(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-25
(45)【発行日】2024-01-09
(54)【発明の名称】共振キャビティ表面音響波(SAW)フィルタ
(51)【国際特許分類】
H03H 9/25 20060101AFI20231226BHJP
H03H 9/145 20060101ALI20231226BHJP
H03H 9/64 20060101ALI20231226BHJP
【FI】
H03H9/25 C
H03H9/145 D
H03H9/25 Z
H03H9/64 Z
(21)【出願番号】P 2021503896
(86)(22)【出願日】2019-07-25
(86)【国際出願番号】 EP2019070082
(87)【国際公開番号】W WO2020021029
(87)【国際公開日】2020-01-30
【審査請求日】2021-03-19
(32)【優先日】2018-07-27
(33)【優先権主張国・地域又は機関】EP
(32)【優先日】2019-07-18
(33)【優先権主張国・地域又は機関】EP
【前置審査】
(73)【特許権者】
【識別番号】598054968
【氏名又は名称】ソイテック
【氏名又は名称原語表記】Soitec
【住所又は居所原語表記】Parc Technologique des fontaines chemin Des Franques 38190 Bernin, France
(74)【代理人】
【識別番号】100107456
【氏名又は名称】池田 成人
(74)【代理人】
【識別番号】100162352
【氏名又は名称】酒巻 順一郎
(74)【代理人】
【識別番号】100123995
【氏名又は名称】野田 雅一
(74)【代理人】
【識別番号】100154656
【氏名又は名称】鈴木 英彦
(72)【発明者】
【氏名】バランドラス, シルヴァイン
(72)【発明者】
【氏名】ラロシュ, ティエリー
【審査官】▲高▼橋 徳浩
(56)【参考文献】
【文献】特開2008-048379(JP,A)
【文献】米国特許第04054851(US,A)
【文献】特開2000-286664(JP,A)
【文献】特開2005-203996(JP,A)
【文献】特開2011-087079(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H03H3/007-H03H3/10
H03H9/00-H03H9/76
(57)【特許請求の範囲】
【請求項1】
音響波伝播基板(102)と、
前記音響波伝播基板(102)上に設けられた少なくとも1つの入力トランスデューサー構造物(112、506)及び1つの出力トランスデューサー構造物(114、506)であって、互い違いに位置する櫛歯電極(124、126、508、510)を各々が備える、少なくとも1つの入力トランスデューサー構造物(112、506)及び1つの出力トランスデューサー構造物(114、506)と、
1つの反射構造物(116)であって、前記反射構造物(116)が、音響波の伝播方向において、前記入力トランスデューサー構造物(112、506)及び前記出力トランスデューサー構造物(114、506)から距離dに、及び、前記入力トランスデューサー構造物(112、506)と前記出力トランスデューサー構造物(114、506)との間に位置する少なくとも1つ以上の金属ストリップ(122)を備える、1つの反射構造物(116)と、
を備える、表面音響波を使用した結合型キャビティフィルタ構造物において、
前記音響波伝播基板(102)が、ベース基板(106)と、圧電層(104)と、前記ベース基板(106)と前記圧電層(104)との間に挟まれた誘電体層(108)とを備える複合基板であり、
前記反射構造物(116)が、前記複合基板並びに前記入力トランスデューサー構造物(112、506)及び前記出力トランスデューサー構造物(114、506)の前記互い違いに位置する櫛歯電極(124、126、508、510)に関連した結合係数k
s
2より大きい、ユニタリ金属ストリップに関連した反射係数をもち、
前記表面音響波が、前記圧電層(104)内における剪断波又は縦波であるように構成された、ことを特徴とする、結合型キャビティフィルタ構造物。
【請求項2】
前記表面音響波が、導波された音響波である、請求項1に記載の結合型キャビティフィルタ構造物。
【請求項3】
少なくとも1つの前記入力トランスデューサー構造物(112)及び前記1つの出力トランスデューサー構造物(114)の前記互い違いに位置する櫛歯電極(124、126)が、p=λ/2により与えられるブラッグ条件により規定され、λが、前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)の動作音響波長であり、pが、前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)の電極ピッチである、請求項1に記載の結合型キャビティフィルタ構造物。
【請求項4】
前記音響波の前記伝播方向において、前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)の、前記1つの反射構造物(116)が位置している側の反対側に、前記入力トランスデューサー構造物(112)及び/又は前記出力トランスデューサー構造物(114)から離れて位置する少なくとも1つのブラッグミラー(132、134)を更に備える、請求項1に記載の結合型キャビティフィルタ構造物。
【請求項5】
ギャップgだけ互いに離れた、及び、音響波の前記伝播方向において、前記入力トランスデューサー構造物(112、506)及び前記出力トランスデューサー構造物(114、506)から距離dに、及び、前記入力トランスデューサー構造物(112、506)と前記出力トランスデューサー構造物(114、506)との間に位置する複数の反射構造物(116、202、204、206、208、302、304、306、308、310、312、402、404、408)を備え、前記複数の反射構造物(116、202、204、206、208、302、304、306、308、310、312、402、404、408)間の各前記ギャップg、及び、前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)と前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)の近接した前記反射構造物との間の各ギャップdが、音響キャビティ(120、212、214、316、408)を形成している、請求項1に記載の結合型キャビティフィルタ構造物。
【請求項6】
各前記音響キャビティ(120、212、214、316、408)の長さが、λ/4より小さく、λは、前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)の動作音響波長である、請求項5に記載の結合型キャビティフィルタ構造物。
【請求項7】
各前記音響キャビティ(120、212、214、316、408)の長さが、λ/4より小さく、λは、前記入力トランスデューサー構造物(112)及び前記出力トランスデューサー構造物(114)の動作音響波長であり、各前記音響キャビティが、2つのサブキャビティに分割される、請求項5に記載の結合型キャビティフィルタ構造物。
【請求項8】
複数の前記反射構造物のうちの近接した反射構造物(202、204、206、208、302、304、306、308、310、312、402、404、408)間の距離g、及び/又は、前記反射構造物(116、202、204、206、208、302、304、306、308、310、312、402、404、408)と近接した前記入力トランスデューサー構造物(112、506)及び前記出力トランスデューサー構造物(114、506)との間の距離dは、同じであるか、又は異なる、請求項5に記載の結合型キャビティフィルタ構造物。
【請求項9】
前記反射構造物(116
)が、前記複合基板並びに前記入力トランスデューサー構造物(112、506)及び前記出力トランスデューサー構造物(114、506)の前記互い違いに位置する櫛歯電極(124、126、508、510)に関連した結合係数k
s
2より少なくとも1.5倍大きい、ユニタリ金属ストリップに関連した反射係数をもつ、請求項1に記載の結合型キャビティフィルタ構造物。
【請求項10】
複数の前記反射構造物の各前記反射構造物(116、202、204、206、208、302、304、306、308、310、312、402、404、408)が、少なくとも1つ以上の金属ストリップ(122、210)を備え、前記金属ストリップのピッチが、前記入力トランスデューサー構造物及び前記出力トランスデューサー構造物(112、114、506)の電極ピッチpと同じであるか、又は異なる、請求項5に記載の結合型キャビティフィルタ構造物。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、フィルタ用途のための表面音響波デバイスに関し、更には特に、表面音響波フィルタデバイスのための複合基板に関する。
【背景技術】
【0002】
近年、表面音響波(SAW)デバイスが益々多くの実用的な用途、例えばフィルタ、センサー、及び遅延線に使用されている。
【0003】
SAWフィルタの合成は異なる種類のツールを必要とし、異なる種類の構造物が実現されることを可能にする。しかし、SAWデバイスにおける従来のフィルタ構造の使用は、例えばデバイスの小型度及び性能などの様々な問題に直面する。
【0004】
SAWフィルタデバイスは、通常、圧電材料としてモノリシック石英、LiNbO3又はLiTaO3結晶から作られたウエハを使用する。しかし、圧電基板の使用は、使用される圧電材料に応じて、温度に対する高い感度、又は弱い電気機械結合をもたらす。これは、低性能なフィルタの通過帯域特性をもたらす。
【0005】
フィルタ性能は、例えば帯域幅、帯域内挿入損失、及び、通過帯域と阻止帯域とを分離する阻止及び遷移帯域幅などの幾つかのパラメータを使用して規定される。
【0006】
更に、フィルタ伝達関数における極及び零点を生成するためのキャビティの使用は、数GHzにおいて動作するマイクロ波フィルタを開発する場合に系統的に使用されるよく知られた技術である。このようなフィルタは導波路を必要とし、共振要素が(直列に、又は並列に)互いに接続される手法に依存して極又は零点をもたらす共振要素が、導波路に沿って位置している。このようなフィルタの合成は、信号源とフィルタ構造物との間の所与の結合因子を前提として、帯域における、より少ないリップル、及び改善された帯域外阻止を実現するこれらの極及び零点の組み合わせに基づいている。いずれの場合においても、フィルタは、互いに接続された、又は導波路に沿って位置した、及び、電気コネクタにより、又は、導波路の縁部を介して直接的にアクセス可能な、一連のキャビティにあるのみである。SAWデバイスに対して、電磁的なフィルタ処理された信号を提供するために、電磁波から音響波への変換及びその逆が達成される必要がある。間において、フィルタ処理の効果をもたらすために、電気的に、又は音響的に共振が組み合わされ得る手法により、電極構造物が組み合わされる。
【0007】
現在のところ、SAWフィルタのために現時点で開発されている解決策は、フィルタ機能を実現するために、主に、いずれもブラッグ条件の近くにおいて動作する回折格子を使用したIDTを結合することに基づいた、インピーダンス要素格子(いわゆるSAWラダー)、又は、縦結合型共振器フィルタ(LCRF)、又は、ダブルモードSAW(DMS)フィルタといった、3種類のアーキテクチャを使用することである。しかし、これらのアプローチは、概して、2つ以上の極が通過帯域に配置されることを可能にし、したがって、最適化されていない性能のデバイスをもたらし、比較的広い占有領域を必要とする。
【発明の概要】
【発明が解決しようとする課題】
【0008】
本発明の目的は、小型度、簡潔さ、及び、多用途さ、並びに良い性能のために改善された設計により複合基板に堆積させられた表面音響波(SAW)フィルタデバイスを提供することにより、前述の欠点を克服することである。
【課題を解決するための手段】
【0009】
本発明の目的は、音響波伝播基板と、基板上に設けられた少なくとも1つの入力トランスデューサー構造物及び1つの出力トランスデューサー構造物であって、互い違いに位置する櫛歯電極を各々が備える、少なくとも1つの入力トランスデューサー構造物及び1つの出力トランスデューサー構造物と、1つの反射構造物であって、反射構造物が、音響波の伝播方向において、入力トランスデューサー構造物及び出力トランスデューサー構造物から距離dに、及び、入力トランスデューサー構造物と出力トランスデューサー構造物との間に位置する、少なくとも1つ以上の金属ストリップを備える、1つの反射構造物とを備える、表面音響波、特に導波された表面音響波を使用した、結合型キャビティフィルタ構造物において、音響波伝播基板が、ベース基板と圧電層とを備える複合基板であることを特徴とする結合型キャビティフィルタ構造物により達成される。このようなフィルタ構造物を含むことにより、通過帯域が調節され得ると同時に、当技術分野における上述のフィルタ構造物に比べて、より少ない占有領域を占めるフィルタ構造物が実現され得る。
【0010】
本発明の変形例によると、結合型キャビティフィルタ構造物は、表面音響波が圧電層内における剪断波又は縦波であるように構成され得る。従来技術ではレイリー波が使用されたのに対し、バルク基板の代わりとしての圧電層の使用は、異なる種類の音響波を使用することへの道を切り開き、以て、更なる最適化パラメータを提供する。導波された剪断波は、複合基板を使用して到達可能な最高の電気機械結合を実現し得る。それらは、従来のレイリー様波に比べて、熱補償のためのより多くの機会を伴いながら、楕円偏波より速い波速に達することを可能にする。更に、基板と誘起条件との所与の組み合わせの使用が、縦方向に偏波した導波された波を誘起することを可能にし、5%より大きい結合を伴って、剪断波及びレイリー波といった他の波の種類より速い速度を実現する。
【0011】
本発明の変形例によると、少なくとも1つの入力トランスデューサー構造物及び1つの出力トランスデューサー構造物の互い違いに位置する櫛歯電極は、p=λ/2により与えられるブラッグ条件により規定され得、λはトランスデューサー構造物の動作音響波長であり、pはトランスデューサー構造物の電極ピッチである。このアプローチは、所与の周波数、帯域幅、及びエネルギー閉じ込めのための最適な寸法及び誘起条件又は結合状態を実現することを可能にする。
【0012】
本発明の変形例によると、結合型キャビティフィルタ構造物は、音響波の伝播方向において、1つの反射構造物が位置している側の反対側に、入力トランスデューサー構造物及び/又は出力トランスデューサー構造物から離れて位置する少なくとも1つのブラッグミラーを更に備え得る。トランスデューサー構造物に近接して位置するブラッグミラーの存在は、構造物における損失を減らすことを可能にする。
【0013】
本発明の変形例によると、結合型キャビティフィルタ構造物は、音響波の伝播方向において、ギャップgだけ互いに離れた、及び、入力トランスデューサー構造物及び出力トランスデューサー構造物に対して距離dに、及び入力トランスデューサー構造物と出力トランスデューサー構造物との間に位置する、複数の反射構造物を備え得、反射構造物間の各ギャップg、及び、トランスデューサー構造物とトランスデューサー構造物に隣接した反射構造物との間の各ギャップdが音響キャビティを形成している。構造物が1つより多い反射構造物を含むことが、構造物に複数の音響キャビティを提供する。より多くの音響キャビティが、遷移帯域を狭くすることを可能にする。
【0014】
本発明の変形例によると、特にキャビティにおける位相速度が反射構造物内における位相速度を上回るように、キャビティフィルタ構造物の各音響キャビティの寸法は、λ/4より小さいものであり得る。このような寸法は、共振条件を改善し、以てフィルタの性能を改善し得る。
【0015】
本発明の変形例によると、複数の反射構造物の近接した反射構造物間の距離、及び/又は、反射構造物と近接したトランスデューサー構造物との間の距離は、同じであり得るか、又は異なり得る。ギャップの寸法、ひいてはキャビティの寸法を適応させることにより、フィルタパラメータが改善され得る。
【0016】
本発明の変形例によると、1つ又は複数の反射構造物は、複合基板の、及びトランスデューサー構造物の電極の結合係数ks
2より大きいユニタリ金属ストリップ反射係数、特に、結合係数ks
2より少なくとも1.5倍大きいユニタリ金属ストリップ反射係数をもち得る。反射係数を結合係数で割った、より高い比は、所与の帯域幅に対して、条件を満たさないフィルタに比べて少ない帯域内リップル効果を伴って、実質的に平坦な帯域内伝達関数、及び急峻な遷移帯域をもたらす。
【0017】
本発明の変形例によると、各反射構造物は少なくとも1つ以上の金属ストリップを備え得、金属ストリップのピッチは、トランスデューサー構造物の電極ピッチと同じであるか、又は異なる。高反射構造物を使用することは、製造ばらつきに対してミラーのより高い許容度を与え得るが、高反射構造物を使用することは、帯域外阻止を改善するために反射関数の零点をシフトさせることを更に可能にする。
【0018】
本発明の変形例によると、各反射構造物の金属ストリップは、互いに電気的に接続され得る。したがって、各反射構造物にわたって一定値の電位が実現され得、以て、ブラッグ条件における反射構造物の反射係数を改善する。
【0019】
本発明の変形例によると、複数の反射構造物の各反射構造物の金属ストリップの数は、30未満であり得、好適には20未満であり得、したがって、複数の反射構造物の反射係数は0.5より大きく、特に0.8より大きい。したがって、音響エネルギーのキャビティ閉じ込めが改善され得、モード結合状態が構造物においてもたらされ得る。
【0020】
本発明の変形例によると、圧電層からの材料の音響インピーダンスと、複数の反射構造物の各反射構造物の金属ストリップからの材料との間の違いは、複数の反射構造物の反射係数が0.5より大きく、特に0.8より大きくなるようにされ得る。反射係数を大きくすることにより、フィルタ構造物の寸法を小さくすることが可能となる。
【0021】
本発明の目的は、音響波伝播基板と、基板上に設けられた少なくとも1つの入力トランスデューサー構造物及び1つの出力トランスデューサー構造物であって、電極を各々が備える、少なくとも1つの入力トランスデューサー構造物及び1つの出力トランスデューサー構造物と、1つの反射構造物であって、反射構造物が、音響波の伝播方向において、入力トランスデューサー構造物及び出力トランスデューサー構造物から距離Lに、及び、入力トランスデューサー構造物と出力トランスデューサー構造物との間に位置する溝を備える、1つの反射構造物とを備える、表面音響波、特に導波された表面音響波を使用した結合型キャビティフィルタ構造物において、音響波伝播基板がベース基板と圧電層とを備える複合基板であることを特徴とする結合型キャビティフィルタ構造物により更に達成される。このようなフィルタ構造物を含むことにより、通過帯域が調節され得ると同時に、当技術分野において上述のフィルタ構造物に比べて、より少ない占有領域を占めるフィルタ構造物が実現され得る。
【0022】
本発明の変形例によると、結合型キャビティフィルタ構造物は、表面音響波が圧電層内における剪断波又は縦波であるように構成され得る。従来技術ではレイリー波が使用されたのに対し、バルク基板の代わりとしての圧電層の使用は、異なる種類の音響波の使用への道を切り開き、以て更なる最適化パラメータを提供する。導波された剪断波は、複合基板を使用して到達可能な最高の電気機械結合を実現し得る。それらは、従来のレイリー様波に比べて熱補償のためのより多くの機会を伴いながら、楕円偏波より速い波速に達することを可能にする。更に、基板と誘起条件との所与の組み合わせの使用が、縦方向に偏波した導波された波を誘起することを可能にし、5%より大きい結合を伴って、剪断波及びレイリー波といった他の波の種類より速い速度を実現する。
【0023】
本発明の変形例によると、結合型キャビティフィルタ構造物は、音響波の伝播方向において、1つの反射構造物が位置している側の反対側に、入力トランスデューサー構造物及び/又は出力トランスデューサー構造物から離れて位置する少なくとも1つの更なる溝を更に備え得る。トランスデューサー構造物に近接して位置する溝の存在は、構造物における損失を減らすことを可能にし、例えばトランスデューサーにおいて伝播する音響波の全反射を実現するように構成され得る。
【0024】
変形例によると、少なくとも1つの入力トランスデューサー構造物及び1つの出力トランスデューサー構造物の電極は、nλに等しい電極ピッチpにより規定され得、λはトランスデューサー構造物の動作音響波長である。
【0025】
変形例によると、結合型キャビティフィルタ構造物は、音響波の伝播方向において、1つの反射構造物が位置している側の反対側に、入力トランスデューサー構造物及び/又は出力トランスデューサー構造物から離れて位置する少なくとも1つの更なる溝を更に備え得る。
【0026】
変形例によると、音響波の伝播方向において、1つの反射構造物が位置している側の反対側に、入力トランスデューサー構造物及び/又は出力トランスデューサー構造物から離れて位置する少なくとも1つの更なる溝の深さD3は、λ以上のオーダー(λ以上程度)であり得る。
【0027】
変形例によると、結合型キャビティフィルタは、ギャップgだけ互いに離れた、及び、音響波の伝播方向において、入力トランスデューサー構造物及び出力トランスデューサー構造物から距離Lに、及び、入力トランスデューサー構造物と出力トランスデューサー構造物との間に位置する複数の反射構造物を備え得、反射構造物間の各ギャップgが音響キャビティを形成している。変形例によると、溝の縁部と、音響波の伝播方向において、溝が位置している側におけるトランスデューサー構造物(812、814)のピッチの端部に対応した位置A、Bとの間の距離L2が、音響キャビティを形成し得る。構造物が1つより多い反射構造物を含むことは、構造物に複数の音響キャビティを提供する。より多くの音響キャビティが、遷移帯域を狭くすることを可能にする。
【0028】
変形例によると、溝(822、1022、1322、1422、1522、1722)の縁部と、少なくとも1つの更なる溝(932、934)の縁部との間の距離は、nλのオーダーであり得る。このような寸法は、共振条件を改善し得、以てフィルタの性能を改善し得る。
【0029】
変形例によると、逃げ角が横軸Xと溝の縁部壁との間の角度であるとき、反射構造物の溝の逃げ角は、70°以上のオーダー、特に90°のオーダーであり得る。
【0030】
変形例によると、反射構造物の溝の深さはλ以上のオーダー、特に10λ以上のオーダーであり、λは表面音響波の波長である。
【0031】
変形例によると、少なくとも1つの更なる溝は、例えば、伝播方向に沿った伝播波の全反射を実現するように構成される。
【0032】
変形例によると、複数の反射構造物の少なくとも2つの溝間に形成された音響キャビティは、トランスデューサーが位置する基板の表面でもある基板の表面に位置し得る。
【0033】
変形例によると、複数の反射構造物の少なくとも2つの溝間に形成された音響キャビティは、基板の表面と深さDに位置する少なくとも2つの溝の底面との間に包含される深さに位置し得る。
【0034】
変形例によると、入力トランスデューサー構造物及び出力トランスデューサー構造物は異なり得、特に、各トランスデューサー構造物の電極フィンガーの数が異なり得る。したがって、フィルタ構造物はより多用途であり、トランスデューサーの構造物は、低挿入損失を実現するために、反射構造物内におけるモードの結合効率を最適化するために変更され得る。
【0035】
本発明の変形例によると、音響キャビティは、互いに離れたサブキャビティに分割され得る。サブキャビティは、更なる層により互いに離され得、1つのキャビティから別のキャビティへとエバネセント結合を生成することを可能にする。したがって、サブキャビティは、構造物におけるエネルギー閉じ込めに有利に働き、デバイスの小型度の改善をもたらし得る。
【0036】
本発明の変形例によると、キャビティフィルタ構造物は、音響波の伝播方向に少なくとも3つ以上のトランスデューサー構造物を備える。信号源密度が高められ得、改善された阻止を実現する。更に、フィルタ帯域は、2つのトランスデューサーのみを含む同じフィルタに対するものより平坦であり得る。
【0037】
本発明の変形例によると、特に、トランスデューサー構造物の電極形状、例えば、電極の厚さ、幅、及び/若しくは、長さ、並びに/若しくは、数、並びに/又は、形状だけでなく、波長λの5%以上でなければならない圧電層の厚さを適応させることにより、より高いフィルタ帯域通過特性を実現するために、圧電層における剪断波、好適には導波された波又は導波された縦波の電気機械結合係数ks
2が5%より大きくなるように、特に7%より大きくなるように、圧電層の特性、及びトランスデューサー構造物の電極の特性が選択され得る。
【0038】
本発明の変形例によると、圧電層(104)における剪断波の、好適には導波された剪断波の、又は導波された縦波の電気機械結合係数ks
2が5%より大きくなるように、特に7%より大きくなるように、圧電層の厚さが選択され得る。λより大きい、より大きい厚さに対して、音響波はその導波特性を失い、層における複数の波の出射と、基板におけるエネルギー損をもたらす。
【0039】
本発明の変形例によると、キャビティフィルタ構造物は、ベース基板と圧電層との間の挟まれた誘電体層、特にSiO2層を更に備え得る。誘電体又はパッシベーション層は、ベース基板上への圧電層の装着を改善し得るが、表面音響波デバイスの温度安定性を維持しながら、電気機械結合を更に改善し得る。誘電体層は1μm未満の厚さ、特に100nm~1μmの範囲内の厚さをもつことが好ましい。
【0040】
本発明の変形例によると、複合基板の圧電層は、窒化アルミニウム(AlN)、酸化亜鉛(ZnO)、PZT、ニオブ酸カリウムKNbO3、及び、同様の材料、例えばKTNなど、並びに、圧電リラクサー、例えばPMN-PT、及び関連する材料、窒化ガリウム(GaN)、タンタル酸リチウムLiTaO3、又は、ニオブ酸リチウムLiNbO3であり得、ここで、タンタル酸リチウムLiTaO3、又は、ニオブ酸リチウムLiNbO3は、規格IEEE1949Std-176に従って(YXl)/θとして規定されたタンタル酸リチウムLiTaO3又はニオブ酸リチウムLiNbO3に対する結晶方位をもち、結晶方位の角度θは、0°~60°の間に、又は90°~150°の間に包含される。
【0041】
本発明の変形例によると、複合基板のベース基板は、シリコン、特にトラップリッチ層を含む高抵抗率シリコン基板、カーボンダイヤモンド、サファイア、又は炭化ケイ素のうちの1つであり得る。高抵抗率により、1000オーム・cmより高い電気抵抗率を理解できる。シリコンに圧電層を転写するために、転写される層を規定するための圧電源基板へのイオン注入と、源基板をシリコン基板に装着することと、熱的又は機械的処理により層を転写することとを使用したスマートカット(SmartCut)(商標)などの大量生産方法が使用され得る。ベース基板に圧電基板を接合することと、圧電基板の(CMP、研削、研磨を介した)後続の薄化とに基づく、より単純なアプローチが本発明のために使用されてもよく、特に、5μm~20μmのオーダーの最終的な厚さをもつと想定される厚い圧電層に適している。スマートカット(商標)を介した層転写、又は連結/薄化を介した層転写の両方のアプローチが、結果的に高品質な、ベース基板に形成された単結晶圧電層を提供する。
【0042】
本発明の変形例によると、ベース基板は、圧電層の下方にブラッグミラーを備え得る。ブラッグミラーは、任意の無機物質のプレートの上に堆積させられた、又は製造された周期的に交番している音響インピーダンスをもつ層のスタックからなる。各層の厚さが音響波長のおおむね4分の1であることを条件として、層のスタックは、上部圧電層において誘起された波に対してミラーのように振る舞う。したがって、ミラーは、基板深さ方向を指す成分をもつ波を反射し、圧電層に波を閉じ込める。
【0043】
本発明の変形例によると、結合型キャビティ表面音響波フィルタ構造物は、0.5%~10%の間に包含されるフィルタ帯域通過をもたらす。キャビティフィルタ構造物のパラメータを変えることにより、フィルタデバイスの帯域通過を変えることが可能であり、したがって、デバイスが、要求されるフィルタ帯域通過を実現するためにユーザーの仕様に適応され得る。
【0044】
本発明の変形例によると、結合型キャビティフィルタ構造物は、トランスデューサー構造物と少なくとも1つの反射構造物との上に形成されたパッシベーション層を更に備え得、パッシベーション層が、トランスデューサー構造物及び/又は少なくとも1つの反射構造物上に、同じ又は異なる所定の厚さをもつ。
【0045】
本発明の目的は、上述の少なくとも2つの結合型キャビティフィルタを備えるSAWラダーフィルタデバイスを使用して更に達成され、少なくとも2つの結合型キャビティフィルタデバイスは単一線上に位置し得る。本発明による結合型キャビティフィルタは単一線上に位置し得るので、複数のキャビティフィルタの配置及び接続は、従来のSAWラダーデバイス程の広い空間を必要としない。本発明によるSAWラダーフィルタデバイスは、従来のSAWラダーフィルタデバイスに比べてより小型なデバイスである。
【0046】
本発明は、添付図面と併せて考慮される以下の説明を参照することにより理解されることができ、添付図面において、参照符号は本発明の特徴を識別する。
【図面の簡単な説明】
【0047】
【
図1a】本発明の第1の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図1b】本発明の第1の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図2a】本発明の第2の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図2b】本発明の第2の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図2c】本発明の第2の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図2d】本発明の第2の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図2e】本発明の第2の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図3a】6μmのLiTaO
3(YXl)/42°圧電層と半無限(100)シリコン基板と間に500nmのSiO
2層を含む、本発明による複合基板を含む、
図2bに示される結合型キャビティ表面音響波フィルタ構造物の性能を示す図である。
【
図3b】6μmのLiTaO
3(YXl)/42°圧電層と半無限(100)シリコン基板と間に500nmのSiO
2層を含む、本発明による複合基板を含む、
図2bに示される結合型キャビティ表面音響波フィルタ構造物の性能を示す図である。
【
図3c】6μmのLiTaO
3(YXl)/42°圧電層と半無限(100)シリコン基板と間に500nmのSiO
2層を含む、本発明による複合基板を含む、
図2bに示される結合型キャビティ表面音響波フィルタ構造物の性能を示す図である。
【
図3d】6μmのLiTaO
3(YXl)/42°圧電層と半無限(100)シリコン基板と間に500nmのSiO
2層を含む、本発明による複合基板を含む、
図2bに示される結合型キャビティ表面音響波フィルタ構造物の性能を示す図である。
【
図4】本発明による
図2bに示される結合型キャビティ表面音響波フィルタ構造物の特性をリスト化した表を示す図である。
【
図5a】本発明の第3の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図5b】本発明の第3の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図6】本発明の第4の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図7】本発明の第5の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図8a】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す図である。
【
図8b】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図8c】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図8d】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図8e】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図8f】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図8g】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図8h】本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物の変形例を示す図である。
【
図9】シミュレーションの実用的な例のために使用される本発明の第3の実施形態によるデバイスを示す図である。
【
図10a】本発明の第3の実施形態による
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性を示す図である。
【
図10b】本発明の第3の実施形態による
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性を示す図である。
【
図11a】本発明の第3の実施形態による
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性に対するデバイスのパラメータの影響を示す図である。
【
図11b】本発明の第3の実施形態による
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性に対するデバイスのパラメータの影響を示す図である。
【
図11c】本発明の第3の実施形態による
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性に対するデバイスのパラメータの影響を示す図である。
【
図11d】本発明の第3の実施形態による
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性に対するデバイスのパラメータの影響を示す図である。
【
図12a】
図12aにおける従来技術によるSAWラダーフィルタデバイスの例を示す図である。
【
図12b】
図12bにおける本発明によるSAWラダーフィルタデバイスの例を示す図である。
【発明を実施するための形態】
【0048】
図1は、本発明の第1の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す。
図1aにおいて、結合型キャビティ表面音響波フィルタ構造物100は、複合基板である基板102において実現されている。複合基板102は、ベース基板106上に形成された、結晶軸X、Y、及びZをもつ圧電材料104の層を備える。
【0049】
この実施形態における圧電層104は、特に、結晶方位の角度θが0°~60°の間、又は90°~150°の間に包含される、規格IEEE1949Std-176に従って(YXl)/θにより規定されたカット方位をもつLiTaO3又はLiNbO3、カリウムニオブ酸塩KNbO3、及び同様の材料組成、例えばKTN、並びに、スパッタリングされたフィルム又はエピタキシャルフィルムを使用した他の圧電層、例えば、窒化アルミニウムAlN、酸化亜鉛ZnO、PZT、GaN又は、AlN及びGaNの任意の組成である。
【0050】
ベース基板106に形成された圧電層104の厚さは、1波長λ以下のオーダー、特に約20μm以下である。ベース基板106の厚さtは、圧電層104の厚さより大きい。好ましい状況は、圧電層104の厚さより少なくとも10倍大きい、特に50倍~100倍大きいベース基板厚さに対応しており、これは250μm~500μmに等しいベース基板厚さに対応している。
【0051】
本発明の第1の実施形態において使用されるベース基板106は、シリコン基板、特に高抵抗率シリコン基板である。シリコン基板の方位は例えば例として(110)、(111)又は(001)といった他の結晶方位に比べて高い音響波伝播速度を理由として(100)であることが好ましいが、(110)、(111)又は(001)といった他の結晶方位も使用され得る。シリコンの代わりに、圧電層のうちの1つより大きい音響波伝播速度をもつ他の基板材料が選択され得、例えば、カーボンダイヤモンド、サファイア、又は炭化ケイ素が使用され得る。
【0052】
本発明の変形例において、ベース基板106は、圧電材料の上層に近いいわゆるトラップリッチ層を更に備えてもよく、トラップリッチ層は、ベース基板の絶縁性能を改善し、多結晶、アモルファス、又は多孔質部材、例えば例として、多結晶シリコン、アモルファスシリコン、又は多孔質シリコンのうちの少なくとも1つにより形成されてもよいが、本発明はこのような材料に限定されない。
【0053】
本発明の変形例において、ベース基板106は、圧電層104の下方にブラッグミラーを更に備え得る。ブラッグミラーは、任意の無機物質のプレートの上に堆積させられた、又は製造された周期的に交番している音響インピーダンスをもつ層のスタックからなる。音響インピーダンスは、波速に材料密度を乗じた積であり、レイリーにより表され、Mレイリー、すなわち106レイリーにより表されることが好ましい。圧電層は、音響波の誘起及び検出のために、層スタックの上に堆積させられ、又は製造されている。スタックは、タングステン及びシリカ、又はSi3N4及びSiO2、又はMo及びAlの交番、及び、概して、2より大きい音響インピーダンス比をもつ材料の任意の組み合わせから構成されることが有益であることができる。無機サブプレートは、標準的なシリコン、又は、高抵抗率シリコン又はガラス、及び、概して、6ppm/K未満の熱膨張係数(TCE)をもつ任意の物質であることが有益であることができる。電気的な絶縁を改善するためにトラップリッチ層を更に組み込み得る。スタックの第1の層はSiO2であり得、又は概して、圧電層を上述の複合基板に結合するために使用され得る任意の物質であることが有益である。
【0054】
この実施形態において、薄いSiO2層108がベース基板106に対する圧電材料層104の装着を改善するために、圧電層104とベース基板106との間の界面110に設けられる。SiO2層110は200nmの厚さであるが、変形例において、SiO2層110の厚さは様々であり得る。200nmの厚さより大きい又は小さいものであり得、特に、10nm~6μmの間で様々であり得る。
【0055】
結合型キャビティフィルタ構造物100は、2つのトランスデューサー構造物112、114と、
図1に示される伝播方向Xにおいてトランスデューサー構造物112、114から特定の距離dにおいて、2つのトランスデューサー構造物112、114の間に位置する1つの反射構造物116とを更に備える。反射構造物116と1つのトランスデューサー構造物112、114との間に位置する領域、例えば、距離dにより規定されたその幅をもつ領域118は、音響キャビティ120に対応している。この場合において、電極は、トランスデューサー112、114のピッチp内に中心をもつ。したがって、以下で、トランスデューサー構造物112、114のピッチpの端部は、電極128からある距離に位置する。一例において、トランスデューサー構造物112、114の比a/pが50%である場合、ピッチpの端部は、トランスデューサー構造物112、114の第1の電極128からλ/8に等しい距離だけ離れている。
【0056】
結果として、音響キャビティは、反射構造物116と、反射構造物116が位置している側におけるトランスデューサー構造物112、114のピッチpの端部との間に延びている。したがって、結合型キャビティ表面音響波フィルタ構造物100において、様々な音響キャビティが音響波の伝播方向に存在し、
図1aに示される結合型キャビティフィルタ構造物では、2つの音響キャビティ120が存在する。
【0057】
反射構造物116は、通常、1つ又は複数の金属ストリップ122を備え、反射構造物116内における金属ストリップ122間の距離に対応した金属ストリップ122のピッチ(図示されていない)により規定されている。トランスデューサー構造物112、114の場合と同様に、反射構造物116におけるピッチは、ピッチ内に中心をもつ金属ストリップを含むことにより規定されている。
【0058】
トランスデューサー構造物112及び114は、入力トランスデューサー構造物112及び出力トランスデューサー構造物114に対応しているが、音響波の伝播方向において、入力トランスデューサー構造物が構造物の右側にあり、出力トランスデューサー構造物が構造物の左側にあるように、入力トランスデューサー構造物112及び出力トランスデューサー構造物114の位置が交換されてもよい。E符号がトランスデューサー構造物の入力音響信号を表すのに対し、S符号はトランスデューサー構造物の出力音響信号を表す。
【0059】
各トランスデューサー構造物112、114は2つの互い違いに位置する櫛歯電極124、126を備え、各々が、それぞれ複数の電極手段128、130を備える。この実施形態において、電極手段128、130は電極フィンガーの形状をもつ。櫛歯電極124、126、及び櫛歯電極124、126のそれぞれの電極フィンガー128、130は、アルミニウムベースの材料、例えば、純アルミニウム、又はアルミニウム合金、例えば、Cu、Si、又はTiをドープしたAlから形成されている。それにもかかわらず、より小さい電極相対厚さのために、より強い反射係数をもたらす他の物質が使用されてもよい。その点から、好ましい電極材料は、銅(Cu)、モリブデン(Mo)、ニッケル(Ni)、例えば、チタン(Ti)又はタンタル(Ta)又はクロム(Cr)といった接着層を含む白金(Pt)又は金(Au)、ジルコニウム(Zr)、パラジウム(Pd)、イリジウム(Ir)、タングステン(W)などである。
【0060】
トランスデューサー構造物112、114は、対向した櫛歯電極124及び126からの2つの近接した電極フィンガー128、130の間の縁部間電極フィンガー距離に対応した、電極ピッチp(図示されていない)により更に規定されている。本発明の変形例において、電極ピッチpは、p=λ/2により与えられるブラッグ条件により規定され、λはトランスデューサー構造物112、114の動作音響波長である。動作音響波長λにより、fがフィルタ構造物の所定の中心周波数であり、及びVが使用されるモードの位相速度であるとしたとき、λが、λ=V/fに基づく音響波長であることを理解することができる。このようなトランスデューサー構造物は、1波長当たり2フィンガーの互い違い型トランスデューサー(IDT)とも呼ばれる。
【0061】
本発明の変形例において、互い違い型トランスデューサーは、例えば、1波長当たり3フィンガー又は4フィンガーの誘起構造物、又は、2波長当たり5フィンガーのトランスデューサー、又は、3波長当たり7フィンガー又は8フィンガーを使用して、ブラッグ条件外で動作し得る。
【0062】
トランスデューサー構造物112及び114は対称であり得、すなわち、トランスデューサー構造物112及び114は、同じ特性をもつ同数の電極フィンガー128、130を含む。しかし、本発明の変形例において、トランスデューサー構造物112及び114は異なっていてもよく、特に、トランスデューサー構造物112及び114は、異なる数の電極フィンガー128、130を含んでもよい。
【0063】
櫛歯電極128、130の電極フィンガー132、134はすべて、実質的に同じ長さl、幅w、及び厚さhをもつ。実施形態の変形例によると、電極フィンガー132、134は、異なる長さl、幅w、及び厚さhをもち得る。寸法は、所望の結合係数ksを実現するように、又は、他の特徴、例えば、横モードの除去、IDTインピーダンスの変調、望ましくないモードの出射の低減などを利用するように構成される。
【0064】
本発明の変形例において、トランスデューサー構造物112、114はチャープされてもよく、このことは、トランスデューサー構造物における電極ピッチpが、直線状に、又は双曲線状に連続的に変更されることができることを意味する。これは、トランスデューサーの動作周波数帯域を広げることを可能にし、温度に対する幾らかのロバスト性をもたらすことができる。
【0065】
反射構造物116の金属ストリップ122のピッチは、トランスデューサー構造物112、114の電極ピッチpと同じであり得る。変形例において、反射構造物116の金属ストリップ122のピッチは、トランスデューサー構造物112、114の電極ピッチpと異なっていてもよい。
【0066】
本発明の変形例において、反射構造物116は、フィルタの動作帯域を広げるために、及び、トランスデューサー構造物112、114間に位置する音響キャビティ118の共振の効率を高めるために、同様にチャープされ得る。
【0067】
変形例において、結合型キャビティフィルタ構造物100は、2つのブラッグミラー132、134を更に備える。この変形例は
図1bに示されており、各ブラッグミラー132、134は、結合型キャビティフィルタ構造物200の外側において、トランスデューサー構造物112、114に近接して位置しており、このことは、音響波の伝播方向において反射構造物116が位置している側とは他方側にあることを意味する。各ブラッグミラー132、134は、ブラッグミラー132、134のそれぞれのトランスデューサー構造物112、114から距離sに位置している。各ブラッグミラー132、134は、1つ又は複数の金属ストリップ136を備え、ブラッグミラー132、134内における金属ストリップ136間の距離に対応した金属ストリップ136のピッチ(図示されていない)により規定されている。
【0068】
本発明の変形例において、反射構造物116及びブラッグミラー132、134は、金属ストリップ136、210を堆積させる代わりに、溝をエッチングすることにより構築されてもよい。溝は、複合基板102の圧電層104において、更にはベース基板106まで下方にエッチングされてもよい。
【0069】
変形例において、パッシベーション層(図示されていない)が、トランスデューサー構造物112、114及び少なくとも1つの反射構造物116上に形成され得る。パッシベーション層はトランスデューサー構造物112、114及び/又は少なくとも1つの反射構造物116上に、同じ又は異なる所定の厚さをもつ。パッシベーション層は、ブラッグミラー132、134上に形成されてもよい。この変形例において、基板は、モノリシック圧電性ウエハ、例えば、タンタル酸リチウム、又はニオブ酸リチウムバルクウエハであってもよく、パッシベーション層は、シリカSiO2層又は五酸化タンタルTa2O5層であることが有益であり得る。この実施形態において、パッシベーション層が正の熱膨張係数(TCE)をもつのに対し、基板は負の熱膨張係数(TCE)をもち、層厚は、SAWデバイスの周波数の温度係数(TCF)を小さくするように設定される。
【0070】
図2a~
図2eは、本発明の第2の実施形態による結合型キャビティフィルタ構造物及びその変形例を示す。
図2a~
図2eのすべてに対して、結合型キャビティフィルタ構造物が2D平面図に示され、結合型キャビティフィルタ構造物が位置している基板は、もはや図示されていない。しかし、基板は、
図1a、
図1bの基板102と同じである。
図1a及び
図1bに示されるものと同じ参照符号が同じ特徴を表すために使用され、繰り返して詳細には説明されない。
【0071】
図2aにおいて、結合型キャビティフィルタ構造物300は、結合型キャビティフィルタ構造物200と同様に、各々が1つのトランスデューサー構造物に近接して位置している2つのブラッグミラー132、134を含む2つのトランスデューサー構造物112、114を備える。結合型キャビティフィルタ200との違いは、複数の反射構造物、すなわち4つの反射構造物202、204、206、208が、トランスデューサー構造物112、114間に存在することである。複数の反射構造物の各反射構造物202、204、206、208は、少なくとも1つ以上の金属ストリップ210を備え、各反射構造物202、204、206、208内における金属ストリップ210間の距離に対応した金属ストリップ210のピッチ(図示されていない)により規定されている。本例において、各反射構造物204、206、208、210の金属ストリップ210は合計4つであるが、金属ストリップは更に多くてもよく、又は少なくてもよい。複数の反射構造物のうちの反射構造物204、206、208、210は、同数の金属ストリップ210を含んでもよいが、変形例において、反射構造物の各々が異なる数の金属ストリップ210を含んでもよい。例えば、反射構造物204、206、208、210における金属ストリップ210の数は、構造物の実際の中心における共振を増強するために、トランスデューサー構造物112、114間において反射構造物204、206、208、210全体にわたって増加した後減少してもよい。
【0072】
これらの反射構造物202、204、206、208は、ギャップgだけ互いに離れている。2つの隣接した反射構造物間において位置する領域、例えば、ギャップgにより規定されたその幅をもつ202及び204は、音響キャビティ212に対応している。結合型キャビティフィルタ構造物100及び200の場合と同様に、反射構造物と隣接したトランスデューサー構造物との間に位置する領域は、音響キャビティ214に更に対応しているが、反射構造物と隣接したトランスデューサー構造物との間の距離dにより規定された幅をもつ。第1の実施形態の場合と同様に、トランスデューサー構造物112、114の電極は、トランスデューサー112、114のピッチp内に中心をもち、音響キャビティは、反射構造物116と反射構造物116が位置している側におけるトランスデューサー構造物112、114のピッチpの端部との間に位置する領域として規定されている。
【0073】
したがって、結合型キャビティ表面音響波フィルタ構造物には、様々なキャビティが反射構造物により分離されて音響波の伝播方向に存在しており、又は別様には、キャビティがトランスデューサー間において2つの反射構造物により囲まれている。したがって、
図2aに示される結合型キャビティフィルタ構造物300では、全部で5つの音響キャビティ212、214がモードの伝播方向に存在する。トランスデューサー構造物間における所与の数の反射構造物に対して、及び、トランスデューサー構造物がブラッグ条件において動作する状態において、音響キャビティの数は反射構造物の数に1を足したものに等しい。
【0074】
本発明の変形例において、反射構造物202、204、206、208は、フィルタの動作帯域を広げるために、及び、トランスデューサー構造物212、214間に位置する音響キャビティ212、214の共振の効率を高めるために、同様にチャープされ得る。
【0075】
本発明の変形例において、反射構造物202、204、206、208及びブラッグミラー132、134は、金属ストリップ136、210を堆積させる代わりに溝をエッチングすることにより構築されてもよい。溝は、複合基板102の圧電層104において、更にはベース基板106まで下方にエッチングされてもよい。
【0076】
本発明の変形例において、反射構造物202、204、206、208の、及び/又はブラッグミラー132、134の金属ストリップ136、210は、互いに電気的に接続され得る。反射構造物202、204、206、208とブラッグミラー132、134との両方の反射ストリップ136、210が互いに接続された変形例が、結合型キャビティフィルタ構造物400に対して
図2bに示される。これは、ブラッグ条件における反射構造物202、204、206、208の、及びブラッグミラー132、134の反射係数の改善をもたらす。反射構造物202、204、206、208及び/又はブラッグミラー132、134のすべてが、いわゆる短絡状態において動作し、このことは、所与の反射構造物202、204、206、208/ブラッグミラー132、134の金属ストリップ136、210のすべてが互いに接続されており、回折格子構造にわたって一定値の電位をもたらすことを意味する。
【0077】
本発明の変形例において、結合型キャビティフィルタ構造物は、3つの、又は更に多くのトランスデューサー構造物を備え得る。
図2cに、3つのトランスデューサー構造物402、404、406が結合型キャビティフィルタ構造物400に存在する変形例が示される。更に、複数の反射構造物が合計で6つの反射構造物302、304、306、308、310、312を備えるので、結合型キャビティフィルタ構造物400は、
図2aに示される結合型キャビティフィルタ構造物300と異なる。同様に、結合型キャビティフィルタ構造物300に対して
図2aにおいて既に説明されている特徴と同じ特徴を説明するために、同じ参照符号が使用される。
【0078】
2つのトランスデューサー構造物112、114が、
図2aの構造物における場合と同様に、反射構造物302、304、306、308、310、312の外側に位置しているとともに、第3のトランスデューサー構造物314が反射構造物302、304、306、308、310、312116の中央に位置しており、したがって、第3のトランスデューサー構造物314の各側に、3つの反射構造物302、304、306、及び、308、310、312が存在している。更に、トランスデューサー構造物314は、トランスデューサー構造物112、114と、トランスデューサー構造物112、114のそれぞれの近接した反射構造物(本例ではトランスデューサー構造物112に対する302、及び、トランスデューサー構造物114に対する312)との間の距離と同じ距離に対応した距離dだけ、2つの隣接した反射構造物から離れている。したがって、結合型キャビティフィルタ500は、合計で8つの音響キャビティ316を備える。このようなキャビティフィルタ構造物500は対称であり、2つのトランスデューサー構造物112、114しか含まない
図2aに示されるキャビティフィルタ構造物300に比べて、キャビティ316におけるエネルギーのより強い閉じ込めをもたらす。
【0079】
本発明の変形例において、第3のトランスデューサー314が結合型キャビティフィルタ構造物の中央に位置していないことにより、結合型キャビティフィルタ構造物は対称ではない。
【0080】
本発明の変形例において、複数の音響キャビティは、サブキャビティに分割され得る。この変形例が
図2dに示されており、図中、サブキャビティが更なる層の存在により互いに離れている。同様に、更に、複数の反射構造物が合計で3つの反射構造物402、404、406を備えるので、結合型キャビティフィルタ構造物600は、
図2aに示される結合型キャビティフィルタ構造物300と異なる。同様に、結合型キャビティフィルタ構造物300に対して
図2aにおいて既に説明されている特徴と同じ特徴を説明するために、同じ参照符号が使用される。キャビティフィルタ構造物600において、反射構造物402、404、406間に位置する、及び、トランスデューサー構造物112、114とトランスデューサー構造物112、114のそれぞれの近接した反射構造物402及び406との間に位置する音響キャビティ408は、2つのセクションに分けられており、2つのトランスデューサー構造物112、114間における8つの暗い領域410と4つの白色領域412との存在をもたらす。暗い領域410は、波速が白色領域412における波速より小さい位置を表し、したがって、
図2aに示される結合型キャビティフィルタ構造物300におけるエネルギー閉じ込めより良いエネルギー閉じ込めをもたらす。したがって、結合型キャビティフィルタ構造物600は更なる極をもたらし、結合型キャビティフィルタ構造物600の小型度の改善につながる。
【0081】
本発明の変形例において、入力トランスデューサー構造物及び出力トランスデューサー構造物は対称でも同一でもなく、この変形例は
図2eに示される。同様に、更に、複数の反射構造物が合計で2つの反射構造物502、504を備えるので、結合型キャビティフィルタ構造物700は、
図2aに示される結合型キャビティフィルタ構造物300と異なる。同様に、結合型キャビティフィルタ構造物300に対して
図2aにおいて既に説明されている特徴と同じ特徴を説明するために、同じ参照符号が使用される。
図2において、各トランスデューサー構造物の電極フィンガーの数は異なる。結合型キャビティフィルタ構造物700では、トランスデューサー構造物114は、トランスデューサー構造物114の全体にわたって一定の電極ピッチpをもつ、各々5つの電極フィンガー128、130を含む互い違いに位置する櫛歯電極124、126を備える。トランスデューサー構造物506は互い違いに位置する櫛歯電極508、510を備えるが、櫛歯電極508、510の各々が8つの電極フィンガー128、130を含み、更に、櫛歯電極508の第3の電極フィンガー128と櫛歯電極510の第4の電極フィンガー130との間において、トランスデューサー構造物506にギャップが存在する。更に、この変形例において、トランスデューサー構造物114、506に近接したブラッグミラーが存在せず、このことが、
図2aの結合型キャビティフィルタ構造物300より大きな損失及びリップルをもたらす。しかし、この結合型キャビティフィルタ構造物700は、
図2aに示される構造物より小型で、より単純な設計を実現する。
【0082】
結合型キャビティ表面音響波フィルタ構造物は、以下の手法により機能する。入力の互い違い型トランスデューサー(IDT)は、反射構造物に向けて音響エネルギーを出射し、反射構造物の共振を誘起する。反射構造物は別の反射構造物に結合されており、したがって、このことが、1つの反射構造物から別の反射構造物へのエネルギー伝達をもたらす結合状態を生成する。複数のこのような反射構造物が互いに結合され得るが、透過したエネルギーを収集する少なくとも1つの出力トランスデューサー構造物が存在する。
【0083】
したがって、本発明は、複合基板からの上部圧電層の導波を利用した、及び、1つの反射構造物から別の反射構造物にエネルギーを結合させる音響共振キャビティを使用した、結合型キャビティフィルタ構造物を使用することを提案する。
【0084】
結合型キャビティフィルタ構造物の場合、トランスデューサー構造物の共振がフィルタの低周波遷移帯域において発生し、反共振がフィルタ帯域のおおむね中央において発生する。したがって、所与のモードは、達成される帯域通過に比例した結合因子をもたなければならないので、電気機械結合係数に対する条件はインピーダンスフィルタに対して要求されるものと同様であり、すなわち、結合係数は達成される帯域より1.5倍~2倍大きくなければならず、この帯域内における挿入損失を減らすことを可能にする。しかし、結合係数より大きい、理想的には結合係数の1.5倍以上の大きい反射係数がフィルタ帯域を実現するために必要とされる。
【0085】
本発明によると、トランスデューサー構造物の結合係数が5%以上である場合でも、結合係数に対する反射係数の関係性が複合基板を使用して実現され得る。複合基板の圧電層において導波された剪断波又は縦波を使用する場合に、これが特に当てはまる。
【0086】
波長より小さい圧電層の厚さに起因して、剪断波モード又は縦モードが圧電層内を導波される。更に、複合基板におけるエネルギー損が小さくされ得る。圧電層の厚さは波長λの5%以上でなければならない。厚い圧電層の場合、複合基板の剪断モードはもはや完全に導波されるわけではないが、界面においてベース基板に反射する損失の多いバルク成分を含み、寄生モード又はラトル効果をもたらす。しかし、薄い圧電層、すなわち波長の、又は波長未満の厚さの場合、剪断モードは、損失の多いバルクモードを伴わずに完全に導波される。
【0087】
フィルタデバイスの性能指数は、周波数の関数としてフィルタ帯域通過を示すフィルタの透過率であり、帯域通過において損失のレベルがdBで表される。フィルタ帯域通過は、様々な因子、すなわち結合係数、キャビティの数、及び、反射係数に依存する。
【0088】
圧電層の寸法、トランスデューサー構造物の寸法、反射構造物の長さの寸法、結合型反射構造物の数、及び、モードの結合係数に応じて、トランスデューサー構造物の設計及び選択に従って、非常に低い、すなわち、2dBより良い、特に1dB未満の挿入損失を伴い、15dB~20dB又は更に大きい阻止を伴う、多極及び零点フィルタを合成することが可能である。
【0089】
音響キャビティの寸法に関して、音響キャビティは、従来技術によると、最適な共振条件を満たすために、理想的には4分の1波長の長さであるか、又は、4分の1波長の奇数個ぶんでなければならない。本発明では、音響キャビティの長さは4分の1波長より短いものであり得る。これは、自由表面から回折格子エリアへの強い速度変化に起因するものであり、標準的な真のSAW解決策を使用して到達可能なものよりはるかに大きい音響インピーダンスの不一致をもたらす。
【0090】
結合係数に関して、複合基板に対して、及び、金属ストリップパラメータ(材料、寸法)に対して、結合係数は係数0.7により帯域通過値に直接関係しており、したがって、フィルタデバイスの要求される帯域通過は、キャビティフィルタ構造物の材料及び寸法を選択することにより実現され得る。
【0091】
反射構造物における金属ストリップの数に関して、数は、キャビティにおける音響エネルギーの閉じ込めを可能にするために、ひいてはモード結合状態をもたらすために、0.5より大きい、特に0.8より大きい広域的な反射係数をもたらすように選択される。
【0092】
既に言及したように、反射係数の大きさは、結合係数より大きいことが好ましく、結合係数パラメータより1.5倍以上高いことが理想的である。反射係数が大きいほど、金属ストリップの数が少なく、したがって、フィルタ帯域幅が広くなる。例えば、15%より大きい反射係数は、反射構造物を構成する金属ストリップの数を減らすことを可能にし、このことが、フィルタの帯域幅に直接的に影響を与え、すなわち、構造物の反射係数が50%以上であることを条件として、反射構造物における金属ストリップの数が少ないほど、帯域幅が広くなる。15%より大きい反射係数を考えると、5%より広い帯域幅をもつフィルタが実現され得る。
【0093】
7%より広い帯域幅及び0.6dB未満の帯域内リップルをもつ、2.6GHzにおいて動作するフィルタデバイスの特定の例は、(100)シリコン基板上における1μmの厚さのSiO2層上における300nmの厚さの(YXl)/52°LiNbO3層を備える複合基板上における、30nmの厚さのタンタル(Ta)電極を伴って与えられる。この例では、反射係数は20%に達し、結合因子は約18%に達する。
【0094】
図3a~
図3dは、6μmのLiTaO
3(YXl)/42°圧電層と半無限(100)シリコン基板との間に500nmのSiO
2層を含む本発明による複合基板を含む
図2bに示されるキャビティフィルタ構造物を備える表面音響波フィルタデバイスの特性を示す。この構成は、50MHz~250MHzの周波数範囲内において動作することに適している。
【0095】
このような複合基板において、純粋な剪断の真のモードが励起され得、及び伝播する。
【0096】
このSAWフィルタデバイスに対して、
図2bに示される結合型キャビティフィルタ構造物が使用されており、すなわち、入力トランスデューサー構造物及び出力トランスデューサー構造物とともに、各々に隣接したブラッグミラー及び4つの反射構造物が、トランスデューサー構造物間に存在する5つの音響キャビティをもたらす。各反射構造物とブラッグミラーとの両方の金属ストリップが短絡動作のために互いに接続されている。
【0097】
互い違い型トランスデューサー構造物は、9.95μmに設定された電極ピッチ、及び、0.3に設定された比a/pをもち、15に設定された多くの電極フィンガーペアを含む。更に、30個の電極を伴って、ミラー回折格子周期が10μmに設定され、a/pが0.4に設定されている。ミラー回折格子と互い違い型トランスデューサー構造物との間のギャップは、約半波長に対応した9μmに設定されている。各々14個の電極の2つの内部反射構造物は、約4分の1波長に対応した4.8μmのギャップgだけ離れている。したがって、アパチャーは3.1mmである。
【0098】
図3aは、170MHz~250MHzまでの周波数(MHz)の関数として、フィルタ伝達関数の全体図、及びフィルタの群遅延を示す。群遅延は位相線形性の尺度である。
図3bは、中心周波数付近における
図3aの拡大図を示し、したがって、帯域通過に注目し、非常に低い伝達損失を示す。
図3cは反射係数であり、同様に周波数(MHz)の関数としてフィルタの極の兆候を示す(最小|S
11|ピーク)。
図3dは、フィルタの両方のポートの電気的インピーダンスマッチングを評価するための、当業者により現在使用されているいわゆる反射係数のスミスアバカス図である。反射係数は、おおむね50オームの状態を中心として位置しなければならず、すなわち、アバカスの中心が一致させられる。
【0099】
図3aにおける伝達関数は、210MHz~218MHzの間のフィルタ帯域通過を伴うデバイスの性能を示す。
図3bにおいて、フィルタ帯域通過が、低い帯域内リップルを伴って、約0.5dBにおいて平坦な様相を示すことが確認され得る。
【0100】
図4は、本発明による、
図2bに示される結合型キャビティ表面音響波フィルタ構造物の特性を列挙した表を示す。結合型キャビティフィルタ構造物のすべてに対して、使用される複合基板は
図3の場合と同じもの、すなわち、6μmのLiTaO
3(YXl)/42°圧電層であって、圧電層と半無限(100)シリコンベース基板との間に500nmのSiO
2層を含むものであった。
【0101】
結合型キャビティフィルタ構造物は
図2bに対応しており、すなわち、入力トランスデューサー構造物及び出力トランスデューサー構造物とともに、各々に隣接したブラッグミラー及び4つの反射構造物が、トランスデューサー構造物間に存在する5つの音響キャビティをもたらす。各反射構造物とブラッグミラーとの両方の金属ストリップが、短絡動作のために互いに接続されている。
【0102】
図4において説明されている結合型キャビティフィルタ構造物のすべてが純粋な剪断波モードの伝播に対応しており、性能、すなわち、0.5%~10%までの様々なフィルタ帯域通過、2dB未満の低挿入損失、15dB~20dBの阻止損失、5%より高い結合因子、及び、20ppm/K未満の周波数の温度係数(TCF)を示す。10%程度の大きさの帯域通過は、現在の堆積技術に適合する厚さをもった、すなわち、hを金属ストリップの純然たる厚さとしたときに5%未満でh/λと等しくなる、例えばPt又はW又はTa又はMoベースの電極を含むLNO薄層を使用して達成され得る。
【0103】
したがって、結合型キャビティSAWフィルタデバイスの要求される性能に対して、結合係数を調節するために、及び、結合型キャビティフィルタ構造物のサイズ限度を超えないように反射構造物の数及びサイズを調節するために、材料を選択することが可能である。
【0104】
本発明による結合型キャビティSAWフィルタデバイスは、改善された小型度に基づいてより小さい寸法を実現するとともに、15dB~20dBの阻止損失及びフィルタ帯域通過内における低リップルをもたらしながら、0.5%~10%の間に包含される狭いフィルタ帯域通過、2dB未満の低挿入損失を実現するために、複合基板の剪断波を使用する。
【0105】
図5a及び
図5bは、本発明の第3の実施形態による結合型キャビティ表面音響波フィルタ構造物を示す。
【0106】
第3の実施形態では、
図1a及び
図1bに示される第1の実施形態の場合と同様に、結合型キャビティ表面音響波フィルタ構造物800が、
図1a及び
図1bの基板102と同じである複合基板102において実現される。
【0107】
図1a及び
図1bに示されるものと同じ参照符号が同じ特徴を表すために使用され、繰り返して詳細には説明されない。
【0108】
この実施形態において、ベース基板106に対する圧電材料層104の装着を改善するために、圧電層104とベース基板106との間において界面110に設けられた薄いSiO2層108は500nmの厚さである。
【0109】
結合型キャビティフィルタ構造物800は、2つのトランスデューサー構造物812、814と、
図5aに示される伝播方向Xにおいてトランスデューサー構造物812、814から特定の距離Lにおいて2つのトランスデューサー構造物812、814の間に位置する1つの反射構造物816とを備える。
【0110】
各トランスデューサー構造物812、814は、2つの電極824、826(図示されていない)を備え、2つの電極824、826の各々がそれぞれ複数の電極手段828、830を備える。櫛歯電極は、交番する手法により+V/-V電位に接続されており、電極824が+Vに接続されるとともに電極826が-Vに接続されているか、又は逆である。変形例において、電極824、826は、櫛歯電極、特に互い違いに位置する電極であり得る。
【0111】
トランスデューサー構造物812、814は、対向した櫛歯電極824及び826からの2つの近接した電極フィンガー828、830の間の縁部間電極フィンガー距離に対応した電極ピッチp(図示されていない)により規定されている。
【0112】
この実施形態において、トランスデューサー構造物812、814の電極ピッチpは、ある数の波長nλにより規定され、λはトランスデューサー構造物812、814の動作音響波長である。
【0113】
トランスデューサー構造物の金属比a/pは、電極の幅a割る電極のピッチpの比として規定されている。
【0114】
本発明のこの実施形態では、反射構造物816は溝822により実現され、溝822の2つの側縁部壁822aと822bとの間の距離に対応した寸法L1により、及び、溝822の総深さDにより規定されている。溝822の総深さDは、トランスデューサー812、814が位置する圧電層104の表面から、溝822の底面822cまでの間に規定されている。溝822の深さDはλ以上のオーダーであり、特に10λ以上のオーダーであり、λは表面音響波の波長である。
【0115】
更に、溝822は、横軸X及び溝822cの底面に対する溝の縁部壁822a、822bの位置を規定するエッチング逃げ角θ340により更に規定されている。逃げ角θ840は、70°以上のオーダーであり得、特に90°のオーダーである。
図5aは、90°の逃げ角θ340に対応した縦縁部壁をもつ溝822を示す。
【0116】
反射構造物816とトランスデューサー構造物812、814との間に位置する領域、例えば距離L
2により規定されたその幅をもつ領域818は、音響キャビティ820に対応している。距離L
2は、溝822の1つの縁部壁822a、822bとトランスデューサー812、814が位置している圧電層の表面に位置する点A、Bとの間の距離として規定されている。点A、Bは、
図5aに示されるように、溝822が位置している側において、トランスデューサー構造物812、814のピッチの端部に位置する。電極がピッチ内に中心をもつので、トランスデューサー構造物812、814のピッチの端部は、トランスデューサー構造物812、814の第1の電極830の端部に対応していない。例えば、比a/pが50%である場合、ピッチの端部は、トランスデューサー構造物812、814の第1の電極830のλ/8に等しい距離に位置している。
図5bは
図5aに対応しており、音響キャビティ820の領域818をより明確に示すために、トランスデューサー構造物812、814が2つの電極828及び830のみを含んでいる。
【0117】
結合型キャビティ表面音響波フィルタ構造物800では、
図5a及び
図5bに示される結合型キャビティフィルタ構造物において、2つの音響キャビティ820が音響波の伝播方向に存在する。
【0118】
本発明のこの実施形態では、反射構造物816は、第1の実施形態及び第2の実施形態における場合と同様に金属ストリップを堆積させる代わりに、溝822を設けることにより、例えばエッチングすることにより実現される。
【0119】
溝822は、複合基板102の圧電層104において、及びSiO2層において、ベース基板106内の下方に、総深さDまで設けられている。D1は、ベース基板106内のみにおいて実現された、深さDの一部に対応している。
【0120】
変形例において、溝822は、SiO2層108とベース基板106との間の界面810であるベース基板106の表面まで下方に、圧電層104を通して、及び、SiO2層108を通してのみエッチングされ得る。したがって、D1は0に等しくなる。
【0121】
第4の実施形態では、第3の実施形態に基づいて、結合型キャビティフィルタ構造物900が2つのブラッグミラー832、834を更に備える。この実施形態は
図6に示され、
図6において、各ブラッグミラー832、834は、音響波の伝播方向Xにおいて、反射構造物816が位置している側とは他方側においてトランスデューサー構造物812、814に近接して位置している。
【0122】
各ブラッグミラー832、834は、ブラッグミラー832、834のそれぞれのトランスデューサー構造物812、814から距離sに位置している。各ブラッグミラー832、834は、1つ又は複数の金属ストリップ836を備え、ブラッグミラー832、834内における金属ストリップ836間の距離に対応した金属ストリップ836のピッチにより規定されている。トランスデューサーの場合と同様に、ブラッグミラー832、834におけるピッチは、金属ストリップ840にピッチ内に中心をもたせることにより規定されている。
【0123】
この変形例において、ブラッグミラー832、834のピッチは、更に、波長λのn倍に等しく、したがってnλである。
【0124】
この場合において、ブラッグミラー832、834が位置している側において、波が位相変化を伴って反射されるのに対し、溝の側では、反射の種類は溝の幅及び深さに依存する。
【0125】
第5の実施形態では、第3の実施形態に基づいて、結合型キャビティフィルタ構造物1000は2つの更なる溝932、934を備え、更なる溝932、934の各々が、音響波の伝播方向において、反射構造物816が位置している側とは他方側においてトランスデューサー構造物812、814に近接して位置している。この実施形態は
図7に示される。
【0126】
更なる溝932、834の各々が、更なる溝932、834のそれぞれのトランスデューサー構造物812、814から距離sに位置している。更なる溝932、934の各々が、更なる溝932、934の幅L3、及び、更なる溝932、934の総深さD3により規定されている。更なる溝932、934の総深さD3は、トランスデューサー812、814が位置している圧電層104の表面から、更なる溝932、934の底面932c、934cまでの間に規定されている。深さD2は、溝822の底面822cから溝932、934の底面932c、934cまでの、更なる溝932、934の深さとして規定されている。したがって、総深さD3は、DにD2を加算したものとして規定されており、Dは反射構造物816の溝822の総深さである。少なくとも1つの更なる溝(932、934)の深さD3はλ以上のオーダーである。
【0127】
本発明のこの実施形態では、反射構造物816及び更なる溝932、934は、第1の実施形態及び第2の実施形態における場合と同様に金属ストリップを堆積させる代わりに、溝を設けることにより、例えばエッチングすることにより実現される。
【0128】
更なる溝932、934の各々は、伝播方向に沿った伝播波の全反射をもたらすように構成されている。
【0129】
変形例において、結合型キャビティフィルタ構造物は、入力トランスデューサーの一方側において、音響波の伝播方向Xにおいて反射構造物816が位置している側とは他方側においてトランスデューサー構造物812、814に近接して各々が位置しているブラッグミラーと溝とを備え、及び、出力トランスデューサーの側に溝を備え得る。
【0130】
第3の実施形態から第5の実施形態のうちの1つによる結合型キャビティフィルタデバイスは、第1の実施形態による結合型キャビティフィルタデバイスと同様に動作するが、デバイスが第1の実施形態と同様の機能を示すための条件を満たすように、結合型キャビティフィルタデバイスの構造上の特徴、すなわちトランスデューサー及びミラーのピッチ、キャビティの寸法が構成される。
【0131】
これは、縁部における反射の場合、反射位置の規定が幾何学的に規定されるからである。したがって、トランスデューサー内における位相の原点が何であろうとも、位相構築が整数個の波長に対してのみ発生する。ブラッグミラーと同等な反射中心は反射強度に主に依存した位相変動を示すことから、ブラッグミラーと同等な反射中心は規定することがより難しい。ブラッグミラーの反射関数は、ミラーの1つの縁部において規定された入射波に対する反射波の比として規定される。回折格子の単一の電極における反射係数の大きさが回折格子の反射動作に対応したスペクトル帯域の幅を調整することが当技術分野において知られている。しかし、ミラー阻止帯域の開始部と終端部との間における反射関数の位相変動は、常にπ~2×πの範囲内にあり、反射係数の大きさが周波数に対する反射係数の位相変動にも影響を与えることが見受けられる。
【0132】
したがって、第1の実施形態及び第2の実施形態の金属ストリップを備える反射構造物を、第3の実施形態、第4の実施形態、第5の実施形態、及び第6の実施形態に示される溝を備える反射構造物により置換することは、結合型キャビティフィルタデバイスが機能するために、λの倍数を含む状態をもたらす。
【0133】
第1の実施形態及び第2の実施形態による結合型キャビティフィルタデバイスの変形例のすべてが、第3の実施形態、第4の実施形態、第5の実施形態、及び第6の実施形態による結合型キャビティフィルタデバイスにも適用され得る。
【0134】
図8a~
図8hは、本発明の第6の実施形態による結合型キャビティ表面音響波フィルタ構造物、及びその変形例を示す。
【0135】
図8a及び
図8bに示される基板は、
図5a、
図5b、
図6及び
図7の基板102と同じである。
図7におけるものと同じ参照符号が同じ特徴を表すために使用され、繰り返して詳細には説明されない。
【0136】
図8aにおいて、結合型キャビティフィルタ構造物1100は、結合型キャビティフィルタ構造物1000と同様に、各々が1つのトランスデューサー構造物に近接して位置している2つの溝932、934を伴った、2つのトランスデューサー構造物812、814を備える。結合型キャビティフィルタ900との違いは、複数の反射構造物、すなわち2つの反射構造物1006及び1016がトランスデューサー構造物812、814間に存在することである。複数の反射構造物の各反射構造物1006、1016は、溝1022に対応しており、溝1022の幅L
1及び総深さDにより規定されている。
【0137】
これらの反射構造物1006、1016は、伝播方向Xにギャップgだけ互いに離れている。ギャップgにより規定されたその幅をもつ、2つの隣接した反射構造物1006、1016の間に位置する領域1008は、音響キャビティ1010に対応している。音響キャビティ1010は中央キャビティと考えられ得るのに対し、キャビティ1020は、サイドキャビティと呼ばれ得る。
【0138】
結合型キャビティフィルタ構造物800及び900の場合と同様に、反射構造物1006、1016と隣接したトランスデューサー構造物812、814との間に位置する領域1018は、反射構造物1006、1016の縁部と圧電層104の表面に位置する点A、Bとの間の距離L2により規定された幅をもつ音響キャビティ1020に更に対応している。
【0139】
領域1008は、実際に、ベース基板106の上に圧電層104とSiO2層108とを備える。
【0140】
したがって、結合型キャビティ表面音響波フィルタ構造物1100では、3つのキャビティが反射構造物により分離されて音響波の伝播方向に存在しており、又は別様には、キャビティはトランスデューサー間において2つの反射構造物により囲まれている。
【0141】
第6の実施形態の別の変形例において、結合型キャビティ表面音響波フィルタ構造物1200は、
図8bに示されるように、圧電層104を含まない、及びSiO
2層108を含まない、溝1006と溝1016との間の領域1008を含む。領域1008には、ベース基板106のみが存在する。更なる変形例によると、ベース基板の表面は領域1008におけるベース基板の厚さが領域1018における厚さより小さくなるようエッチングされてもよい。
【0142】
サブキャビティを含む更なる変形例を示す
図8c~
図8hのすべてに対して、結合型キャビティフィルタ構造物1300~1800が上方からの2D平面図に示される。
【0143】
図6cに示される結合型キャビティフィルタ構造物1300では、複数の反射構造物のうちの2つの反射構造物1206、1216が、伝播方向Zにではあるがギャップwだけ互いに離れている。領域1208は、
図8aの領域1008と同様に、エッチングされていてもよく、又はエッチングされていなくてもよい。この場合において、音響キャビティ1020は2つのサブキャビティ1020a、1020bに分割されている。
【0144】
結合型キャビティフィルタ構造物1400では、キャビティフィルタデバイス1100における場合と同様に、複数の反射構造物1316が伝播方向Xにギャップgだけ互いに離れており、キャビティフィルタデバイス1200の場合と同様に、複数の反射構造物1316は、更に、伝播方向Zにではあるがギャップwだけ互いに離れている。複数の反射構造物間の領域1308は、
図8aの領域1008及び
図8cの領域1210と同様に、エッチングされていてもよく、又はエッチングされていなくてもよい。
【0145】
この変形例において、音響キャビティ1310、1320は、本発明の第2の実施形態によるデバイス600と同様に、複数のサブキャビティ1310a、1310b、1320a、1320bに分割されている。
【0146】
結合型キャビティフィルタ構造物1500では、
図8eに示されるように、複数の反射構造物1506、1516が、反射構造物1506、1516が存在しない2つのトランスデューサー構造物812、814間の総距離にわたって、方向Zに幅w
1をもつ中央領域1510により対称に分離されている。更に、前述の変形例における場合のようにZ方向の長尺のエッチングされた溝である代わりに、本例の溝1522は正方形状である。明確さを目的として、1つの反射構造物1506、1516及び1つの溝1522のみが
図8eに示されている。
【0147】
図8fに示される結合型キャビティフィルタ構造物1600では、トランスデューサー構造物812、814間に反射構造物1506、1516を含まない領域1610の寸法は、
図8eの領域1510と異なる。領域1610は実際に、より薄く、3つの反射構造物がZ方向において列をなして除去されている。領域1610は、複数の反射構造物の対称性における中断部と同じであり得る。明確さを目的として、1つの反射構造物1506、1516及び1つの溝1522のみが
図8fに示されている。
【0148】
別の変形例において、
図8gに示されるデバイス1700は
図8eのデバイス1500に対応しており、複数の反射構造物1506、1516を備えた、したがって複数の溝1522を備えた2つの更なる溝1532、1534を含む。
【0149】
本発明の変形例において、結合型キャビティフィルタ構造物1800は、3つの、又は更に多くのトランスデューサー構造物を備え得る。
図8hに、3つのトランスデューサー構造物1210、1212、1214が結合型キャビティフィルタ構造物1200に存在する変形例が示される。
【0150】
トランスデューサー構造物1210、1214のうちの2つが、
図2cの構造物における場合と同様に、反射構造物1706、1716の外側に位置しているとともに、第3のトランスデューサー構造物1212が反射構造物1706、1716の中央に位置しており、したがって、第3のトランスデューサー構造物1212の各側に、1つの反射構造物1706、1716が存在し、したがって溝1722が存在する。トランスデューサー構造物1212は、更に、トランスデューサー構造物1210、1214と、トランスデューサー構造物1210、1214のそれぞれの近接した反射構造物(本例では、トランスデューサー構造物1210に対する1706及びトランスデューサー構造物1214に対する1716)との間の同じ距離に対応した距離Lだけ2つの隣接した反射構造物1706、1716から離れている。このようなキャビティフィルタ構造物1800は対称であり、2つのトランスデューサー構造物812、814しか含まない
図8cに示されるキャビティフィルタ構造物1300に比べて、キャビティ1720におけるエネルギーのより強い閉じ込めをもたらす。更に、本例において、反射構造物1706、1716は、更に、
図8cに示されるデバイス1300における場合と同様に距離w
1だけ互いに離れている。
【0151】
本発明の変形例において、第3のトランスデューサー1210は、結合型キャビティフィルタ構造物の中央に位置していないので、結合型キャビティフィルタ構造物は対称ではない。
【0152】
図9は、シミュレーションのために使用される本発明の第3の実施形態によるデバイスを示す。
【0153】
このシミュレーションに対して、使用されるデバイスは、
図7に示されるデバイス1000に対応しているが、本例では、トランスデューサー構造物812及び814は各々が2つの電極フィンガー828、830のみを備える。
【0154】
更に、構造物に対して以下のパラメータが使用された。500nmのLiTaO3(YXl)/42°圧電層と半無限(100)シリコン基板との間に200nmのSiO2層を含む複合基板がシミュレーションのために使用された。トランスデューサーの電極ピッチpは800nmに等しく、2.5GHz付近の周波数動作に対して1.6μmに等しい波長λを実現する。金属化体比a/pは0.5に等しく、このことは、aの電極幅が400nmに等しいことを意味する。電極フィンガーは、100nmに設定された厚さをもつAl-Cuである。
【0155】
図10a及び
図10bは、本発明の第3の実施形態の例による、
図9に示される結合型キャビティ表面音響波フィルタ構造物のシミュレーションによる特性を示す。
【0156】
この実用的な例において、2μmに等しいピッチp、ピッチpに等しい深さD1、6×pに等しい深さD2、6.4μmに等しい溝L1の幅、及び、2×pに等しい幅L2をもつメッシュ構造物(図示されていない)を使用してシミュレーションが実施された。(100)Siベース基板上に600nmの厚さのLiTaO3、500nmの厚さのSiO2を含む複合基板が使用された。
【0157】
図10aは、X軸においてGHzで表された周波数の関数として、左のY軸に実部をとり、右の軸に虚部をとったアドミッタンスのグラフを示す。
図10aは、約61800GHz及び62000GHzにおける2つのピークを示し、約61750GHzにおけるピークは、約62000GHzにおける他方のピークに比べて強いアドミッタンスを示す。
【0158】
図10bは、X軸においてGHzで表された周波数の関数として、左のY軸に実部をとり、右の軸に虚部をとった相互アドミッタンスのグラフを示す。
図10bは、約61800GHz及び62000GHzにおける同じ2つのピークを示すが、この場合は、よりバランスの良い寄与を伴い、2つのピークは振幅が同等である。
【0159】
グラフは2つの結合したモードを示し、2つのバランスの良い寄与が実際の振幅レベルに関わらず、フィルタ帯域通過の効果的な規定を可能にする。
【0160】
図11a~
図11dは、本発明による反射構造物の様々な寸法に対するフィルタ基本構造物のアドミッタンスの計算を示す。
【0161】
600nmのLiTaO3(YXl)/42°圧電層と半無限(100)シリコン基板との間に500nmのSiO2層を含む複合基板がシミュレーションのために使用された。
【0162】
図11a~
図11bは、様々な溝の深さD
1に対して、X軸においてGHzで表された周波数の関数として、左のY軸に実部をとり、右の軸に虚部をとったアドミッタンスのグラフを示す。示される周波数範囲は、61000GHz~63000GHzの間である。すべてのグラフが、約61800GHz及び62500GHzに
図10bの場合と同じ2つのピークを示し、グラフは、約61800GHzにおける第1のピークが約63000GHzにおける第2のピークより高いアドミッタンス値をもつダブルピーク形態と考えられ得る。
図10dにおいて、ダブルピークは実際、
図11a、
図11b、又は
図10cにおける場合より薄い帯域幅をもつ。
【0163】
図11a~
図11cにおいて、D
1は1μm~0.2μmの間で変動するのに対し、
図11dにおいて、D
1は1μm~2μmの間で変動する。
【0164】
図11a~
図11dにおいて、ピークの同じ挙動が確認され得る。D
1が1μm~0.2μmまで小さくなるにつれて、ダブルピーク形態がより高い周波数に向かって動き、第1のピークがアドミッタンスの観点で小さくなり、第2のピークはアドミッタンスの観点で大きくなる。
図11b、
図11c、及び
図11dでは、第2のピークが第1のピークより高い値に実際に到達するように、第2のピークがアドミッタンスの観点で大きくなるのに対し、
図11aでは、0.2μmに等しいD
1に対して、両方のピークが同等である。
【0165】
図12a及び
図12bは、
図12aにおける従来技術によるSAWラダーフィルタデバイスの例と、
図12bにおける本発明によるSAWラダーフィルタデバイスの例とを示す。
【0166】
図12aでは、4つのトランスデューサー構造物1612、1614、1616及び1618の各々が、2つの反射構造物1632及び1634の間に挟まれている。トランスデューサー1612、1614、1616、1618の互い違いに位置する電極が、金属線1640により互いに接続されている。見てわかるように、トランスデューサー及びトランスデューサーの金属接続部は多くの空間を必要とするので、このような設計はかさばる。トランスデューサー間の接続を可能にするために、トランスデューサーが1つから別のものにシフトされることを必要とするので、トランスデューサーは、縦又は横の単一線上に整列されることができない。
【0167】
図12bは、本発明による2つのキャビティ結合型フィルタデバイス1000が単一線上で互いに近接して位置しているSAWラダーフィルタデバイス2000を示す。各キャビティ結合型フィルタデバイス1000は、それぞれ2つのトランスデューサー構造物1712、1714及び1716、1718と、それらのそれぞれの反射構造物1732、1734及び1716とを備える。反射構造物1716は2つのトランスデューサー構造物間に位置し、例えば、1712と1714との間に1716が位置し、反射構造物1732及び1734が各々、反射構造物1716が位置している側の反対側において、トランスデューサー構造物の一方側に位置している。
図12bにおいて、反射構造物1716、1734、及び1732は、
図8の場合と同様に溝として表されている。
図12aの場合と同様に、トランスデューサーの電極は金属線1740により互いに接続されている。
【0168】
2つのキャビティ結合型フィルタデバイス1000を含むSAWラダーフィルタデバイス2000が
図12bに示されているが、本発明によるキャビティ結合型フィルタデバイス1000の任意の変形例が、SAWラダーフィルタデバイスのために使用され得る。
【0169】
本発明によるSAWラダーフィルタデバイス2000はより小型であり、
図12aに示されるSAWラダーフィルタデバイスほどの広い空間を必要としない。
【0170】
本発明の多くの実施形態が説明されている。それにもかかわらず、後述の特許請求の範囲から逸脱せずに様々な変形及び改善がなされてもよいことが理解される。