IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 東ソー株式会社の特許一覧

特許7404762ペンタシル型ゼオライト及びその製造方法
<>
  • 特許-ペンタシル型ゼオライト及びその製造方法 図1
  • 特許-ペンタシル型ゼオライト及びその製造方法 図2
  • 特許-ペンタシル型ゼオライト及びその製造方法 図3
  • 特許-ペンタシル型ゼオライト及びその製造方法 図4
  • 特許-ペンタシル型ゼオライト及びその製造方法 図5
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-18
(45)【発行日】2023-12-26
(54)【発明の名称】ペンタシル型ゼオライト及びその製造方法
(51)【国際特許分類】
   C01B 39/36 20060101AFI20231219BHJP
   B01J 20/18 20060101ALI20231219BHJP
   B01J 20/28 20060101ALI20231219BHJP
   B01J 20/30 20060101ALI20231219BHJP
   B01J 29/40 20060101ALI20231219BHJP
【FI】
C01B39/36
B01J20/18 A
B01J20/28 Z
B01J20/30
B01J29/40 M
【請求項の数】 9
(21)【出願番号】P 2019191015
(22)【出願日】2019-10-18
(65)【公開番号】P2021011422
(43)【公開日】2021-02-04
【審査請求日】2022-09-15
(31)【優先権主張番号】P 2018200724
(32)【優先日】2018-10-25
(33)【優先権主張国・地域又は機関】JP
(31)【優先権主張番号】P 2019133651
(32)【優先日】2019-07-19
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000003300
【氏名又は名称】東ソー株式会社
(72)【発明者】
【氏名】山田 秀徳
(72)【発明者】
【氏名】岡庭 宏
(72)【発明者】
【氏名】吉田 智
【審査官】青木 千歌子
(56)【参考文献】
【文献】特開平5-124811(JP,A)
【文献】特開平9-295812(JP,A)
【文献】特表2007-533580(JP,A)
【文献】特表2016-535718(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C01B 39/36
B01J
JSTPlus/JSTChina/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
25℃、相対湿度90%の条件での水分吸着量が4.0g/100g-ゼオライト以下であり、なおかつ、一次粒子の長軸径が0.2μm以上、4.0μm以下であることを特徴とするペンタシル型ゼオライト。
【請求項2】
一次粒子のアスペクト比が1.0以上、3.0以下であることを特徴とする請求項1に記載のペンタシル型ゼオライト。
【請求項3】
SiO/Al(モル比)が200以上であることを特徴とする請求項1又は請求項2に記載のペンタシル型ゼオライト。
【請求項4】
BET比表面積が300m/g以上であることを特徴とする請求項1~請求項3のいずれかの項に記載のペンタシル型ゼオライト。
【請求項5】
NaOの含有量が1.00重量パーセント以下であることを特徴とする請求項1~請求項4のいずれかの項に記載のペンタシル型ゼオライト。
【請求項6】
ケイ素源、構造指向剤としてアミン、及びアルカリ源を含み、なおかつ、フッ素源を含まない混合物を結晶化する結晶化工程、pH10~14のアルカリ溶液とゼオライトを接触させる工程、含水蒸気流通下、500~1000℃の温度で焼成をする工程を有することを特徴とする請求項1~請求項5のいずれかの項に記載のペンタシル型ゼオライトの製造方法。
【請求項7】
前記アミンがノルマルプロピルアミン、ジノルマルプロピルアミン、トリプロピルアミンであることを特徴とする請求項6に記載のペンタシル型ゼオライトの製造方法。
【請求項8】
結晶化温度が160℃以下であることを特徴とする請求項6又は請求項7に記載のペンタシル型ゼオライトの製造方法。
【請求項9】
前記混合物が、以下のモル組成を有することを特徴とする請求項6~請求項8のいずれかの項に記載のペンタシル型ゼオライトの製造方法。
構造指向剤/SiO 0.04以上、0.5以下
OH/SiO 0.08以上、0.2以下
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、ペンタシル型ゼオライト及びその製造方法に関する。より詳しくは、水分吸着量が少なくVOC吸着剤等の高疎水性が必要とされる用途に適していること、および、成形体として用いる際の強度が優れていることを特徴とするペンタシル型ゼオライト及びその製造方法に関する。
【背景技術】
【0002】
ペンタシル型ゼオライトは、吸着剤や触媒として広く利用されている。ゼオライトをVOC吸着剤として用いる際には、ゼオライトが水を吸着しにくいことが好ましい。水を吸着しにくくなることで、VOC吸着の選択性が向上するためである。
【0003】
ゼオライトは吸着剤や触媒として使用される際には、一般的には、成形体に加工され、固定相または流動層の吸着塔や反応器で利用される。充填や吸脱着、触媒反応の際に成形体が粉化すると、設備トラブルや圧力損失の原因となるため、成形体には高い強度が要求されている。このような、成形体の強度には、原料ゼオライト粉末の一次粒子の大きさが影響する。
【0004】
非特許文献1には、フッ素の存在下で結晶化したペンタシル型ゼオライトが報告されている。フッ素の存在下で結晶化したペンタシル型ゼオライトは水を吸着しにくくはなるが、一次粒子は5~100μmと非常に大きいものであった。一次粒子が5~100μmと大きいと、成形体にしたときの強度が低くなる。また、腐食性の高いフッ素を用いての結晶化は通常のゼオライト製造設備を用いることは困難である。
【先行技術文献】
【非特許文献】
【0005】
【文献】Studies in Surface Science and Catalysis,Vol,105,p.309(1997)
【発明の概要】
【発明が解決しようとする課題】
【0006】
本発明の目的は、水を吸着しにくく、なおかつ、成形体として用いる際の強度が優れていることを特徴とするペンタシル型ゼオライト及びその製造方法を提供することにある。
【課題を解決するための手段】
【0007】
本発明者らは以上のような状況を鑑み、ペンタシル型ゼオライト及びその製造条件に関して鋭意検討を重ねた結果、本発明のペンタシル型ゼオライト及びその製造方法を見出すに至った。すなわち、本発明は、25℃、相対湿度90%の条件での水分吸着量が4.0g/100g-ゼオライト以下であり、なおかつ、一次粒子の長軸径が0.2μm以上、4.0μm以下であることを特徴とするペンタシル型ゼオライト、及びその製造方法である。
【0008】
以下、本発明のペンタシル型ゼオライトについて説明する。
【0009】
本発明はペンタシル型ゼオライトに係る。ペンタシル型ゼオライトとは、酸素5員環の組合せを含むゼオライトである。ペンタシル型ゼオライトとして、国際ゼオライト学会(以下、「IZA」とする。)が規定する構造コードでMFI、MEL及びこれらの連晶体からなる群の少なくとも1種を挙げることができる。MFIとしては、例えば、ZSM-5、シリカライト-1等、MELとしては、例えば、ZSM-11、シリカライト-2等を挙げることができる。
【0010】
ペンタシル型ゼオライトの結晶相は、Collection of simulated XRD powder patterns for zeolites,Fifth revised edition,p.483(2007)に記載の粉末X線回折(以下、「XRD」とする。)パターン、又はIZAの構造委員会のホームページ(http://www.iza-struture.org/databases/)のDisorder in Zeolite FrameworksのThe Pentasil Familyに記載のXRDパターンの少なくともいずれかと比較することで、これを同定することができる。
【0011】
本発明のペンタシル型ゼオライトは、25℃、相対湿度90%の条件での水分吸着量が4.0g/100g-ゼオライト以下である。25℃、相対湿度90%の条件での水分吸着量が4.0g/100g-ゼオライトより大きいと、VOC吸着の選択性が低下し不適である。相対湿度90%の高湿度な環境においても、水分吸着量が少ないことにより、高湿度な季節や、高湿度な地域でVOC吸着剤として使用する際であっても、ゼオライトが水を吸着しにくくなるため、本発明のペンタシル型ゼオライトをVOC吸着剤として使用した際に、VOC吸着の選択性が向上する。25℃、相対湿度90%の条件での水分吸着量は少ないほど好ましい。25℃、相対湿度90%の条件での水分吸着量は、好ましくは、3.5g/100g-ゼオライト以下、より好ましくは、3.0g/100g-ゼオライト以下、さらに好ましくは、2.5g/100g-ゼオライト以下である。
【0012】
本発明のペンタシル型ゼオライトは、一次粒子の長軸径が0.2μm以上、4.0μm以下である。一次粒子の長軸径が0.2μmより小さいと濾過洗浄が困難なため不適であり、4.0μmを超えると成形体としての強度が低くなり、さらに、表面積が小さくなるので不適である。一次粒子の長軸径は、好ましくは、0.2μm以上、3.5μm以下、より好ましくは、0.2μm以上、3.0μm以下、さらに好ましくは、0.2μm以上、2.5μm以下、特に好ましくは、0.4μm以上2.5μm以下、0.4μm以上2.0μm以下、0.6μm以上2.0μm以下、0.6μm以上1.5μm以下である。
【0013】
本発明のペンタシル型ゼオライトの一次粒子の長軸径の計測は、電子顕微鏡を用いて行う。電子顕微鏡は、計測に必要な粒子像が得られるものあればよく、一般的には、走差型電子顕微鏡(以下、「SEM」とする。)が挙げられる。一次粒子の長軸径の計測方法は、実施例の<一次粒子の形態観察>に記載したとおりである。
【0014】
一次粒子の長軸径(粒子径)と成形体強度の関係は、以下の、Rumpfの式で表される。
【0015】
σ=1.1×(1-ε)×Fad/(ε×D
σ:破断に要した力、ε:空隙率、Fad:粒子間力、D:粒子径
Rumpfの式で自明の通り、Dが小さくなると、σが大きくなる、つまり、粒子径が小さいほど、成形体としての強度は高くなる。
【0016】
本発明のペンタシル型ゼオライトは、一次粒子のアスペクト比が1.0以上、3.0以下であることが好ましい。一次粒子のアスペクト比が1.0未満がないことは定義から自明である。一次粒子のアスペクト比は小さいほど好ましく、粒子充填性が高くなり、その結果、成形体としての強度は高くなる。粒子充填性におよぼす粒子形状の影響については、文献「粉体層の操作とシミュレーション、粉体工学会編」、20頁1行目から22頁5行目に開示されている。粒子充填性におよぼす粒子形状の影響については、破砕片粒子のような球形ではないアスペクト比の大きい粒子よりも、球形、または、球形からやや歪んだアスペクト比の小さい粒子の方が、粒子充填性は高くなる。即ち、本発明でいえば、一次粒子のアスペクト比は小さいほうが好ましい。一次粒子のアスペクト比は、より好ましくは、1.0以上、2.5以下、さらに好ましくは、1.0以上、2.3以下、特に好ましくは、1.0以上2.1以下、1.0以上1.9以下、1.0以上1.7以下、1.0以上1.5以下、1.0以上1.4以下である。
【0017】
本発明のペンタシル型ゼオライトは、一次粒子の形状が角状である。ここに、角状とは、電子顕微鏡を用いる一次粒子の形態観察において、鋭い角を有する一次粒子を称すものであり、例えば、直方体状、略直方体状、立方体状、略立方体状等が挙げられる。一方で、球状、略球状や楕円形の一次粒子は、電子顕微鏡を用いる一次粒子の形態観察において、丸くなっており、鋭い角を有さず、本発明とは異なる。
【0018】
本発明のペンタシル型ゼオライトは、SiO/Al(モル比、以下同じ)が200以上であることが好ましい。SiO/Alは高いほど疎水性が向上し、ゼオライトが水を吸着しにくくなるため、本発明のペンタシル型ゼオライトをVOC吸着剤などとして使用した際に、VOC吸着の選択性が向上する。SiO/Alは、より好ましくは、400以上、さらに好ましくは、800以上、特に好ましくは、1500以上である。
【0019】
本発明のペンタシル型ゼオライトは、BET比表面積が300m/g以上であることが好ましい。BET比表面積は高いほど好ましく、吸着剤として使用した際の吸着量が増加し、触媒として使用した際は、活性や寿命が向上する。BET比表面積は、より好ましくは、330m/g以上、さらに好ましくは、350m/g以上である。
【0020】
本発明のペンタシル型ゼオライトは、吸着剤や触媒として用いる際、ナトリウムによる装置や配管等の腐食がより生じにくくなるため、NaOの含有量が1.00重量パーセント以下であることが好ましい。NaOの含有量は、より好ましくは、0.80重量パーセント以下、さらに好ましくは、0.60重量パーセント以下、特に好ましくは、0.40重量パーセント以下である。また、NaOの含有量は、0.05重量パーセント以上、0.10重量パーセント以上が挙げられる。
【0021】
本発明のペンタシル型ゼオライトは、吸着剤や触媒として使用することができる。特に、本発明のペンタシル型ゼオライトはVOC吸着剤として使用することに適している。ゼオライトをVOC吸着剤として用いる際には、ゼオライトが水を吸着しにくいことが好ましい。水を吸着しにくくなることで、VOC吸着の選択性が向上するためである。本発明のペンタシル型ゼオライトは水を吸着しにくいため、特に、VOC吸着剤として使用することに適している。また、ゼオライトは吸着剤や触媒として使用される際には、一般的には、成形体に加工され、固定相または流動層の吸着塔や反応器で利用される。充填や吸脱着、触媒反応の際に成形体が粉化すると、設備トラブルや圧力損失の原因となるため、成形体には高い強度が要求されている。本発明のペンタシル型ゼオライトは、成形体に加工された際の、耐摩耗強度や圧壊強度などの強度が優れている。
【0022】
次に、本発明のペンタシル型ゼオライトの製造方法について説明する。
【0023】
本発明のペンタシル型ゼオライトは、ケイ素源、構造指向剤としてアミン、及びアルカリ源を含み、なおかつ、フッ素源を含まない混合物を結晶化する結晶化工程、pH10~14のアルカリ溶液とゼオライトを接触させる工程、含水蒸気流通下、500~1000℃の温度で焼成する工程を有する製造方法により製造することができる。
【0024】
結晶化工程で使用する混合物は、ケイ素源、構造指向剤としてアミン、及びアルカリ源を含むものである。
【0025】
ケイ素源はケイ素(Si)を含む化合物であり、例えば、テトラエトキシシラン、シリカゾル、ヒュームドシリカ、沈降法シリカ、ケイ酸ソーダ、無定形ケイ酸からなる群の少なくとも1種を挙げることができる。工業的な製造に適しているため、ケイ素源はシリカゾル、ヒュームドシリカ、沈降法シリカ、ケイ酸ソーダ、無定形ケイ酸からなる群の少なくとも1種であることが好ましい。
【0026】
ペンタシル型ゼオライトの構造指向剤については、文献「Zeolites,Vol,3,p.282(1983)」に開示されており、ノルマルプロピルアミン、ジノルマルプロピルアミン、トリプロピルアミン、ジノルマルブチルアミン、ジプロピレントリアミン、ジヘキサメチレントリアミン、トリエチレンテトラミン、ジエチレントリアミン、エタノールアミン、プロパノールアミンなどのアミン、テトラプロピルアンモニウム、テトラエチルアンモニウムなどの第4級アンモニウムカチオン、その他、グリセロールやアルコール類、モルフォリン等が挙げられている。本発明では、これらの構造指向剤のうち、アミンを使用する。アミンを使用することにより、pH10~14のアルカリ溶液と接触させる工程及び含水蒸気流通下で焼成する工程を経ることで、相対湿度90%での水分吸着量が小さくなりやすく、アミン以外の構造指向剤を使用すると、pH10~14のアルカリ溶液と接触させる工程及び含水蒸気流通下で焼成する工程を経ても、相対湿度90%での水分吸着量が小さくなりにくい。アミンの中でも、pH10~14のアルカリ溶液と接触させる工程及び含水蒸気流通下で焼成する工程を経ることで、相対湿度90%での水分吸着量がより小さくなりやすいため、ノルマルプロピルアミン、ジノルマルプロピルアミン、トリプロピルアミンが好ましい。
【0027】
構造指向剤としての効果を十分に得るために、混合物中のシリカに対する構造指向剤のモル比(以下、「構造指向剤/SiO」とする。)は0.04以上、0.5以下が好ましい。ペンタシル構造以外にアモルファスが共存するのを防止し、高価な原材料の使用量を減らせるため経済的である。0.08以上、0.3以下であることがさらに好ましい。
【0028】
アルカリ源は、水酸化物アニオン(OH)を含む化合物であり、例えば、アルカリ金属を含む水酸化物、または、テトラアルキルアンモニウムヒドロキシドからなる群の少なくとも1種等を例示することができる。アルカリ源が、アルカリ金属を含む水酸化物である場合、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び、水酸化セシウムからなる群の少なくとも1種が例示できる。アルカリ源が、テトラアルキルアンモニウムヒドロキシドである場合、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、及び、テトラブチルアンモニウムヒドロキシドからなる群の少なくとも1種が例示できる。
【0029】
水酸化物アニオン(OH)は鉱化剤として機能する。鉱化剤としての効果を十分に得るために、混合物中のシリカに対するOHのモル比(以下、「OH/SiO」とする。)が0.08以上、0.2以下が好ましく、0.09以上、0.18以下であることがより好ましい。
【0030】
混合物の組成は、少なくとも以下のモル組成を有することが好ましい。
【0031】
構造指向剤/SiO 0.04以上、0.5以下
OH/SiO 0.08以上、0.2以下
なお、上記組成における各割合はモル(mol)割合である。
【0032】
さらに好ましい組成として、以下を挙げることができる。
【0033】
構造指向剤/SiO 0.08以上、0.3以下
OH/SiO 0.09以上、0.18以下
さらに、結晶化工程で使用する混合物は、フッ素源を含まないものである。
【0034】
フッ素源とは、フッ酸、フッ化アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化セシウム、ケイフッ化水素酸、ケイフッ化アンモニウム、ケイフッ化ナトリウム、ケイフッ化カリウム、ケイフッ化セシウムの化合物原料をいう。混合物中にフッ素源を含まないことで、非特許文献1、2のように一次粒子が5~100μmと大きくはならず、一次粒子の長軸径は4.0μm以下となる。また、混合物にフッ素を含有する場合、製造設備に耐腐食性の材質を用いる必要があるが、本発明の製造方法では、フッ素を用いないため、結晶化は通常のゼオライト製造設備を用いることができる。
【0035】
混合物はフッ素を含まないこと、すなわち、フッ素含有量が0重量ppmであることが好ましい。しかしながら、通常の組成分析等による測定誤差を考慮すると、混合物のフッ素含有量は検出限界以下であり、100重量ppm以下、更には10重量ppm以下であることが挙げられる。混合物がフッ素やフッ素化合物を含有しないことで、汎用的な設備を用いた製造ができる。混合物のフッ素含有量は、XRFなど一般的な測定方法により測定することができる。
【0036】
上記組成等の混合物を密閉式圧力容器中で、80~200℃の任意の温度で、十分な時間をかけて結晶化させることで、ペンタシル型ゼオライトが得られる。
【0037】
結晶化温度は特に限定するものではないが、結晶化温度が低温であるほど得られるペンタシル型ゼオライトのBET比表面積が大きくなる。そのため、結晶化温度は160℃以下であることが好ましく、150℃以下であることがより好ましく、140℃以下であることがさらに好ましく、130℃以下であることが特に好ましい。
【0038】
pH10~14のアルカリ溶液とゼオライトを接触させる工程では、ゼオライト中にわずかに存在する親水的な非晶質部分の除去を行う。親水的な非晶質部分が除去されることで、ゼオライトが水を吸着しにくくなる。
【0039】
アルカリ溶液のpHの範囲は10~14である。pHが10より小さいと親水的な非晶質部分の除去が十分に進行せず、pHが14より大きいとゼオライトが溶解するためである。アルカリ溶液のpHは好ましくは11~13.5である。アルカリ溶液は、水酸化物アニオン(OH)を含む化合物の水溶液であり、例えば、アルカリ金属を含む水酸化物、または、テトラアルキルアンモニウムヒドロキシドからなる群の少なくとも1種等を例示することができる。アルカリ源が、アルカリ金属を含む水酸化物である場合、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、及び、水酸化セシウムからなる群の少なくとも1種が例示できる。アルカリ源が、テトラアルキルアンモニウムヒドロキシドである場合、テトラエチルアンモニウムヒドロキシド、テトラプロピルアンモニウムヒドロキシド、及び、テトラブチルアンモニウムヒドロキシドからなる群の少なくとも1種が例示できる。アルカリ溶液と接触させる工程の、温度は特に限定されないが、親水的な非晶質部分の除去が十分に進行するためには、温度は20~90℃が好ましく、より好ましくは、40~80℃である。接触時間は特に限定されないが、親水的な非晶質部分の除去が十分に進行するためには、0.2~10時間が好ましく、より好ましくは0.5~8時間である。
【0040】
含水蒸気流通下、500~1000℃の温度で焼成をする工程では、ゼオライト中のシラノールが脱水縮合されることで、ゼオライトが水を吸着しにくくなる。温度の範囲は500~1000℃である。温度が500℃より低いと、シラノールの脱水縮合が進行しにくく、温度が1000℃より高いと、ゼオライト構造が崩壊するためである。焼成温度は600~1000℃が好ましく、より好ましくは、600~900℃である。含水蒸気流通下とは、水蒸気を含む雰囲気のことであり、水蒸気を含む空気、水蒸気を含む窒素、アルゴンなどの不活性雰囲気等、水蒸気を含む雰囲気であれば特に限定されない。焼成時間は特には限定されないが、0.5~10時間が好ましく、より好ましくは1~8時間である。
【0041】
本発明の製造方法では、結晶化工程の後、洗浄工程、乾燥工程、構造指向剤除去工程の一つ以上を有していてもよい。
【0042】
洗浄工程では、結晶化工程において得られたペンタシル型ゼオライトを固液分離し、これを固相として得る。洗浄方法は任意であり、結晶化物を純水で洗浄すればよい。
【0043】
洗浄工程の後に、ペンタシル型ゼオライトにアルカリ金属が残存する場合は、再洗浄してもよい。これにより、残存したアルカリ金属の低減又は除去ができる。アルカリ金属の低減は、例えば、ナトリウム量をNaO換算で1.00重量パーセント以下の含有量にすることが例示される。再洗浄の方法として、水、塩化アンモニウム水溶液、希塩酸、希硫酸、及び希硝酸の群から選ばれる少なくとも1種と、洗浄後のペンタシル型ゼオライトを混合することが挙げられる。混合後のペンタシル型ゼオライトは、例えば、純水による洗浄等、任意の方法で洗浄すればよい。
【0044】
乾燥工程では、ペンタシル型ゼオライトを乾燥する。乾燥方法は、例えば、大気中、100~200℃で処理することが挙げられる。
【0045】
構造指向剤除去工程では、構造指向剤を除去する。結晶化工程では、ペンタシル型ゼオライトは、構造指向剤を含有した状態で得られる。このような構造指向剤を含有したペンタシル型ゼオライトから、適宜、構造指向剤を除去することができる。構造指向剤の除去方法は、例えば、焼成、分解、洗浄等が例示できる。焼成により構造指向剤を除去する場合、含酸素ガス流通下で、300~800℃、更には400~700℃、0.5~12時間処理することが挙げられる。
【0046】
本発明の製造方法では、pH10~14のアルカリ溶液とゼオライトを接触させる工程の後、洗浄工程、乾燥工程の一つ以上を有していてもよい。
【0047】
洗浄工程では、pH10~14のアルカリ溶液とゼオライトを接触させる工程において得られたペンタシル型ゼオライトを固液分離し、これを固相として得る。洗浄方法は任意であり、結晶化物を純水で洗浄すればよい。
【0048】
洗浄工程の後に、ペンタシル型ゼオライトにアルカリ金属が残存する場合は、再洗浄してもよい。これにより、残存したアルカリ金属の低減又は除去ができる。アルカリ金属の低減は、例えば、ナトリウム量をNaO換算で1.00重量パーセント以下の含有量にすることが例示される。再洗浄の方法として、水、塩化アンモニウム水溶液、希塩酸、希硫酸、及び希硝酸の群から選ばれる少なくとも1種と、洗浄後のペンタシル型ゼオライトを混合することが挙げられる。混合後のペンタシル型ゼオライトは、例えば、純水による洗浄等、任意の方法で洗浄すればよい。
【0049】
乾燥工程では、ペンタシル型ゼオライトを乾燥する。乾燥方法は、例えば、大気中、100~200℃で処理することが挙げられる。
【発明の効果】
【0050】
本発明は、従来よりも水を吸着しにくい、また、成形体として用いる際の強度が優れていることを特徴とするペンタシル型ゼオライト、及び、当該ペンタシル型ゼオライトの製造方法を提供する。
【図面の簡単な説明】
【0051】
図1】一次粒径の長軸径の計測方法を示した模式図である。
図2】実施例1のペンタシル型ゼオライトのSEM観察像である。
図3】MFI型ゼオライト(商品名:HSZ(登録商標)-840HOA、東ソー製)のSEM観察像である。
図4】MFI型ゼオライト(商品名:HSZ(登録商標)-890HOA、東ソー製)のSEM観察像である。
図5】比較例6のペンタシル型ゼオライトのSEM観察像である。
【実施例
【0052】
以下、実施例により本発明を具体的に説明する。しかし、本発明はこれら実施例に限定されるものではない。
【0053】
なお、実施例、比較例における各測定方法は、以下の通りである。
【0054】
<結晶構造の同定>
XRD装置(商品名:UltimaIV、リガク製)を使用し、試料のXRD測定を行った。線源にはCuKα線(λ=1.5405Å)を用い、測定範囲は2θ=5°~40°とした。
【0055】
得られたXRDパターンと、Collection of simulated XRD powder patterns for zeolites,Fifth revised edition,p.483(2007)に記載のXRDパターンとを比較することで、試料を同定した。
【0056】
<一次粒子の形態観察>
電子顕微鏡(装置名:JSM-6390LV、JEOL製)を用いて一次粒子の形態観察を行った。
【0057】
一次粒子の長軸径は、文献「粒子径計測技術、粉体工学会編」、5項3行目から6項2行目の記載の定義に基づいて計測された値である。以下、長軸径の計測方法を示した模式図(図1)により説明する。平面上に静置された1個の一次粒子1を平面に垂直な方向から観察する。一次粒子1の投影像の輪郭2に対して、これに接する2本の平行線3ではさんだときの長さのうち、最小となる長さを一次粒子の短軸径5とし、一次粒子の短軸径に直角な方向に測った長さを一次粒子の長軸径4とした。一次粒子の長軸径は、30個の一次粒子を無作為に抽出し、個々の一次粒子の長軸径の測定値の平均から求めた。一次粒子のアスペクト比は、一次粒子の長軸径を一次粒子の短軸径で除して求められ、30個の一次粒子を無作為に抽出し、個々の一次粒子のアスペクト比の平均から求めた。
【0058】
<組成分析>
組成分析は蛍光X線装置(商品名:RIX2100、リガク製)を使用して行った。前処理として、生成物を600℃で1時間焼成した。得られた分析結果から、生成物のSiO/Al比、NaOの含有量を求めた。
【0059】
<BET比表面積>
JIS 8830に準じた測定により、試料のBET比表面積を求めた。測定には、一般的な比表面積測定装置(商品名:BELSORP-miniII、マイクロトラック・ベル製)を用いた。前処理として試料を350℃で2時間保持した。前処理後の試料についてBET比表面積を測定した。
【0060】
<水分吸着量>
水分吸着量の測定は、蒸気吸着量測定装置(商品名:BELSORP-max、マイクロトラック・ベル製)を用いた。測定は25℃で行った。前処理として試料を350℃で2時間保持した。前処理後の試料について水分吸着量の測定を行い、相対湿度90%での、ゼオライト100gあたりの水分吸着量(以下、「g/100g-ゼオライト」とする。)を測定した。
【0061】
実施例1
ケイ酸ソーダ水溶液と硫酸を混合し、粒状無定形ケイ酸を得た。得られた粒状無定形ケイ酸、ノルマルプロピルアミン(以下、「NPA」と表記)、水酸化ナトリウム、及び純水を混合し、以下のモル組成からなる混合物を得た。
【0062】
SiO/Al = 3800
NPA/SiO = 0.25
OH/SiO = 0.12
Na/SiO = 0.12
O/SiO = 10
上記の混合物に、種晶としてMFI型ゼオライトを添加し、原料混合物とした。種晶の添加量は、上記混合物中のSiOとAlの重量に対して0.5重量%とした。得られた原料混合物をステンレス製の反応容器に充填し、これを密閉した。その後、当該反応容器を55回転/分で公転させながら115℃まで加熱した。加熱後、反応容器を公転しながら115℃で36時間保持することで混合物を結晶化させ、結晶化スラリーを得た。
【0063】
結晶化スラリーを冷却、ろ過、純水で洗浄し、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥することでペンタシル型ゼオライトを得た。
【0064】
得られたペンタシル型ゼオライトを、pH13の水酸化ナトリウム水溶液中で、75℃、2.5時間の熱処理をし、その後、純水で洗浄、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥、含水蒸気流通下、720℃、2時間の焼成を行い、ペンタシル型ゼオライトを得た。
【0065】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0066】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.3g/100g-ゼオライトであった。
【0067】
当該ゼオライトのSEM観察像を図2に示す。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0068】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は373m/g、NaOの含有量は0.01重量パーセント以下であった。
【0069】
実施例2
焼成温度を850℃とした以外は実施例1と同様の方法で、ペンタシル型ゼオライトを得た。
【0070】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0071】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は1.1g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0072】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は372m/g、NaOの含有量は0.01重量パーセント以下であった。
【0073】
実施例3
焼成温度を650℃とした以外は実施例1と同様の方法で、ペンタシル型ゼオライトを得た。
【0074】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0075】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.8g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0076】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は386m/g、NaOの含有量は0.01重量パーセント以下であった。
【0077】
実施例4
実施例1と同様の方法で、結晶化、ろ過、純水で洗浄し、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥することでペンタシル型ゼオライトを得た。
【0078】
得られたペンタシル型ゼオライトを、pH13の水酸化ナトリウム水溶液中で、60℃、1時間の熱処理をし、その後、純水で洗浄、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥、含水蒸気流通下、780℃で2時間の焼成を行い、ペンタシル型ゼオライトを得た。
【0079】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0080】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は3.8g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0081】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は400m/g、NaOの含有量は0.01重量パーセント以下であった。
【0082】
実施例5
混合物のモル組成をOH/SiO=0.20、Na/SiO=0.20としたこと、熱処理後に1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換した際に、0.05重量パーセントのNaOを残存させたこと、焼成温度を680℃とした以外は実施例1と同様の方法で、ペンタシル型ゼオライトを得た。
【0083】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0084】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.1g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は0.8μm、一次粒子のアスペクト比は1.3であった。また、一次粒子の形状は角状(略立方体状)であった。
【0085】
また、当該ゼオライトのSiO/Al(モル比)は1210、BET比表面積は372m/g、NaOの含有量は0.05重量パーセントであった。
【0086】
実施例6
混合物のモル組成をOH/SiO=0.19、Na/SiO=0.19としたこと、熱処理後に1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換した際に、0.13重量パーセントのNaOを残存させたこと、焼成温度を600℃とした以外は実施例1と同様の方法で、ペンタシル型ゼオライトを得た。
【0087】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0088】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.5g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は0.8μm、一次粒子のアスペクト比は1.3であった。また、一次粒子の形状は角状(略立方体状)であった。
【0089】
また、当該ゼオライトのSiO/Al(モル比)は1690、BET比表面積は368m/g、NaOの含有量は0.13重量パーセントであった。
【0090】
実施例7
混合物のモル組成をOH/SiO=0.15、Na/SiO=0.15としたこと以外は実施例1と同様の方法で、ペンタシル型ゼオライトを得た。
【0091】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0092】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.2g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は0.9μm、一次粒子のアスペクト比は1.5であった。また、一次粒子の形状は角状(略立方体状)であった。
【0093】
また、当該ゼオライトのSiO/Al(モル比)は1560、BET比表面積は370m/g、NaOの含有量は0.01重量パーセント以下であった。
【0094】
実施例8
種晶の添加量を0.05重量%としたこと以外は実施例7と同様の方法で、ペンタシル型ゼオライトを得た。
【0095】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0096】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.1g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は2.2μm、一次粒子のアスペクト比は1.8であった。また、一次粒子の形状は角状(略直方体状)であった。
【0097】
また、当該ゼオライトのSiO/Al(モル比)は1600、BET比表面積は365m/g、NaOの含有量は0.01重量パーセント以下であった。
【0098】
実施例9
混合物のモル組成をOH/SiO=0.20、Na/SiO=0.20としたこと、種晶の添加量を3.0重量%としたこと、結晶化温度を105℃としたこと、結晶化時間を72時間としたこと以外は実施例1と同様の方法で、ペンタシル型ゼオライトを得た。
【0099】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0100】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は2.4g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は0.4μm、一次粒子のアスペクト比は1.2であった。また、一次粒子の形状は角状(略立方体状)であった。
【0101】
また、当該ゼオライトのSiO/Al(モル比)は1100、BET比表面積は385m/g、NaOの含有量は0.01重量パーセント以下であった。
【0102】
比較例1
MFI型ゼオライト(商品名:HSZ(登録商標)-840HOA、東ソー製)の水分吸着量の測定、SEM観察による一次粒子の長軸径の測定を行った。25℃、相対湿度90%の条件での水分吸着量は11.6g/100g-ゼオライトだった。SEM観察像を図3に示す。一次粒子の長軸径は4.0μm、一次粒子のアスペクト比は1.9であった。また、一次粒子の形状は角状(略直方体状)であった。
【0103】
また、当該ゼオライトのSiO/Alモル比は38、BET比表面積は330m/g、NaOの含有量は0.01重量パーセント以下であった。
【0104】
比較例2
MFI型ゼオライト(商品名:HSZ(登録商標)-890HOA、東ソー製)の水分吸着量の測定、SEM観察による一次粒子の長軸径の測定を行った。25℃、相対湿度90%の条件での水分吸着量は6.6g/100g-ゼオライトだった。SEM観察像を図4に示す。一次粒子の長軸径は6.1μm、一次粒子のアスペクト比は4.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0105】
また、当該ゼオライトのSiO/Alモル比は1900、BET比表面積は300m/g、NaOの含有量は0.01重量パーセント以下であった。
【0106】
比較例3
実施例1と同様の方法で、結晶化、ろ過、純水で洗浄し、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥することでペンタシル型ゼオライトを得た(pH10~14のアルカリ溶液と接触させる工程及び含水蒸気流通下で焼成をする工程は行わなかった)。
【0107】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0108】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は8.1g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0109】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は379m/g、NaOの含有量は0.01重量パーセント以下であった。
【0110】
比較例4
実施例1と同様の方法で、結晶化、ろ過、純水で洗浄し、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥することでペンタシル型ゼオライトを得た。
【0111】
得られたペンタシル型ゼオライトを、pH13の水酸化ナトリウム水溶液中で、75℃、2.5時間の熱処理をし、その後、純水で洗浄、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥することでペンタシル型ゼオライトを得た(含水蒸気流通下で焼成をする工程は行わなかった)。
【0112】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0113】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は4.4g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0114】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は411m/g、NaOの含有量は0.01重量パーセント以下であった。
【0115】
比較例5
実施例1と同様の方法で、結晶化、ろ過、純水で洗浄し、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥、含水蒸気流通下、720℃で2時間の焼成を行い、ペンタシル型ゼオライトを得た(pH10~14のアルカリ溶液と接触させる工程は行わなかった)。
【0116】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0117】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は6.2g/100g-ゼオライトであった。SEM観察像から計測した一次粒子の長軸径は1.0μm、一次粒子のアスペクト比は2.0であった。また、一次粒子の形状は角状(略直方体状)であった。
【0118】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は410m/g、NaOの含有量は0.01重量パーセント以下であった。
【0119】
比較例6
ケイ酸ソーダ水溶液と硫酸を混合し、粒状無定形ケイ酸を得た。得られた粒状無定形ケイ酸、テトラプロピルアンモニウムブロミド水溶液、水酸化ナトリウム、及び純水を混合し、以下のモル組成からなる混合物を得た(TPAはテトラプロピルアンモニウムカチオンを示す。)。
【0120】
SiO/Al = 3800
TPA/SiO = 0.05
OH/SiO = 0.17
Na/SiO = 0.17
O/SiO = 10
上記の混合物を用いたこと、結晶化温度を135℃としたこと以外は実施例1と同様の方法で結晶化させ、結晶化スラリーを得た。
【0121】
結晶化スラリーを冷却、ろ過、洗浄、及び110℃で乾燥し、空気中、580℃で焼成し、1規定HCl水溶液に添加、混合、純粋で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥することでペンタシル型ゼオライトを得た。
【0122】
得られたペンタシル型ゼオライトを、pH13の水酸化ナトリウム水溶液中で、60℃、1時間の熱処理をし、その後、純水で洗浄、1.2規定HCl水溶液に添加、混合、純水で洗浄することで、ペンタシル型ゼオライト中のナトリウムをプロトンにイオン交換し、その後、110℃で乾燥、含水蒸気流通下、780℃、2時間の焼成を行い、ペンタシル型ゼオライトを得た。
【0123】
生成物のXRDパターンはMFI構造のXRDパターンに一致し、ペンタシル型ゼオライトであることを確認した。
【0124】
当該ゼオライトの25℃、相対湿度90%の条件での水分吸着量は6.2g/100g-ゼオライトであった。
【0125】
当該ゼオライトのSEM観察像を図5に示す。SEM観察像から計測した一次粒子の長軸径は0.83μm、一次粒子のアスペクト比は1.3であった。また、一次粒子の形状は略球状であった。
【0126】
また、当該ゼオライトのSiO/Al(モル比)は1900、BET比表面積は406m/g、NaOの含有量は0.01重量パーセント以下であった。
【0127】
<トルエン吸着量>
実施例1、5、及び、比較例2、3で得られたペンタシル型ゼオライトを用いて、VOCの代表成分の一つであるトルエンの吸着量を評価した。
【0128】
トルエンの吸着量の測定は、蒸気吸着量測定装置(商品名:BELSORP-maxII、マイクロトラック・ベル製)を用いた。測定は25℃で行った。前処理として試料を350℃で2時間保持した。前処理後の試料についてトルエン吸着量の測定を行い、平衡圧力0.01kPaにおける、ゼオライト100gあたりのトルエン吸着量(以下、「g/100g-ゼオライト」とする。)を測定した。また、トルエン/水の吸着選択比を、平衡圧力0.01kPaにおけるゼオライト100gあたりのトルエン吸着量/相対湿度90%でのゼオライト100gあたりの水分吸着量により算出した。結果を表1に示した。
【0129】
【表1】
【0130】
表1から明らかなように、実施例のペンタシル型ゼオライトは、高いトルエン/水の吸着選択比を有していた。本発明のペンタシル型ゼオライトは、VOC吸着剤に適しているといえた。
【産業上の利用可能性】
【0131】
本発明のペンタシル型ゼオライトは吸着剤や触媒として使用できる。特に吸着剤としては、VOC吸着剤、触媒としては、石化・石油精製触媒に適している。
【符号の説明】
【0132】
1 平面上に静置された1個の一次粒子
2 平面に垂直な方向から観察した際の1の投影像の輪郭
3 2に接する2本の平行線
4 3ではさんだときの平行線が最大となる長さ(一次粒子の長軸径)
5 3ではさんだときの平行線が最小となる長さ(一次粒子の短軸径)
図1
図2
図3
図4
図5