IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 三菱レイヨン株式会社の特許一覧

特許7409336プリプレグおよび繊維強化複合材料の製造方法
<>
  • 特許-プリプレグおよび繊維強化複合材料の製造方法 図1
  • 特許-プリプレグおよび繊維強化複合材料の製造方法 図2
  • 特許-プリプレグおよび繊維強化複合材料の製造方法 図3
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-25
(45)【発行日】2024-01-09
(54)【発明の名称】プリプレグおよび繊維強化複合材料の製造方法
(51)【国際特許分類】
   C08J 5/24 20060101AFI20231226BHJP
   C08G 59/56 20060101ALI20231226BHJP
【FI】
C08J5/24 CFC
C08G59/56
【請求項の数】 12
(21)【出願番号】P 2021025670
(22)【出願日】2021-02-19
(62)【分割の表示】P 2020142083の分割
【原出願日】2019-01-11
(65)【公開番号】P2021080475
(43)【公開日】2021-05-27
【審査請求日】2021-11-30
(31)【優先権主張番号】P 2018005147
(32)【優先日】2018-01-16
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000006035
【氏名又は名称】三菱ケミカル株式会社
(74)【代理人】
【識別番号】110000338
【氏名又は名称】弁理士法人 HARAKENZO WORLD PATENT & TRADEMARK
(72)【発明者】
【氏名】寺西 拓也
(72)【発明者】
【氏名】岡本 敏
(72)【発明者】
【氏名】太田 智
(72)【発明者】
【氏名】市野 正洋
【審査官】石塚 寛和
(56)【参考文献】
【文献】国際公開第2016/182077(WO,A1)
【文献】特開2000-273148(JP,A)
【文献】特開2016-138205(JP,A)
【文献】特開2019-178224(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08J 5/04-5/10、5/24
B29B 11/16、15/08-15/14
C08G 59/00-59/72
C08L 63/00-63/10
(57)【特許請求の範囲】
【請求項1】
炭素繊維からなる強化繊維基材と、前記強化繊維基材に含浸している樹脂組成物とを含有するプリプレグであって、前記樹脂組成物は、(A)エポキシ樹脂と(B)アミン系硬化剤と(C)イミダゾール系硬化剤とを含有し、前記樹脂組成物において、前記(B)アミン系硬化剤の含有量が前記(A)エポキシ樹脂100質量部に対して、1質量部以上3.8質量部以下であり、前記(C)イミダゾール系硬化剤の含有量が前記(A)エポキシ樹脂100質量部に対して、5質量部以上であり、かつ、前記(B)アミン系硬化剤の含有量と前記(C)イミダゾール系硬化剤の含有量との合計が前記(A)エポキシ樹脂100質量部に対して10質量部以下であり、前記イミダゾール系硬化剤が、トリアジン環を分子内に有するイミダゾール化合物を含む、プリプレグ。
【請求項2】
前記(B)アミン系硬化剤がジシアンジアミドを含む、請求項1に記載のプリプレグ。
【請求項3】
前記樹脂組成物において、前記(C)イミダゾール系硬化剤の含有量は、質量比で、前記(B)アミン系硬化剤の含有量の1~3.5倍である、請求項1または2に記載のプリプレグ。
【請求項4】
前記(B)アミン系硬化剤の含有量と前記(C)イミダゾール系硬化剤の含有量との合計が前記(A)エポキシ樹脂100質量部に対して5質量部以上である、請求項1~3のいずれか一項に記載のプリプレグ。
【請求項5】
前記(A)エポキシ樹脂のエポキシ当量が200g/eq以上である、請求項1~4のいずれか一項に記載のプリプレグ。
【請求項6】
前記(C)イミダゾール系硬化剤が、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンを含む、請求項1~5のいずれか一項に記載のプリプレグ。
【請求項7】
前記(B)アミン系硬化剤がジシアンジアミドであり、前記(C)イミダゾール系硬化剤が2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンである、請求項1~6のいずれか一項に記載のプリプレグ。
【請求項8】
前記樹脂組成物のキュラストメーター(登録商標)で測定した硬化完了時間が、140℃において5分間以内である、請求項1~7のいずれか一項に記載のプリプレグ。
【請求項9】
前記強化繊維基材への前記樹脂組成物の含浸率が98%以上である、請求項1~8のいずれか一項に記載のプリプレグ。
【請求項10】
ドレープ性試験における値が20~70°である、請求項1~9のいずれか一項に記載のプリプレグ。
【請求項11】
一方向プリプレグ、またはクロスプリプレグである、請求項1~10のいずれか一項に記載のプリプレグ。
【請求項12】
請求項1~11のいずれか一項に記載のプリプレグを、金型を用いて、100~180℃の範囲内の金型温度および1~15分間の範囲内の時間で硬化させることを含む、繊維強化複合材料の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、プリプレグおよび繊維強化複合材料に関する。本願は、2018年1月16日に、日本出願された特願2018-005147号に基づき優先権を主張し、その内容をここに援用する。
【背景技術】
【0002】
強化繊維とマトリクス樹脂組成物とを含有する繊維強化複合材料は、力学物性に優れる等の理由から、自動車等の種々の産業で幅広く用いられおり、近年ではますますその適用範囲が拡がってきている。このような繊維強化複合材料には、例えば、強化繊維に樹脂組成物が含浸された複数の重ねられたシート状のプリプレグを加熱加圧することによって成形された繊維強化複合材料が知られている。
【0003】
マトリクス樹脂組成物としては、含浸性および耐熱性に優れる点から、フェノール樹脂、メラミン樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂等を含有する熱硬化性樹脂組成物が用いられることが多い。なかでも、耐熱性、成形性に優れ、より機械強度が高い繊維強化複合材料が得られるため、エポキシ樹脂組成物が幅広く使用されている。
【0004】
自動車用途に多用される繊維強化複合材料の成形方法としては、ハイサイクルプレス成形が知られている(例えば、特許文献1参照)。ハイサイクルプレス成形においては、製品の大量生産を可能にするために、高圧下において100~150℃程度で数分間から数十分間程度の短時間で硬化させる。ハイサイクルプレス成形に使用される樹脂組成物は、100~150℃程度で数分間から数十分間程度の短時間で硬化できる速硬化性と、得られる繊維強化複合材料の機械物性が必要とされる。
【0005】
また、ハイサイクルプレス成形において、成形する形状にあらかじめ賦形する(プリフォーム)技術が知られている(例えば、特許文献2参照)。プリフォーム技術では、一般に、賦形性がよいことから、強化繊維には、繊維などの一方向材よりも織物(クロス)が多く用いられる。プリフォーム技術では、例えば、所定の厚みまで重ねたプリプレグをプリフォームする。
【先行技術文献】
【特許文献】
【0006】
【文献】国際公開第2004/48435号(2006年3月23日公開)
【文献】日本国公開特許公報「特開2009-83128号公報(2009年4月23日公開)」
【発明の概要】
【発明が解決しようとする課題】
【0007】
しかしながら、従来のハイサイクルプレス成形は、樹脂組成物中の硬化剤量を増やすことによって、あるいは、エポキシ当量の小さなエポキシ樹脂を使用することによって速硬化性を発現させる場合には、樹脂硬化物(マトリクス樹脂組成物)が脆くなる傾向ある。このように、従来のハイサイクルプレス成形は、速硬化性と高い機械物性との両立の観点から検討の余地が残されている。
【0008】
また、従来のプリフォームでは、プリプレグの積層枚数を減らして作業効率を高める観点から、大きな目付けのクロスが用いられることがある。しかしながら、クロスの目付けが大きいとプリプレグの剛直性が大きくなり、プリフォームしにくくなることがある。このように、従来のプリフォームは、高い目付けのクロスを使用することによる作業効率の向上とプリプレグの賦形性との両立の観点から検討の余地が残されている。
【0009】
本発明の一態様は、本発明の一態様は、速硬化性に加えて、高い目付けのクロスを使用しても賦形性に優れるプリプレグを提供することを第一の目的とする。また、本発明の一態様は、高い機械物性を有する繊維強化複合材料を提供することを第二の目的とする。
【課題を解決するための手段】
【0010】
上記の課題を解決するために、本発明の一態様に係るプリプレグは、強化繊維基材と、前記強化繊維基材に含浸している樹脂組成物とを含有する。前記樹脂組成物は、エポキシ樹脂とアミン系硬化剤とイミダゾール系硬化剤とを含有する。前記エポキシ樹脂100質量部に対して、前記アミン系硬化剤の含有量が3.8質量部以下である。また、前記エポキシ樹脂100質量部に対して、前記アミン系硬化剤の含有量と前記イミダゾール系硬化剤の含有量との合計が10質量部以下である。
【0011】
また、本発明の一態様に係る繊維強化複合材料は、前記プリプレグの硬化物である。
【発明の効果】
【0012】
本発明によれば、速硬化性に加えて、高い目付けのクロスを使用しても賦形性に優れるプリプレグを提供することができる。また、本発明によれば、高い機械物性を有する繊維強化複合材料を提供することができる。
【図面の簡単な説明】
【0013】
図1】(a)は、本発明の実施形態に係る賦形前のプリプレグを模式的に示す図であり、(b)は、賦形、硬化時の上記プリプレグを模式的に示す図であり、(c)は、硬化後の上記プリプレグを模式的に示す図である。
図2図1に示す製造方法で製造された繊維強化複合材料を示す図である。
図3】本発明の実施形態に係るプリプレグのドレープ性試験を説明するための図である。
【発明を実施するための形態】
【0014】
以下に本発明の好ましい実施の形態について説明するが、本発明はこれらの形態のみに限定されるものではない。
【0015】
<樹脂組成物>
本発明のプリプレグに用いられる樹脂組成物は、エポキシ樹脂、アミン系硬化剤、イミダゾール系硬化剤を含む。
【0016】
[エポキシ樹脂]
本発明のプリプレグに用いられる樹脂組成物に含まれるエポキシ樹脂は、例えば、分子内にエポキシ基を有する高分子化合物である。前記エポキシ樹脂は、一種でもそれ以上でもよい。前記樹脂組成物の硬化物(樹脂硬化物)の耐熱性および機械物性を高める観点から、前記エポキシ樹脂は、その分子中に2以上のエポキシ基を有することが好ましい。
【0017】
前記エポキシ樹脂は、分子中にオキサゾリドン環を有するエポキシ樹脂を含むのが好ましい。分子中にオキサゾリドン環を有するエポキシ樹脂の具体例としては、イソシアネート化合物とエポキシ樹脂とが反応してオキサゾリドン環を生成した化合物などが挙げられる。また、分子中にオキサゾリドン環を有するエポキシ樹脂の市販品としては、例えばAER4152、AER4151、LSA4311、LSA4313、LSA7001(以上、旭化成株式会社製)、エポトートYD-952(新日鉄住金化学株式会社製、「エポトート」は新日鉄住金化学株式会社の登録商標)、エピクロンTSR-400(DIC株式会社製、「エピクロン」はDIC株式会社の登録商標)などが挙げられる。
【0018】
前記エポキシ樹脂100質量部中における分子中にオキサゾリドン環を有するエポキシ樹脂の含有量は、25質量部以上とするのがよい。当該含有量が25質量部以上であることにより、前記樹脂硬化物が高い機械物性を発揮することができる。このような高い機械特性の発現の観点から、前記含有量は、30質量部以上あることが好ましく、32質量部以上であることがより好ましく、35質量部以上であることがさらに好ましい。前記含有量は、所期の機械物性の向上効果が得られる範囲であればよく、例えば70質量部以下であってよい。前記含有量は、例えば、公知の機器分析を利用して確認することが可能である。
【0019】
前記エポキシ樹脂は、本実施形態の効果が得られる範囲において、前記分子中にオキサゾリドン環を有するエポキシ樹脂以外の他のエポキシ樹脂をさらに含んでいてもよい。このような他のエポキシ樹脂の例としては、分子内に水酸基を有する化合物とエピクロロヒドリンとから得られるグリシジルエーテル型エポキシ樹脂、分子内にアミノ基を有する化合物とエピクロロヒドリンとから得られるグリシジルアミン型エポキシ樹脂、分子内にカルボキシル基を有する化合物とエピクロロヒドリンとから得られるグリシジルエステル型エポキシ樹脂、分子内に二重結合を有する化合物を酸化することにより得られる脂環式エポキシ樹脂、複素環構造を有するエポキシ樹脂、あるいはアミノ基、カルボキシル基、二重結合および複素環構造から選ばれる2種類以上の構造が分子内に混在するエポキシ樹脂などが挙げられる。
【0020】
(グリシジルエーテル型エポキシ樹脂)
グリシジルエーテル型エポキシ樹脂の具体例としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、レゾルシノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、トリスフェノールノボラック型エポキシ樹脂、ナフタレン型エポキシ樹脂及びアントラセン型エポキシ樹脂などのアリールグリシジルエーテル型エポキシ樹脂;ポリエチレングリコール型エポキシ樹脂、ポリプロピレングリコール型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、これらの位置異性体、およびアルキル基またはハロゲンを置換基として有するこれらの置換体、などが挙げられる。
【0021】
ビスフェノールA型エポキシ樹脂の市販品としては、例えばEPON825、jER826、jER827、jER828(以上、三菱ケミカル株式会社製、「jER」は三菱ケミカル株式会社の登録商標)、エピクロン850(DIC株式会社製、「エピクロン」はDIC株式会社の登録商標)、エポトートYD-128(新日鐵住金化学株式会社製、「エポトート」は新日鐵住金化学株式会社の登録商標)、DER-331、DER-332(以上、ダウ・ケミカル日本株式会社製)、Bakelite EPR154、Bakelite EPR162、Bakelite EPR172、Bakelite EPR173、Bakelite EPR174(以上、Bakelite AG社製)などが挙げられる。
【0022】
ビスフェノールF型エポキシ樹脂の市販品としては、例えばjER806、jER807、jER1750(以上、三菱ケミカル株式会社製)、エピクロン830(DIC株式会社製)、エポトートYD-170、エポトートYD-175(以上、新日鐵住金化学株式会社製)、Bakelite EPR169(Bakelite AG社製)、GY281、GY282、GY285(以上、ハンツマン・アドバンスト・マテリアル社製)などが挙げられる。
【0023】
ビスフェノールS型エポキシ樹脂の市販品としては、例えばエピクロンEXA-1514(DIC株式会社製)などが挙げられる。
【0024】
レゾルシノール型エポキシ樹脂の市販品としては、例えばデナコールEX-201(ナガセケムテックス株式会社製、「デナコール」はナガセケムテックス株式会社の登録商標)などが挙げられる。
【0025】
フェノールノボラック型エポキシ樹脂の市販品としては、例えばjER152、jER154(以上、三菱ケミカル株式会社製)、エピクロンN-740(DIC株式会社製)、EPN179、EPN180(以上、ハンツマン・アドバンスト・マテリアル社製)などが挙げられる。
【0026】
トリスフェノールメタン型エポキシ樹脂の市販品としては、例えばTactix742(ハンツマン・アドバンスト・マテリアル社製、「Tactix」はハンツマン・アドバンスト・マテリアル社の登録商標)、EPPN501H、EPPN501HY、EPPN502H、EPPN503H(以上、日本化薬株式会社製、「EPPN」は日本化薬株式会社の登録商標)、jER1032H60(三菱ケミカル株式会社製)などが挙げられる。
【0027】
ナフタレン型エポキシ樹脂の市販品としては、例えばHP-4032、HP-4700(以上、DIC株式会社製)、NC-7300(日本化薬株式会社製)などが挙げられる。
【0028】
ジシクロペンタジエン型エポキシ樹脂の市販品としては、例えばXD-100(日本化薬株式会社製)、HP7200(DIC株式会社製)などが挙げられる。
【0029】
アントラセン型エポキシ樹脂の市販品としては、例えばYL7172およびYX8800(三菱ケミカル株式会社製)などが挙げられる。
【0030】
(グリシジルアミン型エポキシ樹脂)
グリシジルアミン型エポキシ樹脂の具体例としては、テトラグリシジルジアミノジフェニルメタン類、アミノフェノールのグリシジル化合物、アミノクレゾールのグリシジル化合物、グリシジルアニリン類、キシレンジアミンのグリシジル化合物などが挙げられる。
【0031】
テトラグリシジルジアミノジフェニルメタン類の市販品としては、例えばスミエポキシELM434(住友化学株式会社製、「スミエポキシ」は住友化学株式会社の登録商標)、アラルダイトMY720、アラルダイトMY721、アラルダイトMY9512、アラルダイトMY9612、アラルダイトMY9634、アラルダイトMY9663(以上、ハンツマン・アドバンスト・マテリアル社製、「アラルダイト」はハンツマン・アドバンスト・マテリアル社の登録商標)、jER604(三菱ケミカル株式会社製)、Bakelite EPR494、Bakelite EPR495、Bakelite EPR496、Bakelite EPR497(以上、Bakelite AG社製)などが挙げられる。
【0032】
アミノフェノールのグリシジル化合物、アミノクレゾールのグリシジル化合物の市販品としては、例えばjER630(三菱ケミカル株式会社製)、アラルダイトMY0500、アラルダイトMY0510、アラルダイトMY0600(以上、ハンツマン・アドバンスト・マテリアル社製)、スミエポキシELM120、スミエポキシELM100(以上、住友化学株式会社製)などが挙げられる。
【0033】
グリシジルアニリン類の市販品としては、例えばGAN、GOT(日本化薬株式会社製「GAN」および「GOT」は日本化薬株式会社の登録商標)、Bakelite EPR493(Bakelite AG社製)などが挙げられる。
【0034】
キシレンジアミンのグリシジル化合物としては、例えばTETRAD-X(三菱瓦斯化学株式会社製、「TETRAD」は三菱瓦斯化学株式会社の登録商標)などが挙げられる。
【0035】
(グリシジルエステル型エポキシ樹脂)
グリシジルエステル型エポキシ樹脂の具体例としては、フタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、イソフタル酸ジグリシジルエステル、ダイマー酸ジグリシジルエステルおよびこれらの種異性体などが挙げられる。
【0036】
フタル酸ジグリシジルエステルの市販品としては、例えばエポミックR508(三井化学株式会社製、「エポミック」は三井化学株式会社の登録商標)、デナコールEX-721(ナガセケムテックス株式会社製)などが挙げられる。
【0037】
ヘキサヒドロフタル酸ジグリシジルエステルの市販品としては、例えばエポミックR540(三井化学株式会社製)、AK-601(日本化薬株式会社製)などが挙げられる。
【0038】
ダイマー酸ジグリシジルエステルの市販品としては、例えばjER871(三菱ケミカル株式会社製)、エポトートYD-171(新日鐵住金化学株式会社製)などが挙げられる。
【0039】
(脂環式エポキシ樹脂)
脂環式エポキシ樹脂の具体例としては、1,2-エポキシシクロヘキサン環を部分構造として有する高分子化合物などが挙げられる。
【0040】
1,2-エポキシシクロヘキサン環を部分構造として有する化合物の市販品としては、例えばセロキサイド2021P、セロキサイド2081、セロキサイド3000(以上、株式会社ダイセル製、「セロキサイド」は株式会社ダイセルの登録商標)、CY179(ハンツマン・アドバンスド・マテリアル社製)などが挙げられる。
【0041】
前記エポキシ樹脂のエポキシ当量は200g/eq以上であるのが好ましい。200g/eq以上であると、樹脂内に含まれるエポキシ基の数が適当であり、エポキシ基間の距離が程よく離れているため、樹脂組成物の硬化反応時におけるエポキシ樹脂の耐熱性が硬化温度に比べて高くなり過ぎない。硬化温度と比べてエポキシ樹脂の耐熱性が高くなり過ぎないと、エポキシ樹脂分子が動きやすくなり、反応性が維持できる。このため、エポキシ樹脂中の未反応のエポキシ基の反応速度が維持できる。そのため、樹脂組成物の反応収束が早くなり、速硬化性が向上する。
【0042】
前記エポキシ当量は、速硬化性の観点から、210g/eq以上であることがより好ましく、215g/eq以上であることがさらに好ましい。また、前記エポキシ当量は、所期の速硬化性が得られる範囲であればよく、例えば500g/eq以下であってよい。前記エポキシ当量は、例えば、公知の機器分析を利用して確認することが可能である。
【0043】
[アミン系硬化剤]
本実施形態におけるアミン系硬化剤は、前記エポキシ樹脂の硬化を促進させる化合物から適宜に選ぶことができる。アミン系硬化剤は、一種でもそれ以上でもよい。
【0044】
前記アミン系硬化剤の例としては、例えばジアミノジフェニルメタン、ジアミノジフェニルスルホン等の芳香族アミン、脂肪族アミン、ジシアンジアミド、テトラメチルグアニジン、チオ尿素付加アミン、及びこれらの誘導体、異性体、変成体などが挙げられる。保存安定性を高める観点から、アミン系硬化剤は、室温(25℃)で結晶性固体であることが好ましい。
【0045】
また、エポキシ樹脂を効率よく硬化させる観点から、アミン系硬化剤の体積平均粒径は、20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることがさらに好ましい。アミン系硬化剤の体積平均粒径が20μm以下であれば、前記樹脂組成物中に良好に分散して、硬化反応を促進することができるため好ましい。なお、アミン系硬化剤の体積平均粒径は、粒度計(日機装株式会社製、製品名:AEROTRACK SPR Model:7340、または、マイクロトラック・ベル株式会社製、製品名:エアロトラックLDSA-3500A、「エアロトラック」は、マイクロトラック・ベル株式会社の登録商標)にて測定することができ、測定した粒度分布のD50の値とする。
【0046】
これらの中でも、前記樹脂組成物の保存安定性に優れ、前記樹脂硬化物の高い機械物性が得られる観点から、アミン系硬化剤は、ジシアンジアミドまたはジシアンジアミドの誘導体が好ましい。
【0047】
ジシアンジアミドの誘導体としては、例えばジシアンジアミドと、エポキシ樹脂、ビニル化合物、アクリル化合物、9,10-ジヒドロ-9-オキサ-10-フォスファフェナントレン-10-オキサイド等の各種化合物とを結合させた化合物などが挙げられる。
【0048】
ジシアンジアミドの誘導体は、一種でもよく、それ以上でもよく、また、ジシアンジアミドと併用してもよい。
【0049】
ジシアンジアミドまたはジシアンジアミドの誘導体の中でも、エポキシ樹脂との反応性の点からジシアンジアミドが好ましい。
【0050】
また、ジシアンジアミドまたはその誘導体は市販品であってもよい。ジシアンジアミドの市販品としては、例えば、DICY7、DICY15(以上、三菱ケミカル株式会社製)Dicyanex 1400F(以上、Air Products社製)などが挙げられる。
【0051】
[イミダゾール系硬化剤]
本実施形態におけるイミダゾール系硬化剤は、分子内にイミダゾール環を有する化合物である。イミダゾール系硬化剤は、一種でもそれ以上でもよい。例えば、イミダゾール系硬化剤は、分子内にイミダゾール環を有する化合物であって、イミダゾール環に置換基を持つ化合物(イミダゾール誘導体)、エポキシ樹脂のエポキシ基にイミダゾールもしくはイミダゾール誘導体が開環付加した構造を有する化合物(イミダゾールアダクト)、イミダゾールを異分子で包接した化合物(包接イミダゾール)、マイクロカプセル化したイミダゾールまたはイミダゾール誘導体(マイクロカプセル型イミダゾール)、及び安定化剤等を配位させたイミダゾールまたはイミダゾール誘導体(イミダゾール付加物)からなる群から選ばれる少なくとも1種である。
【0052】
イミダゾール化合物の硬化開始温度は、前記樹脂組成物およびそれを含有する後述のプリプレグの保存安定性の観点から、100℃以上であることが好ましい。硬化開始温度が100℃以上であるイミダゾール化合物は、室温など比較的低温での反応性が低い。また、前記硬化開始温度が100℃以上であるイミダゾール化合物を含む前記樹脂組成物の熱安定性が高い。従って、前記樹脂組成物および前記プリプレグの保存安定性が高い。一方で、前記プリプレグの成形加工温度で高い硬化性及び硬化促進性を発現させる観点から、前記硬化開始温度は110℃以上であることがより好ましい。
【0053】
ここで硬化開始温度は、以下の方法で測定された値である。まず、エポキシ当量が180~220のビスフェノールA型エポキシ樹脂100質量部に、イミダゾール化合物10質量部を加えて混合し試料樹脂組成物を調整する。該試料樹脂組成物につき、昇温速度10℃/分で示差走査熱量計(DSC、例えばTAインスツルメンツ社製Q1000)により発熱量を測定する。得られたDSC曲線の変曲点における接線とベースラインとの交点の温度を、そのイミダゾール化合物の硬化開始温度とする。
【0054】
硬化温度が100℃以上であるイミダゾール化合物としては、イミダゾール誘導体、イミダゾールアダクト、イミダゾールを異分子で包接した化合物、マイクロカプセル化したイミダゾールまたはイミダゾール誘導体、及びイミダゾール付加物などが挙げられる。
【0055】
硬化開始温度が100℃以上のイミダゾール誘導体としては、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、1-シアノエチル-2-フェニルイミダゾリウムトリメリテイト、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、及び2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾールなどが挙げられる。これらイミダゾール誘導体の中でも、前記樹脂組成物中での室温における保存安定性が高く、硬化速度が速いことから、トリアジン環を分子内に有するイミダゾール化合物が好ましい。当該イミダゾール化合物としては、例えば、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンが挙げられる。
【0056】
前記イミダゾール系硬化剤は、エポキシ樹脂の硬化剤として作用し、ジシアンジアミドまたはその誘導体などのアミン系硬化剤と組み合わせて樹脂組成物に配合される。その結果、両硬化剤が互いに硬化促進効果を発揮し、樹脂組成物を短時間で硬化させることができる。
【0057】
また、イミダゾール系硬化剤は、前記樹脂組成物およびそれを含有する後述のプリプレグの保存安定性の観点から、100℃以下ではエポキシ樹脂への溶解性は低いほうが好ましく、そのため、室温(25℃)で結晶性固体であることが好ましい。一方で、エポキシ樹脂を効率よく硬化させる観点から、イミダゾール系硬化剤の体積平均粒径は、20μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることがさらに好ましい。イミダゾール化合物の体積平均粒径が20μm以下であれば、熱硬化性樹脂組成物中に良好に分散して、硬化反応を促進することができるため好ましい。なお、イミダゾール系硬化剤の体積平均粒径は、アミン系硬化剤のそれと同じ方法で測定することができる。
【0058】
前記アミン系硬化剤に対する前記イミダゾール系硬化剤の質量比は、アミン系硬化剤:イミダゾール系硬化剤で1:0.3から1:3.5であるのが好ましい。すなわち、前記イミダゾール系硬化剤の含有量は、前記アミン系硬化剤の含有量の0.3~3.5倍であることが好ましい。この範囲にアミン系硬化剤とイミダゾール系硬化剤の比率があることで、アミン系硬化剤とイミダゾール系硬化剤が互いに硬化促進効果を発揮し、速硬化性を得ることができる。より好ましくは、1:1~1:3.2であり、さらに好ましくは、1:1.2~1:3である。
【0059】
[エポキシ樹脂と硬化剤との量比]
前記樹脂組成物中における前記アミン系硬化剤は、前記エポキシ樹脂100質量部に対して3.8質量部以下である。前記アミン系硬化剤の含有量を3.8質量部以下とすることによって、プリプレグに優れた速硬化性を付与させ、短い硬化時間でも硬化物に優れた機械的強度を付与させることができる。好ましくは3.5質量部以下であり、より好ましくは、3.2質量部以下であり、さらに好ましくは、3.0質量部以下である。また、前記アミン系硬化剤は、含有量を1質量部以上とすることが好ましく、プリプレグの硬化を促進させることができる。より好ましくは、1.5質量%以上である。
【0060】
さらに、前記樹脂組成物中における前記アミン系硬化剤および前記イミダゾール系硬化剤の含有量は、多すぎると、前記プリプレグの硬化物である繊維強化複合材料の機械的強度が不十分になる傾向にある。当該機械的強度を十分に高める観点から、前記含有量は、前記エポキシ樹脂100質量部に対して10質量部以下である。前記含有量が10質量部以下であると繊維強化複合材料が高い機械物性を発揮しやすい。上記の観点から、前記含有量は、4質量部以上であることがより好ましく、5質量部以上であることがさらに好ましい。また、前記含有量は、所期の機械的強度向上効果が得られる範囲であればよく、例えば9質量部以下であることが好ましく、8質量部以下であることがより好ましく、7.5質量部以下であってもよい。前記含有量は、例えば、公知の機器分析を利用して確認することが可能である。
【0061】
[その他の添加剤]
前記樹脂組成物は、本実施の形態の効果が得られる範囲において、前述したエポキシ樹脂、アミン系硬化剤およびイミダゾール系硬化剤以外の他の成分をさらに含有していてもよい。当該他の成分は、一種でもそれ以上でもよい。当該他の成分の含有量は、その成分による効果と本実施形態の効果とが両立する範囲において、適宜に決めることできる。前記他の成分の例には、安定化剤、熱可塑性エラストマー、エラストマー微粒子、コアシェル型エラストマー微粒子、希釈剤、シリカ等の無機粒子、カーボンナノチューブ及びカーボンブラック等の炭素質成分、リン化合物等の難燃剤、シリコン化合物又はフッ素化合物を含有する内部離型剤、並びに脱泡剤等が挙げられる。
【0062】
[樹脂組成物の硬化完了時間]
前記樹脂組成物の硬化完了時間は140℃において5分間以内であることが好ましく、4.5分間以内であることがより好ましい。前記時間内で硬化完了した場合、ハイサイクルプレス成形に使用する樹脂組成物として十分な速硬化性を有しているといえる。前記硬化完了時間は、アミン系硬化剤とイミダゾール系硬化剤とを併用することで実現され得るが、例えば、これらの硬化剤の量および種類に応じて、更に短縮する(速硬化性を向上させる)ことができる。
【0063】
前記硬化完了時間は、キュラストメーターにより測定することが可能である。キュラストメーターは、一定温度下において樹脂組成物に破壊しない程度の一定振幅の正弦波振動を与え、樹脂組成物から上ダイスに伝わるトルクを連続的に測定し、硬化反応進行中の粘弾性応力の変化をトルク振幅/時間曲線(硬化曲線)として記録する。前記樹脂組成物の硬化完了時間は、該曲線からトルク値が変化しなくなる最大トルク値(Tmax)を求め、最大トルク値の90%のトルク値(T90)を算出する。そして、測定開始からT90に到達するまでに要した時間を求め、これを前記硬化完了時間(t90)とする。
【0064】
[樹脂組成物の製法]
前記樹脂組成物は、プリプレグ用の熱硬化性の樹脂組成物を製造するための従来公知の方法で製造することができる。前記樹脂組成物は、例えば、ガラスフラスコ、ニーダー、プラネタリーミキサー、一般的な撹拌加熱釜、攪拌加圧加熱釜等を用いて製造することが好ましい。
【0065】
前記樹脂組成物は、例えば、以下の工程を有する製造方法により製造されることが好ましい。
【0066】
工程(1):エポキシ樹脂、および必要に応じて熱可塑性樹脂等の任意の添加剤を溶解容器に仕込み、70~150℃で、1~6時間加熱混合して、エポキシ樹脂主剤を得る工程。
【0067】
工程(2):前記エポキシ樹脂主剤を40~70℃に冷却した後、残りのエポキシ樹脂、アミン系硬化剤およびイミダゾール系硬化剤を添加し、40~70℃で0.5~2時間混合して、樹脂組成物を得る工程。
【0068】
工程(2)では、前記エポキシ樹脂主剤に対して、エポキシ樹脂、アミン系硬化剤およびイミダゾール系硬化剤は、別々に添加されてもよいし、均一に混合された状態で(マスターバッチとして)添加されてもよい。当該マスターバッチは、例えば、エポキシ樹脂、アミン系硬化剤およびイミダゾール系硬化剤を室温で混練することによって調製することができる。
【0069】
<プリプレグ>
本発明の実施形態のプリプレグは、強化繊維基材に樹脂組成物を含浸したシート状のプリプレグである。
【0070】
(強化繊維基材)
強化繊維基材とは、強化繊維で構成されている、プリプレグ用の基材である。強化繊維としては、例えば、無機繊維、有機繊維、金属繊維、又はこれらを組み合わせたハイブリッド構成の強化繊維等が挙げられる。強化繊維は、一種でもそれ以上でもよい。
【0071】
無機繊維としては、炭素繊維、黒鉛繊維、炭化珪素繊維、アルミナ繊維、タングステンカーバイド繊維、ボロン繊維、ガラス繊維等が挙げられる。有機繊維としては、アラミド繊維、高密度ポリエチレン繊維、その他一般のナイロン繊維、ポリエステル繊維等が挙げられる。金属繊維としては、ステンレス、鉄等の繊維が挙げられる。また、金属繊維としては、金属繊維を炭素で被覆した炭素被覆金属繊維が挙げられる。これらの中では、プリプレグの熱硬化による繊維強化複合材料における強度等の機械物性を考慮すると、炭素繊維であることが好ましい。
【0072】
強化繊維は、長繊維であってもよく、短繊維であってもよく、剛性に優れる点から、長繊維が好ましい。
【0073】
強化繊維基材としては、多数の長繊維を一方向に揃えたUDシート(一方向シート)、長繊維を製織したクロス(織物)、および、短繊維からなる不織布、等が挙げられる。クロスの織り方としては、例えば、平織、綾織、朱子織、三軸織等が挙げられる。
【0074】
強化繊維基材の目付は、前記繊維強化複合材料における所期の特性に基づいて適宜に決めることが可能である。一方で、前述したように、所定の厚みまでプリプレグをプリフォームする場合では、プリプレグの厚み、つまり強化繊維基材(例えばクロス)の目付が大きいと、積層枚数を減らせるため作業効率が良い。しかしながら、クロスの目付が大きすぎると、プリプレグの剛直性も高くなり、プリプレグの型へ追従が不十分になることがある。
【0075】
プリフォームにおける作業効率および成形加工性の観点から、前記強化繊維基材の目付は、100~1000g/mが好ましく、150~1000g/mがより好ましい。さらに好ましくは300~1000g/mである。強化繊維基材の繊維目付が前記範囲の下限値以上であれば、所望の厚みを有する成形体を得るために必要な積層枚数が多くならず好ましい。強化繊維基材の繊維目付が前記範囲の上限値以下であれば、良好な含浸状態のプリプレグを得やすく、ドレープ性が低くなりすぎないため好ましい。
【0076】
ハイサイクルプレス成型で複雑な形状を成形する場合、プリフォームがしやすくなるため、強化繊維基材はクロスであることが好ましい。強化繊維基材がクロスの場合の強化繊維基材を特に「強化繊維クロス」とも称し、強化繊維クロスを含むプリプレグを特に「クロスプリプレグ」とも称する。
【0077】
(強化繊維基材の含浸)
前記プリプレグは、前記エポキシ樹脂組成物を強化繊維基材に含浸させることで形成される。前記樹脂組成物は、例えば、離型紙等の表面に所定量の前記樹脂組成物を塗工し、その表面に強化繊維基材を供給した後、押圧ロールを通過させることによって強化繊維基材に含浸する。あるいは、樹脂組成物は、強化繊維基材に所定量の前記樹脂組成物を直接、塗工した後、必要に応じて前記強化繊維基材を離型紙等で挟んで押圧ロールを通過させることによって強化繊維基材に含浸する。
【0078】
また、前記強化繊維基材への樹脂組成物の含浸率は、プリプレグの前記強化繊維基材に対する前記樹脂組成物の含有量の比率で表され、プリプレグの繊維方向に垂直方向の断面をマイクロスコープで観察する方法によって求めることができ、繊維強化基材のトウの面積と未含浸部分の面積から算出することができる。該含浸率は、前記繊維強化複合材料における十分かつ均一な機械的強度の発現の観点から、98%以上であることが好ましく、99%以上であることがより好ましい。前記含浸率は、前記繊維強化複合材料の所期の特性が得られる範囲において適宜に決めることができ、例えば99.8%以下であってよい。前記繊維強化複合材料に含まれる樹脂組成物の量は、前記プリプレグ中における前記樹脂組成物の樹脂含有量の比率である、樹脂含有率として評価することもできる。
【0079】
(プリプレグの積層)
前記プリプレグは単層、又は必要に応じて複数枚を積層した積層体として用いられる。
【0080】
プリプレグの積層構成は、特に限定されない。例えば、UDプリプレグを用いる場合、上下に隣り合うUDプリプレグの強化繊維の繊維軸が直交するように各UDプリプレグを積層した構成が挙げられる。プリプレグにおいては、同一種類のプリプレグのみを積層してもよく、異なる種類のプリプレグを積層してもよい。
【0081】
プリプレグの積層数は、特に限定されず、要求される繊維強化複合材料の特性等に応じて適宜決定できる。なお、プリプレグの積層体は、強化繊維基材の積層体に前記樹脂組成物を含浸させることによって作製されてもよいし、プリプレグを重ねることによって作製されてもよい。
【0082】
また、前記プリプレグのドレープ性試験における値(以下、「ドレープ値」とも言う)は、20~70°であることが好ましい。前記ドレープ値は、プリプレグの剛直性(変形のしにくさ)と型への追従性(変形のしやすさ)とのバランスを評価する指標である。前記ドレープ値は、水平に支持したプリプレグの一端を固定端し、他端を自由端として置いたときの他端の垂れ下がる度合を表す。
【0083】
前記ドレープ値は、例えば、以下の方法によって求めることができる。まず、長さ200mm、幅15mmのプリプレグの試験片を用意する。前記長さは、前記強化繊維基材が一方向材の場合は、その強化繊維が延出する方向の長さであり、前記強化繊維基材がクロスの場合は、その経糸方向の長さである。また、前記幅は、前記強化繊維基材が一方向材の場合は、その強化繊維が延出する方向に直交する方向の長さであり、前記強化繊維基材がクロスの場合は、その緯糸方向の長さである。
【0084】
そして、前記試験片の一端から50mmまでの部分を試験台の水平な天面に乗せ、それ以外の部分を試験台からはみ出すように前記試験片を前記試験台に配置する。そして、試験片を常温(23℃)で3分間静置する。このときの試験片の自由端側の部分が水平面となす角度を求め、前記ドレープ値とする。前記角度は、前記試験片における前記試験台上の部分の他端と前記試験片の自由端とを結ぶ直線が水平面に対してなす角度のうちの前記自由端側の角度である。
【0085】
前記ドレープ値は、小さすぎるとプリプレグの型への追従性が不十分となることがあり、大きすぎると柔らかすぎてプリプレグが取扱いにくくなることがある。プリプレグの賦形性と取扱いのしやすさとの観点から、前記ドレープ値は、20°以上であることが好ましく、25°以上であることがより好ましく、30°以上であることがさらに好ましい。また、前記追従性を十分に発現させる観点から、前記ドレープ値は、70°以下であることが好ましく、65°以下であることがより好ましく、60°であることがさらに好ましい。前記ドレープ値は、例えば、強化繊維基材の剛性または目付けによって調整することが可能である。
【0086】
前記プリプレグは、本実施形態の効果が得られる範囲において、前記強化繊維基材および前記樹脂組成物以外の他の構成をさらに有していてもよい。このような他の構成の例には、プリプレグ表面に5~50g/mの不織布を積層した積層物、および、5~50g/mの不織布に樹脂組成物に含浸したシートを積層した積層物、が含まれる。
【0087】
前記プリプレグは、加熱加圧による硬化によって、繊維強化複合材料を形成する。以下、繊維強化複合材料について説明する。
【0088】
<繊維強化複合材料>
本発明の実施形態の繊維強化複合材料は、前述した樹脂組成物の硬化反応による上記プリプレグの硬化物である。
【0089】
本実施形態の繊維強化複合材料が本実施形態のプリプレグの硬化物であることは、公知の機器分析の結果から確認することが可能である。たとえば、当該繊維強化複合材料中のアミン系硬化剤、その残渣の含有量、当該アミン系硬化剤による架橋構造の割合から、プリプレグの樹脂組成物中におけるアミン系硬化剤の含有量が推定することができる。同様に、当該繊維強化複合材料中のイミダゾール系硬化剤、その残渣の含有量、当該イミダゾール系硬化剤による架橋構造の割合から、プリプレグの樹脂組成物中におけるイミダゾール系硬化剤の含有量が推定することができる。これらの含有量の推定値から、本実施形態の繊維強化複合材料が本実施形態のプリプレグの硬化物であることを確認することが可能である。
【0090】
繊維強化複合材料は、プリプレグを加熱加圧して製造される。たとえば、前記繊維強化複合材料は、前記プリプレグまたはプリフォームを型内に収容して加熱加圧する工程を含む製造方法によって製造することができる。当該製造方法は、型内にプリプレグを重ねてプリプレグ積層体を形成する工程と、プリプレグ積層体を型によって圧縮して賦形する(プリフォームを形成する)工程とをさらに含んでもよい。
【0091】
[成形(硬化)工程]
前記プリプレグを必要枚数積層することで得たプリプレグ積層体を金型により加熱加圧して繊維強化複合材料を得る。
【0092】
金型を用いたプリプレグ積層体の成形方法としては、公知の成形方法を採用でき、例えば、オートクレーブ成形、オーブン成形、内圧成形、プレス成形等が挙げられる。
【0093】
プレス成形は、他の成形方法に比べて、表層に樹脂フィルムから形成された樹脂層を有する繊維強化複合材料を得ることが容易であるものの、成形圧力が高く、金型外に樹脂が流出しやすい傾向がある。しかし、前記樹脂組成物であれば、速硬化性に優れているので、成形時の金型からの樹脂流出を抑制できる。よって、本発明の一態様において成形工程でプレス成形を採用する場合により有効であり、ハイサイクルプレス成形を採用する場合に特に有効である。
【0094】
例えば、図1において、金型100によりプリプレグ積層体1をプレス成形し、繊維強化複合材料2を作製する場合について説明する。金型100は、上面側に凸部112が設けられた下型110と、下面側に凹部122が設けられた上型120とを備える。上型120を下型110に近接させて金型100を閉じたときに、金型100内の凸部112と凹部122の間に目的の繊維強化複合材料の形状と相補的な形状のキャビティが形成されるようになっている。
【0095】
図1(a)に示すように下型110上にプリプレグ積層体1を配置した後、図1(b)に示すように、上型120を下型110に近接させて金型100を閉じ、プリプレグ積層体1を加熱加圧して成形する。金型100により加圧されながら加熱されることで、プリプレグ積層体1中の樹脂組成物が流動しつつ硬化する。硬化後、図1(c)に示すように、金型100を開いて繊維強化複合材料2を取り出して、図2に示すような繊維強化複合材料を得る。
【0096】
成形条件は、前述のプリプレグ積層体1を用いる以外は、公知の成形条件を採用することができる。
【0097】
成形時の金型温度の範囲は、100~180℃が好ましく、120~160℃がより好ましい。前記範囲の下限値以上で加熱することにより、樹脂組成物を速く硬化することができ、成形サイクルを短縮できる。前記範囲の上限値以下で加熱することにより、成形時に樹脂フローが抑制され、外観のよい成形体を得ることができる。
【0098】
成形時の面圧の範囲は、1~15MPaが好ましく、4~10MPaがより好ましい。前記範囲の下限値以上の圧力をかけることにより、樹脂が流動しやすくなり、金型の隅々まで樹脂組成物が行き渡るため、外観のよい成形体が得られやすい。前記範囲の上限値以下の圧力をかけることにより、樹脂が流動しすぎて成形外観が悪くなることを防ぐことができる。
【0099】
成形時間の範囲は、1~15分間が好ましく、2~8分間がより好ましく、2~5分間がさらに好ましい。前記範囲の下限値以上の時間で成形することで、保存安定性と速硬化性に優れた樹脂組成物を作成することができる。前記範囲の上限値以下の時間で成形することで、ハイサイクルプレス成形が可能となる。
【0100】
[賦形工程]
前記繊維強化複合材料の製造方法においては、成形工程に先立ち、積層工程で得たプリプレグ積層体を賦形してプリフォームを得る賦形工程をさらに有していてもよい。すなわち、前記繊維強化複合材料の製造方法においては、積層工程、賦形工程及び成形工程をこの順に行う方法であってもよい。この場合は、積層工程で得たプリプレグ積層体を賦形工程において所望する成形品形状とほぼ正味形状を有するプリフォームを製作した後、該プリフォームを成形工程で加熱加圧して所望する成形品形状に成形することで繊維強化複合材料を製造する。賦形工程に供されるプリプレグ積層体の積層数は、成形品に要求される厚さに応じて適宜選択することができる。
【0101】
プリプレグ積層体の賦形方法は、目的の繊維強化複合材料の形状を踏まえた中間的な形状に賦形できる方法であればよく、本発明のプリプレグ積層体を用いる以外は公知の方法を採用することができる。
【0102】
また、前記繊維複合強化材料の強度は、前記繊維複合強化材料の所期の用途に応じて適宜に決めることができる。たとえば、自動車部品の用途であれば、前記繊維複合強化材料の90°曲げ強度は80MPa以上であることが好ましく100MPa以上であることがより好ましく、110MPa以上であることがさらに好ましい。
【0103】
本発明の実施の形態に係るプリプレグは、強化繊維基材と、当該強化繊維基材に含浸している樹脂組成物とを含有する。当該樹脂組成物は、エポキシ樹脂とアミン系硬化剤とイミダゾール系硬化剤とを含有する。エポキシ樹脂100質量部に対して、アミン系硬化剤の含有量は3.8質量部以下である。また、エポキシ樹脂100質量部に対して、アミン系硬化剤の含有量とイミダゾール系硬化剤の含有量との合計が10質量部以下である。
【0104】
前記の構成によれば、ハイサイクルプレス成形において速硬化性と高い機械物性とを両立可能なプリプレグを実現することができる。
【0105】
また、イミダゾール系硬化剤の含有量が、質量比で、アミン系硬化剤の含有量の0.3~3.5倍であることは、プリプレグの速硬化性を十分に高める観点から、より一層効果的である。
【0106】
また、エポキシ樹脂が分子内にオキサゾリドン環を含むエポキシ樹脂を含み、エポキシ樹脂100質量部中における前記分子内にオキサゾリドン環を含むエポキシ樹脂の含有量が25質量部以上であることは、プリプレグの硬化物である繊維強化複合材料の機械的強度を十分に高める観点から、より一層効果的である。
【0107】
また、前記エポキシ樹脂のエポキシ当量が200g/eq以上であることは、プリプレグの速硬化性を十分に高める観点から、より一層効果的である。
【0108】
また、前記アミン系硬化剤がジシアンジアミドであることは、樹脂組成物の保存安定性を高める観点、および、樹脂硬化物の機械物性を高める観点から、より一層効果的である。
【0109】
前記イミダゾール系硬化剤がトリアジン環を分子内に有するイミダゾール化合物であることは、樹脂組成物中での室温における硬化剤の保存安定性を高める観点、および、樹脂組成物の硬化速度を速くする観点から、より一層効果的である。
【0110】
本発明の実施の形態に係るプリプレグは、前記樹脂組成物のキュラストメーターで測定した硬化完了時間が、140℃において5分間以内である。
【0111】
前記の構成によれば、速硬化性および高い機械物性に加えて、高い目付けのクロスを使用しても賦形性に優れるプリプレグを実現することができる。
【0112】
前記プリプレグにおいて、前記強化繊維基材の目付が100~1000g/mであってもよく、前記強化繊維基材への前記樹脂組成物の含浸率が98%以上であり、かつドレープ性試験における値が20~70°であってもよい。
【0113】
前記の構成によれば、プリプレグの積層による厚さの調整が容易である観点、前記樹脂組成物の硬化による十分な機械的特性を発現させる観点、および、プリプレグの良好な賦形性を発現させる観点からより一層効果的である。
【0114】
前記強化繊維基材が強化繊維クロスであるプリプレグであって、前記強化繊維クロスの目付が150~1000g/mであることは、プリフォームにおける作業効率および成形加工性の観点から、より効果的である。
【0115】
また、前記強化繊維クロスの目付が300~1000g/mであることは、プリフォームにおける作業効率および成形加工性の観点から、より一層効果的である。
【0116】
本発明の実施の形態に係るプリプレグの硬化物である繊維強化複合材料は、優れた機械物性を有する。
【0117】
本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
【実施例
【0118】
以下、実施例によって本発明を詳細に説明するが、本発明は以下の記載によって限定されない。
【0119】
[使用原料]
本実施例に使用した原料を以下に示す。
【0120】
(エポキシ樹脂)
jER828:ビスフェノールA型エポキシ樹脂(製品名「jER 828」、エポキシ当量189、三菱ケミカル株式会社製)。
TSR-400:オキサゾリドン環含有エポキシ樹脂(製品名「TSR-400」、エポキシ当量339、DIC株式会社製)。
N740:フェノールノボラック型エポキシ樹脂(製品名「N740」、エポキシ当量182、DIC株式会社製)。
N775:フェノールノボラック型エポキシ樹脂(製品名「N775」、エポキシ当量189、DIC株式会社製)。
【0121】
(アミン系硬化剤)
1400F:ジシアンジアミド(製品名「Dicyanex 1400F」、エアプロダクツ社製、平均粒径4.5μm)
【0122】
(イミダゾール系硬化剤)
2MZA-PW:2,4-ジアミノ-6-(2’-メチルイミダゾリル-(1’))-エチル-s-トリアジン(体積平均粒径1.4μm、製品名「キュアゾール2MZA-PW」、四国化成社製)。
【0123】
(強化繊維)
炭素繊維束:製品名「TRW40 50L」、三菱ケミカル株式会社製、引張強度4.1GPa、引張弾性率240GPa、フィラメント数50000本、目付3.75g/m
【0124】
(マスターバッチの調製)
下記表1に記載の質量比で各成分を混練し、次いで三本ロールにて均一に分散させ、マスターバッチI-1~I-6、II-1を調製した。表1中の数値は質量部である。
【0125】
【表1】
【0126】
参考例1]
jER828を22.5質量部、TSR400を42.5質量部およびN740を25.0質量部、を溶解釜に投入して80℃で溶解させた。その後、60℃まで冷却し、マスターバッチI-1を16質量部加え、60℃で更に撹拌混合して樹脂組成物(C-1)を得た。
【0127】
得られた樹脂組成物(C-1)を、マルチコーター(ヒラノテクシード社製、M-500型)を用いて離型紙上に50℃で塗布して、樹脂フィルムC-1を得た。樹脂フィルムC-1の樹脂塗布面上に炭素繊維束をドラムワインドにて巻き付け、同じフィルムで炭素繊維束を挟み込み、樹脂組成物(C-1)を炭素繊維束に含浸させることによって一方向プリプレグC-1を得た。一方向プリプレグC-1における炭素繊維束の目付は250g/mであり、樹脂含有率は30.0質量%であった。また、一方向プリプレグC-1における樹脂組成物(C-1)の含浸率は100%であった。一方向プリプレグC-1を、298mm(繊維と平行方向)×298mm(繊維と直交方向)の寸法にカットし、繊維方向をそろえて10枚積層してプリプレグ積層体C-1とした。
【0128】
プリプレグ積層体C-1にかかる面圧:4MPa、金型温度:140℃、5分間、の条件にてプレス成形を行った。得られた成形体からバリを除いた。こうして、平板状の繊維強化複合材料C-1を得た。
【0129】
[実施例2、参考例3、4、実施例5~7]
各成分の組成及び樹脂含有量を表2に示すように変更した以外は、参考例1と同様にして樹脂組成物(C-2)~(C-7)を調製した。また、樹脂組成物(C-1)を樹脂組成物(C-2)~(C-7)のそれぞれに代える以外は参考例1と同様にして、プリプレグ積層体C-2~C-7をそれぞれ製造した。そして、プリプレグ積層体C-1をプリプレグ積層体C-2~C-7のそれぞれに代える以外は参考例1と同様にして、繊維強化複合材料C-2~C-7をそれぞれ製造した。
【0130】
[比較例1]
成分の組成及び樹脂含有量を表2に示すように変更した以外は、参考例1と同様にして樹脂組成物(X-1)を調製した。そして、樹脂組成物(C-1)を樹脂組成物(X-1)に代える以外は参考例1と同様にして、プリプレグ積層体X-1を製造し、プリプレグ積層体C-1をプリプレグ積層体X-1に代える以外は参考例1と同様にして、繊維強化複合材料X-1を製造した。
【0131】
[評価]
(1)硬化完了時間(t90)
得られた樹脂組成物(C-1)~(C-7)および(X-1)について、下記の方法により樹脂組成物の硬化完了時間t90を求めた。樹脂組成物の硬化完了時間は、最大トルク値の90%トルクに到達する時間である。
【0132】
まず、JSRトレーティング株式会社製の「キュラストメーター(登録商標)7 Type P」を使用し、ダイス温度140℃でのトルク値(N・m)の変化を測定した。ついで、該曲線からトルク値が変化しなくなる最大トルク値(Tmax)を求め、最大トルク値の90%のトルク値(T90)を算出する。測定開始からT90に到達するまでに要した時間を求め、これをキュラストメーターの硬化完了時間(t90)とした。硬化完了時間が10分以内であれば、実用可能な速硬化性を有している、と評価でき、硬化完了時間が5分以内であれば、ハイサイクルプレス成型に適した速硬化性を有していると評価した。測定条件を以下に示す。
装置:キュラストメーター(JSRトレーティング株式会社製、「キュラストメーター7 Type P」)
ダイス有効ボア径:φ160mm
測定温度:140℃
【0133】
(2)繊維強化複合材料の90°曲げ試験
得られた繊維強化複合材料C-1を、湿式ダイヤモンドカッタによって長さ(繊維と直交方向の長さ)63mm×幅(繊維と平行方向の長さ)12.7mmの寸法に切断して、端面を#1000のサンドペーパーで研磨し、試験片C-1を作製した。
【0134】
試験片C-1について、万能試験機(Instron社製、Instron(登録商標)4465、解析ソフト:Bluehill)を用い、ASTM D790に準拠して圧子R:5.0、L/D:16、クロスヘッドスピード:0.92~0.94mm/分の条件にて3点曲げ試験を行い、90°曲げ強度(FS90)を算出した。90°曲げ強度が40MPa以上であれば、有用な90°曲げ強度を有している、と評価でき、90°曲げ強度が90MPa以上であれば、ハイサイクルプレス成型において実用上問題ないと判断できる。
【0135】
樹脂組成物を(C-2)~(C-7)および(X-1)のそれぞれに代える以外は試験片C-1と同様にして試験片C-2~C-7およびX-1のそれぞれを作製し、90°曲げ強度(FS90)を求めた。ただし、試験片X-1は、上記の条件ではプリプレグが硬化せず、試験片の形態にはならなかったので、この90°曲げ強度を測定しなかった。
【0136】
樹脂組成物の組成、硬化完了時間および繊維強化複合材料の90°曲げ試験結果を表2に示す。表2中、「RI/A」は、樹脂組成物におけるアミン系硬化剤に対するイミダゾール系硬化剤の質量比を表し、「Rc」は、樹脂組成物中におけるイミダゾール系硬化剤およびアミン系硬化剤の合計の質量部数を表す。また、「Ee」は、樹脂組成物中のエポキシ樹脂のエポキシ当量を表し、「t90」は、キュラストメーターの硬化完了時間を表し、「FS90」は、90°曲げ強度を表す。
【0137】
【表2】
【0138】
表2に示すように、参考例1、実施例2、参考例3、4、実施例5~7における樹脂組成物(C-1)~(C-7)は、いずれも、実用可能な速硬化性を有している。また、参考例1、実施例2、参考例3、4、実施例5~7における、樹脂組成物(C-1)~(C-7)を用いたプリプレグから成形した繊維強化複合材料は、いずれも、有用な90°曲げ強度を有している。
【0139】
比較例1における樹脂組成物(X-1)は、エポキシ樹脂100質量部に対するアミン系硬化剤が3.8質量部以下になかったため、評価条件ではプリプレグが充分に硬化せず、90°曲げ強度を評価できなかった。
【0140】
[実施例8]
参考例1で得られた樹脂組成物(C-1)の樹脂フィルムを炭素繊維のクロスであるTRK510M(三菱ケミカル株式会社製、目付:646g/m)の両面に貼りつけた。樹脂組成物(C-1)を炭素繊維クロスに含浸させることによってクロスプリプレグを得た。このクロスプリプレグにおける樹脂含有率は39.5質量%であった。また、上記クロスプリプレグにおける樹脂組成物(C-1)の含浸率は100%であった。得られたクロスプリプレグにつき、下記に示す方法でドレープ性試験を実施した。
【0141】
[プリプレグのドレープ性試験]
図3は、上記クロスプリプレグのドレープ性試験を説明する図である。上記クロスプリプレグを長さ200mm、幅15mmに切ってなる試験片を3点準備した。前記長さは、クロスの経糸方向の長さであり、前記幅は、クロスの緯糸方向の長さである。
【0142】
図3に示すように、試験片200の長さ方向における一端から50mmまでの部分を試験台201の水平な天面に乗せ、長さ方向におけるそれ以外の部分を試験台201からはみ出すようにして、試験片200を試験台201に配置した。試験片201における試験台201上の部分に50mm×50mmのアルミプレート202を載せ、その上に200gの重り203を載せ、試験片200を固定した。
【0143】
試験片200が水平になるように保持し、次いで、保持を解除して試験片200を常温(23℃)で3分間静置した。試験台200と、試験片200における垂下した自由端側の部分とでなす角度θを測定した。同じ操作で、試験片を変えて3回測定し、それらの平均値を上記クロスプリプレグのドレープ値とした。ドレープ値が20~70°であれば、プリプレグのドレープ性に実用上問題ないと判断できる。
【0144】
前記クロスプリプレグのドレープ性を測定したところ、27.2°であった。このことから、前記クロスプリプレグが高いドレープ性を有し、よって良好な賦形性を有していることがわかる。
【産業上の利用可能性】
【0145】
本発明は様々な用途に適用することができ、特に産業用途、中でも自動車用の材料として有用である。
【符号の説明】
【0146】
1 プリプレグ積層体
2 繊維強化複合材料
100 金型
110 下型
112 凸部
120 上型
122 凹部
200 試験片
201 試験台
202 アルミプレート
203 重り
図1
図2
図3