IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 信越半導体株式会社の特許一覧

<>
  • 特許-シリコン基板表面の不純物分析方法 図1
  • 特許-シリコン基板表面の不純物分析方法 図2
  • 特許-シリコン基板表面の不純物分析方法 図3
  • 特許-シリコン基板表面の不純物分析方法 図4
  • 特許-シリコン基板表面の不純物分析方法 図5
  • 特許-シリコン基板表面の不純物分析方法 図6
  • 特許-シリコン基板表面の不純物分析方法 図7
  • 特許-シリコン基板表面の不純物分析方法 図8
  • 特許-シリコン基板表面の不純物分析方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-25
(45)【発行日】2024-01-09
(54)【発明の名称】シリコン基板表面の不純物分析方法
(51)【国際特許分類】
   G01N 23/2202 20180101AFI20231226BHJP
   G01N 1/28 20060101ALI20231226BHJP
   G01N 23/223 20060101ALI20231226BHJP
   H01L 21/66 20060101ALI20231226BHJP
【FI】
G01N23/2202
G01N1/28 X
G01N23/223
H01L21/66 L
【請求項の数】 5
(21)【出願番号】P 2019160250
(22)【出願日】2019-09-03
(65)【公開番号】P2021038995
(43)【公開日】2021-03-11
【審査請求日】2021-09-22
【審判番号】
【審判請求日】2022-11-15
(73)【特許権者】
【識別番号】000190149
【氏名又は名称】信越半導体株式会社
(74)【代理人】
【識別番号】100102532
【弁理士】
【氏名又は名称】好宮 幹夫
(74)【代理人】
【識別番号】100194881
【弁理士】
【氏名又は名称】小林 俊弘
(72)【発明者】
【氏名】荒木 健司
【合議体】
【審判長】石井 哲
【審判官】樋口 宗彦
【審判官】▲高▼見 重雄
(56)【参考文献】
【文献】特開2001-153768(JP,A)
【文献】特開2005-265718(JP,A)
【文献】特開2004-28787(JP,A)
【文献】特開1995-229864(JP,A)
【文献】特開平6-132376(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N23/00-G01N23/2276
G01N 1/00-G01N 1/44
H01L21/00-H01L21/98
(57)【特許請求の範囲】
【請求項1】
シリコン基板表面の不純物分析方法であって、前記シリコン基板表面に20~30%体積濃度のフッ化水素酸と12.4~18.6%体積濃度の過酸化水素水から発生する蒸気を15分間以上接触させて気相分解を行い、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価するシリコン基板表面の不純物分析方法であり、前記シリコン基板表面が平坦な鏡面仕上げされていることを特徴とするシリコン基板表面の不純物分析方法。
【請求項2】
前記気相分解を行うにあたり、開口を有する容器内に薬液を注入し、前記容器の開口を前記シリコン基板により覆うことにより密閉空間を形成し、前記薬液の蒸気により、前記密閉空間に面した前記シリコン基板表面を気相分解することを特徴とする請求項1に記載のシリコン基板表面の不純物分析方法。
【請求項3】
前記気相分解後に、前記シリコン基板表面を乾燥させ、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とする請求項1又は請求項2に記載のシリコン基板表面の不純物分析方法。
【請求項4】
前記シリコン基板表面の乾燥を、前記シリコン基板を気相分解した容器を加熱することにより行うことを特徴とする請求項3に記載のシリコン基板表面の不純物分析方法。
【請求項5】
前記シリコン基板表面の乾燥を、前記シリコン基板に赤外線を照射して行うことを特徴とする請求項3に記載のシリコン基板表面の不純物分析方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、シリコン基板表面の不純物分析方法であって、特に全反射蛍光X線分析によりシリコン基板表面の不純物の分析を行う、シリコン基板表面の不純物分析方法に関するものである。
【背景技術】
【0002】
半導体デバイス製造工程では、ウェーハ清浄度管理が重要であり、ウェーハ表面不純物分析方法としてWSA(Wafer Surface Analysis)が行われている。
WSAでは、ウェーハ表面を酸蒸気に晒し、ウェーハ表面自然酸化膜を溶解後、酸溶液でウェーハ表面を走査することで、自然酸化膜を含むウェーハ表面の不純物を回収し、回収した酸溶液を誘導結合プラズマ質量分析装置等で測定している。この方法は、ウェーハ表面不純物を回収・濃縮することで高感度分析が行えることを特徴とする反面、ウェーハ面内の不純物の位置情報は消失してしまう欠点がある。
【0003】
一方、簡便にウェーハ表面不純物を分析できる方法として全反射蛍光X線分析法(Total refrection X-Ray Fluorescence analysis、 以下 TXRF法という)がある。TXRF法は、全反射条件で入射したX線によりウェーハ表面不純物を励起し、発生する蛍光X線を検出することで、ウェーハ表面不純物を高感度に検出できる方法である。
図1にTXRF法の原理図を示す。TXRF法は、非破壊で、かつ不純物のウェーハ面内分布を分析することが可能で、局所的な汚染の検出には威力を発揮する。一方、WSA等の化学分析に比べ、検出感度が劣るという問題もある。
【0004】
そこで、近年は、WSAとTXRF法を組み合わせ、不純物回収を行った酸溶液をウェーハ上で乾燥させ、その乾燥痕上でTXRF分析を行うことで、TXRF法の高感度化も行われているが、TXRF法の利点であった不純物の位置情報が失われる欠点がある。
このため、ウェーハ表面を気相分解後に乾燥することで、ウェーハ表面不純物をパーティクル状に凝集させ(図2)、その状態でTXRF分析を行うことで、ウェーハ面内不純物の位置情報を保ったまま、検出強度が増加する効果を利用した方法も行われている。
図3に気相分解-TXRF法のフロー図を示す(特許文献1)。
【先行技術文献】
【特許文献】
【0005】
【文献】特許第3690484号
【発明の概要】
【発明が解決しようとする課題】
【0006】
しかし、ウェーハ表面不純物のパーティクル状への形態変化における気相分解条件は、一般的にフッ化水素酸(以下HFと略す)が用いられているものの、濃度や気相分解時間の最適値までは言及されていなかった。
このため適切な気相分解が行われず、パーティクル状への形態変化が不十分となり、結果、ばらつきの増大につながることが問題となることがわかった。
【0007】
そこで、本発明は、気相分解条件によるパーティクル状への形態変化と適切な気相分解条件を提供することにより、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行う方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明は、上記の課題を解決するためになされたもので、シリコン基板表面の不純物分析方法であって、シリコン基板表面に20~30%体積濃度のフッ化水素酸と12.4~18.6%体積濃度の過酸化水素水から発生する蒸気を15分間以上接触させて気相分解を行い、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とするシリコン基板表面の不純物分析方法を提供する。
【0009】
HF濃度が20~30%、H濃度が12.4~18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮する。
【0010】
また、前記気相分解を行うにあたり、開口を有する容器内に薬液を注入し、前記容器の開口を前記シリコン基板により覆うことにより密閉空間を形成し、前記薬液の蒸気により、前記密閉空間に面した前記シリコン基板表面を気相分解するようにすることができる。
【0011】
このように、容器の密閉空間内に充満する薬液の蒸気に、前記密閉空間に面した前記シリコン基板表面を晒すことができ、前記シリコン基板表面を気相分解することができる。
【0012】
また、前記気相分解後に、前記シリコン基板表面を乾燥させ、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することができる。
【0013】
このように、前記気相分解後に、前記シリコン基板表面を乾燥させることで、シリコン基板表面不純物をパーティクル状に凝集させ、その状態で全反射蛍光X線分析法により前記シリコン基板表面の不純物を位置情報を保ったまま評価することができる。
【0014】
また、前記シリコン基板表面の乾燥を、前記シリコン基板を気相分解した容器を加熱することにより行うことができる。
【0015】
このように、前記シリコン基板を気相分解した容器を加熱することにより、容易に前記シリコン基板表面の乾燥が促進される。
【0016】
また本発明は、前記シリコン基板表面の乾燥を、前記シリコン基板に赤外線を照射して行うことができる。
【0017】
このようにすれば、赤外線により前記シリコン基板を直接加熱して、前記シリコン基板表面の乾燥を促進することができる。
【発明の効果】
【0018】
本発明のシリコン基板表面の不純物分析方法であれば、HF濃度が20~30%、H濃度が12.4~18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮することができる。従って、極めて高感度で分析することができる。
さらには、気相分解後に、前記シリコン基板表面を乾燥させることで、シリコン基板表面不純物をパーティクル状に凝集させることができるので、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行うことができる。
【図面の簡単な説明】
【0019】
図1】TXRF法の原理図である。
図2】気相分解~乾燥過程におけるパーティクルへの形態変化を示す図である。
図3】気相分解-TXRF法のフロー図である。
図4】気相分解容器の一例を示す断面図である。
図5】HF+H気相分解時間と気相分解後のX線強度増大を示す。
図6】HF+H気相分解時間とTXRF検出下限値を示す。
図7】HF+H組成と気相分解前後のX線強度増大比の結果を示す。
図8】HF気相分解時間と気相分解後のX線強度増大比の結果を示す。
図9】HF気相分解時間とTXRF検出下限値の結果を示す。
【発明を実施するための形態】
【0020】
以下、本発明を詳細に説明するが、本発明はこれに限定されるものではない。
【0021】
TXRF法によれば、非破壊で、かつ不純物のウェーハ面内分布を分析することが可能で、局所的な汚染の検出には威力を発揮するが、WSA等の化学分析に比べ、検出感度が劣るという問題もある。
【0022】
WSAとTXRF法を組み合わせ、TXRF法の高感度化も行われているが、TXRF法の利点であった不純物の位置情報が失われる欠点がある。
このため、ウェーハ表面を気相分解後に乾燥することで、ウェーハ表面不純物をパーティクル状に凝集させ、その状態でTXRF分析を行うことで、ウェーハ面内不純物の位置情報を保ったまま、検出強度が増加させることも行われた。
【0023】
しかし、適切な気相分解条件が不明で、パーティクル状への形態変化が不十分となり、結果、ばらつきの増大につながることが問題となることがわかった。
【0024】
そこで、本発明者は、気相分解条件によるパーティクル状への形態変化と適切な気相分解条件を提供することにより、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行う方法を提供するべく、フッ化水素酸(HF)と過酸化水素水(H)の混酸による気相分解により、TXRF分析に適したパーティクル状への形態変化を及ぼすことを見出した。さらに、HFとHの濃度および気相分解時間の関係も見出し、従来より高感度にTXRF分析が可能となることを見出した。
すなわち、本発明は、シリコン基板表面の不純物分析方法であって、前記シリコン基板表面に20~30%体積濃度のフッ化水素酸と12.4~18.6%体積濃度の過酸化水素水から発生する蒸気を15分間以上接触させて気相分解を行い、次いで全反射蛍光X線分析法により前記シリコン基板表面の不純物を評価することを特徴とするシリコン基板表面の不純物分析方法である。
HF体積濃度が20~30%、H体積濃度が12.4~18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮する。
【0025】
以下、本発明のシリコン基板表面の不純物分析方法を、図面を参照して説明する。
本発明のシリコン基板の表面の不純物分析方法は、典型的には、シリコン基板表面をフッ化水素酸と過酸化水素水とを混合した酸溶液の蒸気により気相分解を行う気相分解を行い、気相分解されたシリコン基板の表面を乾燥させ、乾燥したシリコン基板表面に、全反射条件の臨界角より小さな入射角でX線を照射して、反射される蛍光X線から前記シリコン基板表面の不純物を分析する全反射蛍光X線分析を行う。
【0026】
ここで用いられる分析試料としてのシリコン基板には、X線の全反射を利用して分析を行うために、表面が平坦な鏡面仕上げされたものを用いている。なお、全反射蛍光X線分析法(TXRF法)については、図1に示し、上記で説明したのでここでは省略する。
【0027】
気相分解を行うにあたり、図4に示すように、開口2aを有する容器2を用いている。
この容器2における開口2aは、分析試料としてのシリコン基板1により覆うことにより気密状態に密閉して、内部空間に密閉空間2bを形成している。かかる密閉空間2bには、図示しない注入手段により、薬液を注入するようにしている。
薬液は、ここでは、HF体積濃度が20~30%、H体積濃度が12.4~18.6%で混合した酸溶液を用いている。
前記薬液が容器2内の密閉空間2b内に注入されると、そのときの密閉空間2b内の雰囲気温度により一部蒸気となって、かかる蒸気が容器2内の密閉空間2b内に充満し、容器2内の密閉空間2b内に面したシリコン基板1の表面が晒され、気相分解されるようになっている。この場合、体積濃度が20~30%のHFと体積濃度が12.4~18.6%のHから発生する蒸気を15分間以上接触させることができるようになっている。
なお、上述の容器2は、シリコン基板1の表面と薬液の蒸気との接触効率を考慮して用いたが、本発明は容器2を用いる方法に限らない。
【0028】
次に、気相分解されたシリコン基板1の表面を乾燥させる手法について説明する。
なお、乾燥するにあたり、加熱がなされなくてもよいが、加熱を行う場合の加熱手段は適宜である。すなわち、加熱手段は、気相分解時には容器2をヒーター等で加熱しても良いし、シリコン基板1上部から赤外線ランプ等を照射しても良く、気相分解時にシリコン基板表面に凝集した水滴が大きくなり過ぎないようにすることが必要である。ここでは、密閉空間2b内の雰囲気温度が23℃で、ヒーター等の加熱は行わないで実施した。
【0029】
なお、実験では気相分解時における蒸気についてHFのみならず、HF+Hの混酸から発生する蒸気において、気相分解時間におけるX線強度変化について明らかにした。その結果、気相分解後のX線強度は気相分解前のX線強度に対して、HFのみでは約3倍の増加であるのに対して、HF+Hでは約12倍の増加が見られることを見出した。
【0030】
このことは、Hを添加することによりシリコン基板1の表面に凝集した水滴の酸化還元電位が高くなるとともに、酸化力が増加するため、HF単独で気相分解を行うより不純物の凝集効果が高くなったものと考えられる。
その結果、入射X線は凝集体(パーティクル)内部に僅かに侵入し、凝集体表面および内部からも蛍光X線が放出されることから、X線検出強度が増加したものと考えられる。また、気相分解時間におけるX線強度は、後述する表1や表2に示すように、およそ15分で最大に達し、以降は気相分解時間を延長してもX線強度に増加は見られないことも見出した。
ただしこれらの効果は、評価するウェーハをシリコンウェーハとした場合には、シリコンよりイオン化傾向の小さいCuのような元素にはあまり効果が見られず、本発明でも気相分解前後でのX線強度増加はほとんど見られなかった。
【実施例
【0031】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、これは本発明を限定するものではない。
【0032】
{実施例、比較例}
シリコン基板の表面の不純物分析方法を行うために、シリコン基板として強制汚染ウェーハを用いた。強制汚染ウェーハとしては、清浄な直径200mmのp型のPWウェーハを用い、関東化学製1000ppm原子吸光用標準溶液(Cr、Fe、Ni、Cu)を適宜希釈し、多摩化学製超高純度エタノール(AA100)溶媒で調製した溶液をウェーハ中心に20μL滴下し、自然乾燥させ、滴下溶液中の各元素含有量が0.05ng、0.5ng、5ng、50ngのウェーハを準備した。
全反射蛍光X線分析装置はテクノス製TREX630Tを使用した。分析条件は、40kV、40mAでX線入射角は0.05度で、測定時間は300秒/点とした。また、シリコンウェーハは、図4に示す気相分解容器2を用いて気相分解を行った。
【0033】
(実施例)
気相分解容器内にステラケミファ製EL級フッ化水素酸(50%)と三徳化学製EL級過酸化水素水(31%)を1:1の比率(25%HF+15.5%H)で合計200mL注入し、前記シリコン基板をPW面が下向きになるように気相分解容器に載せ、HF+Hガスを密閉することで気相分解を行った。気相分解時間は3分、5分、10分、15分、20分、30分の6水準とし、気相分解後はクリーンドラフト内での自然乾燥とした。
【0034】
表1にHF+H気相分解による気相分解前後のX線強度(cps)と気相分解後のX線強度÷気相分解前のX線強度(Ratio)を算出し、気相分解時間との関係を表した。気相分解前に比べ、気相分解後はX線強度が増加しており、X線強度の増加は、気相分解時間が15分までは増加の傾向を示す。実際には約12倍の強度向上が見られた。しかし、分解時間が15分以降はそれ以上気相分解を行ってもX線強度の増加は見られない。
【0035】
【表1】
【0036】
また、図5にHF+H気相分解時間と気相分解後のX線強度増大比について示す。各プロットは0.05ng、0.5ng、5ng、50ngでの平均値を表し、エラーバーは最大値および最小値とした。
【0037】
同様に、それぞれの条件でのTXRFにおける各元素の検出下限値(atoms/cm)を表2および図6に示す。表2において、気相分解前後のX線強度増大比が大きくなる程検出下限値が小さくなることがわかった。この結果から、バックグラウンド強度変化はほとんど影響せず、単純にX線強度の増加が見られていると考えられる。
【0038】
【表2】
【0039】
さらに、気相分解15分におけるHF+Hの混合比率における気相分解前後のX線強度およびX線強度比率を表3および図7に示す。
この結果から、HFとHとの混酸においては、HF濃度が高過ぎても、また、低過ぎても、気相分解後のX線強度は効果が低減し、最大効果を発揮するのは比率が1:1(25%HF+15.5%H)とした場合であった。また、気相分解前後のX線強度比が10倍を超える条件は、HFが20%~30%のとき、Hは12.4%~18.6%である。
【0040】
【表3】
【0041】
(比較例)
気相分解容器内にステラケミファ製EL級フッ化水素酸(50%)を200mL注入し、シリコン基板をPW面が下向きになるように気相分解容器2に載せ、HF蒸気を密閉することで気相分解を行った。気相分解時間は3分、5分、10分、15分、20分、30分の6水準とし、気相分解後はクリーンドラフト内での自然乾燥とした。
【0042】
表4にHF気相分解による気相分解前後のX線強度(cps)と気相分解後のX線強度÷気相分解前のX線強度(Ratio)を算出し、気相分解時間との関係を表した。気相分解前に比べ、気相分解後はX線強度が増加しており、X線強度の増加は、気相分解時間が15分までは増加の傾向を示す。実際には約3倍の強度向上が見られた。しかし、分解時間が15分以降はそれ以上気相分解を行ってもX線強度の増加は見られない。
【0043】
【表4】
【0044】
また、図8にHF気相分解時間と気相分解後のX線強度増大比について示す。各プロットは0.05ng、0.5ng、5ng、50ngでの平均値を表し、エラーバーは最大値および最小値とした。同様に、それぞれの条件における全反射蛍光X線における各元素の検出下限値(atoms/cm)を表5および図9に示す。
【0045】
【表5】
【0046】
以上の結果から、気相分解にはHF+Hを用い、それらの混合比率はHF体積濃度が20~30%、H体積濃度が12.4~18.6%の濃度で混合する基準とする。また、気相分解時間を15分以上とすることで、気相分解前のX線強度より気相分解後のX線強度は約12倍となり、HFのみで気相分解を行った後のX線強度から更に4倍のX線強度が得られる。また、検出下限値はHFのみの気相分解の場合よりさらに約1/4となる。
【0047】
以上、総括すれば、シリコンウェーハ表面金属不純物を分析する場合、シリコンよりイオン化傾向が大きいあるいはシリコンと同等の元素については、HFのみで気相分解後にTXRF分析を行う場合に比べ、更に4倍の感度向上が可能となる。
【0048】
本発明のシリコン基板表面の不純物分析方法であれば、HF濃度が20~30%、H濃度が12.4~18.6%の濃度で混合した酸溶液を用いた気相分解後のTXRF分析によるX線強度は、HFのみ(50%)の気相分解後のTXRF分析によるX線強度より4倍程度増加し、気相分解時間は15分間以上で最大の効果を発揮することができる。
さらには、気相分解後に、前記シリコン基板表面を乾燥させることで、シリコン基板表面不純物をパーティクル状に凝集させることができるので、ウェーハ面内不純物の位置情報を保ったまま、更なる高感度でTXRF分析を行うことができる。
【0049】
なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
【符号の説明】
【0050】
1…シリコン基板、 2…容器、 2a…開口、 2b…密閉空間。
図1
図2
図3
図4
図5
図6
図7
図8
図9