偏光子形成用組成物1-3の組成
―――――――――――――――――――――――――――――――――
・上記液晶性化合物L1 6.377質量部
・上記界面改良剤F1 0.061質量部
・重合開始剤I1
(IRGACURE819:BASF社製) 0.062質量部
・シクロペンタノン 65.450質量部
・テトラヒドロフラン 28.050質量部
―――――――――――――――――――――――――――――――――
【0156】
<最大吸収波長の算出>
作製した偏光子1、偏光子1-1、および、偏光子1-2について、マルチチャンネル分光器(Ocean Optics社製、製品名「QE65000」)を用いて、380nm~780nmの波長域における光吸収異方性膜の吸光度を1nmピッチで各偏光子の吸収スペクトルを測定し、下記の最大吸収波長を算出した。結果を下記表1に示す。
λ1:偏光子1-1の吸収スペクトルにおける最大吸収波長
λM:偏光子1の吸収スペクトルと偏光子1-2の吸収スペクトルとの差スペクトルにおける最大吸収波長
λ2:偏光子1-2の吸収スペクトルにおける最大吸収波長
λC:偏光子1の吸収スペクトルと偏光子1-1の吸収スペクトルとの差スペクトルにおける最大吸収波長
また、第1の二色性物質(二色性物質M1)および第2の二色性物質(二色性物質C1)について、それぞれ、テトラヒドロフラン溶液を調整し、UA-3100PC(SHIMADZU社製)を用いて、380nm~780nmの波長域における吸光を1nmピッチで測定し、第1の二色性物質の極大吸収波長(λ1’)および第2の二色性物質の極大吸収波長(λ2’)を算出した。結果を下記表1に示す。
【0157】
<XRD>
また、作製した偏光子1、偏光子1-1、および、偏光子1-3について、それぞれ、40mm×40mmサイズにカットし、薄膜評価用X線回折装置(リガク社製、商品名:「SmartLab」)を用いて、偏光子表面に下記条件にてX線を照射し、インプレーン XRDを行った。
なお、X線の入射方向と、液晶性化合物および二色性物質が長軸方向で配向した方向とが平行になるように偏光子を配置した状態を方位角(φ)0°とし、15°刻みで全方向のインプレーン XRD(2θχ/φスキャン)を行い、観測されたピークに対して行ったφスキャンにより、ピーク強度が最大となる大きい基板平面内における向きを決定した。両測定とも、CuKαを用いて、入射角0.20°で実施した。
(条件)
・Cu線源使用(CuKα、出力45kV、200mA)
・X線入射角0.2°
・使用光学系:平行光学系(CBO(PB))
・入射側 入射スリット0.2mm 入射平行スリットIn-plane PSC 0.5deg、長手制限スリット 10mm
・受光側 受光スリット 20 mm、受光平行スリットIn-plane PSA 0.5deg
・検出器:リガク社製HyPix3000(0Dモード)
・2θχ/φスキャン Scan条件:1~40degreeの範囲を0.008degree/step、2.0degree/min
・φスキャン Scan条件:-120~120degreeの範囲を0.5degree/step、9.6degree/min
【0158】
偏光子1-3では、90°の方向(上述のとおり決定された向き)において、2θが2.8°、4.9°、7.9°の位置にピークが観測された(
図3参照)。
これに対して、偏光子1-1では、2.8°、4.9°、7.9°に加え6.4°の位置にピークが観測された(
図2参照)。
このことから、
図2における6.4°のピークが第1の二色性物質M1に由来するピークであることが分かる。このピークのピーク強度(M)は412であった。
同様に偏光子1では、偏光子1-1と同様に、2.8°、4.9°、6.4°、7.9°の位置にピークが観測され(
図1参照)、6.4°のピークのピーク強度(MO)は400であった。
したがって、偏光子1と偏光子1-1中では、第1の二色性物質による配列構造(詳細には、結晶構造)を形成していることで、偏光子1と偏光子1-1中における第1の二色性物質M1に由来するピークが同程度の強度になっていると推測される。
なお、ピーク強度(M)に対するピーク強度(MO)の値、すなわち、MO/Mは、0.97と算出することができる。
【0159】
偏光子1-3では、30°の方向(上述のとおり決定された向き)において、2θが1~15°の範囲にピークは観測されなかった。
これに対して偏光子1-2では、2θが3.7°の位置にピークが観測され、そのピーク強度(C)は610であった。
このことから、3.7°のピークが第2の二色性物質C1に由来するピークであることが分かる。
同様に偏光子1では、偏光子1-2と同様に、3.7°の位置にピークが観測された。このピークのピーク強度(CO)は600であった。
したがって、偏光子1と偏光子1-2中では、第2の二色性物質による配列構造(詳細には、結晶構造)を形成していることで、偏光子1と偏光子1-2中における第2の二色性物質C1に由来するピークが同程度の強度になっていると推測される。
なお、ピーク強度(C)に対するピーク強度(CO)の値、すなわち、CO/Cは、0.98と算出することができる。
【0160】
〔積層体1の作製〕
<透明樹脂層(バリア層)1の形成>
偏光子1上に、下記硬化性組成物1を#2のワイヤーバーで連続的に塗布し、60℃で5分間乾燥を行った。
その後、高圧水銀灯を用いて照度28mW/cm2の照射条件で60秒間照射し、硬化性組成物1を硬化させ、偏光子1上に透明樹脂層(バリア層)1が形成された積層体を作製した。このようにして、実施例1の積層体1を得た。
ミクロトーム切削機を用いて、透明樹脂層1の断面を切削し、走査型電子顕微鏡(Scanning Electron Microscope:SEM)観察にて膜厚を測定したところ、膜厚は約1.0μmであった。
【0161】
―――――――――――――――――――――――――――――――――
硬化性組成物1
―――――――――――――――――――――――――――――――――
・重合性化合物 KAYARAD PET-30
(日本化薬社製) 29質量部
・重合開始剤 IRGACURE819(BASF社製) 1質量部
・アルミナエタノールゾルA2K5-10
(川研ファインケミカル社製、柱状のアルミナ水和物粒子が液中に分散
したコロイド液) 70質量部
―――――――――――――――――――――――――――――――――
【0162】
【0163】
[実施例2~9、比較例1および2]
偏光子形成用組成物1の代わりに、下記表1に記載の組成の偏光子形成用組成物を使用した以外は、実施例1と同様の手順に従って偏光子および積層体を作製し、実施例1と同様の方法で、最大吸収波長を算出した。結果を下記表1に示す。
また、実施例2~9で作製した偏光子について、実施例1と同様、XRDスペクトルの対比を行い、偏光子1-1に相当する偏光子2-1等に存在する第1の二色性物質に由来するピークMと、偏光子1-2に相当する偏光子2-2等に存在する第2の二色性物質に由来するピークCとが、偏光子1に相当する偏光子2等において見られ、偏光子2等中において、第1の二色性物質は単独で結晶構造を形成し、第2の二色性物質は単独で結晶構造を形成していることが確認できた。
一方、比較例1および2で作製した偏光子については、実施例1と同様、XRDスペクトルの対比を行ったところ、第1の二色性物質は単独で結晶構造を形成し、第2の二色性物質は単独で結晶構造を形成していることが確認できなかった。
なお、以下に、実施例1も含めた各例で使用した成分をまとめて示す。
【0164】
【0165】
【0166】
【0167】
【0168】
[評価]
上記のようにして得られた実施例および比較例の偏光子および積層体について以下の評価を行った。
【0169】
〔配向度〕
光学顕微鏡(株式会社ニコン製、製品名「ECLIPSE E600 POL」)の光源側に直線偏光子を挿入した状態で、サンプル台に実施例および比較例の各積層体をセットし、マルチチャンネル分光器(Ocean Optics社製、製品名「QE65000」)を用いて、380nm~780nmの波長域における光吸収異方性膜の吸光度を1nmピッチで測定し、以下の式により配向度を算出した。結果を下記表1に示す。
配向度:S=((Az0/Ay0)-1)/((Az0/Ay0)+2)
Az0:色素膜の吸収軸方向の偏光に対する吸光度
Ay0:色素膜の偏光軸方向の偏光に対する吸光度
上記式において、「Az0」は光吸収異方性膜の吸収軸方向の偏光に対する吸光度を表し、「Ay0」は光吸収異方性膜の偏光軸方向の偏光に対する吸光度を表す。
【0170】
【0171】
表1に示す最大吸収波長の測定結果によれば、実施例1~9の偏光子においては、第1の二色性物質が会合体を形成し、第2の二色性物質が会合体を形成していると推察される。
また、実施例1~9のXRDスペクトルの測定結果によれば、実施例1の偏光子において、第1の二色性物質は単独で結晶構造を形成し、第2の二色性物質は単独で結晶構造を形成していると推察される。
このことから、実施例の偏光子においては、第1の二色性物質から形成される配列構造と、第2の二色性物質から形成される配列構造とを別々に有しているといえる。
このように、第1の二色性物質から形成される配列構造と、第2の二色性物質から形成される配列構造とを別々に有する実施例の偏光子によれば、表1の評価結果の通り、比較例の偏光子と比べて、高い配向度をもつことが示された。
【符号の説明】
【0172】
P 偏光子
M 第1の二色性物質の分子
C 第2の二色性物質の分子
L 液晶性化合物の分子
G 集合体
w 幅
a 角度