(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-26
(45)【発行日】2024-01-10
(54)【発明の名称】末端変性ポリフェニレンエーテル、硬化性組成物、ドライフィルム、硬化物および電子部品
(51)【国際特許分類】
C08G 65/48 20060101AFI20231227BHJP
C08G 65/44 20060101ALI20231227BHJP
C08F 290/14 20060101ALI20231227BHJP
C08J 5/18 20060101ALI20231227BHJP
C08J 5/24 20060101ALI20231227BHJP
B32B 27/26 20060101ALI20231227BHJP
B32B 27/00 20060101ALI20231227BHJP
【FI】
C08G65/48
C08G65/44
C08F290/14
C08J5/18 CEZ
C08J5/24 CEZ
B32B27/26
B32B27/00 103
(21)【出願番号】P 2019132314
(22)【出願日】2019-07-17
【審査請求日】2022-07-15
(31)【優先権主張番号】P 2018185476
(32)【優先日】2018-09-28
(33)【優先権主張国・地域又は機関】JP
【新規性喪失の例外の表示】特許法第30条第2項適用 (1)公益社団法人 高分子学会 高分子学会予稿集 68巻1号[2019]令和1年5月14日発行 (2)学会の開催日:令和1年5月30日 第68回高分子学会年次大会
(73)【特許権者】
【識別番号】591021305
【氏名又は名称】太陽ホールディングス株式会社
(74)【代理人】
【識別番号】100105315
【氏名又は名称】伊藤 温
(72)【発明者】
【氏名】松村 聡子
(72)【発明者】
【氏名】能坂 麻美
(72)【発明者】
【氏名】石川 信広
【審査官】三宅 澄也
(56)【参考文献】
【文献】国際公開第2016/033156(WO,A1)
【文献】米国特許出願公開第2003/0225220(US,A1)
【文献】国際公開第2017/126417(WO,A1)
【文献】特開平04-233940(JP,A)
【文献】特開平04-234430(JP,A)
【文献】特開2010-202786(JP,A)
【文献】特開2006-057079(JP,A)
【文献】特開2009-067894(JP,A)
【文献】特開2004-339342(JP,A)
【文献】特開2004-339343(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C08L71/
C08L21/
C08G65/
C08K 3/
C08J 5/
B32B27/
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
ポリフェニレンエーテルの末端水酸基を変性用化合物により変性した末端変性ポリフェニレンエーテルであって、
前記ポリフェニレンエーテルが、少なくとも下記条件1および下記条件2をいずれも満たすフェノール類(A)、または、少なくとも下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含む原料フェノール類からなり、
前記変性用化合物が下記式(A)で示される化合物またはアセチル化剤であ
り、
前記原料フェノール類(A)が、下記式(1)で示されるフェノール類であり、
前記原料フェノール類(B)が、o-クレゾール、m-クレゾール、o-エチルフェノール、m-エチルフェノール、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、o-tert-ブチルフェノール、m-tert-ブチルフェノール、o-フェニルフェノール、m-フェニルフェノールおよび2-ドデシルフェノールより選択されるいずれか1種以上であり、
前記原料フェノール類(C)が、下記式(3)で示されるフェノール類であることを特徴とする末端変性ポリフェニレンエーテル。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、
炭素数2~15のアルケニル基または炭素数2~15のアルキニル基を有する
【化1】
式(A)中、R
A、R
B、R
Cは、各々独立して、水素または、炭素数1~9の炭化水素基であり、R
Dは、炭素数1~9の炭化水素基であり、Xは、フェノール性水酸基と反応可能な基である。
【化2】
(式(1)中、R
1
~R
3
は、水素原子、または炭素数1~15の炭化水素基である。ただし、R
1
~R
3
の少なくとも一つが、炭素数2~15のアルケニル基または炭素数2~15のアルキニル基である。)
【化3】
(式(3)中、R
7
およびR
10
は、炭素数1~15の炭化水素基であり、R
8
およびR
9
は、水素原子、または炭素数1~15の炭化水素基である。ただし、R
7
~R
10
の少なくとも一つが、炭素数2~15のアルケニル基または炭素数2~15のアルキニル基である。)
【請求項2】
請求項1に記載の末端変性ポリフェニレンエーテルと、過酸化物および/または架橋型硬化剤とを含むことを特徴とする硬化性組成物。
【請求項3】
請求項2に記載の硬化性組成物を基材に塗布して得られることを特徴とするドライフィルムまたはプリプレグ。
【請求項4】
請求項2に記載の硬化性組成物を硬化して得られることを特徴とする硬化物。
【請求項5】
請求項4に記載の硬化物を含むことを特徴とする積層板。
【請求項6】
請求項4に記載の硬化物を有することを特徴とする電子部品。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、末端変性ポリフェニレンエーテルに関し、さらに当該末端変性ポリフェニレンエーテルを含む硬化性組成物、ドライフィルム、プリプレグ、硬化物、積層板、および電子部品に関する。
【背景技術】
【0002】
第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等などの普及により通信機器の信号の高周波化が進んできた。
【0003】
しかし、配線板材料としてエポキシ樹脂などの使用では比誘電率(Dk)や誘電正接(Df)が十分に低くないために、周波数が高くなるほど誘電損失に由来する伝送損失の増大が起こり、信号の減衰や発熱などの問題が生じていた。そのため、低誘電特性にすぐれたポリフェニレンエーテルが使用されてきたが、ポリフェニレンエーテルは熱可塑性樹脂であるために耐熱性の問題があった。
【0004】
その問題を解決するための手段として非特許文献1には、ポリフェニレンエーテルの分子内にアリル基を導入させて、熱硬化性樹脂とすることが提案されている。
【先行技術文献】
【非特許文献】
【0005】
【文献】J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda, J. Polym. Sci. Part A: Polym. Chem. 2008, 46, 5278-5282.
【発明の開示】
【発明が解決しようとする課題】
【0006】
しかしながら、ポリフェニレンエーテルは可溶する溶媒が限られており、非特許文献1の手法で得られたポリフェニレンエーテルも、クロロホルムやトルエン等の非常に毒性が高い溶媒にしか溶解しない。そのため、樹脂ワニスの取り扱いや、配線板用途のような塗膜化して硬化させる工程における溶媒暴露の管理が難しいという問題があった。
【0007】
上記課題の元、本発明者らは、特願2018-134338にて、低誘電特性を維持しつつも、種々の溶媒(毒性の高い有機溶媒以外の有機溶媒、例えばシクロヘキサノン)にも可溶なポリフェニレンエーテルを発明した。
【0008】
しかしながら、より多くのアプリケーションに適用可能とするために、ポリフェニレンエーテルの誘電特性を更に低減させることが求められる場合がある。
【0009】
そこで本発明は、種々の溶媒(毒性の高い有機溶媒以外の有機溶媒、例えばシクロヘキサノン)に可溶であり、かつ、低誘電特性を更に低減させたポリフェニレンエーテルを提供することを課題とする。
【課題を解決するための手段】
【0010】
本発明者らは、分岐構造としたポリフェニレンエーテルが、種々の溶媒に可溶となる一方で分岐構造に起因した水酸基が増加してしまうことに着目し、上記目的の実現に向け鋭意研究を行なった。その結果、分岐構造に起因した水酸基を含む末端水酸基を変性することにより、溶媒可溶性を維持しつつ、低誘電特性を更に低減させることを見出し本発明を完成させるに至った。
【0011】
本発明(1)は、ポリフェニレンエーテルの末端水酸基を変性した末端変性ポリフェニレンエーテルであって、前記ポリフェニレンエーテルが、少なくとも、下記条件1および下記条件2をいずれも満たすフェノール類(A)、または、少なくとも、下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含む原料フェノール類からなることを特徴とする末端変性ポリフェニレンエーテルである。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
【0012】
本発明(1)は、好ましくは、ポリフェニレンエーテルの末端水酸基を変性した末端変性ポリフェニレンエーテルであって、前記ポリフェニレンエーテルが、少なくとも、下記条件1および下記条件2をいずれも満たすフェノール類(A)、または、少なくとも、下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)の混合物を含む原料フェノール類からなり、コンフォメーションプロットで算出された傾きが0.6未満であることを特徴とする末端変性ポリフェニレンエーテルである。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
【0013】
本発明(2)は、前記末端変性ポリフェニレンエーテルと、過酸化物および/または架橋型硬化剤とを含む硬化性組成物である。
【0014】
本発明(3)は、前記硬化性組成物を基材に塗布して得られるドライフィルムまたはプリプレグである。
【0015】
本発明(4)は、前記硬化性組成物を硬化して得られる硬化物である。
【0016】
本発明(5)は、前記硬化物を含む積層板である。
【0017】
本発明(6)は、前記硬化物を有する電子部品である。
【発明の効果】
【0018】
本発明によれば、種々の溶媒への溶解性を維持しつつ、低誘電特性を更に低減させた末端変性ポリフェニレンエーテルを提供することが可能となる。
【発明を実施するための形態】
【0019】
本願では、特願2018-134338の記載の全てが引用され組み込まれる。
【0020】
以下、本発明の末端変性ポリフェニレンエーテルについて具体的に説明するが、本発明はこれらには何ら限定されない。
【0021】
なお、説明した化合物に異性体が存在する場合、特に断らない限り、存在し得る全ての異性体が本発明において使用可能である。
【0022】
また、本発明において、「不飽和炭素結合」は、特に断らない限り、エチレン性またはアセチレン性の炭素間多重結合(二重結合または三重結合)を示す。
【0023】
本発明において、原料フェノール類の説明を行う際に「オルト位」や「パラ位」等と表現した場合、特に断りがない限り、フェノール性水酸基の位置を基準(イプソ位)とする。
【0024】
本発明において、単に「オルト位」等と表現した場合、「オルト位の少なくとも一方」等を示す。従って、特に矛盾が生じない限り、単に「オルト位」とした場合、オルト位のどちらか一方を示すと解釈してもよいし、オルト位の両方を示すと解釈してもよい。
【0025】
本発明において、末端変性される前のポリフェニレンエーテル(無変性ポリフェニレンエーテル)の原料として用いられ、ポリフェニレンエーテルの構成単位になり得るフェノール類を総称して、「原料フェノール類」とする。
【0026】
以下、無変性ポリフェニレンエーテルのことを単にポリフェニレンエーテルと表記する場合がある。
【0027】
以下、本発明の末端変性ポリフェニレンエーテルについて説明する。
【0028】
<<末端変性ポリフェニレンエーテル>>
末端変性ポリフェニレンエーテルは、ポリフェニレンエーテルの末端水酸基の一部または全部が変性されたものである。
【0029】
本発明の末端変性ポリフェニレンエーテルは、分岐構造を有し、かつ末端水酸基が変性されているため、種々の溶媒に可溶でありつつも、低誘電特性を更に低減した硬化物が得られる。また、本発明の末端変性ポリフェニレンエーテルは、末端水酸基を変性する際に使用された変性用化合物由来の追加的性質等を有する場合もある。
【0030】
本発明の末端変性ポリフェニレンエーテルは、原料フェノール類を酸化重合させて得られるポリフェニレンエーテルにおける一部または全部の末端水酸基を、変性用化合物によって変性することで得られる。
【0031】
具体的には、前記ポリフェニレンエーテルは、(形態1)少なくとも、下記条件1および下記条件2をいずれも満たすフェノール類(A)を必須成分として含む原料フェノール類、または、(形態2)少なくとも、下記条件1を満たし下記条件2を満たさないフェノール類(B)と下記条件1を満たさず下記条件2を満たすフェノール類(C)との混合物を必須成分として含む原料フェノール類、を酸化重合させて得られるものである。
(条件1)
オルト位およびパラ位に水素原子を有する
(条件2)
パラ位に水素原子を有し、不飽和炭素結合を含む官能基を有する
【0032】
ここで、条件1を満たすフェノール類{例えば、フェノール類(A)およびフェノール類(B)}は、オルト位に水素原子を有するため、フェノール類と酸化重合される際に、イプソ位、パラ位のみならず、オルト位においてもエーテル結合が形成され得るため、分岐鎖状の構造を形成することが可能となる。
【0033】
条件1を満たさないフェノール類{例えば、フェノール類(C)および下記フェノール類(D)}は、酸化重合される際には、イプソ位およびパラ位においてエーテル結合が形成され、直鎖状に重合されていく。
【0034】
また、条件2を満たすフェノール類{例えば、フェノール類(A)およびフェノール類(C)}は、少なくとも不飽和炭素結合を含む炭化水素基を有する。従って、条件2を満たすフェノール類を原料として合成されるポリフェニレンエーテルは、不飽和炭素結合を含む炭化水素基を官能基として有することで、架橋性を有することとなる。
【0035】
このように、ポリフェニレンエーテルは、その構造の一部が、少なくともイプソ位、オルト位、パラ位の3か所がエーテル結合されたベンゼン環により分岐することとなる。ポリフェニレンエーテルは、例えば、骨格中に少なくとも式(5)で示されるような分岐構造を有するポリフェニレンエーテルであり、少なくとも一つの不飽和炭素結合を含む炭化水素基を官能基として有する化合物と考えられる。
【0036】
【0037】
式(5)中、Ra~Rkは、水素原子、または炭素数1~15(好ましくは、炭素数1~12)の炭化水素基である。ただし、Ra~Rkの少なくとも一つが、不飽和炭素結合を有する炭化水素基である。
【0038】
次に、上記形態1は、原料フェノール類として、さらにフェノール類(B)および/またはフェノール類(C)を含む形態であってもよい。また、上記形態2は、原料フェノール類として、さらにフェノール類(A)を含む形態であってもよい。
【0039】
ポリフェニレンエーテルは、上記形態2であることか、上記形態1においてフェノール類(B)および/またはフェノール類(C)を更なる必須成分として含む形態であることが好ましい。
【0040】
また、本発明の効果を阻害しない範囲内で、原料フェノール類は、その他のフェノール類を含んでいてもよい。
【0041】
その他のフェノール類としては、例えば、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有しないフェノール類であるフェノール類(D)が挙げられる。
【0042】
上記形態1および上記形態2のいずれにおいても、ポリフェニレンエーテルの高分子量化のために、原料フェノール類として、フェノール類(D)をさらに含むことが好ましい。
【0043】
ポリフェニレンエーテルは、上記形態2において、原料フェノール類として、フェノール類(D)をさらに含む形態であることがもっとも好ましい。
【0044】
さらに、上記形態2においては、工業的・経済的な観点から、フェノール類(B)が、o-クレゾール、2-フェニルフェノール、2-ドデシルフェノールおよびフェノールの少なくともいずれか1種であり、フェノール類(C)が、2-アリル-6-メチルフェノールであることが好ましい。
【0045】
以下、フェノール類(A)~(D)に関してより詳細に説明する。
【0046】
フェノール類(A)は、上述のように、条件1および条件2のいずれも満たすフェノール類、即ち、オルト位およびパラ位に水素原子を有し、不飽和炭素結合を含む官能基を有するフェノール類であり、好ましくは下記式(1)で示されるフェノール類(a)である。
【0047】
【0048】
式(1)中、R1~R3は、水素原子、または炭素数1~15の炭化水素基である。ただし、R1~R3の少なくとも一つが、不飽和炭素結合を有する炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0049】
式(1)で示されるフェノール類(a)としては、o-ビニルフェノール、m-ビニルフェノール、o-アリルフェノール、m-アリルフェノール、3-ビニル-6-メチルフェノール、3-ビニル-6-エチルフェノール、3-ビニル-5-メチルフェノール、3-ビニル-5-エチルフェノール、3-アリル-6-メチルフェノール、3-アリル-6-エチルフェノール、3-アリル-5-メチルフェノール、3-アリル-5-エチルフェノール等が例示できる。式(1)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0050】
フェノール類(B)は、上述のように、条件1を満たし、条件2を満たさないフェノール類、即ち、オルト位およびパラ位に水素原子を有し、不飽和炭素結合を含む官能基を有しないフェノール類であり、好ましくは下記式(2)で示されるフェノール類(b)である。
【0051】
【0052】
式(2)中、R4~R6は、水素原子、または炭素数1~15の炭化水素基である。ただし、R4~R6は、不飽和炭素結合を有しない。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0053】
式(2)で示されるフェノール類(b)としては、フェノール、o-クレゾール、m-クレゾール、o-エチルフェノール、m-エチルフェノール、2,3-キシレノール、2,5-キシレノール、3,5-キシレノール、o-tert-ブチルフェノール、m-tert-ブチルフェノール、o-フェニルフェノール、m-フェニルフェノール、2-ドデシルフェノール、等が例示できる。式(2)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0054】
フェノール類(C)は、上述のように、条件1を満たさず、条件2を満たすフェノール類、即ち、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有するフェノール類であり、好ましくは下記式(3)で示されるフェノール類(c)である。
【0055】
【0056】
式(3)中、R7およびR10は、炭素数1~15の炭化水素基であり、R8およびR9は、水素原子、または炭素数1~15の炭化水素基である。ただし、R7~R10の少なくとも一つが、不飽和炭素結合を有する炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0057】
式(3)で示されるフェノール類(c)としては、2-アリル-6-メチルフェノール、2-アリル-6-エチルフェノール、2-アリル-6-フェニルフェノール、2-アリル-6-スチリルフェノール、2,6-ジビニルフェノール、2,6-ジアリルフェノール、2,6-ジイソプロペニルフェノール、2,6-ジブテニルフェノール、2,6-ジイソブテニルフェノール、2,6-ジイソペンテニルフェノール、2-メチル-6-スチリルフェノール、2-ビニル-6-メチルフェノール、2-ビニル-6-エチルフェノール等が例示できる。式(3)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0058】
フェノール類(D)は、上述のように、パラ位に水素原子を有し、オルト位に水素原子を有せず、不飽和炭素結合を含む官能基を有しないフェノール類であり、好ましくは下記式(4)で示されるフェノール類(d)である。
【0059】
【0060】
式(4)中、R11およびR14は、不飽和炭素結合を有しない炭素数1~15の炭化水素基であり、R12およびR13は、水素原子、または不飽和炭素結合を有しない炭素数1~15の炭化水素基である。なお、酸化重合時に高分子化することが容易になるという観点から、炭化水素基は、炭素数1~12であることが好ましい。
【0061】
式(4)で示されるフェノール類(d)としては、2,6-ジメチルフェノール、2,3,6-トリメチルフェノール、2-メチル-6-エチルフェノール、2-エチル-6-n-プロピルフェノール、2-メチル-6-n-ブチルフェノール、2-メチル-6-フェニルフェノール、2,6-ジフェニルフェノール、2,6-ジトリルフェノール等が例示できる。式(4)で示されるフェノール類は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0062】
ここで、本発明において、炭化水素基としては、アルキル基、シクロアルキル基、アリール基、アルケニル基、アルキニル基などが挙げられ、好ましくはアルキル基、アリール基、アルケニル基である。不飽和炭素結合を有する炭化水素基としては、アルケニル基、アルキニル基などが挙げられる。なお、これらの炭化水素基は、直鎖状であっても、分岐鎖状であってもよい。
【0063】
さらに、その他のフェノール類として、パラ位に水素原子を有しないフェノール類等を含んでいてもよい。
【0064】
原料フェノール類の合計に対する条件1を満たすフェノール類の割合が、1~50mol%であることが好ましい。
【0065】
原料フェノール類の合計に対する条件2を満たすフェノール類の割合が0.5~99mol%であることが好ましく、1~99mol%であることがより好ましい。
【0066】
以上説明したような原料フェノール類を公知慣用の方法にて酸化重合させて得られるポリフェニレンエーテルは、数平均分子量が2,000~30,000であることが好ましい。5,000~30,000であることがより好ましく、8,000~30,000であることが更に好ましく、8,000~25,000であることが特に好ましい。さらに、ポリフェニレンエーテルは、多分散指数(PDI:重量平均分子量/数平均分子量)が、1.5~20であることが好ましい。なお、数平均分子量および重量平均分子量は、ゲル浸透クロマトグラフィー(GPC)により測定を行い、標準ポリスチレンを用いて作成した検量線により換算したものである。
【0067】
ポリフェニレンエーテルの水酸基価は、数平均分子量(Mn)が10,000以上の場合、7.0以上であってもよい。言い換えると、数平均分子量(Mn)が5,000以上の場合、14.0以上であってもよく、数平均分子量(Mn)が20,000以上の場合、ポリフェニレンエーテルの水酸基価は3.5以上であってもよい。
【0068】
ポリフェニレンエーテルは、重量平均分子量(Mw)が130,000以上でクロロホルムに対して溶解させた場合の濃度が0.5(g/mL)の場合、溶液粘度が250以下(P)であることが好ましい。また、重量平均分子量(Mw)が35,000以上で濃度が0.5(g/mL)の場合、溶液粘度が250以下(P)であることが好ましい。
【0069】
ポリフェニレンエーテル1gは、25℃で、好ましくは100gのシクロヘキサノンに対して(より好ましくは、100gの、シクロヘキサノン、DMFおよびPMAに対して)可溶である。なお、ポリフェニレンエーテル1gが100gの溶剤(例えば、シクロヘキサノン)に対して可溶とは、ポリフェニレンエーテル1gと溶剤100gとを混合したときに、濁りおよび沈殿が目視で確認できないことを示す。本発明のポリフェニレンエーテルは、25℃で、100gのシクロヘキサノンに対して、1g以上可溶であることがより好ましい。
【0070】
ここで、ポリフェニレンエーテルの分岐構造(分岐の度合い)は、以下の分析手順に基づいて確認することができる。
【0071】
<分析手順>
ポリフェニレンエーテルのクロロホルム溶液を、0.1、0.15、0.2、0.25mg/mLの間隔で調製後、0.5mL/minで送液しながら屈折率差と濃度のグラフを作成し、傾きから屈折率増分dn/dcを計算する。次に、下記装置運転条件にて、絶対分子量を測定する。RI検出器のクロマトグラムとMALS検出器のクロマトグラムを参考に、分子量と回転半径の対数グラフ(コンフォメーションプロット)から、最小二乗法による回帰直線を求め、その傾きを算出する。
【0072】
<測定条件>
装置名 :HLC8320GPC
移動相 :クロロホルム
カラム :TOSOH TSKguardcolumnHHR-H
+TSKgelGMHHR-H(2本)
+TSKgelG2500HHR
流速 :0.6mL/min.
検出器 :DAWN HELEOS(MALS検出器)
+Optilab rEX(RI検出器、波長254nm)
試料濃度 :0.5mg/mL
試料溶媒 :移動相と同じ。試料5mgを移動相10mLで溶解
注入量 :200μL
フィルター :0.45μm
STD試薬 :標準ポリスチレン Mw 37,900
STD濃度 :1.5mg/mL
STD溶媒 :移動相と同じ。試料15mgを移動相10mLで溶解
分析時間 :100min
【0073】
絶対分子量が同じ樹脂において、高分子鎖の分岐が進行しているものほど重心から各セグメントまでの距離(回転半径)は小さくなる。そのため、GPC-MALSにより得られる絶対分子量と回転半径の対数プロットの傾きは、分岐の程度を示し、傾きが小さいほど分岐が進行していることを意味する。本発明においては、上記コンフォメーションプロットで算出された傾きが小さいほどポリフェニレンエーテルの分岐が多いことを示し、この傾きが大きいほどポリフェニレンエーテルの分岐が少ないことを示す。
【0074】
ポリフェニレンエーテルにおいて、上記傾きは、例えば、0.6未満であり、0.55以下、0.50以下、0.45以下、又は、0.40以下であることが好ましい。上記傾きがこの範囲である場合、ポリフェニレンエーテルが十分な分岐を有していると考えられる。なお、上記傾きの下限としては特に限定されないが、例えば、0.05以上、0.10以上、0.15以上、又は、0.20以上である。
【0075】
なお、コンフォメーションプロットの傾きは、ポリフェニレンエーテルの合成の際の、温度、触媒量、攪拌速度、反応時間、酸素供給量、溶媒量を変更することで調整可能である。より具体的には、温度を高める、触媒量を増やす、攪拌速度を速める、反応時間を長くする、酸素供給量を増やす、及び/又は、溶媒量を少なくすることで、コンフォメーションプロットの傾きが低くなる(ポリフェニレンエーテルがより分岐し易くなる)傾向となる。
【0076】
次に、このようにして得られたポリフェニレンエーテルにおける一部または全部の末端水酸基は、変性用化合物を用い、従来公知の方法に従って変性することができる。変性用化合物の種類、反応温度、反応時間、触媒の有無および触媒の種類等については、適宜設計可能である。変性用化合物として2種類以上の化合物を使用してもよい。
【0077】
ここで、変性用化合物としては、末端水酸基を変性できるものであればよく、具体的には、触媒の存在下または非存在下で、フェノール性の水酸基と反応可能な、炭素数1以上の有機化合物が挙げられる。このような有機化合物は、酸素原子、窒素原子、硫黄原子、リン原子、ハロゲン原子等を含んでいてもよい。
【0078】
変性用化合物により末端水酸基を変性する場合、通常、末端水酸基と変性用化合物とでエーテル結合またはエステル結合を形成する。
【0079】
末端変性ポリフェニレンエーテルに、変性用化合物由来の性質を付与することも可能である。例えば、変性用化合物がリン原子を含むこと(より具体的には、変性用化合物がハロゲン化有機リン化合物であること)で、硬化物の難燃性を向上させることができる。また、硬化物の耐熱性の観点から変性用化合物は熱又は光反応性の官能基を含むことが好ましい。例えば、変性用化合物が、不飽和炭素結合、シアネート基またはエポキシ基を含むことで、本発明の末端変性ポリフェニレンエーテルの反応性を向上させることができる。
【0080】
変性用化合物の好適例としては、下記式(A)で示される有機化合物が挙げられる。
【0081】
【0082】
式(A)中、RA、RB、RCは、各々独立して、水素または、炭素数1~9の炭化水素基であり、RDは、炭素数1~9の炭化水素基であり、Xは、F、Cl、Br、IまたはCN等のフェノール性水酸基と反応可能な基である。
【0083】
ポリフェニレンエーテルの末端水酸基が変性されたことは、ポリフェニレンエーテルと末端変性ポリフェニレンエーテルとの水酸基価を比較することで確認することができる。なお、末端変性ポリフェニレンエーテルは、一部が未変性の水酸基のままであってもよい。
【0084】
<<用途>>
本発明の末端変性ポリフェニレンエーテルは、種々の溶媒への溶解性を維持しつつ、低誘電特性を更に低減させたことから、様々な用途に適用することができる。
【0085】
以下、本発明の末端変性ポリフェニレンエーテルの具体的な用途として、硬化性組成物、および該硬化性組成物を硬化して得られる硬化物について説明する。
【0086】
<硬化性組成物>
硬化性組成物は、本発明の末端変性ポリフェニレンエーテルと、過酸化物および/または架橋型硬化剤とを含むことが好ましい。また、硬化性組成物は、本発明の効果を阻害しない範囲内で、その他の成分を含んでいてもよい。
【0087】
本発明の末端変性ポリフェニレンエーテルは前述の通りのため、過酸化物、架橋型硬化剤およびその他の成分について説明する。
【0088】
過酸化物は、本発明の末端変性ポリフェニレンエーテルに含まれる不飽和炭素結合を開き、架橋反応を促進する作用を有する。
【0089】
過酸化物としては、メチルエチルケトンパーオキサイド、メチルアセトアセテートパーオキサイド、アセチルアセトパーオキサイド、1,1-ビス(t-ブチルパーオキシ)シクロヘキサン、2,2-ビス(t-ブチルパーオキシ)ブタン、t-ブチルハイドロパーオキサイド、キュメンハイドロパーオキサイド、ジイソプロピルベンゼンハイドロパーオキサイド、2,5-ジメチルヘキサン-2,5-ジヒドロパーオキサイド、1,1,3,3-テトラメチルブチルハイドロパーオキサイド、ジ-t-ブチルハイドロパーオキサイド、t-ブチルハイドロパーオキサイド、ジクミルパーオキサイド、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキサン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)ヘキシン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ブテン、アセチルパーオキサイド、オクタノイルパーオキサイド、ラウロイルパーオキサイド、ベンゾイルパーオキサイド、m-トルイルパーオキサイド、ジイソプロピルパーオキシジカーボネート、t-ブチレンパーオキシベンゾエート、ジ-t-ブチルパーオキサイド、t-ブチルペルオキシイソプロピルモノカーボネート、α,α'-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、等があげられる。過酸化物は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0090】
過酸化物としては、これらの中でも、取り扱いの容易さと反応性の観点から、1分間半減期温度が130℃から180℃のものが望ましい。このような過酸化物は、反応開始温度が比較的に高いため、乾燥時など硬化が必要でない時点での硬化を促進し難く、ポリフェニレンエーテル樹脂組成物の保存性を貶めず、また、揮発性が低いため乾燥時や保存時に揮発せず、安定性が良好である。
【0091】
過酸化物の添加量は、過酸化物の総量で、硬化性組成物の固形分100質量部に対し、0.01~20質量部とするのが好ましく、0.05~10質量部とするのがより好ましく、0.1~10質量部とするのが特に好ましい。過酸化物の総量をこの範囲とすることで、低温での効果を十分なものとしつつ、塗膜化した際の膜質の劣化を防止することができる。
【0092】
また、必要に応じてアゾビスイソブチロニトリル、アゾビスイソバレロニトリル等のアゾ化合物やジクミル、2,3-ジフェニルブタン等のラジカル開始剤を含有してもよい。
【0093】
架橋型硬化剤は、ポリフェニレンエーテルを3次元架橋するものである。
【0094】
架橋型硬化剤としては、ポリフェニレンエーテルとの相溶性が良好なものが用いられるが、ジビニルベンゼンやジビニルナフタレンやジビニルビフェニルなどの多官能ビニル化合物;フェノールとビニルベンジルクロライドの反応から合成されるビニルベンジルエーテル系化合物;スチレンモノマー,フェノールとアリルクロライドの反応から合成されるアリルエーテル系化合物;さらにトリアルケニルイソシアヌレートなどが良好である。架橋型硬化剤としては、ポリフェニレンエーテルとの相溶性が特に良好なトリアルケニルイソシアヌレートが好ましく、なかでも具体的にはトリアリルイソシアヌレート(以下、TAIC(登録商標))やトリアリルシアヌレート(以下TAC)が好ましい。これらは、低誘電特性を示し、かつ耐熱性を高めることができる。特にTAIC(登録商標)は、ポリフェニレンエーテルとの相溶性に優れるので好ましい。
【0095】
また、架橋型硬化剤としては、(メタ)アクリレート化合物(メタクリレート化合物およびアクリレート化合物)を用いてもよい。特に、3~5官能の(メタ)アクリレート化合物を使用するのが好ましい。3~5官能のメタクリレート化合物としては、トリメチロールプロパントリメタクリレート等を用いることができ、一方、3~5官能のアクリレート化合物としては、トリメチロールプロパントリアクリレート等を用いることができる。これらの架橋剤を用いると耐熱性を高めることができる。架橋型硬化剤は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0096】
本発明の末端変性ポリフェニレンエーテルは、分岐構造を有することで種々の溶剤との溶解性が向上する一方で誘電特性を向上させることが難しい場合があるものの、不飽和炭素結合を有する炭化水素基を含むので、特にTAIC(登録商標)と硬化させることにより誘電特性に優れた硬化物を得ることができる。
【0097】
ポリフェニレンエーテルと架橋型硬化剤の配合比率は、質量部で20:80~90:10で含有することが好ましく、30:70~90:10で含有することがより好ましい。ポリフェニレンエーテルの配合量が20質量部以上であると適度な強靭性が得られ、90質量部以下であると耐熱性に優れる。
【0098】
硬化性組成物は、通常、ポリフェニレンエーテルが溶媒(溶剤)に溶解した状態で提供または使用される。本発明のポリフェニレンエーテルは、従来のポリフェニレンエーテルに比べて溶剤に対する溶解性が高いため、硬化性組成物の用途に応じて、使用する溶剤の選択肢を幅広いものとすることができる。
【0099】
本発明の硬化性組成物に使用可能な溶剤の一例としては、クロロホルム、塩化メチレン、トルエン等の従来使用可能な溶媒の他、N,N-ジメチルホルムアミド(DMF)、N-メチル-2-ピロリドン(NMP)、テトラヒドロフラン(THF)、シクロヘキサノン、プロピレングリコールモノメチルエーテルアセテート(PMA)、ジエチレングリコールモノエチルエーテルアセテート(CA)、メチルエチルケトン、酢酸エチル、等の比較的安全性の高い溶媒等が挙げられる。溶媒は、1種のみを用いてもよいし、2種以上を用いてもよい。
【0100】
硬化性組成物中の溶媒の含有量は特に限定されず、硬化性組成物の用途に応じて適宜調整可能である。
【0101】
硬化性組成物は、本発明の効果を阻害しない範囲内で、本発明のポリフェニレンエーテル以外の樹脂やその他の添加剤等の公知慣用の原料を含んでいてもよい。例えば、末端変性していないポリフェニレンエーテル、シリカなどの無機充填剤、エラストマー、架橋型または非架橋型のリン含有難燃剤を含んでいてもよい。
【0102】
なお、このような硬化性組成物は、各原料を適宜混合することにより得られる。
【0103】
<硬化物>
硬化物は、上述した硬化性組成物を硬化することで得られる。
【0104】
硬化性組成物から硬化物を得るための方法は、特に限定されるものではなく、硬化性組成物の組成に応じて適宜変更可能である。一例として、上述したような基材上に硬化性組成物の塗工(例えば、アプリケーター等による塗工)を行う工程を実施した後、必要に応じて硬化性組成物を乾燥させる乾燥工程を実施し、加熱(例えば、イナートガスオーブン、ホットプレート、真空オーブン、真空プレス機等による加熱)によりポリフェニレンエーテルを熱架橋させる熱硬化工程を実施すればよい。なお、各工程における実施の条件(例えば、塗工厚、乾燥温度および時間、加熱温度および時間等)は、硬化性組成物の組成や用途等に応じて適宜変更すればよい。
【0105】
<ドライフィルム、プリプレグ>
本発明のドライフィルムまたはプリプレグは、上述した硬化性組成物を基材に塗布して得られるものである。
【0106】
ここで基材とは、銅箔等の金属箔、ポリイミドフィルム、ポリエステルフィルム、ポリエチレンナフタレート(PEN)フィルム等のフィルム、ガラスクロス、アラミド繊維等の繊維が挙げられる。
【0107】
ドライフィルムは、例えば、ポリエチレンテレフタレートフィルム上に硬化性組成物を塗布乾燥させ、必要に応じてポリプロピレンフィルムを積層することにより得られる。
【0108】
プリプレグは、例えば、ガラスクロスに硬化性組成物を含浸乾燥させることにより得られる。
【0109】
<積層板>
本発明においては、上述のプリプレグを用いて積層板を作製することができる。
【0110】
詳しく説明すると、本発明のプリプレグを一枚または複数枚重ね、さらにその上下の両面または片面に銅箔等の金属箔を重ねて、その積層体を加熱加圧成形することにより、積層一体化された両面に金属箔または片面に金属箔を有する積層板を作製することができる。
【0111】
<電子部品>
このような硬化物は、優れた誘電特性や耐熱性を有するため、電子部品用等に使用可能である。
【0112】
硬化物を有する電子部品としては、特に限定されないが、好ましくは、第5世代通信システム(5G)に代表される大容量高速通信や自動車のADAS(先進運転システム)向けミリ波レーダー等が挙げられる。
【実施例】
【0113】
次に、実施例および比較例により、本発明の末端変性ポリフェニレンエーテルについて詳細に説明するが、本発明はこれらには何ら限定されない。
【0114】
<水酸基価の測定>
二口フラスコに試料約2.0gを精密に量り取り、ピリジン10mLを加えて完全に溶解させ、さらにアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mLとした溶液)を正確に5mL加え、60℃で2時間加熱を行い、水酸基のアセチル化を行った。反応終了後、反応母液にピリジン10mLを加えて希釈し、温水200mLにて再沈精製することにより、未反応の無水酢酸を分解した。さらにエタノールを5mL用いて二口フラスコを洗浄した。再沈精製を行った温水にフェノールフタレイン溶液数滴を指示薬として加え、0.5mоl/L水酸化カリウムエタノール溶液で滴定し、指示薬のうすい紅色が30秒間続いたときを終点とした。また、空試験は試料を入れずに同様の操作を行った。
水酸基価は次式より求めた(単位:mgKOH/g)。
水酸基価(mgKOH/g)
=[{(b-a)×F×28.05}/S]
但し、
S:試料量(g)
a:0.5mоl/L水酸化カリウムエタノール溶液の消費量(mL)
b:空試験0.5mоl/L水酸化カリウムエタノール溶液の消費量(mL)
F:0.5mоl/L水酸化カリウムエタノール溶液のファクター
【0115】
<<<ポリフェニレンエーテルの合成>>>
ポリフェニレンエーテルの合成手順、および、ポリフェニレンエーテルの変性手順について説明する。
【0116】
<<無変性PPE‐1の合成>>
3Lの二つ口ナスフラスコに、ジ-μ-ヒドロキソ-ビス[(N,N,N‘,N’-テトラメチルエチレンジアミン)銅(II)]クロリド(Cu/TMEDA)5.3gと、テトラメチルエチレンジアミン(TMEDA)5.7mLを加えて十分に溶解させ、10ml/minにて酸素を供給した。原料フェノール類であるо-クレゾール15.1g、2-アリル-6-メチルフェノール13.8g、2,6-ジメチルフェノール85.5gをトルエン1.5Lに溶解させ、フラスコに滴下し、600rpmの回転速度で攪拌しながら40℃で6時間反応させた。反応終了後、メタノール20L:濃塩酸22mLの混合液で再沈殿させてろ過にて取り出し、80℃で24時間乾燥させ、ポリフェニレンエーテルとして、Mn=10000(PDI=4)の無変性PPE‐1を得た。
【0117】
無変性PPE‐1の水酸基当量は3540であり、水酸基価は2.8であった。表1に使用した原料フェノール類およびその配合比(モル比)を示す。
【0118】
<<無変性PPE‐2の合成>>
原料フェノール類としてо-クレゾール10.0g、2-アリル-6-メチルフェノール124gを使用した以外は無変性PPE‐1と同様の方法で合成し、Mn=9000(PDI=3)の無変性PPE‐2を得た。
【0119】
無変性PPE‐2の水酸基当量は3350であり、末端水酸基数は2.7であった。
【0120】
<<無変性PPE‐3の合成>>
原料フェノール類として2,6-ジメチルフェノール103g、2-アリルフェノール12.5gを使用した以外は無変性PPE‐1と同様の方法で合成し、Mn=13000(PDI=9)の無変性PPE‐3を得た。
【0121】
無変性PPE‐3の水酸基当量は3940であり、末端水酸基数は3.3であった。
【0122】
<<変性PPE‐1~変性PPE‐3の合成>>
滴下漏斗を備えた1Lの二つ口ナスフラスコに、50gの無変性PPE‐1、変性用化合物として4-クロロメチルスチレン2.25g、相関移動触媒としてテトラブチルアンモニウムブロミド3g及びトルエン500mLを加え、75℃で加熱攪拌した。その溶液に8MのNaOH水溶液15mLを20分かけて滴下した。その後、さらに75℃で5時間攪拌した。次に、塩酸で反応溶液を中和した後、メタノール5L中に再沈殿させて濾過にて取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄後、80℃で24時間乾燥させ、変性PPE‐1を得た。
【0123】
また、無変性PPE‐1を無変性PPE‐2と無変性PPE‐3にそれぞれ変えた以外は、上記同様にして変性PPE‐2と変性PPE‐3を得た。
【0124】
得られた固体を、1H NMR(400MHz,CDCl3,TMS)で分析した。5~7ppmにエテニルベンジルに由来するピークが確認された。これにより、得られた固体が、分子末端にエテニルベンジル基を有する変性PPE‐1~変性PPE‐3であることが確認できた。
【0125】
水酸基価の測定より、水酸基価がほぼ0であることから、末端水酸基のほぼ全てがエテニルベンジル基に変性されていることを確認した。
【0126】
<<末端変性PPE‐4の合成>>
滴下漏斗を備えた1Lの二つ口ナスフラスコに、50gの無変性PPE‐1、変性用化合物としてアリルブロミド4.8g、相関移動触媒としてベンジルトリブチルアンモニウムブロミド0.7g及びテトラヒドロフラン250mLを加え、25℃で攪拌した。その溶液に1MのNaOH水溶液40mLを50分かけて滴下した。その後、さらに25℃で5時間攪拌した。次に、塩酸で反応溶液を中和した後、メタノール5L中に再沈殿させて濾過にて取り出し、メタノールと水との質量比が80:20の混合液で3回洗浄後、80℃で24時間乾燥させ、変性PPE‐4を得た。
【0127】
得られた固体を、1H NMR(400MHz,CDCl3,TMS)で分析した。3.5~6.5ppmにアリル基に由来するピークが確認された。これにより、得られた固体が、分子末端にアリル基を有する変性PPE‐4であることが確認できた。
【0128】
水酸基価の測定より、水酸基価がほぼ0であることから、末端水酸基のほぼ全てがアリル基に変性されていることを確認した。
【0129】
<<末端変性PPE‐5の合成>>
1Lの一つ口ナスフラスコに、50gの無変性PPE‐1、トルエン350mL、変性用化合物としてアセチル化剤(無水酢酸25gをピリジンで溶解し、容量100mLとした溶液)を加え60℃で2時間加熱攪拌した。反応溶液をメタノール5L中に再沈殿させて濾過にて取り出し、80℃で24時間乾燥させ、変性PPE‐5を得た。
【0130】
水酸基価の測定より、水酸基価がほぼ0であることから、末端水酸基のほぼ全てがアセチル基に変性されていることを確認した。
【0131】
また、ゲル浸透クロマトグラフィー(GPC)により各合成物の数平均分子量(Mn)と重量平均分子量(Mw)をもとめた。その結果のMnと多分散指数(PDI:Mw/Mn)を表1に示す。なお、GPCにおいては、Shodex K-805Lをカラムとして使用し、カラム温度を40℃、流量を1mL/min、溶離液をクロロホルム、標準物質をポリスチレンとした。
【0132】
前述の方法に従って、各PPEのコンフォメーションプロットの傾きを求めた。
【0133】
各PPEの環境対応の評価として、シクロヘキサノンへの可溶性を確認した。いずれもシクロヘキサノンに溶解したため、環境対応に適合するものであった。以上の各PPEに関して、表1にまとめた。
【0134】
【0135】
<<<組成物の作製>>>
各PPE50gをシクロヘキサノン150gに溶解させてワニスとした後、表2に従い、各材料を配合して、攪拌させて各組成物(実施例1~実施例5および参考例1~参考例3の組成物)を得た。数字の単位は質量部数である。
【0136】
なお、表2中の「パーブチルP」は、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼンを示す。
【0137】
<<評価>>
<誘電特性>
誘電特性の指標として比誘電率Dkおよび誘電正接Dfを測定した。比誘電率Dkおよび誘電正接Dfは、以下の方法に従って測定されたものである。
【0138】
厚さ18μm銅箔のシャイン面に、実施例1~実施例5および参考例1~参考例3の組成物を、硬化物の厚みが50μmになるようにアプリケーターで塗布した。次に、熱風式循環式乾燥炉で90℃30分乾燥させた。その後、イナートオーブンを用いて窒素を完全に充満させて200℃まで昇温後、60分硬化させた。その後、銅箔をエッチングし、長さ80mm、幅45mm、厚み50μmに切断したものを試験片としてSPDR(Split Post Dielectric Resonator)共振器法により測定した。測定器には、キーサイトテクノロジー合同会社製のベクトル型ネットワークアナライザE5071C、SPDR共振器、計算プログラムはQWED社製のものを用いた。条件は、周波数10GHz、測定温度25℃とした。
【0139】
<耐熱性>
耐熱性の指標としてTMA測定によるガラス転移点(Tg)を測定した。ガラス転移点(Tg)は、以下の方法に従って測定されたものである。
測定装置として日立ハイテクサイエンス社製の「TMA/SS120」を用い、試験片:長さ1cm、幅0.3cm、厚み50μm、昇温速度:5℃/分、測定温度範囲:30~250℃の条件で測定を行った。
【0140】
(評価基準)
Tgが180℃以上のものを◎、Tgが160℃以上180℃未満のものを○、Tgが160℃未満のものを×とした。
【0141】