(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-26
(45)【発行日】2024-01-10
(54)【発明の名称】光学システム内の光の1つ又は複数の特性の決定
(51)【国際特許分類】
H01L 21/66 20060101AFI20231227BHJP
G03F 1/84 20120101ALI20231227BHJP
G03F 1/24 20120101ALI20231227BHJP
G01N 21/956 20060101ALN20231227BHJP
【FI】
H01L21/66 J
G03F1/84
G03F1/24
G01N21/956 A
(21)【出願番号】P 2021571760
(86)(22)【出願日】2020-06-02
(86)【国際出願番号】 US2020035629
(87)【国際公開番号】W WO2020247324
(87)【国際公開日】2020-12-10
【審査請求日】2023-05-26
(32)【優先日】2019-06-03
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-05-27
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】ジュスクキン ラリッサ
(72)【発明者】
【氏名】ツィグトキン コンスタンティン
【審査官】堀江 義隆
(56)【参考文献】
【文献】特開2012-154902(JP,A)
【文献】特許第6249513(JP,B1)
【文献】米国特許第08842272(US,B2)
【文献】米国特許出願公開第2004/0156052(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/66
G03F 1/84
G03F 1/24
G01N 21/956
(57)【特許請求の範囲】
【請求項1】
光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムであって、前記システムは、
1つ又は複数の第1検出器であって、前記1つ又は複数の第1検出器は、1つ又は複数の第2角度と相互に排他的な1つ又は複数の第1角度で光源から放出された、190nmよりも短い1つ又は複数の波長を有する光を検出することであって、前記光が、前記第2角度で試料の照明用に光学システムによって前記光源から集められる、こと、及び前記1つ又は複数の第1検出器によって検出された前記光に応じた第1出力を生成すること、を行うように構成されている、1つ又は複数の第1検出器であり、前記1つ又は複数の第1検出器により検出された光は、集光し前記光源からの光を前記試料に向けるいずれの光学要素でも作用せず、
前記光学システム内の1つ又は複数の平面における前記光の1つ又は複数の特性を前記第1出力に基づいて決定するように構成された制御サブシステムと、
を備えている、システム。
【請求項2】
前記光源と前記1つ又は複数の第1検出器との間の前記光の光学経路は、前記光源と前記試料との間の前記光の光学経路と空間的に一致しない、請求項1に記載のシステム。
【請求項3】
前記光源は、前記光を前記1つ又は複数の第1角度及び前記1つ又は複数の第2角度で同時に放出するように構成されている、請求項1に記載のシステム。
【請求項4】
前記1つ又は複数の第1検出器は、前記光を前記1つ又は複数の第1角度で検出するように構成され、一方、前記光学システムは、前記光を前記1つ又は複数の第2角度で集めて、前記1つ又は複数の第2角度で集められた前記光を前記試料の前記照明用に前記試料に向ける、請求項1に記載のシステム。
【請求項5】
前記1つ又は複数の第1角度と前記1つ又は複数の第2角度とは、前記光源の対称軸に関して鏡面対称を有する、請求項1に記載のシステム。
【請求項6】
前記1つ又は複数の第1角度と前記1つ又は複数の第2角度とは、前記光源の対称軸に関して鏡面対称を有しない、請求項1に記載のシステム。
【請求項7】
1つ又は複数の追加の第1検出器を更に備え、前記追加の第1検出器は、前記1つ又は複数の第1角度及び前記1つ又は複数の第2角度と相互に排他的な1つ又は複数の追加の第1角度で前記光源から放出された前記光を検出すること、及び前記1つ又は複数の追加の第1検出器によって検出された前記光に応じた追加の第1出力を生成すること、を行うように構成されており、前記制御サブシステムは、前記第1出力及び前記追加の第1出力に基づいて前記1つ又は複数の平面における前記光の前記1つ又は複数の特性を決定するように更に構成されている、請求項1に記載のシステム。
【請求項8】
前記1つ又は複数の第1検出器は、1つ又は複数の2次元検出器を備えている、請求項1に記載のシステム。
【請求項9】
前記制御サブシステムは、前記光学システムの断層撮影法及び光学モデルを用いて、前記光の前記1つ又は複数の特性を決定するように更に構成されている、請求項1に記載のシステム。
【請求項10】
前記1つ又は複数の特性は、前記試料での照明視野範囲内の空間入射強度分布を含む、請求項1に記載のシステム。
【請求項11】
前記1つ又は複数の特性を決定することは、前記光源の3次元空間入射強度分布を決定することと、前記3次元空間入射強度分布から前記試料での前記1つ又は複数の特性を決定することと、を含む、請求項1に記載のシステム。
【請求項12】
前記1つ又は複数の特性は、1つ又は複数の空間及び時間特性を含む、請求項1に記載のシステム。
【請求項13】
前記制御サブシステムは、前記決定された1つ又は複数の特性に基づいて、前記光学システムの1つ又は複数のパラメータを変更するように更に構成されている、請求項1に記載のシステム。
【請求項14】
前記制御サブシステムは、前記決定された1つ又は複数の特性を前記光学システムのコンピュータサブシステムに出力するように更に構成され、前記コンピュータサブシステムは、前記決定された1つ又は複数の特性に基づいて、前記光学システムの1つ又は複数のパラメータを変更するように構成されている、請求項1に記載のシステム。
【請求項15】
前記光学システムによって、前記1つ又は複数の第2角度で集められた前記光を検出して、前記試料に向けられるように構成された1つ又は複数の較正検出器を更に備え、前記制御サブシステムは、前記1つ又は複数の較正検出器によって検出された前記光に基づいて、前記1つ又は複数の第1検出器の前記
第1出力を較正するように更に構成されている、請求項1に記載のシステム。
【請求項16】
前記光は、極端紫外光である、請求項1に記載のシステム。
【請求項17】
前記光は、真空紫外光である、請求項1に記載のシステム。
【請求項18】
前記光は、軟X線である、請求項1に記載のシステム。
【請求項19】
前記試料は、レチクルである、請求項1に記載のシステム。
【請求項20】
前記試料は、ウェーハである、請求項1に記載のシステム。
【請求項21】
前記光学システムは、検査システムとして構成されている、請求項1に記載のシステム。
【請求項22】
前記光学システムは、測定システムとして構成されている、請求項1に記載のシステム。
【請求項23】
前記光学システムは、欠陥再調査システムとして構成されている、請求項1に記載のシステム。
【請求項24】
前記光学システムは、リソグラフィツールとして構成されている、請求項1に記載のシステム。
【請求項25】
試料についての情報を決定するように構成されたシステムであって、前記システムは、
190nmよりも短い1つ又は複数の波長を有する光を生成するように構成された光源と、
1つ又は複数の第1角度で前記光源から放出された前記光を検出すること、及び前記1つ又は複数の第1検出器によって検出された前記光に応じた第1出力を生成すること、を行うように構成された1つ又は複数の第1検出器と、
前記1つ又は複数の第1角度と相互に排他的な1つ又は複数の第2角度で、前記光源から放出された前記光を集めること、前記1つ又は複数の第2角度で集められた前記光を試料に向けること、及び前記試料からの前記光を、前記試料からの前記光に応じた第2出力を生成するように構成された1つ又は複数の第2検出器に向けること、を行うように構成された1つ又は複数の第2光学要素であり、前記1つ又は複数の第1検出器により検出された光は、集光し前記光源からの光を前記試料に向けるいずれの前記1つ又は複数の第2光学要素で作用せず、
前記第2出力に基づいて、前記試料についての情報を決定するように構成されたコンピュータサブシステムと、
前記1つ又は複数の第2角度で集められた前記光の経路内の1つ又は複数の平面における前記光の1つ又は複数の特性を前記第1出力に基づいて決定すること、並びに前記光源の1つ又は複数のパラメータ、前記1つ又は複数の第2光学要素の1つ又は複数のパラメータ、前記1つ又は複数の第2検出器の1つ又は複数のパラメータ、及び前記決定された1つ又は複数の特性に基づいて前記情報を決定するために前記コンピュータサブシステムによって用いられる1つ又は複数のパラメータのうちの少なくとも1つを変更すること、を行うように構成された制御サブシステムと、
を備えている、システム。
【請求項26】
光学システム内の光の1つ又は複数の特性を
コンピュータシステムで決定するため
に前記コンピュータシステム上で実行可能なプログラム命令を記憶する非一時的コンピュータ可読媒体であって、
前記コンピュータシステムは、前記プログラム命令を実行することで、
1つ又は複数の第1角度で光源から放出された、190nmよりも短い1つ又は複数の波長を有する光を1つ又は複数の第1検出器によって検出するステップであって、前記1つ又は複数の第1検出器は、前記1つ又は複数の第1検出器によって検出された前記光に応じた第1出力を生成し、前記1つ又は複数の第1角度は、前記光が試料の照明用の光学システムによってその角度で前記光源から集められる1つ又は複数の第2角度と相互に排他的である、ステップであり、前記1つ又は複数の第1検出器により検出された光は、集光し前記光源からの光を前記試料に向けるいずれの光学要素上でも作用せず、
前記光学システム内の1つ又は複数の平面における前記光の1つ又は複数の特性を前記第1出力に基づいて決定するステップと、
を
実行する、非一時的コンピュータ可読媒体。
【請求項27】
光学システム内の光の1つ又は複数の特性を決定するための方法であって、前記方法は、
1つ又は複数の第1角度で光源から放出された、190nmよりも短い1つ又は複数の波長を有する光を1つ又は複数の第1検出器によって検出するステップであって、前記1つ又は複数の第1検出器は、前記1つ又は複数の第1検出器によって検出された前記光に応じた第1出力を生成し、前記1つ又は複数の第1角度は、前記光が試料の照明用の光学システムによって前記光源からその角度で集められる1つ又は複数の第2角度と相互に排他的である、ステップであり、前記1つ又は複数の第1検出器により検出された光は、集光し前記光源からの光を前記試料に向けるいずれの光学要素上でも作用せず、
前記光学システム内の1つ又は複数の平面における前記光の1つ又は複数の特性を前記第1出力に基づいて決定するステップと、
を含む、方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、概して光学システム内の光の1つ又は複数の特性を決定するための方法及びシステムに関する。
【背景技術】
【0002】
以下の説明及び例は、このセクションに含めることによる先行技術であるように認められない。
【0003】
論理及びメモリデバイス等の半導体デバイスの製造は、典型的には、多数の半導体製造プロセスを用いて半導体ウェーハ等の基板を処理して、半導体デバイスの様々な特徴及び複数レベルを形成することを含む。例えば、リソグラフィは、パターンをフォトマスクから半導体ウェーハ上に配列されたレジストに転写することを含む半導体製造プロセスである。半導体製造プロセスの追加の例としては、化学機械研磨(CMP)、エッチング、堆積、及びイオン注入が挙げられるが、これに限定されない。複数の半導体デバイスが、単一の半導体ウェーハ上の配列に製造され、次いで個々の半導体デバイスに分離されてもよい。
【0004】
193nmのイマージョンリソグラフィの性能が限界に達することだけでなく、マルチパターニングリソグラフィプロセスに関連する実質的に高いコスト及び収率問題により、極端紫外(EUV)リソグラフィが、広範な開発の下にあり、ムーアの法則を拡張するために次世代リソグラフィ(NGL)技術に用いられて、コンピュータチップをより小さく、より速く、より効率的にする。
【0005】
ウェーハ上に印刷されるパターンを規定するEUVフォトマスクの欠陥制御は、プロセス歩留管理の観点から重要な役割を果たす。しかし、必要な解像度でフォトマスクを検査し得るアクチン性EUVフォトマスク又は高スループットの荷電粒子ビーム検査ツールが存在しないので、それは、EUVリソグラフィ開発のリスクの高い領域の1つと考えられてきた。比較的高速のアクチン性EUVパターンマスク検査を提供するいくつかの製品が現在市場に出ているけれども、これらの検査器は、より長い波長でのマスク検査の要因ではない幾つかの理由のために比較的複雑である。
【0006】
EUVマスク上の幾何形状は、EUVリソグラフィにおいてこれらのマスクから製造された集積回路の性能劣化を生じさせる可能性のある欠陥特徴を解像するために、比較的高い画像忠実度及び実質的に低い検出ノイズを有する検査システムを必要とする。しかし、EUVスペクトル範囲は、実験用(すなわち、比較的コンパクトな)EUV放射源の短い波長、エネルギ性の光子、及び低い放射輝度(輝度)のために、検査ツールの光学及びシステム設計に多くの新たな課題を提示する。マスクの照明視野内の空間入射強度分布についての正確な知識が、検査ツールでの画像解析に不可欠である。
【0007】
EUVマスク検査についての既存の基準補正方法は、以下の手順のうちの1つに基づいている。いくつかの基準補正方法は、瞳孔内の1つ又は複数の場所における空間的に統合された源パワーを監視することを含む。別の基準補正方法は、照明ビーム経路内の基準ピックアップによって源を撮像することによって、2次元源/照明輝度分布を監視することを含む。
【先行技術文献】
【特許文献】
【0008】
【文献】米国特許出願公開第2015/0029498号
【文献】米国特許出願公開第2013/0271749号
【発明の概要】
【発明が解決しようとする課題】
【0009】
しかし、以前に用いられたEUV基準補正方法及びシステムには多くの欠点がある。例えば、空間的に統合された源パワーは、照明強度の空間分布の変化についての情報を提供しない。本来不安定で微小振動の源によって作動するときに、源パワーのみを監視するだけでは十分ではない。別の一例では、ピックアップ光学系を照明ビーム経路内に設置することは、試料における照明プロファイルの歪み及び不確定性を生じさせる。それは、また、検査に利用可能な光子束全体を低減する。それに加えて、より長い波長システムと異なり、EUVシステムでの使用に利用可能な効率的なビームスプリッタがなく、これがピックアップ光学系構成を複雑にする。
【0010】
したがって、上記の1つ又は複数の欠点を有しない光学システム内の光の1つ又は複数の特性を決定するためのシステム及び/又は方法を開発することが有利であろう。
【課題を解決するための手段】
【0011】
様々な実施形態についての以下の説明は、添付請求項の主題を限定するものとしてどのような形であれ解釈されるべきではない。
【0012】
一実施形態は、光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムに関する。システムは、1つ又は複数の第1検出器を含み、該第1検出器は、試料の照明用の光学システムによって光が光源からその角度で集められる1つ又は複数の第2角度と相互に排他的な1つ又は複数の第1角度で光源から放出される、190nmよりも短い1つ又は複数の波長を有する光を検出すること、及び1つ又は複数の第1検出器によって検出された光に応じた第1出力を生成すること、を行うように構成されている。それに加えて、システムは、第1出力に基づいて光学システム内の1つ又は複数の平面において光の1つ又は複数の特性を決定するように構成された制御サブシステムを含む。システムは、本明細書で説明したように更に構成されてもよい。
【0013】
別の一実施形態は、試料についての情報を決定するように構成されたシステムに関する。システムは、190nmよりも短い1つ又は複数の波長を有する光を生成するように構成された光源を含む。システムは、また、1つ又は複数の第1検出器を含み、該第1検出器は、1つ又は複数の第1角度で光源から放出された光を検出すること、及び1つ又は複数の第1検出器によって検出された光に応じた第1出力を生成すること、を行うように構成されている。それに加えて、システムは、1つ又は複数の第2光学要素を含み、該光学要素は、1つ又は複数の第1角度と相互に排他的な1つ又は複数の第2角度で光源から放出された光を集めること、1つ又は複数の第2角度で集められた光を試料に向けること、及び試料からの光を、試料からの光に応じた第2出力を生成するように構成された1つ又は複数の第2検出器に向けること、を行うように構成されている。システムは、第2出力に基づいて、試料についての情報を決定するように構成されたコンピュータサブシステムを更に含む。システムは、また、制御サブシステムを含み、該制御サブシステムは、第1出力に基づいて1つ又は複数の第2角度で集められた光の経路内の1つ又は複数の平面における光の1つ又は複数の特性を決定すること、及び光源の1つ又は複数のパラメータ、1つ又は複数の第2光学要素の1つ又は複数のパラメータ、1つ又は複数の第2検出器の1つ又は複数のパラメータ、及び決定された1つ又は複数の特性に基づいて情報を決定するためにコンピュータサブシステムによって用いられる1つ又は複数のパラメータのうちの少なくとも1つを変更すること、を行うように構成されている。システムは、本明細書で説明したように更に構成されてもよい。
【0014】
別の一実施形態は、光学システム内の光の1つ又は複数の特性を決定するためのコンピュータ実装方法に関する。この方法は、1つ又は複数の第1検出器によって1つ又は複数の第1角度で光源から放出された、190nmよりも短い1つ又は複数の波長を有する光を検出することを含み、該第1検出器は、1つ又は複数の第1検出器によって検出された光に応じた第1出力を生成する。1つ又は複数の第1角度は、光が試料の照明用の光学システムによって光源からその角度で集められる1つ又は複数の第2角度と相互に排他的である。この方法は、また、第1出力に基づいて光学システム内の1つ又は複数の平面における光の1つ又は複数の特性を決定することを含む。
【0015】
上記の方法のステップのそれぞれは、本明細書に更に記載したように実行されてもよい。それに加えて、上記の方法は、本明細書で説明したいずれかの別の方法のいずれかの別のステップを含んでもよい。更に、上記の方法は、本明細書で説明したシステムのうちのいずれかによって実行されてもよい。
【0016】
追加の実施形態は、非一過性コンピュータ可読媒体に関し、該非一過性コンピュータ可読媒体は、光学システム内の光の1つ又は複数の特性を決定するためのコンピュータ実装方法を実行するためにコンピュータシステムにおいて実行可能なプログラム命令を記憶する。コンピュータ実装方法は、上記の方法のステップを含む。コンピュータ可読媒体は、本明細書で説明したように更に構成されてもよい。コンピュータ実装方法のステップは、本明細書に更に説明したように実行されてもよい。それに加えて、プログラム命令がそれのために実行可能であるコンピュータ実装方法は、本明細書で説明したいずれかの別の方法のいずれかの別のステップを含んでもよい。
【0017】
本発明の別の目的及び利点は、後続の詳細な説明を読み、以下の添付図面を参照すれば明らかになるであろう。
【図面の簡単な説明】
【0018】
【
図1】光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムの実施形態についての側面図を示す概略図である。
【
図2】光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムの実施形態についての斜視図の概略図である。
【
図3】本発明者によって作成された異なる照明プロファイルの例を含む図であって、該図は、本明細書で説明したような光学システム内の光の1つ又は複数の特性を決定することの実施可能性を示す。
【
図4】光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムの実施形態についての側面図を示す概略図である。
【
図5】本明細書で説明したコンピュータ実装方法のうちの1つ又は複数を実行するためのコンピュータシステムにおいて実行可能なプログラム命令を記憶する非一過性コンピュータ可読媒体の一実施形態を示すブロック図である。
【発明を実施するための形態】
【0019】
本発明は、様々な修正及び代替の形式の余地があるけれども、その具体的な実施形態が、図面に例として示され、そして本明細書で詳述される。しかしながら、理解すべきは、図面及びそれの詳細な説明は、開示された特定の形式に本発明を限定することを意図するものではなく、逆に、その意図は、添付請求項によって規定されるような本発明の趣旨及び範囲内にある全ての修正、等価物、及び代替案を網羅することである。
【0020】
ここで図面を参照すると、図が縮尺に合わせて描かれていない点に留意されたい。特に、図の要素のうちの一部の縮尺は、要素の特性を強調するために大いに誇張されている。また、図が同じ縮尺に合わせて描かれていない点にも留意されたい。同様に構成されてもよい複数の図に示される要素は、同じ参照番号を用いて示されている。本明細書で別途言及されない限り、記載及び表示された要素のうちのいずれかは、いずれかの適切な市販の要素を含んでもよい。
【0021】
本明細書で説明した実施形態は、一般に、極端紫外(EUV)マスク検査システム等の光学システムにおける基準補正のための方法及びシステムに関する。いくつかの実施形態が、半導体フォトマスク(又は「レチクル」)、特に、EUVリソグラフィにおいて用いられるマスクの検査に関して本明細書で説明したけれども、実施形態は、かかる用途に限定されない。実施形態がEUVマスク検査器に提供する、本明細書で説明した利点は、また、本明細書で説明した別のシステムに対する利点になるであろう。
【0022】
EUVマスク上の幾何形状は、EUVスキャナ内のこれらのマスクから製作された集積回路の性能低下を生じさせることがある欠陥特徴を解像するために、実質的に高い画像忠実度及び実質的に低い検出ノイズを備える検査システムを必要とする。これらの検査ツールは、好ましくは、スキャナ内のマスクを撮像するのに用いられるのと同じ波長で動作する。EUVスペクトル範囲は、実験室(すなわち、比較的コンパクトな)EUV放射源の短い波長、エネルギ性光子、及び比較的低い放射輝度(輝度)に起因して、検査ツールの光学及びシステム設計に多くの課題を提示する。マスクの照明視野内の入射強度の空間分布についての正確な知識が、検査ツールの画像解析に不可欠である。本明細書で説明した実施形態は、EUVマスク(基準補正)の検査に用いられる画像データにおける光源の輝度の不均一性について照明視野内の入射強度空間分布を監視及び補正する方法を提供する。それに加えて、本明細書で説明した実施形態は、画像忠実度を高める方法、したがって、光学系及び放射線源のコスト又は複雑性についての相当する増加なしに検査システムの性能を提供する。
【0023】
一実施形態は、光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムに関する。一実施形態では、光は、極端紫外(EUV)光である。別の一実施形態では、光は、真空紫外(VUV)光である。更なる一実施形態では、光は、軟X線である。例えば、光は、約13.5nmの波長、約10nmから約124nmまでの範囲内の1つ以上の波長、又は約5nmから約30nmまでの範囲内の1つ以上の波長を有するEUV光、190nm未満の1つ以上の波長(光学システムは、光が大気によって吸収されることを防止するために真空中で動作させられなければならないことを意味する)を有する別のVUV光、又は約0.12nmから約5nmまでの波長を有する軟X線であってもよい。光源は、これらの波長のうちの1つ又は複数の光を放出し得る当該技術分野で公知のいずれかの適切な光源を含んでもよい。かかる光源は、レーザ誘導プラズマ源、放電誘導プラズマ源、カソード/アノード型源等が含まれるが、これらに限定されない。それに加えて、本明細書で説明した実施形態は、光を比較的広い角度範囲に放出するいずれかの光源(例えば、プラズマベースの)と共に用いられてもよく、更に本明細書で説明した1つ又は複数の用途、例えば、検査、測定、欠陥再調査、及びリソグラフィに用いられてもよい。
【0024】
システムは、1つ又は複数の第1検出器を含み、該第1検出器は、光源から放出された190nmよりも短い1つ又は複数の波長を有する光を、試料照明用の光学システムによって光が光源からその角度で集められる1つ又は複数の第2角度と相互に排他的な1つ又は複数の第1角度で検出するように、及び1つ又は複数の第1検出器によって検出された光に応じた第1出力を生成するように構成されている。光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムの一実施形態が、
図1に示されている。
【0025】
図1に示すように、システムは、光源100からの光104を第1検出器106に向ける(又は結像させる)ように構成された1つ又は複数の第1光学要素102を含んでもよい。第1検出器は、光源コンパートメント内に据え付けられてもよい(図示せず)。1つ又は複数の第1光学要素102が、単一の凹面反射光学要素として
図1に示されているけれども、実際には、第1光学要素102は、任意の適切な数及び構成の反射及び/又は別の光学要素を含んでもよい。それに加えて、第1検出器106は、単一の検出器として
図1に示されているけれども、第1検出器は、例えば、1つの検出器、2つの検出器、3つの検出器等の任意の適切な数の検出器を含んでもよく、それらのそれぞれが同じ又は異なる構成を有してもよい。第1検出器が複数の検出器を含むならば、検出器のそれぞれは、同じ画像平面内ではあるが、その画像平面内の異なる位置に配置されることにより、画像平面に向けられた光の異なる部分を別個に検出してもよい。複数の第1検出器のかかる構成は、例えば、結像平面内の照明された視野の寸法、試料の特性、及び第2検出器の構成に基づいて決定されてもよく、それらの全てが本明細書で更に説明される。
【0026】
別の一実施形態では、1つ又は複数の第1検出器は、1つ又は複数の2次元(2D)検出器を含む。例えば、1つ又は複数の第1検出器は、電荷結合デバイス(CCDカメラ)又は時間差積分(TDI)カメラ等の1つ又は複数の基準2D検出器を含んでもよい。このようにして、1つ又は複数の第1検出器は、画像平面内の位置の関数として光を検出してもよい。2D検出器は、本明細書で説明した実施形態での使用に特に適しているけれども、別のタイプの検出器も同様に用いることが可能である場合がある。例えば、既知で安定した照明プロファイル/源画像が存在するならば、2D検出器の代わりに、位置感知検出器が1つ又は複数の第1検出器として用いられてもよい。
【0027】
検出器は、また、非撮像検出器又は撮像検出器を含んでもよい。第1検出器が非撮像検出器であるならば、検出器のそれぞれは、強度等の特定の光の特性を検出するように構成されてもよいけれども、撮像平面内の位置の関数のような特性を検出するように構成されなくてもよい。そのため、検出器のそれぞれによって生成される出力は、信号又はデータであってもよいが、画像信号又は画像データでなくてもよい。かかる場合に、コンピュータサブシステム126等のコンピュータサブシステムは、検出器の非撮像出力からの情報に基づいて試料の画像を補正するように構成されてもよい。しかし、別の場合には、検出器は、撮像信号又は画像データを生成するように構成されている撮像検出器として構成されてもよい。そのため、システムは、いくつかの方法において本明細書で説明した出力及び/又は画像を生成するように構成されてもよい。
【0028】
システムは、光源から1つ又は複数の第1検出器に光を向けるように構成された1つ又は複数の第1光学要素を含むように
図1(及び本明細書で更に説明される別の図)に示されているけれども、システムは、1つ又は複数の第1光学要素を含んでもよく、又は含まなくてもよい。例えば、単純化される場合、例えば、総パワーのみが関心の対象であるならば、
図1に示す第1光学要素102は、検出器自体又は検出器に適用されるスペクトル薄膜フィルタであってもよい。源撮像が必要であるならば、ピンホールカメラが、短EUV/軟X線波長範囲内で十分に良好に機能することがある。そのため、
図1に示す光学要素102は、ミラーである必要はなく、その代わりに1つ又は複数の第1検出器であってもよい。
【0029】
基準信号は、照明ビーム経路の外側の角度で収集される。例えば、
図1に示すように、1つ又は複数の第1光学要素102は、角度範囲θ
1で光源100から放出された光を集めてもよく、角度範囲θ
2で光源から放出された光は、試料120の照明のために集められる。そのため、
図1に見られるように、第1検出器106によって検出される光は、光が試料の照明用にその角度で集められる1つ又は複数の第2角度θ
2の外側にある1つ又は複数の第1角度θ
1で集められる。本明細書で説明した実施形態は、そのため、本明細書で説明した波長の光を生成し得る光源から放出された比較的広い角発散を利用する。それに加えて、EUV基準補正のために以前に用いられたシステム及び方法と異なり、本明細書で説明した実施形態は、照明経路外の画像から照明光学系を通して見られる画像を再構成するように構成されている。
【0030】
一実施形態では、光源と、1つ又は複数の第1検出器との間の光の光路は、光源と試料との間の光の光路と空間的に一致していない。言い換えると、第1検出器によって検出された光は、試料の照明に用いられる光と同じ経路に沿って進行せず、これは、試料照明用に集められた光の一部分を採取するEUV基準補正のための現在用いられているシステム及び方法と異なる。それに加えて、1つ又は複数の第1検出器によって検出される光の経路内と、試料照明に用いられる光の経路内とに共通の要素が存在しない。例えば、基準監視及び補正目的のために試料の照明用に集められた光の一部分を採取する現在使用されているシステムと異なり、本明細書で説明した実施形態において基準補正及び監視のために検出された光は、光を集めてそれを光源から試料に向ける光学要素のうちのいずれによっても作用されない。基準監視及び補正に関与する光学要素は、試料照明に関与する光学要素と相互に排他的であるので、本明細書で説明したシステムの実施形態における光学要素の全体構成は、現在用いられているシステム及び方法における光学要素よりも簡素である場合がある。
【0031】
別の一実施形態では、光源は、1つ又は複数の第1角度と、1つ又は複数の第2角度とで同時に光を放出するように構成されている。例えば、本明細書で説明した実施形態は、比較的広い角度範囲で同時に光を放出する(例えば、少なくとも第1角度と第2角度とで同時に放出する)光源との使用に特に適している。そのため、実施形態は、試料照明と、基準監視及び補正との間で光を調整する光学要素を含まない。特に、光源が比較的広い角度範囲で光を放出するならば、本明細書に記載の実施形態によって実行される基準補正及び監視は、いわゆる「無駄な」光を用い得る、すなわち、光源によって放出される光は、様々な理由のいずれかで試料照明用には集められていない。したがって、基準監視及び補正に用いられる光は、光が集められて照明用に試料に向けられるのと同時に、集められて検出され得る。
【0032】
更なる実施形態では、1つ又は複数の第1検出器は、光学システムが1つ又は複数の第1角度で光を検出するように構成され、同時に、光学システムは、1つ又は複数の第2角度で光を集め、そして1つ又は複数の第2角度で集められた光を試料照明用に試料に向ける。例えば、システムは、(曝露から曝露まで、又は走査TDIモードにおいて)光をリアルタイムで1つ又は複数の第1検出器に向けるように構成されてもよい。このようにして、本明細書で説明した実施形態は、TDI走査と組み合わせてリアルタイムの光源監視を提供する。それに加えて、本明細書で説明した実施形態は、すべての曝露中に試料上に投影された画素領域にわたってEUV線量を計測するように構成されてもよい。
【0033】
いくつかの実施形態では、1つ又は複数の第1角度と、1つ又は複数の第2角度とは、光源の対称軸に関して鏡面対称を有する。別の実施形態では、1つ又は複数の第1角度及び1つ又は複数の第2角度は、光源の対称軸に関して鏡面対称を有しない。例えば、
図1に示すように、第1角度θ
1と第2角度θ
2とは、光源100の対称軸108に関して鏡面対称を有してもよい。しかし、第1角度と第2角度とが、軸108について鏡面対称を有する必要はない。例えば、第1角度と第2角度とが光源の対称軸に関して鏡面対称を有するならば、本明細書で更に説明する制御サブシステムにより実行されるステップは、第1と第2角度とが鏡面対称を有しない場合よりもより単純であることがある。しかし、第1角度及び第2角度と対称軸との間のなんらかの空間的関係が、制御サブシステムによって実行されるステップにおいて考慮され得る。
【0034】
図2は、光学システム内の光の1つ又は複数の特性を決定するように構成されたシステムの別の一実施形態を示す。この実施形態では、システムは、1つ又は複数の第1検出器206を含み、該第1検出器は、光が試料(
図2に図示せず)の照明用に光学システム(
図2で図示せず)によってその角度で光源から集められる1つ又は複数の第2角度(
図2に図示せず)と相互に排他的な1つ又は複数の第1角度(
図2に図示せず)で光源200から放出された190nm未満の1つ又は複数の波長を有する光を検出するように、及び1つ又は複数の第1検波器によって検出された光に応じた第1出力を発生するように構成されている。
【0035】
システムのこの実施形態は、第1光学要素202及び204を含んでも、含まなくてもよい。光学要素202は、1つ又は複数の第1角度で光源200からの光を集め、そして光を光学要素204に向ける。システムは、Si3N4/Zrフィルタ(又はアクチン性マスク検査若しくは再調査用途の場合の13.5nm波長に適した別のフィルタ)等のフィルタを有する開口(図示せず)を含んでもよく、該開口は、光源と光学要素202との間の光の経路内に配置されている。光学要素202は、多層の平面鏡であってもよい。光学要素204は、光を第1検出器206に向ける。光学要素204は、多層の球面鏡であってもよい。検出器206は、相補的な金属酸化物半導体(CMOS)画像センサ、又は堆積Ce:Y3Al5О12(Ce:YAG)シンチレータ若しくはGd2О2S:Tb(P43)蛍光体スクリーンを有するCCDカメラであってもよい。第1光学要素202、204及び第1検出器206は、本明細書で説明するように更に構成されてもよい。
【0036】
図2に示す要素間の光路長、例えば、光源200と光学要素202との間の長さL
1、光学要素202と光学要素204との間の長さL
2、及び光学要素204と検出器206との間の長さL
3は、光源、光学要素、及び検出器の構成に基づいて決定されてもよい。
図2に示すシステムは、本明細書で説明したいずれかの別の要素を含んでもよい。
【0037】
本明細書で更に説明するいくつかの実施形態において、システムは、試料を照明するように、及び場合によっては試料からの光を検出するように構成された要素を含んでもよい。例えば、
図1に示すシステムの実施形態は、1つ又は複数の第2光学要素を含んでもよく、該第2光学要素は、第2角度θ
2で光源100から放出された光を集め、第2角度で集められた光を試料120に向け、そして試料からの光に応じた第2出力を生成するように構成された1つ又は複数の第2検出器124に試料からの光を向けるように構成されている。
図1に示す実施形態において、第2光学要素は、光学要素112、118、及び122、並びに場合によってはホモジナイザ114を含む。光学要素112は、第2角度で光源100からの光を集め、中間視野平面116に配置された随意のホモジナイザ114を通して光を光学要素118に向けるように構成されている。光学要素118は、光学要素112、場合によっては随意のホモジナイザ114によって集められた光を試料120に向けるように構成されている。試料120からの光は、試料からの光を1つ又は複数の第2検出器124に向ける光学要素122によって集められる。
【0038】
光学要素112、118、及び122のそれぞれが、単一の凹面反射光学要素として、
図1に示されているけれども、これらの光学要素のそれぞれは、いずれかの適切な構成を有する任意の適切な数の光学要素を含んでもよい。随意のホモジナイザ114は、また、当該技術分野で公知のいずれかの適切な構成を有してもよい。光学要素112が光源からの光をその角度で集める角度は、光源の特性、試料の特性、及び試料照明の目的に基づいて変化することがある。それに加えて、光学要素118が光をその角度で試料120に向ける角度は、類似の変数に基づいて変化してもよい。例えば、システムは、パターンがそれにおいて試料120から別の試料まで転写されるリソグラフィに構成されているならば、システムは、システムが試料120の検査、測定、又は欠陥再調査のために構成されている場合とは異なる角度で光によって試料120を照明するように構成されてもよい。更に、光学要素122がその角度で試料120からの光を集め、それを1つ又は複数の第2検出器124に向けるか又はそれを撮像する角度は、試料からの光の特性に影響を及ぼすような、試料及び照明のためにそれに向けられた光の特性、並びにどの種類(例えば、散乱された、鏡面反射された等)の光が1つ又は複数の第2検出器に向けられているか等のシステムの構成に基づいて変化してもよい。第2光学要素によって集められる試料からの光は、散乱光、鏡面反射光、回折光等、又はそれらのいくつかの組合せを含んでもよい。
【0039】
システムは、また、光を試料にわたって走査させるように構成された走査サブシステム(図示せず)を含んでもよい。例えば、システムは、試料120がその上に配置されるステージ(図示せず)を含んでもよい。走査サブシステムは、また、試料を動かして光が試料にわたって走査させられるように構成されてもよいいずれかの好適な機械及び/又はロボットアセンブリ(ステージを含む)を含んでもよい。それに加えて又は代替として、システムは、1つ又は複数の第2光学要素が試料にわたってなんらかの光の走査を行うように構成されてもよい。光は、いずれかの適切な様式で試料にわたって走査させられてもよい。
【0040】
1つ又は複数の第2検出器は、本明細書で説明のものを含む、当該技術分野で公知のいずれかの適切な検出器を含んでもよい。一般に、1つ又は複数の第2検出器は、CCDカメラ又はTDI等の撮像検出器であってもよく、とはいえ、非撮像検出器がまた用いられてもよい。それに加えて、第2検出器124は単一の検出器として
図1に示されているけれども、第2検出器は、任意の適切な数の検出器、例えば、1つの検出器、2つの検出器、3つの検出器等を含んでもよく、それらのそれぞれは、同じに又は異なって構成されてもよい。第2検出器が複数の検出器を含むならば、検出器のそれぞれは、同じ画像平面内ではあるけれども、画像平面内の異なる位置に配置されることにより、画像平面に向けられた光の異なる部分を別個に検出してもよい。複数の第2検出器のかかる構成は、例えば、撮像平面内の照明視野の寸法、試料の特性、及び第2検出器の構成に基づいて決定されてもよい。
【0041】
図1だけでなく、本明細書で更に説明する
図2及び4が、本明細書で説明したシステム実施形態に含まれ得る光学要素及び検出器のいくつかの構成を一般に示すために提供されていることに留意されたい。明らかに、本明細書で説明した光学要素及び検出器構成は、商用システムを設計する際に通常行われるように、システムの性能を最適化するために変更されてもよい。それに加えて、本明細書で説明したシステムは、Lasertec Corporation(日本国、横浜)から市販されているアクチン性EUVパターンマスク検査ツールACTIS A150等の既存の光学システムを用いて(例えば、本明細書で説明した1つ又は複数の第1検出器及び別の機能を既存の光学システムに追加することによって)実装されてもよい。いくつかのかかるシステムについて、本明細書で説明した実施形態は、(例えば、システムの別の機能に付加して)既存のシステムの随意の機能として提供されてもよい。その代替として、本明細書で説明したシステムは、「最初から」設計されて全く新しいシステムを提供してもよい。
【0042】
システムは、また、光学システム内の1つ又は複数の平面における光の1つ又は複数の特性を第1出力に基づいて決定するように構成された制御サブシステムを含む。そのため、本明細書で説明した実施形態は、1つ又は複数の角度で取込まれた第1出力(例えば、源画像)を用いてもよく、該角度は、光学システムの瞳孔及び/又は視野での光分布等の光の1つ又は複数の特性を予測するための、試料照明に用いられる集光器立体角の外側にあり、それは、モデリング及び較正測定値と組み合わせて第1出力を用いて実行されてもよい。例えば、
図1に示すように、システムは、第1検出器106に結合された制御サブシステム110を含んでもよい。制御サブシステムは、1つ又は複数のコンピュータサブシステム、場合によってはファームウェア、サーボループ、及び当該分野で公知の別の適切なコントローラ型要素等の本明細書で説明した別の要素を含んでもよい。
【0043】
制御サブシステム110は、いずれかの適切な態様で(例えば、「有線」及び/又は「無線」伝送媒体を含んでもよい1つ又は複数の伝送媒体を介して)1つ又は複数の第1検出器に結合されることにより、制御サブシステムが、第1検出器によって生成された出力、画像等を受取ってもよい。制御サブシステム110は、本明細書で説明した第1検出器の出力、画像等、及び本明細書で更に説明したいずれか別の機能を用いて、多数の機能を実行するように構成されてもよい。この制御サブシステムは、本明細書で説明したように更に構成されてもよい。
【0044】
制御サブシステムは、1つ又は複数のコンピュータサブシステムを含んでもよく、該コンピュータサブシステムは、光学システム内の1つ又は複数の平面における光の1つ又は複数の特性を決定すること等の制御サブシステムの1つ又は複数の機能を実行するように構成されている。制御サブシステムの1つ又は複数のコンピュータサブシステム(及び本明細書で説明した別のコンピュータサブシステム)は、また、本明細書においてコンピュータシステムと呼ばれることもある。本明細書で説明したコンピュータサブシステム又はシステムのそれぞれは、パーソナルコンピュータシステム、イメージコンピュータ、メインフレームコンピュータシステム、ワークステーション、ネットワークアプライアンス、インターネットアプライアンス、又は別のデバイスを含む様々な形式をとってもよい。一般に、用語「コンピュータシステム」とは、メモリ媒体からの命令を実行する1つ又は複数のプロセッサを有するいずれかのデバイスを包含するように広く定義されてもよい。コンピュータサブシステム又はシステムは、パラレルプロセッサ等の技術分野で公知のいずれか適切なプロセッサを含んでもよい。それに加えて、コンピュータサブシステム又はシステムには、スタンドアロン又はネットワークツールのいずれかとして、高速処理及びソフトウェアを備えたコンピュータプラットフォームが含まれてもよい。
【0045】
システムが、複数のコンピュータサブシステムを含むならば、異なるコンピュータサブシステムが相互に結合されることにより、画像、データ、情報、命令等が本明細書に更に記載されるようなコンピュータサブシステム同士の間で送信され得る。例えば、制御サブシステム110のコンピュータサブシステムは、当該技術分野で公知のいずれか適切な有線及び/又は無線伝送媒体を含んでもよいいずれか適切な伝送媒体(図示せず)によって、コンピュータサブシステム126に結合されてもよい。かかるコンピュータサブシステムのうちの2つ以上は、また、共有コンピュータ可読記憶媒体(図示せず)によって効果的に結合されてもよい。
【0046】
いくつかの実施形態では、制御サブシステムは、光学システムの断層撮影法及び光学モデルを用いて光の1つ又は複数の特性を決定するように構成されている。例えば、第1出力(例えば、記録された2D源画像(投影))を用いて、断層撮影法及び光学システム対称を利用することによって放出された放射線の空間分布を再構築してもよい。コンピュータサブシステムは、次いで、光学システムの光学モデルを介して空間分布を伝播させて、照明プロファイルを予測してもよい。このようにして、制御サブシステムは、基準検出器信号(第1検出器出力)を試料にマッピングしてもよく、これは、照明視野又はシステム内のいずれか別の撮像平面内部でのいずれかの源誘導変動についての実質的に迅速な補償に用いられ得る。このようにして、本明細書で説明した実施形態は、試料強度分布を較正及び予測(監視)するための照明器の光学モデルと組み合わせた断層撮影アルゴリズムを利用してもよい。
【0047】
いくつかのかかる実施形態では、源画像(すなわち、第1検出器によって又は第1検出器によって生成された出力を用いて生成された画像)からの照明マッピングは、源モデルを生成すること及び/又は源モデルを較正することを含んでもよい。例えば、初期源モデルが、第1検出器によって検出されるような画像(投影)をシミュレートするために用いられてもよい。光源の画像が、また、第1検出器を用いる実験において取得されてもよい。シミュレートされた、及び実験的に取得された画像が用いられて、源モデルを生成し、及び/又は既存の源モデルの1つ又は複数のパラメータを設定又は較正してもよく、これは、分布(例えば、ガウス分布)等の源の様々なパラメータ及び直径、長さ等の様々な源寸法を記述してもよい。生成又は較正された源モデルは、次いで、瞳孔(ホモジナイザ用)又は視野(限界照明用)等の光学システム内の1つ又は複数の平面に画像をマッピングするために用いられ得る。このようにして、制御サブシステムは、マップ生成のためにモデリング及びキャリブレーション実験の組み合わせを用いてもよい。それに加えて、本明細書で説明したマッピングは、光源対称の場合に独自の数学的解法を有するが、とはいえ、かかる対称は本明細書で説明した実施形態において必要ではない。
【0048】
別の一実施形態では、1つ又は複数の特性は、試料における照明視野内の空間入射強度分布を含む。例えば、1つ又は複数の第1検出器は、光源の画像(光源のプラズマ)を取込んでもよい。制御サブシステムは、次いで、画像を視野パワー分布に計算によって変換してもよい。例えば、制御サブシステムは、光学システムの源画像及び伝達行列(モデル)から取得された光線分布関数を用いて数値光線追跡(マッピング)を実行してもよい。特に、光学システムの光線伝達をシミュレートすることは、光学システム内のそれぞれの光学要素についてのABCD光線伝達行列に光線分布を入力することを含んでもよく、これが光線分布を出力することになる。制御サブシステムは、次いで、光学システムの視野平面(試料平面における照明視野)及び/又は瞳面での強度分布を推定(予測)してもよい。限界照明の場合、源画像は十分である。別の照明スキームについて、照明光学系の設計選択及び複雑性に応じて、放出の角度分布についての知識が考慮されることがある。角度分布は、比較的安定していると予想され、較正の一部として別個に測定され得る(例えば、本明細書で説明したような1つ又は複数の較正検出器を用いて実行される)。それに加えて、個々の光学系の振動及びドリフトが、影響を与える可能性があり、そのため、(例えば、伝達行列の変動として)監視され、説明されてもよい。
【0049】
更なる実施形態では、1つ又は複数の特性を決定することは、光源の3次元(3D)空間入射強度分布を決定することと、3D空間入射強度分布から試料における1つ又は複数の特性を決定することと、を含む。例えば、第1出力(例えば、記録された2Dソース画像(射影))を、断層撮影法及び光学システム対称を利用することによって、3Dにおける放出された放射線の空間分布を再構築するために用いられてもよい。コンピュータサブシステムは、次いで、3D分布を検査システムの光学モデルを通して伝播させることにより、照明プロファイルを予測してもよい。このようにして、制御サブシステムは、基準検出器信号(第1検出器出力)を、照明視野内のいずれかの源誘導変動の実質的に高速の補償に用いられ得る試料にマッピングし得る。
【0050】
3D再構成及びプラズマベースの光源の場合、制御サブシステムによって決定されてもよい特性のうちの1つは、プラズマが動く態様に応じた特性である。かかる特性を決定する際の難点のうちの1つは、光源の撮像が1つの空間寸法(深度)を破壊することである。この難点を緩和するための1つの解決策は、回転対称を仮定して、1つの空間寸法を自明にすることである。射影は、そのときX・β=yであってもよく、ここにXは、射影行列であり、βは係数(プロファイル画素輝度)、及びyは検出器平面における画像である。
図3は、かかる3D再構成を示すために、本発明者らによって生成された様々な結果を含む。プロファイル300は、人工的なテストプロファイル(すなわち、xy平面内でシミュレートされたプロファイル)である。プロファイル302は、カメラ平面(5°だけ軸外である)への射影である。つまり、プロファイル302は、1つ又は複数の第1検出器によって生成されてもよい。プロファイルを考えると、制御サブシステムは、線形最小二乗法等の技術によって適合プロファイル304を再構成してもよい。このようにして、1つ又は複数の第1検出器によって生成された出力は、制御サブシステムによって用いられて、任意の角度で光源の1つ又は複数の特性を計算し得る。
【0051】
追加の一実施形態では、1つ又は複数の特性は、1つ又は複数の空間及び時間特性を含む。例えば、本明細書で説明した2D光源輝度分布を監視することは、時間及び空間領域における照明プロファイルの変動に対する補正を可能にする。特に、第1検出器は、異なる時点で(断続的又は連続的であるかに関係なく)、及び試料の照明に関して異なる時点で(例えば、試料の照明前、試料の照明中、及び/又は試料の照明後に)出力を生成してもよい。より具体的には、1つ又は複数の第1検出器が、光学システムの性能に影響を与えることなく第1角度で集められた光に応じた出力を生成するので、第1検出器は、光源の時間及び空間特性の両方に応じた出力を生成してもよい。その構成は、制御サブシステムが第1出力から光源の空間及び時間特性を決定することを可能にし、これは、本明細書で更に説明するように、次いで光学システムの1つ又は複数のパラメータに対する空間及び時間変化の両方を決定するために用いられ得る。
【0052】
いくつかの実施形態では、制御サブシステムは、決定された1つ又は複数の特性に基づいて、光学システムの1つ又は複数のパラメータを変更するように構成されている。例えば、制御サブシステム110は、ファームウェア(図示せず)及びサーボループ(図示せず)を含んでもよい。ファームウェア及びサーボループは、決定された1つ又は複数の特性を決定された1つ又は複数の特性についての所定範囲の値と比較し、次いで、光源、1つ又は複数の第2光学要素、及び/又はそれに応じた1つ又は複数の第2検出器のうちの少なくとも1つについてのパラメータを改変するのに適した当該分野で公知のいずれかの好適な構成を有してもよい。かかる一例において、1つ又は複数の決定された特性は、計算された視野パワー分布を含み、制御サブシステムは、予想されるものから計算された視野パワー分布におけるいずれかの変動に基づいて、光学システムに補正を適用することによって光学システムの1つ又は複数のパラメータを変更するように構成されてもよい。
【0053】
制御サブシステムによって変更される光学システムのパラメータは、光学システム内の1つ又は複数の平面における光の特性の変化を生じさせ得るいずれかのパラメータが含まれ、その一部の例が、本明細書に更に記載され、それは、光学システムの構成によって異なる場合がある。光学システムのパラメータの変更は、いずれかの適切なタイプの制御ループ、アルゴリズム、方法、関数等を使用して、いずれかの適切な方式(例えば、実験的又は理論的に)で決定され得る。
【0054】
制御サブシステムによって変更される光学システムのパラメータは、また、光学システムの検出器の出力を用いて機能又はステップを実行するいずれかの要素のいずれかのパラメータを含んでもよい。例えば、変更されるパラメータは、コンピュータサブシステムの1つ又は複数のパラメータ(例えば、
図1に示すコンピュータサブシステム126)、又は1つ又は複数の第2検出器124によって生成された出力においてコンピュータサブシステムによって実行される方法、ステップ、アルゴリズム、プロセス等の1つ又は複数のパラメータを含んでもよい。かかるパラメータは、光源の変動に対して、第2検出器によって生成された画像を補正するために実行される画像処理のパラメータが含む場合がある。1つのかかる例において、決定された光の1つ又は複数の特性は、試料平面における光の輝度の空間及び時間特性であってもよい。そのような特性が時間的変化を示すならば、制御サブシステムは、一時的な変化が試料画像に及ぼす影響を軽減するためにコンピュータサブシステムによって実行され画像処理において作成され得る試料画像についての1つ又は複数の修正を決定してもよい。そのため、決定された特性に応じて制御される光学システムの1つ又は複数のパラメータは、光学パラメータ及び/又は画像処理パラメータであってもよい。
【0055】
本明細書で説明したように決定される情報のいずれもが、源条件(サイズ、位置、輝度等)の監視及び制御に用いられ得る。この機能のための同じ光学要素(例えば、第1検出器、場合によっては第1光学要素)を共有すること、及び光学システム内の光の特性を決定することは、光学システムにおける必要なセンサ及びモニタの数を減少させる。更に、本明細書で説明したように、実施形態は、すべての曝露中に試料上に投影された画素領域にわたってEUV線量を測定するように構成されてもよい。そのため、本明細書で説明した実施形態は、1つ又は複数の第2検出器(TDIカラム内のそれぞれの画素)におけるそれぞれの画素についての補正係数を提供し得る。一部のEUVマスク検査システムは、複数の検出器(1つ又は複数の第2検出器124として
図1に概して示されている)を用いて、マスク上のいくつかのサブ視野を撮像する(すなわち、第1検出器が第1サブ視野を撮像し、第2検出器は第2サブ視野を撮像する、等)。そのため、一部のシステムでは、光分布の推定値が、試料上のいくつかのサブ視野について必要とされる。本明細書で説明した実施形態は、比較的大きい角度範囲で光源から放出された光を集めて検出し得、そして光学システム内の様々な平面における光の空間分布を予測し得るので、本明細書で説明した実施形態は、画素レベル情報を光学システムによって撮像される試料上の様々なサブ視野のそれぞれに提供し得る。
【0056】
別の一実施形態では、制御サブシステムは、決定された1つ又は複数の特性を光学システムのコンピュータサブシステムに出力するように構成され、コンピュータサブシステムは、決定された1つ又は複数の特性に基づいて、光学システムの1つ又は複数のパラメータを変更するように構成されている。例えば、制御サブシステム自体は、必ずしも光学システムの修正及び/又は変更を決定しなくてもよい。その代わりに、制御サブシステムは、決定された1つ又は複数の特性に基づいて光学システムの1つ又は複数のパラメータへの変更を決定し、そしてその決定に基づいて1つ又は複数のパラメータを変更する、コンピュータサブシステム126等の別のシステム又は方法に対して、いずれかの適切な方式で及びいずれかの適切なフォーマットで決定された1つ又は複数の特性を容易に出力し得る。言い換えると、光の決定された1つ又は複数の特性に基づく光学システムの制御は、制御サブシステム及びコンピュータサブシステム等の複数のサブシステムにわたって分散され得る。しかし、制御サブシステムは、コンピュータサブシステムの一部であってもよく、又はその逆であってもよく、その結果、1つのサブシステムは、光特性を決定し、かつ特性に基づいて光学システムの1つ又は複数のパラメータを変更する。コンピュータサブシステムは、本明細書に更に記載するように、光学システムの1つ又は複数のパラメータを変更してもよい。
【0057】
更なる一実施形態では、システムは、また、1つ又は複数の第2角度で集められ、光学システムによって試料に向けられた光を検出するように構成された1つ又は複数の較正検出器を含み、制御サブシステムは、1つ又は複数の較正検出器によって検出された光に基づいて、1つ又は複数の第1検出器の出力を較正するように構成されている。例えば、1つ又は複数の第1検出器の出力(例えば、取得された2Dマップ)は、試料平面でのなんらかの歪みを第1検出器出力のなんらかの歪みと関連付けることによって、試料において個別に測定された強度分布に対して較正され得る。本明細書で説明した実施形態は、そのため、本明細書で説明した実施形態が、照明プロファイルの監視及び較正のために別々に取得された源画像を用い得るので、EUV基準補正のために以前に用いられた方法及びシステムとは異なる。
【0058】
較正検出器は、試料平面におけるシステム内に含まれてもよい。例えば、
図1に示す試料120は、例えば、1つ又は複数の較正検出器に対して試料を交換することによって、1つ又は複数の較正検出器(図示せず)と置き換えられてもよい。試料と較正検出器は、いずれかの適切な方法で交換されてもよい。そのため、試料又は較正検出器が照射されているか否かに応じて、
図1に示す要素120は、試料又は較正検出器のいずれかであってもよい。較正検出器は、いずれかの適切な構成の本明細書で説明した検出器のうちのいずれかを含んでもよい。例えば、較正検出器は、同じ撮像平面内の異なる位置に配置された複数の2D検出器を含んでもよい。較正検出器出力は、当該技術分野で公知のいずれかの適切な較正技術を用いて第1出力を較正するために用いられてもよい。
【0059】
同様の方式で、試料は、基準(すわち、参照)と交換されてもよい。例えば、システムは、試料120をいくつかの既知の光学特性を有する基準と置き換えるように構成されてもよく、該基準は、いくつかの既知の反射、散乱、回折等の特性を有する材料、構造、非パターン化又はパターン化等を含んでもよい。基準は、そのため、試料が基準によって置き換えられるとき、
図1の要素120によって表される。1つ又は複数の第2光学要素によって基準から集められ、1つ又は複数の第2検出器124に向けられた光が、いくつかの方法で用いられてもよい。例えば、基準は、1つ又は複数の特徴を含んでもよく、該特徴は、光学システムの整列目的のために1つ又は複数の第2検出器において検出され得る。基準は、また、1つ又は複数の材料又は構造を含んでもよく、該材料又は構造は、基準を較正標準としての使用に適するようにする。このようにして、1つ又は複数の第2検出器によって検出された基準からの光は、光学システム、場合によっては1つ又は複数の第1光学要素、1つ又は複数の第1検出器、及び制御サブシステムの較正に用いられてもよい。このようにして、較正は、光学システムと基準監視及び補正サブシステムとの両方に対する基準を用いて実行されてもよい。
【0060】
いくつかの実施形態では、システムは、1つ又は複数の追加の第1検出器を含み、該追加の第1検出器は、1つ又は複数の第1角度及び1つ又は複数の第2角度と相互に排他的な1つ又は複数の追加の第1角度で光源から放出される光を検出するように、及び1つ又は複数の追加の第1検出器によって検出された光に応じた追加の第1出力を生成するように構成されており、制御サブシステムは、第1出力及び追加の第1出力に基づいて、1つ又は複数の平面における光の1つ又は複数の特性を決定するように構成されている。言い換えれば、システムは、基準補正光学系の複数のセットを含み、それらのそれぞれは、基準補正光学系の別のセットとは異なる、光がその角度で試料照明用に集められる角度と相互に排他的である角度で放出された光を検出するように構成されている。
【0061】
1つのかかる実施形態を
図4に示す。この実施形態では、システムは、1つ又は複数の追加の第1検出器402を含み、該第1検出器は、1つ又は複数の第1角度θ
1及び1つ又は複数の第2角度θ
2と相互に排他的な1つ又は複数の追加の第1角度θ’
1で光源100から放出された光を検出するように、及び1つ又は複数の追加の第1検出器によって検出された光に応じた追加の第1出力を生成するように構成されている。制御サブシステム110は、本明細書で更に説明するような、1つ又は複数の追加の第1検出器402に結合されることにより、制御サブシステムは、1つ又は複数の追加の第1検出器によって生成された出力を受け取り得てもよい。追加の基準補正光学系は、本明細書で説明したように更に構成されてもよい。例えば、
図4に示すように、システムは、1つ又は複数の追加の第1光学要素400を含んでもよく、該追加の第1光学要素は、1つ又は複数の追加の第1角度で光源100から放出された光を集めるように、及び集められた光を1つ又は複数の追加の第1検出器402に向けるように構成されている。
図4に示す要素のそれぞれは、本明細書で説明したように更に構成されてもよい。
【0062】
制御サブシステムは、組み合わされた第1出力と追加の第1出力とに基づいて、1つ又は複数の平面における光の1つ又は複数の特性を決定するように構成されてもよい。例えば、制御サブシステムは、光学システムのそれぞれの光学要素についてのABCD光線転写行列への入力として、第1検出器と追加の第1検出器の両方によって測定された光線分布を用いることにより、光学システム内の1つ又は複数の平面における光線分布を出力してもよい。本明細書で説明した別の計算は、例えば、第1検出器からの出力と追加の第1検出器からの出力の両方を入力として用いて、同様の方式で実行されてもよい。
【0063】
第1検出器及び追加の第1検出器の出力は、同様に又は代替として、1つ又は複数の平面における光の1つ又は複数の特性を決定するために別個に用いられてもよく、そして、異なる検出器からの出力を用いて決定される1つ又は複数の特性は、同じ特性又は異なる特性であってもよい。例えば、第1検出器からの出力は、1つ又は複数の平面での光の第1特性を決定するのにより適していることがあり、また、追加の第1検出器からの出力が、1つ又は複数の平面における第1特性とは異なる第2特性を決定するのにより適していることがある。同様の方式において、異なる検出器からの出力は、光学システムの異なる平面(例えば、瞳孔面対照明面)における光の同じ又は異なる特性を決定するのに多かれ少なかれ適していることがある。更に、異なる検出器によって生成された出力は、光学システム内の平面における光の1つ又は複数の特性を決定するために制御サブシステムによって別々に用いられてもよく、次いで、別々に決定された特性は、何らかの方式で組み合わされて、平面における光の別の特性を決定してもよい。一般に、異なる放出角度で光源から放出された光を別々に検出することは、検出器の出力から光学システム内の光について決定され得る情報を増加及び/又は改善し得る。
【0064】
いくつかの例では、システムは、また、1つ以上の別の光学要素(図示せず)及び/又は1つ以上の別の検出器(図示せず)を含んでもよく、これらは、1つ又は複数の第2光学要素によって集められた光の一部を検出するように構成されている。例えば、システムは、中間画像平面116に配置されたピックオフミラー(図示せず)を含んでもよく、該ピックオフミラーは、中間画像平面で光の比較的小さい部分を、照明経路から1つ又は複数の別の光学要素及び/又は光を検出するように構成された1つ又は複数の別の検出器まで反射するように構成されている。別の光学要素及び別の検出器は、当該技術分野で公知のいずれかの適切な構成を有してもよいが、その一部の例は、Kohyamaらの米国特許出願公開第2018/0276812号(及び、2017年12月20日に公開された対応する日本国特許第6249513号)に記載されているが、この出願は、全体として本明細書に参照により組み込まれる。本明細書で説明した実施形態は、この刊行物に記載されたように更に構成されてもよい。これらの検出器によって検出された光に応じた1つ又は複数の別の検出器によって生成された出力は、1つ又は複数の第1検出器によって生成された出力と組み合わせて用いられることにより、1つ又は複数の第2光学要素(例えば、試料平面、中間画像平面、検出器平面等にある)によって集められた光の経路内の1つ又は複数の平面における光の1つ又は複数の特性を決定してもよい。
【0065】
本明細書で説明した実施形態は、本明細書で説明した波長範囲内の光を放出する光源を監視及び制御するための別の方法及びシステムを超える多くの利点を有する。例えば、2D源輝度分布を監視することは、時間及び空間領域における照明プロファイルの変動についての補正を可能にして、不安定で微小振動する源を用いるときに画像忠実度を大幅に向上させる。それに加えて、光学システムの照明ビーム経路の外側に基準ピックアップ(第1検出器及びそれに結合されたいずれかの光学要素)を設置することは、照明ビームを暗くすることを回避し、試料における照明プロファイルの歪みを低減する。本明細書で説明した実施形態は、また、光学システムのエテンデュ内での検査に利用可能な光子束全体を増加させる。更に、本明細書で説明した実施形態は、同じセンサが光源の監視及び制御に用いられ得るので、必要とされる監視センサの数の減少を提供する。更に、本明細書で説明した実施形態は、EUVマスク検査及び本明細書で説明した別のシステムの性能の最適化を可能にする。
【0066】
一実施形態では、試料はレチクルである。レチクルは、VUVリソグラフィプロセス、EUVリソグラフィプロセス、又は軟X線リソグラフィプロセスでの使用に対して構成されているいずれかのレチクルを含む、半導体技術分野で公知のいずれかのレチクルを含んでもよい。レチクルは、また、本明細書で説明したプロセス(例えば、検査、計測、欠陥再調査)のうちの1つを190nm未満の波長で実行することに何らかの利点があるときに、別のリソグラフィプロセス(例えば、193nmリソグラフィ)において使用するためのレチクルであってもよい。別の一実施形態では、試料はウェーハである。ウェーハは、半導体技術分野において公知のいずれかのウェーハを含んでもよい。いくつかの実施形態が、レチクルに関して本明細書で説明されることがあるけれども、実施形態は、それらが使用され得る試料に限定されない。例えば、本明細書で説明した実施形態は、フラットパネル、パーソナルコンピュータ(PC)ボード、及び別の半導体試料等の試料に用いられてもよい。
【0067】
一実施形態では、光学システムは検査システムとして構成される。例えば、光学システムは、試料上の欠陥を検出するのに適している出力を生成するように構成されてもよい。かかる実施形態では、
図1に示すコンピュータサブシステム126は、第2検出器124によって生成された出力に欠陥検出方法を適用することによって試料120上の欠陥を検出するように構成されてもよい。コンピュータサブシステム126は、本明細書で更に説明するように、第2検出器124に結合されることにより、第2検出器によって生成された出力を受信してもよい。試料上の欠陥の検出は、いずれかの適切な欠陥検出方法及び/又はアルゴリズムを有する、当該技術分野で公知のいずれかの適切な方式(例えば、欠陥検出閾値を出力に適用して、その閾値を超える値を有するいずれかの出力が欠陥(又は潜在的な欠陥)に対応することを決定する)で実行されてもよい。検査されている試料がレチクルであるならば、レチクルの照明に用いられる光の波長は、レチクルがリソグラフィプロセスにおいて用いられる光の波長と同じであってもよい。つまり、検査システムは、アクチン性レチクル検査システムとして構成されてもよいが、とはいえ、それは、同様に又は代替的に非アクチン性レチクル検査用に構成されてもよい。光学システムが検査用に構成されている実施形態において、実施形態は、2010年7月1日に発行された、Sewellらによる米国特許出願公開第2010/0165310号、2015年7月9日に発行された、Kvammeらによる米国特許出願公開第2015/0192459号、2015年9月10日に発行された、Terasawaらによる米国特許出願公開第2015/0253658号、及び2019年10月31日に発行された、Ebsteinによる米国特許出願公開第2019/0331611号に記載されるように更に構成されてもよく、これらの出願は、全体として本明細書に参照によって援用される。本明細書で説明した実施形態は、これらの刊行物内に記載されたように更に構成されてもよい。
【0068】
別の一実施形態では、光学システムは、計測システムとして構成される。更なる一実施形態では、光学システムは、欠陥再調査システムとして構成される。特に、本明細書で説明し、
図1及び4に示すシステムの実施形態は、それが用いられるであろう用途に従う異なる撮像機能を提供するために1つ又は複数のパラメータが修正されてもよい。1つのかかる例では、
図1に示す光学システムは、検査ではなく計測に用いる場合に、より高い解像度を有するように構成されてもよい。言い換えると、
図1及び4に示す光学システムの実施形態は、異なる用途に多かれ少なかれ適した異なる撮像能力を有するシステムを製造するための、当業者には明らかである多くの方式で調整され得る光学システムのためのいくつかの一般的及び様々な構成を記述する。
【0069】
このように、光学システムは、欠陥再調査システムの場合に試料上の欠陥を再検出するのに適した出力を生成するように、及び計測システムの場合に試料の1つ又は複数の特性を測定するように構成されてもよい。欠陥再調査システムの一実施形態では、
図1に示すコンピュータサブシステム126は、第2検出器124によって生成された出力に欠陥再検出方法を適用すること、場合によっては第2検出器によって生成された出力を用いて再検出欠陥についての追加情報を決定することによって、試料120上の欠陥を再検出するように構成されてもよい。測定システムの実施形態では、
図1に示すコンピュータサブシステム126は、第2検出器によって生成された出力を用いて、試料120の1つ又は複数の特性を決定するように構成されてもよい。両方の場合において、コンピュータサブシステム126は、本明細書で更に説明するように第2検出器124に結合されることにより、第2検出器によって生成された出力を受信し得る。
【0070】
欠陥再調査は、通常、検査プロセス等によって検出された欠陥を再検出することと、より高い解像度で、例えば、本明細書で説明した光学システムを高倍率モードで用いて、欠陥についての追加情報を生成することと、を含む。欠陥再調査は、そのため、欠陥が検査によって検出された、試料上の個別的な位置において実行される。欠陥再調査によって生成された、欠陥についてのより高い解像度データは、一般に、プロファイル、粗度、より正確なサイズ情報等の欠陥についての属性を決定するのにより適している。コンピュータサブシステム126は、当該技術分野で公知のいずれかの適切な方法で試料上の欠陥についてのかかる情報を決定するように構成されてもよい。
【0071】
計測プロセスが、半導体製造プロセス中の様々なステップで用いられて、プロセスを監視し、制御する。計測プロセスは、検査プロセスとは異なっており、その相違は、計測プロセスが、欠陥が試料上で検出される検査プロセスと異なり、現在使用されている検査ツールを用いて決定され得ない試料の1つ又は複数の特性を測定するために用いられる点である。例えば、測定プロセスが、プロセス中に試料上に形成された特徴の寸法(例えば、線幅、厚さ等)等の試料の1つ又は複数の特性を測定するために用いられることにより、プロセスの性能は、1つ又は複数の特性から決定され得る。更に、試料の1つ又は複数の特性が許容できない(例えば、特性についての所定の範囲から外れている)ならば、プロセスによって製造される追加の試料が許容できる特性を有するように、試料の1つ又は複数の特性の測定値がプロセスの1つ又は複数のパラメータを変更するために用いられてもよい。
【0072】
測定プロセスは、また、欠陥再調査プロセスとは異なっており、その相違は、検査によって検出される欠陥が欠陥再調査において再訪される欠陥再調査プロセスとは異なり、測定プロセスは、欠陥が検出されていない場所で実行される場合がある点である。言い換えると、欠陥再調査と異なり、試料上で測定プロセスが実行される場所は、試料上で実行される検査プロセスの結果から独立していてもよい。特に、測定プロセスが実行される場所は、検査結果から独立して選択されてもよい。更に、測定が実行される試料上の場所が検査結果から独立して選択されてもよいので、試料についての検査結果が生成されて使用可能になるまで欠陥再調査が実行される試料上の位置が決定され得ない欠陥再調査とは異なり、測定プロセスが実行される場所は、検査プロセスが試料上で実行される前に決定されてもよい。コンピュータサブシステム126は、当該技術分野で公知のいずれかの好適な方式で、試料についていずれかの好適な特性を決定するように構成されてもよい。
【0073】
追加の一実施形態では、光学システムは、リソグラフィツールとして構成される。リソグラフィにおいては、基準補正が、本明細書で説明した別の光学システムにおけるのと同じ形式では存在しない。しかし、リソグラフィにおいては、また、ウェーハ/フォトレジストでの暴露線量(及びその均一性)を予測及び制御する必要があり、これは、一般に「線量制御」と呼ばれることがある。線量制御に用いられるデータは、本明細書で説明した実施形態を用いて取得され得る。
【0074】
光学システムがリソグラフィツールとして構成される実施形態では、試料120は、レチクル又はマスクであってもよく、リソグラフィプロセスにおいてパターン化されているウェーハ又は別の試料は、
図1に示す第2検出器124の位置に配置されてもよい。この方式では、通常の使用法において、リソグラフィツールは第2検出器を含まず、その位置に試料を含むであろう。言い換えると、光学システムがリソグラフィツールとして構成されるシステムの実施形態では、
図1に示す要素124は、本明細書で説明した1つ又は複数の第2検出器ではなく、パターン化されている試料であろう。
【0075】
いくつかのリソグラフィツールでは、1つ又は複数の検出器は、試料の平面内に設置されてもよく、該試料は、レチクル又はマスクのアライメント、リソグラフィツール光学系のアライメント、レチクル又はマスクにパターン化されている試料のアライメント、光源又は別のリソグラフィツール光学要素のモニタリング、光源又は別のリソグラフィツール光学系の制御等の1つ又は複数の機能についてパターン化される。いくつかのかかるツールでは、パターン化されている試料は、本明細書で説明した1つ又は複数の第2検出器等の1つ又は複数の検出器に置き換えられてもよく、又は、かかる検出器は、パターン化されている試料を支持して移動させるステージ(図示せず)等のリソグラフィツールの1つ又は複数の要素に結合されてもよい。
【0076】
かかるツールにおいて、本明細書で説明した基準補正及び制御システム(例えば、本明細書で説明した1つ又は複数の第1検出器及び制御サブシステム)は、かかる別の制御サブシステムと組み合わせて用いられてもよく、かかる別の制御サブシステム等に組み込まれてもよく、かかる別の制御サブシステムを含んでもよい等である。言い換えれば、本明細書で説明した実施形態は、リソグラフィツールのいずれかの既存の制御サブシステムとともに使用されて、追加の光学システム監視及び制御を提供してもよい。このように、本明細書で説明した実施形態は、ASML(和蘭国、Veldhoven、Netherlands B.V.)から商業的に入手可能なもの等の既存のリソグラフィツール、並びにLuらによる、2016年11月3日に発行された米国特許出願公開第2016/0320708号、Tongらによる、2020年4月2日に発行された同第2020/0107428号、Liuらによる、2020年4月16日に発行された同第2020/0117102号、Nijmeijerらによる、2020年4月23日に発行された同第2020/0124995号、Staalsらによる、2020年5月7日に発行された同第2020/0142324号等に記載されたツールに組み込まれてもよく、これらの出願は、本明細書に全体として参照によって組み込まれる。本明細書で説明した実施形態は、これらの刊行物に記載されたように更に構成されてもよい。
【0077】
本明細書で説明したシステム実施形態のうちのいずれかにおいて、
図1に示すコンピュータサブシステム126は、第2出力に基づいて、場合によってはコンピュータサブシステムによって生成されたいずれか別の出力を用いて、試料について決定された情報を少なくとも含む結果を生成するように構成されてもよい。結果は、いずれかの適切なフォーマット(例えば、KLA Corp.(カリフォルニア州、Milpitas)から商業的に入手可能なツールによって用いられる独自ファイル形式であるKLARFファイル、KLAから商業的に入手可能であるツールである、Klarityによって生成される結果ファイル、ロット結果等)を有してもよい。それに加えて、本明細書で説明した実施形態の全ては、実施形態の1つ又は複数のステップの結果をコンピュータ可読記憶媒体に記憶するように構成されてもよい。結果は、本明細書で説明した結果のうちのいずれかを含み、当該技術分野で公知のいずれかの方式で記憶されてもよい。記憶媒体は、本明細書で説明したいずれかの記憶媒体、又は当該技術分野で公知のいずれか別の適切な記憶媒体を含んでもよい。結果が記憶された後に、結果は、記憶媒体内でアクセスされて、本明細書で説明した方法又はシステム実施形態のうちのいずれかによって用いられ、ユーザに表示するためにフォーマットされ、別のソフトウェアモジュール、方法、又はシステム等によって用いられて、その試料又は別の試料に対して1つ又は複数の作用を実行する。
【0078】
かかる機能としては、フィードバック、フィードフォワード、インサイチュ方式等で試料において過去に実行されたか又は将来に実行される製造プロセス又はステップ等のプロセスを変更することが挙げられるが、これに限定されない。例えば、コンピュータサブシステムは、検出された欠陥及び/又は別の決定された情報に基づいて、試料において過去に実行されたか又は将来に実行されるプロセスに対する1つ又は複数の変更を決定するように構成されてもよい。プロセスへの変更は、プロセスの1つ又は複数のパラメータに対するいずれかの適切な変更が含まれてもよい。例えば、決定された情報が試料上で検出された欠陥であるならば、コンピュータサブシステムが、好ましくは、それらの変化を決定することにより、改正されたプロセスが実行される別の試料において、欠陥が低減又は防止され得、試料において実行される別のプロセスで、欠陥が試料において補正又は除去され得、試料において実行される別のプロセスで、欠陥が補償され得る等である。コンピュータサブシステムは、当該技術分野で公知のいずれかの適切な方式でかかる変化を決定してもよい。
【0079】
これらの変化は、次いで、コンピュータサブシステムと半導体製造システムの両方にアクセス可能な半導体製造システム(図示せず)又は記憶媒体(
図1に示さず)に送信されてもよい。半導体製造システムは、本明細書で説明したシステム実施形態の一部であってもよく、又は一部でなくてもよい。例えば、本明細書で説明したシステムは、半導体製造システムに、例えば、筐体、電源、試料処理装置又は機構等の1つ又は複数の共通要素を介して結合されてもよい。半導体製造システムは、リソグラフィツール、エッチングツール、化学機械研磨(CMP)ツール、堆積ツール等の当該技術分野で公知のいずれかの半導体製造システムを含んでもよい。
【0080】
別の一実施形態は、試料についての情報を決定するように構成されたシステムに関する。システムは、光源、例えば、
図1に示す光源100を含み、190nmよりも短い1つ又は複数の波長を有する光を生成するように構成されている。このシステムは、また、1つ又は複数の第1検出器、例えば、
図1に示す第1検出器106を含み、該第1検出器は、1つ又は複数の第1角度、例えば、
図1に示すθ
1で光源から放出された光を検出するように、及び1つ又は複数の第1検出器によって検出された光に応じた第1出力を生成するように構成されている。それに加えて、システムは、1つ又は複数の第2光学要素、例えば、
図1に示す第2光学要素112、118、及び122を含み、該第2光学要素は、1つ又は複数の第1角度と相互に排他的な1つ又は複数の第2角度、例えば
図1に示すθ
2で光源から放出された光を集めるように、1つ又は複数の第2角度で集められた光を試料、例えば
図1に示す試料120に向けるように、及び試料からの光を1つ又は複数の第2検出器、例えば、試料からの光に応じた第2出力を生成するように構成された、
図1に示す第2検出器124に向けるように構成されている。
【0081】
システムは、コンピュータサブシステム、例えば、第2出力に基づいて試料についての情報を決定するように構成された、
図1に示すコンピュータサブシステム126を更に含む。システムは、また、制御サブシステム、例えば、
図1に示す制御サブシステム110を含み、該制御サブシステムは、第1出力に基づいて、1つ又は複数の第2角度で集められた光の経路内の1つ又は複数の平面における光の1つ又は複数の特性を決定するように構成され、光源の1つ又は複数のパラメータ、1つ又は複数の第2光学要素の1つ又は複数のパラメータ、1つ又は複数の第2検出器の1つ又は複数のパラメータ、及び、決定された1つ又は複数の特性に基づいて情報を決定するために、コンピュータサブシステムによって用いられる1つ又は複数のパラメータ、のうちの少なくとも1つを変更するように構成されている。システムのこの実施形態は、本明細書で説明したように更に構成されてもよい。
【0082】
上記で説明したシステムの実施形態のそれぞれは、本明細書で説明したいずれかの別の実施形態に従って更に構成されてもよい。本明細書で説明した実施形態は、また、Wackらへの米国特許第8,842,272号、及びWaldらへの同第9,671,548号に記載されているように更に構成されてもよく、これらの特許は、全体として参照により本明細書に援用される。
【0083】
別の一実施形態は、光学システムにおける光の1つ又は複数の特性を決定するためのコンピュータ実装方法に関する。方法は、1つ又は複数の第1検出器によって、1つ又は複数の第1角度で光源から放出された190nmよりも短い1つ又は複数の波長を有する光を検出することを含み、該1つ又は複数の第1検出器は、1つ又は複数の第1検出器によって検出された光に応じた第1出力を生成する。1つ又は複数の第1角度は、光が試料の照明用の光学システムによって光源からその角度で集められる、1つ又は複数の第2角度と相互に排他的である。方法は、また、第1出力に基づいて光学システム内の1つ又は複数の平面における光の1つ又は複数の特性を決定することを含む。
【0084】
この方法のステップのそれぞれは、本明細書で更に説明するように実行されてもよい。この方法は、また、本明細書で説明したシステムによって実行され得るいずれかの別のステップを含んでもよい。この方法のステップは、本明細書で説明したシステムによって実行されてもよく、概してシステムは、本明細書で説明したいずれかの実施形態に従って構成されてもよい。
【0085】
追加の一実施形態は、プログラム命令を記憶する非一過性コンピュータ可読媒体に関し、該プログラム命令は、光学システム内の光の1つ又は複数の特性を決定するためのコンピュータ実装方法を実行するためにコンピュータシステム上で実行可能である。1つのかかる実施形態が、
図5に示されている。特に、
図5に示すように、非一過性コンピュータ可読媒体500は、コンピュータシステム504上で実行可能なプログラム命令502を含む。コンピュータ実装方法は、本明細書で説明したいずれかの方法のいずれかのステップを含んでもよい。
【0086】
本明細書で説明したもの等の方法を実装するプログラム命令502は、コンピュータ可読媒体500に記憶されてもよい。コンピュータ可読媒体は、磁気若しくは光ディスク、磁気テープ、又は当該技術分野で公知のいずれかの別の適切な非一過性コンピュータ可読媒体等の記憶媒体であってもよい。
【0087】
プログラム命令は、とりわけ、プロシージャベースの技術、コンポーネントベースの技術、及び/又はオブジェクト指向技術を含む様々な方法のうちのいずれかで実装されてもよい。例えば、プログラム命令は、望みに応じて、ActiveX コントロール、C++ オブジェクト、JavaBeans、Microsoft Foundation Classes(「MFC」)、SSE(Streaming SIMD Extension)、又は別の技術若しくは方法論を用いて実装されてもよい。
【0088】
コンピュータシステム504は、本明細書で説明したいずれかの実施形態に従って構成されてもよい。
【0089】
本発明の様々な態様についての更なる改変及び代替実施形態が、本説明を考慮すれば当業者に明らかになるであろう。例えば、光学システム内の光の1つ又は複数の特性を決定するための方法及びシステムが提供される。従って、本説明は、単に例示的なものとして解釈されるべきであり、そして本発明を実施する一般的な方式を当業者に教示することを目的としている。本明細書で示し及び説明した本発明の形式は、現在好ましい実施形態である考えられることを理解されたい。要素及び材料が、本明細書で示し説明したものと置換されてもよく、部分及びプロセスが、逆にされてもよく、そして発明の特定の特徴が、独立して利用されてもよく、本発明についての本説明の恩恵を受けた後には全てが当業者に明らかになるであろう。以下のクレームに記載されているような本発明の趣旨及び範囲から逸脱することなく、本明細書で説明した要素に変更が加えられてもよい。