(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-19
(45)【発行日】2023-12-27
(54)【発明の名称】遠隔操作型移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法
(51)【国際特許分類】
H04N 5/74 20060101AFI20231220BHJP
G03B 21/00 20060101ALI20231220BHJP
G03B 21/16 20060101ALI20231220BHJP
G09G 5/00 20060101ALI20231220BHJP
A63H 27/133 20060101ALI20231220BHJP
B64C 39/02 20060101ALI20231220BHJP
B64C 27/08 20230101ALI20231220BHJP
B64D 47/08 20060101ALI20231220BHJP
【FI】
H04N5/74 D
G03B21/00 F
G03B21/16
G09G5/00 510B
G09G5/00 X
G09G5/00 550C
H04N5/74 Z
H04N5/74 A
A63H27/133 B
B64C39/02
B64C27/08
B64D47/08
(21)【出願番号】P 2019226433
(22)【出願日】2019-12-16
【審査請求日】2022-11-17
(73)【特許権者】
【識別番号】000226057
【氏名又は名称】日亜化学工業株式会社
(74)【代理人】
【識別番号】110001807
【氏名又は名称】弁理士法人磯野国際特許商標事務所
(72)【発明者】
【氏名】笹室 岳
【審査官】佐野 潤一
(56)【参考文献】
【文献】特開2005-338114(JP,A)
【文献】国際公開第2019/003492(WO,A1)
【文献】特開2017-047878(JP,A)
【文献】国際公開第2018/021516(WO,A1)
【文献】国際公開第2016/170766(WO,A1)
【文献】特開2019-036502(JP,A)
【文献】特開2017-158037(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H04N 5/74
H04N 9/12
G03B 21/00
G09G 5/00
A63H 27/133
B64C 39/02
B64C 27/08
B64D 47/08
(57)【特許請求の範囲】
【請求項1】
投影映像を外部の投影面に表示する投影装置と、前記投影装置に使用する光源と、前記投影映像を補正する投影映像補正部と、前記投影装置と前記光源と前記投影映像補正部とを内蔵し、前記光源を冷却するための空気流路を備えるフレーム体と、を備える遠隔操作型移動体であって、
前記投影装置の投影方向は、前記遠隔操作型移動体の前進方向であり、
前記遠隔操作型移動体は、前記空気流路の方向に沿って
前進又は後退し、
前記投影映像補正部は、前記遠隔操作型移動体の
前進又は後退により前記投影映像
が変形する場合において、前記遠隔操作型移動体から前記投影面までの距離及び前記投影面に対する角度に応じて、前記投影面で所定の大きさ及び形状となるように前記投影映像を補正する遠隔操作型移動体。
【請求項2】
投影映像を外部の投影面に表示する投影装置と、前記投影装置に使用する光源と、前記光源を冷却する冷却機構と、をフレーム体に内蔵した遠隔操作型移動体であって、
前記フレーム体は、前記冷却機構に連通する空気流路を有し、
前記投影面に表示された投影映像を撮影映像として撮影する撮影カメラと、
前記遠隔操作型移動体の所定個所の温度を測定する温度センサと、
前記遠隔操作型移動体から前記投影面までの距離を測定する距離センサと、
前記温度センサで測定した温度が所定の閾値を越えたときに、前記空気流路の方向に沿って前記遠隔操作型移動体を移動させる移動制御部と、
前記距離センサで測定した距離に基づいて、前記投影映像が前記投影面に合焦するように前記投影装置を制御するフォーカス制御部と、
前記撮影カメラで撮影された撮影映像のサイズ及びアスペクト比が所望の値となるように、前記投影映像を補正する投影映像補正部と、
を有する遠隔操作型移動体。
【請求項3】
前記投影映像補正部は、前記遠隔操作型移動体の移動時に撮影された台形状の撮影映像のうち、前記遠隔操作型移動体が水平時に撮影された四角形状の撮影映像に重なる最大矩形領域を求め、前記四角形状の撮影映像で前記最大矩形領域以外の余剰領域を求め、前記余剰領域が前記投影映像から除去され、かつ、除去後の当該投影映像が前記四角形状の撮影映像のサイズに応じてズームするように前記投影映像を補正する請求項2に記載の遠隔操作型移動体。
【請求項4】
前記フレーム体は、前記遠隔操作型移動体が移動する方向に沿って空気の流れが形成されるように前記空気流路の一端に第1開口を設けると共に、前記第1開口に対向する前記空気流路の他端に第2開口を設ける請求項1乃至請求項3の何れか一項に記載の遠隔操作型移動体。
【請求項5】
前記フレーム体は、プロペラ及び前記プロペラの駆動部を支持する支持アームを外周部に備える請求項1乃至請求項4のいずれか一項に記載の遠隔操作型移動体。
【請求項6】
前記支持アームは、前記フレーム体の外周部において周方向に等間隔で複数本形成されている請求項5に記載の遠隔操作型移動体。
【請求項7】
前記投影装置は、前記光源から送られてくる光を映像となるように変調する空間光変調器と、前記空間光変調器からの光を前記投影面に送る投射レンズとを備え、
前記フレーム体は、プロペラ及び前記プロペラの駆動部を支持する支持アームを外周部に設けると共に、前記投影装置と前記光源と前記冷却機構を収容する筐体を中央に備え、
前記空気流路は、前記筐体を覆う天板の内側で前記筐体を2分する位置に形成され、
2分された前記筐体の一側に前記光源を配置すると共に、2分された前記筐体の他側に、前記撮影カメラと前記空間光変調器と前記投射レンズとを収納し、
前記冷却機構は、前記空気流路に直交するように設置され、前記冷却機構の中央を貫通して前記光源からの光を前記空間光変調器に送るロッドレンズを備える請求項2に記載の遠隔操作型移動体。
【請求項8】
前記投影装置は、前記冷却機構の中央を貫通するように設けられ前記光源からの光を送るロッドレンズと、前記ロッドレンズからの光を変調する空間光変調器と、前記空間光変調器で変調され前記投影映像となる光を投影面に送る投射レンズと、前記投射レンズの位置を光軸に沿って移動させてフォーカスを調整するレンズ調整機構とを備える請求項2に記載の遠隔操作型移動体。
【請求項9】
前記空間光変調器は、反射鏡を整列させてその反射鏡の角度を映像に合わせて制御するデジタルマイクロミラーディバイスである請求項8に記載の遠隔操作型移動体。
【請求項10】
投影映像を外部の投影面に表示する投影装置と、前記投影装置に使用する光源と、前記光源を冷却する冷却機構と、をフレーム体に内蔵し、前記冷却機構に連通する空気流路が前記フレーム体に設けられ、前記投影面に表示された投影映像を撮影映像として撮影する撮影カメラと、前記光源の温度を測定する温度センサと、前記投影面までの距離を測定する距離センサと、を備える遠隔操作型移動体に搭載された投影装置の冷却方法であって、
移動制御部が、前記温度センサで測定した温度が所定の閾値を越えたときに、前記空気流路の方向に沿って前記遠隔操作型移動体を移動させ、
フォーカス制御部が、前記距離センサで測定した距離に基づいて、前記投影映像が前記投影面に合焦するように前記投影装置を制御し、
投影映像補正部が、前記撮影カメラで撮影された撮影映像のサイズ及びアスペクト比が所望の値となるように、前記投影映像を補正する遠隔操作型移動体に搭載された投影装置の冷却方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、遠隔操作型移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法に関する。
【背景技術】
【0002】
近年、小型の遠隔操作型移動体(ドローン)が提案されている(例えば、特許文献1参照)。この遠隔操作型移動体は、投影装置を搭載して映像を表示することができる。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかし、前記した遠隔操作型移動体では、投影装置の光源が発熱し、その影響により投影映像が安定しないことがある。
【0005】
本開示に係る実施形態は、安定した映像を投影可能な遠隔操作型移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法を提供することを課題とする。
【課題を解決するための手段】
【0006】
上記課題を解決するために、本開示の実施形態に係る遠隔操作型移動体は、投影映像を外部の投影面に表示する投影装置と、前記投影装置に使用する光源と、前記投影映像を補正する投影映像補正部と、前記投影装置と前記光源と前記投影映像補正部とを内蔵し、前記光源を冷却するための空気流路を備えるフレーム体と、を備える遠隔操作型移動体であって、前記遠隔操作型移動体は、前記空気流路の方向に沿って移動し、前記投影映像補正部は、前記遠隔操作型移動体の移動により前記投影映像が拡大若しくは縮小、又は、変形する場合において、前記遠隔操作型移動体から前記投影面までの距離及び前記投影面に対する角度に応じて、前記投影面で所定の大きさ及び形状となるように前記投影映像を補正するように構成した。
【0007】
また、上記課題を解決するために、本開示の実施形態に係る遠隔操作型移動体は、投影映像を外部の投影面に表示する投影装置と、前記投影装置に使用する光源と、前記光源を冷却する冷却機構と、をフレーム体に内蔵した遠隔操作型移動体であって、前記フレーム体は、前記冷却機構に連通する空気流路を有し、前記投影面に表示された投影映像を撮影映像として撮影する撮影カメラと、前記遠隔操作型移動体の所定個所の温度を測定する温度センサと、前記遠隔操作型移動体から前記投影面までの距離を測定する距離センサと、前記温度センサで測定した温度が所定の閾値を越えたときに、前記空気流路の方向に沿って前記遠隔操作型移動体を移動させる移動制御部と、前記距離センサで測定した距離に基づいて、前記投影映像が前記投影面に合焦するように前記投影装置を制御するフォーカス制御部と、前記撮影カメラで撮影された撮影映像のサイズ及びアスペクト比が所望の値となるように、前記投影映像を補正する投影映像補正部と、を有するように構成した。
【0008】
また、上記課題を解決するために、本開示の実施形態に係る遠隔操作型移動体に搭載された投影装置の冷却方法は、投影映像を外部の投影面に表示する投影装置と、前記投影装置に使用する光源と、前記光源を冷却する冷却機構と、をフレーム体に内蔵し、前記冷却機構に連通する空気流路が前記フレーム体に設けられ、前記投影面に表示された投影映像を撮影映像として撮影する撮影カメラと、前記光源の温度を測定する温度センサと、前記投影面までの距離を測定する距離センサと、を備える遠隔操作型移動体に搭載された投影装置の冷却方法であって、移動制御部が、前記温度センサで測定した温度が所定の閾値を越えたときに、前記空気流路の方向に沿って前記遠隔操作型移動体を移動させ、フォーカス制御部が、前記距離センサで測定した距離に基づいて、前記投影映像が前記投影面に合焦するように前記投影装置を制御し、投影映像補正部が、前記撮影カメラで撮影された撮影映像のサイズ及びアスペクト比が所望の値となるように、前記投影映像を補正する。
【発明の効果】
【0009】
本開示の実施形態に係る遠隔操作側移動体、及び、遠隔操作型移動体に搭載された投影装置の冷却方法によれば、安定した映像を投影できる。
【図面の簡単な説明】
【0010】
【
図1】本開示の実施形態に係るドローンを上側から見たときの外観図である。
【
図2】ドローンを下側から見たときの外観図である。
【
図6】ドローンが水平のときの投影映像を説明する説明図である。
【
図7】ドローンが前傾しているときの投影映像を説明する説明図である。
【
図8】ドローンの姿勢と、投影前の投影映像と、投影後の投影映像と、撮影カメラの撮影映像との関係を説明する説明図である。
【
図9A】歪みのない投影映像が含まれる撮影映像を説明する説明図である。
【
図9B】歪みのある投影映像が含まれる撮影映像を説明する説明図である。
【
図9D】投影映像のズームを説明する説明図である。
【
図10】ドローンが前傾しているときの補正後の投影映像を説明する説明図である。
【
図11】ドローンが投影装置を冷却するときの動作を示すフローチャートである。
【
図12】ドローンが投影映像を補正するときの動作を示すフローチャートである。
【発明を実施するための形態】
【0011】
以下、発明の実施の形態について適宜図面を参照して説明する。但し、以下に説明する形態は、本発明の技術思想を具体化するためのものであって、特定的な記載がない限り、本発明を以下のものに限定しない。また、図面が示す部材の大きさや位置関係等は、説明を明確にするため、誇張していることがある。
【0012】
なお、以下の説明では、
図1の投影装置20の投影方向、つまり、投影装置20がフレーム体10に取り付けられている方向をドローン1の前進方向とし、この前進方向の反対方向をドローン1の後退方向とする。
【0013】
(ドローンの全体構造)
図1、
図2及び
図5に示すように、ドローン(遠隔操作型移動体)1は、投影映像を外部の投影面に表示する投影装置20と、投影装置20に使用する光源30と、投影映像を補正する投影映像補正部150と、投影装置20と光源30と投影映像補正部150とを内蔵し、光源30を冷却するための空気流路を備えるフレーム体10と、を備え、空気流路αの方向に沿って移動し、投影映像補正部150は、ドローン1の移動により投影映像が拡大若しくは縮小、又は、変形する場合において、ドローン1から投影面までの距離及び投影面に対する角度に応じて、投影面で所定の大きさ及び形状となるように投影映像を補正する。
【0014】
つまり、ドローン1は、投影装置20で映像を投影するマルチコプタであり、投影装置20で使用する光源30が所定温度まで昇温した場合、冷却機構40に空気を流入させて光源30を冷却するために、例えば前後に移動(往復)する。さらに、ドローン1は、移動時において、投影映像が台形に歪まないように投影映像を補正する。ここで、ドローン1は、主として、フレーム体10と、投影装置20と、光源30と、冷却機構40と、撮影カメラ50と、温度センサ60と、距離センサ70と、プロペラ80と、ESC(Electric Speed Controller)90と、制御部100とを備える。
【0015】
フレーム体10は、ドローン1の骨格となる部材であり、例えば、カーボン、ナイロン等の素材を十字状に形成したものである。また、フレーム体10は、投影装置20、光源30及び冷却機構40を収容する箱状の筐体11が中央に形成され、冷却機構40に連通する空気流路αが筐体11に設けられている。筐体11は、ドローン1の前進方向に撮影カメラ50及び距離センサ70が配置されている。また、筐体11は、着陸時にESC90等が地面に接触しないように、下面の四隅に脚部12が設けられている。
なお、
図1では、筐体11の内側が見えるように天井板(天板)14を二点鎖線で図示した。
【0016】
フレーム体10は、一組のプロペラ80及びモータ(駆動部)81を支持する支持アーム13が外周部に複数本設けられている。支持アーム13は、フレーム体10の中央から等間隔で周方向に4本形成され、同一長さとなっている。前後方向の支持アーム13は、後記するESC90が下面中央に取り付けられている。また、左右方向の支持アーム13は、ESC90が上面中央に取り付けられている。
【0017】
プロペラ80は、モータ81の回転軸に取り付けられており、例えば、2枚羽根のプロペラである。ESC90と同様、前後方向のプロペラ80は、支持アーム13の下面先端に取り付けられている。また、左右方向のプロペラ80は、支持アーム13の上面先端に取り付けられている。隣り合うプロペラ80同士は、回転方向が逆になる。例えば、前後方向のプロペラ80が時計回りに回転し、左右方向のプロペラ80が反時計回りに回転すする。
【0018】
モータ81は、ESC90からの駆動信号(駆動電圧)に従って、プロペラ80を回転させるモータである。つまり、ESC90からの駆動電圧が高くなるほど、モータ81の回転数も高くなる。例えば、モータ81は、一般的なブラシレスモータである。
【0019】
ESC90は、後記する制御部100からの制御信号に従って、モータ81の回転数を制御するものである。つまり、ESC90は、制御部100からの制御信号に応じた駆動電圧を駆動信号としてモータ81に印可する。
制御部100は、ドローン1の各種制御を行うものであり、例えば、回路基板上に実装されている。
【0020】
撮影カメラ50は、投影装置20により投影面に表示された投影映像を撮影映像として撮影し、撮影映像を制御部100に出力するものである。また、撮影カメラ50は、投影装置20の投影映像の全範囲が撮影映像に収まるように、撮影画角が投影装置20の投影画角よりも十分に広くなっている。例えば、撮影カメラ50としては、小型のCCD(Charged Coupled Devices)カメラがある。
【0021】
温度センサ60は、光源30の温度を測定し、測定した温度を制御部100に出力するものである。また、温度センサ60は、光源30(レーザ光源モジュール)の温度検出ポイントに配置されている。例えば、温度センサ60としては、サーミスタ、熱電対又は白金測温抵抗体がある。
【0022】
距離センサ70は、ドローン1から投影面(例えば、壁)までの距離を測定し、測定した距離を制御部100に出力するものである。例えば、距離センサ70としては、レーザセンサ又はフォトダイオードがある。
【0023】
(筐体内部)
図3及び
図4を参照し、筐体11の内部を詳細に説明する。
筐体11は、投影装置20、光源30及び冷却機構40を内部に収容している。また、筐体11は、光源30を冷却するために、冷却機構40に連通する空気流路αを有する(破線で図示)。空気流路αは、筐体11を覆う天井板14の内側で、筐体11を2分する位置に形成されている。筐体11は、ドローン1が移動する方向(例えば前後方向)に沿って空気の流れが形成されるように、空気流路αの一端に第1開口11Fが設けられる。筐体11は、第1開口11Fに対向する空気流路αの他端に第2開口11Bが設けられる。すなわち、第1開口11Fが筐体11の前面に設けられ、第2開口11Bが筐体11の後面に設けられ、前後方向に空気流路αが形成される。筐体11は、第1開口11Fから空気流路αと沿うように前後方向に延長された内壁11Nを有する。
【0024】
投影装置20は、内壁11Nで囲われた小区画に収まるように、筐体11の一側に配置される。例えば、投影装置20は、空間光変調器21と、投射レンズ22と、レンズ調整機構23(
図5参照)とを備える。空間光変調器21は、光源30から送られてくる光を映像となるように変調するものであり、例えば、デジタルマイクロミラーディバイス(DMD:Digital Micromirror Device)である。このDMDは、可動式の微小な反射鏡が2次元方向に整列しており、制御部100からの制御信号に基づいての反射鏡の角度を映像に合わせて駆動する。投射レンズ22は、空間光変調器21からの光を投影面に送る(投影する)ものであり、例えば、単レンズ又はレンズ群である。また、投射レンズ22は、対物レンズ面の一部を筐体11から露出させるように設置している。レンズ調整機構23は、投射レンズ22の位置を光軸に沿って移動させてフォーカスを調整すると共に、映像のズームを調整するものである。
【0025】
光源30は、投影装置20と対向するように、筐体11の他側に配置されている。例えば、光源30は、投影装置20に光を出射する半導体レーザ31(
図4)をパッケージ化したレーザ光源モジュールである。この光源30は、LEDを用いたLED光源モジュールであってもよい。
【0026】
冷却機構40は、前後方向の空気流路αと直交するように左右方向に設置されている。また、冷却機構40は、光源30から伝わった熱を放熱できるように、一端が光源30に接着している。例えば、冷却機構40は、2本のヒートパイプ41と、ヒートシンク42と、カバー43とを備える。ヒートパイプ41は、左右方向に所定長さで形成された棒状部材を中央で折り返してU字状に形成されている。ヒートパイプ41は、U字状の直線部分がヒートシンク42に接触し、中央の部分が光源30の裏面側に接触しており、光源30の熱をヒートシンク42に伝える。ヒートシンク42は、ヒートパイプ41から伝わる光源30の熱を放熱する部材であり、上下2段に形成されている。そして、ヒートシンク42は、上段側の凹部及び下段側の凹部のそれぞれにヒートパイプ41が配置されている。例えば、ヒートシンク42は、表面積を広くして効率よく放熱できるように、一定間隔で配列された薄板で構成されている。ヒートパイプ41及びヒートシンク42には、アルミニウム、銅といった熱伝導率が高い素材を用いることが好ましい。
【0027】
図4に示すように、カバー43は、ヒートシンク42の一端側を覆う板状部材であり、ヒートシンク42の一端側を支持している。また、カバー43は、上下2段のヒートシンク42の間に配置され、角筒部材44の一端を支持する角穴43aが形成されている。さらに、冷却機構40には、光源30(半導体レーザ31)からの光を空間光変調器21に到達させるため、角筒部材44と、ロッドレンズ45とが設置されている。角筒部材44は、中空構造であり、ヒートシンク42の中央を貫通するように配置されている。ロッドレンズ45は、光源30からの光を空間光変調器21に送るガラスロッドレンズであり、角筒部材44に挿入されている。
【0028】
従って、光源30の出射光β1は、ロッドレンズ45を通過し、空間光変調器21により変調される。そして、空間光変調器21で変調された光は、投射レンズ22を介して、投影映像β2として投影される。
また、光源30で発生した熱は、ヒートパイプ41を経由してヒートシンク42に伝わって放熱される。また、ヒートシンク42を通過する空気流量が多くなる程、ヒートシンク42の放熱効率も高くなる。そこで、制御部100は、光源30の過熱を抑制するため、ドローン1を前後に移動させるように制御する。
【0029】
(制御部の構成)
図5を参照し、制御部100の構成を詳細に説明する。
図5に示すように、制御部100は、メモリ110と、操作信号受信部120と、移動制御部130と、フォーカス制御部140と、投影映像補正部150とを備える。
【0030】
メモリ110は、ドローン1が必要とする各種情報を記憶するRAM(Random Access Memory)等の記憶装置である。例えば、メモリ110は、ドローン1が外部に投影する投影映像を記憶する。このメモリ110は、後記する移動制御部130、フォーカス制御部140及び投影映像補正部150によって参照される。
【0031】
操作信号受信部120は、無線通信により、ドローン1を移動させる操作信号を送信機(不図示)から受信し、受信した操作信号を移動制御部130に出力するものである。例えば、ドローン1の移動操作としては、ドローン1を上昇又は下降させるスロットル、ドローン1を前進又は後退させるエレベータ、ドローン1を左右に移動させるエルロン、及び、ドローン1を時計回り又は反時計回りに回転させるラダーがある。
また、操作信号受信部120は、無線通信により、投影装置20を操作する操作信号を送信機から受信し、受信した操作信号をフォーカス制御部140に出力する。例えば、投影装置20の操作としては、撮影の開始及び終了がある。
【0032】
移動制御部130は、操作信号受信部120から入力された操作信号に基づいて、ドローン1の移動を制御するものである。ドローン1は、各プロペラ80の回転数の差によりその姿勢が変化して前後左右に移動する。従って、移動制御部130は、操作信号に応じてドローン1が移動するように、各ESC90に制御信号を出力する。また、移動制御部130は、ジャイロセンサ170の姿勢情報によりドローン1の姿勢を安定させてもよい。このように、移動制御部130は、一般的なフライトコントローラと同様の機能を有する。
【0033】
また、移動制御部130は、温度センサ60から光源30の温度が入力され、入力された温度を閾値判定する。そして、移動制御部130は、温度センサ60で測定された温度が閾値を超えている間、空気流路αの方向に沿ってドローン1を前後に移動させる。なお、移動制御部130では、この閾値を任意に設定でき、例えば、光源30の耐熱特性以下に閾値を設定する。また、移動制御部130では、ドローン1を往復させる距離も任意に設定できる。このようにして、移動制御部130は、ドローン1を前後に移動させて、光源30の過熱を抑制できる。この移動制御部130に入力される温度は、光源30の温度と相関のある温度であればよく、光源30の温度そのものである必要はない。
なお、移動制御部130は、ドローン1を前後に移動させている最中、操作信号受信部120から操作信号が入力された場合、操作信号を優先してもよい。
【0034】
なお、ドローン1が自律飛行を行う場合、操作信号受信部120は、操作信号を受信する必要はない。この場合、メモリ110には、ドローン1の飛行経路を示す経路情報を予め記憶させておく。そして、移動制御部130は、メモリ110の経路情報及びGPS160の位置情報を参照し、その飛行経路に沿ってドローン1を移動させる。
【0035】
フォーカス制御部140は、距離センサ70から距離が入力され、入力された距離に基づいて、投影映像が投影面に合焦するように投影装置20を制御するものである。つまり、フォーカス制御部140は、投影装置20が投影面にフォーカスするようにレンズ調整機構23を制御する。また、フォーカス制御部140は、操作信号受信部120から操作信号を受信した場合、その信号に応じて投影装置20を制御して、投影映像を合焦させている。
【0036】
投影映像補正部150は、撮影カメラ50で撮影された撮影映像のサイズ及びアスペクト比が所望の値となるように、投影映像を補正するものである。すなわち、投影映像補正部150は、ドローン1の移動により投影映像が拡大若しくは縮小、又は、変形する場合において、ドローン1から投影面までの距離及び投影面に対する角度に応じて、投影面で所定の大きさ及び形状となるように投影映像を補正する。そして、投影映像補正部150は、補正した投影映像を投影装置20に出力する。
なお、投影映像補正部150は、ジャイロセンサ170の姿勢情報からドローン1が傾斜しているか否かを判定し、ドローン1が傾斜していない場合、投影映像を補正せずともよい。
【0037】
<フォーカスの調整、投影映像の補正>
図6~
図10を参照し、フォーカスの調整及び投影映像の補正を詳細に説明する。
図6に示すように、ドローン1は、静止時には水平姿勢を保っている。距離センサ70がドローン1から壁Wまでの距離L1を測定しており、フォーカス制御部140が投影装置20のフォーカスを壁Wに合わせる。ここでは、ドローン1が傾斜していないので、投影装置20は、歪みがない矩形状の投影映像P0を壁Wに投影する。
【0038】
なお、
図6では、投影映像Pの投影範囲を破線で図示した。また、撮影カメラ50の撮影映像を符号Cで表した。つまり、撮影映像Cには、壁Wに投影された投影映像Pの全範囲が収まっている。
【0039】
図7に示すように、ドローン1は、前進時には前傾姿勢となる。
図6の静止時と同様、距離センサ70は、ドローン1から壁Wまでの距離L1を測定している。このとき、フォーカス制御部140は、ジャイロセンサ170で測定されたドローン1の傾斜角θに応じて、距離センサ70が測定した距離L1を三角関数により補正してもよい。なお、
図7では、補正後の距離を符号L2で図示した。また、ドローン1が前傾しているので、投影装置20は、台形状に歪んだ投影映像P1を壁Wに投影することになる。
【0040】
図8上段には、ドローン1の水平時において、投影前の投影映像Pと、投影後の投影映像P0と、撮影カメラ50の撮影映像Cとを図示した。また、
図8下段には、ドローン1の前傾時において、投影前の投影映像Pと、投影後の投影映像P1と、撮影カメラ50の撮影映像Cとを図示した。
【0041】
図8に示すように、壁Wに投影される前の投影映像Pは、ドローン1の姿勢に関わらず歪んでいない。ドローン1の水平時、実際に壁Wに投影された投影映像P0は歪んでいないが、ドローン1の前傾時には、壁Wに投影された投影映像P1が台形状に歪んでしまう。従って、ドローン1の撮影カメラ50は、ドローン1の水平時には歪みのない投影映像P0を撮影する一方、ドローン1の前傾時には歪みがある投影映像P1を撮影する。そこで、以下で説明するように、撮影映像Cを用いて投影映像P1の歪みを補正する。
【0042】
図9Aには、ドローン1の水平時において、歪みのない投影映像P0が含まれる撮影映像Cを図示した。また、
図9Bには、ドローン1の前傾時において、歪みのある投影映像P1が含まれる撮影映像Cを図示した。ここで、歪みのない投影映像P0と歪みのある投影映像P1とを比べると、投影映像P1が投影映像P0よりも下側に表示されており、面積が狭くなる。
【0043】
まず、投影映像補正部150は、
図9Cに示すように、ドローン1の前進時に撮影された台形状の投影映像P1のうち、ドローン1の水平時に撮影された四角形状の投影映像P0に重なる最大矩形領域Mを求める。なお、最大矩形領域Mは、投影映像P0,P1が重なる領域に内接する最大の矩形領域のことである。例えば、投影映像補正部150は、ドローン1が水平時の撮影映像Cから投影映像P0を表す四角形領域を検出し、ドローン1が前進時の撮影映像Cから投影映像P1を表す台形領域を検出する。そして、投影映像補正部150は、検出した四角形領域と台形領域とが重なる領域に内接する最大矩形領域Mを求める。
次に、投影映像補正部150は、投影映像P0のうち、最大矩形領域M以外の余剰領域Dを求める。なお、
図9Cでは、余剰領域Dをハッチングで図示した。
【0044】
次に、投影映像補正部150は、余剰領域Dが投影映像Pから除去され、かつ、除去後の投影映像Pが四角形状の投影映像P0のサイズに応じてズームするように投影映像Pを補正する。例えば、投影映像補正部150は、メモリ110の投影映像Pから余剰領域Dをトリミングする。そして、投影映像補正部150は、
図9Dに示すように、トリミング後の投影映像Pから、投影映像P0のサイズ及びアスペクト比(例えば、16:9、4:3)に一致するようにズームした投影映像P2を生成する。このとき、投影映像補正部150は、投影映像Pを補間拡大する電子ズーム、又は、レンズ調整機構23による光学ズームの何れを行ってもよい。さらに、投影映像補正部150は、
図9Eに示すように、ドローン1の前進時には投影映像P1が台形状に歪むことを考慮して、投影映像P2を逆台形状に補正(射影変換)する。なお、
図9において、投影映像Pの投影位置は上下に多少ずれても構わない。
【0045】
以上より、ドローン1は、
図10に示すように、投影映像Pの補正を移動時に行うので、基準位置から移動する前進時においても、歪みのない四角形状の投影映像P0を表示することができる。
なお、
図7~
図10では、ドローン1が前進(前傾)することとして説明したが、ドローン1が後退(後傾)する場合も、同様に映像を補正すればよい。
【0046】
[ドローンの動作:投影装置の冷却]
図11を参照し、ドローン1が投影装置20を冷却する動作を説明する。
ステップS1において、光源30は、点灯する。
ステップS2において、温度センサ60は、光源30の温度を測定する。
ステップS3において、移動制御部130は、ステップS2で測定した光源30の温度が閾値を越えたか否かを判定する。
【0047】
光源30の温度が閾値を越えた場合(ステップS3でYes)、移動制御部130は、ドローン1を、予め設定された基準位置から前後に移動させると判定する(ステップS4)。
光源30の温度が閾値を越えない場合(ステップS3でNo)、移動制御部130は、ドローン1を基準位置に待機させると判定する(ステップS5)。
ステップS6において、移動制御部130は、ステップS4又はステップS5の判定結果に応じた制御信号をESC90に出力する。
【0048】
[ドローンの動作:投影映像の補正]
図12を参照し、ドローン1が投影映像を補正する動作を説明する。
ステップS10において、投影装置20は、映像を投影する。
ステップS11において、距離センサ70は、ドローン1から投影面までの距離を測定する。
【0049】
ステップS12において、フォーカス制御部140は、ステップS11で測定した距離に基づいて、投影映像が投影面に合焦するように投影装置20のフォーカスを制御する。
ステップS13において、撮影カメラ50は、投影面に投影された映像を撮影する。
ステップS14において、投影映像補正部150は、ステップS13で撮影された撮影映像のサイズ及びアスペクト比が所望の値となるように、投影映像を補正する。
【0050】
以上のように、ドローン1は、光源30が所定の温度を超えた場合、前後に移動するので、光源30の過熱を抑制し、安定した映像を投影することができる。このとき、ドローン1は、前傾又は後傾している場合であっても、台形に歪んだ投影映像を補正するので、視聴者が見やすい映像を投影できる。
【0051】
[光源の温度と冷却効果との関係]
一例として、光源30の温度とドローン1の移動により生じる冷却効果との関係を説明する。
例えば、光源30がレーザ光源モジュールであり、その発光効率が投入電力に対して30%である。投入電力が1000Wの場合、光源30は、1000lm以上の明るさで映像を投影することが可能であり、その際、70Wの熱が発生して温度が10℃上昇する。この場合、光源30の温度上昇を抑えるためには、温度を10℃低下させなければならず、以下の式(1)で示す風量Q1が必要となる。
風量Q1=70/20×10=0.35m3/min …(1)
【0052】
ここで、光源30の発光効率に大きな影響を与える温度は、光源30のジャンクション温度Tjであり、温度センサ60が温度Tmを測定する。そして、移動制御部130は、測定した温度Tmとジャンクション温度Tjとの間の熱抵抗により、測定した温度Tmからジャンクション温度Tjを算出する。その後、移動制御部130は、設定した閾値とジャンクション温度Tjとを比較し、ジャンクション温度Tjが閾値を超えている場合、ドローン1を前後に移動させる。
【0053】
例えば、温度Tmとジャンクション温度Tjとの間の熱抵抗Rjmが6℃/Wであり、ヒートシンク42の大きさが40mm×90mmであることとする。そして、移動制御部130が2m/secの速度でドローン1を前後に移動させた場合、風速Vが以下の式(2)で表される。
風速V=ドローン1の移動速度=2[m/sec]=7.2[km/h] …(2)
【0054】
風速Vの風を40mm×90mmのヒートシンク42が受ける場合、風量Q2が以下の式(3)で表される。以上のように、風量Q2=0.43m3/minが風量Q1=0.35m3/minを上回っているため、移動制御部130が投影装置20を冷却できる。
【0055】
風量Q2=風速V×ヒートシンク42の表面積
=2×(40×90/10-6)
=0.43m3/min …(3)
【0056】
(変形例)
以上、本開示の実施形態について説明したが、本開示は、前記した実施形態に限定されず、適宜変更して実施することが可能である。
また、ドローンは、5組以上のプロペラ及びモータを備えてもよい。
温度センサは、光源の温度を直接測定せずとも、光源の温度に相関した個所の温度を測定すればよい。
【符号の説明】
【0057】
1 ドローン
10 フレーム体
11 筐体
11B 第2開口
11F 第1開口
20 投影装置
21 空間光変調器
22 投射レンズ
23 レンズ調整機構
30 光源
31 半導体レーザ
40 冷却機構
41 ヒートパイプ
42 ヒートシンク
43 カバー
44 角筒部材
45 ロッドレンズ
50 撮影カメラ
60 温度センサ
70 距離センサ
80 プロペラ
90 ESC
100 制御部
110 メモリ
120 操作信号受信部
130 移動制御部
140 フォーカス制御部
150 投影映像補正部
160 GPS
170 ジャイロセンサ