IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

<>
  • 特許-パターン配置補正方法 図1
  • 特許-パターン配置補正方法 図2A-2D
  • 特許-パターン配置補正方法 図3
  • 特許-パターン配置補正方法 図4
  • 特許-パターン配置補正方法 図5
  • 特許-パターン配置補正方法 図6
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2023-12-27
(45)【発行日】2024-01-11
(54)【発明の名称】パターン配置補正方法
(51)【国際特許分類】
   G03F 9/00 20060101AFI20231228BHJP
   H01L 21/68 20060101ALI20231228BHJP
【FI】
G03F9/00 H
H01L21/68 F
H01L21/68 K
【請求項の数】 9
(21)【出願番号】P 2019542166
(86)(22)【出願日】2017-12-05
(65)【公表番号】
(43)【公表日】2020-02-27
(86)【国際出願番号】 US2017064686
(87)【国際公開番号】W WO2018144129
(87)【国際公開日】2018-08-09
【審査請求日】2019-10-04
【審判番号】
【審判請求日】2022-10-19
(31)【優先権主張番号】15/424,366
(32)【優先日】2017-02-03
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】コスクン, テイマー
(72)【発明者】
【氏名】チェン, チャン ファン
【合議体】
【審判長】山村 浩
【審判官】松川 直樹
【審判官】野村 伸雄
(56)【参考文献】
【文献】特開平9-283404(JP,A)
【文献】特開2003-163163(JP,A)
【文献】特開昭64-53545(JP,A)
【文献】特開2003-59808(JP,A)
【文献】特開平11-54404(JP,A)
【文献】特開2009-237255(JP,A)
【文献】特開2008-205291(JP,A)
【文献】特開2002-110516(JP,A)
【文献】特開平10-106928(JP,A)
【文献】特開2006-269867(JP,A)
【文献】特開2000-182934(JP,A)
【文献】特開2014-178536(JP,A)
【文献】特開2007-96069(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L21/027
H01L21/30
H01L21/68
G03F7/20-7/24
G03F9/00-9/02
(57)【特許請求の範囲】
【請求項1】
基板上のパターン配置を補正する方法であって、
3つのダイ位置点の複数のセットであって、各セットが1つのダイの配向を示し、前記3つのダイ位置点の複数のセットが、第1のダイに関連付けられた第1のセットと第2のダイに関連付けられた第2のセットを含む、3つのダイ位置点の複数のセットを検出することであって、それぞれのダイ位置点について三次元座標に沿った3つの測定値を得ることを含む、検出することと、
前記3つのダイ位置点の複数のセットから、前記基板上の前記第1のダイと前記第2のダイの配向についてローカル変換を計算することであって、前記ローカル変換は、前記基板上のダイごとに、予測または計画されたレイアウトにおける該ダイの任意のフィーチャ部の位置を、前記ダイ位置点が検出された実際のダイにおける対応するフィーチャ部の位置に変換するマッピング関係を規定するものである、ローカル変換を計算することと、
前記3つのダイ位置点の複数のセットから、同じセットのメンバーではない少なくとも3つの配向点を選択することと、
選択された前記少なくとも3つの配向点から、前記基板の第1のグローバル変換を計算することと、
前記基板について前記第1のグローバル変換と前記ローカル変換を保存することと、
を含み、
前記基板の前記第1のグローバル変換を計算すること反りを有する実際の前記基板の形状を3Dモデルにモデル化することを含み、前記第1のグローバル変換は、前記予測または計画されたレイアウトにおける反りのない基板上の任意の位置を、反りを有する実際の前記基板の前記形状をモデル化した前記3Dモデル上の対応する位置に変換するマッピング関係を規定するものである、方法。
【請求項2】
前記基板の3つの基準点を検出することであって、それぞれの基準点について前記三次元座標に沿った3つの測定値を得ることを含む、検出することをさらに含み、
前記第1のグローバル変換が、選択された前記少なくとも3つの配向点および前記3つの基準点から計算される、請求項1に記載の方法。
【請求項3】
前記3Dモデルにモデル化することが、反りを有する実際の前記基板の前記形状を多項式の関数で近似することを含む、請求項1または2に記載の方法。
【請求項4】
リソグラフィツールに処理対象の基板を配置することと、
前記処理対象の基板の3つの基準点を検出することであって、それぞれの基準点について前記三次元座標に沿った3つの測定値を得ることを含む、検出することと、
前記3つの基準点から、前記第1のグローバル変換の計算と同様の方法により、第2のグローバル変換を計算することと
記リソグラフィツールによるスキャン中に、前記第2のグローバル変換を、保存されていた前記ローカル変換と組み合わせてデジタルマスクの補正として適し、前記デジタルマスクが、前記処理対象の基板上における各ダイの実際の位置および配向と合うように補正することと、
をさらに含む、請求項1からのいずれか一項に記載の方法。
【請求項5】
前記処理対象の基板上の前記ダイにリソグラフィ層をプリントすることをさらに含む、請求項に記載の方法。
【請求項6】
プロセッサ、および
メモリ
を備えるシステムであって、前記メモリが、基板上のパターン配置を補正するための動作を実行するように構成されたアプリケーションプログラムを含み、前記動作が、
3つのダイ位置点の複数のセットであって、各セットが1つのダイの配向を示し、前記3つのダイ位置点の複数のセットが、第1のダイに関連付けられた第1のセットと第2のダイに関連付けられた第2のセットを含む、3つのダイ位置点の複数のセットを検出することであって、それぞれのダイ位置点について三次元座標に沿った3つの測定値を得ることを含む、検出することと、
前記3つのダイ位置点の複数のセットから、前記基板上の前記第1のダイと前記第2のダイの配向についてローカル変換を計算することであって、前記ローカル変換は、前記基板上のダイごとに、予測または計画されたレイアウトにおける該ダイの任意のフィーチャ部の位置を、前記ダイ位置点が検出された実際のダイにおける対応するフィーチャ部の位置に変換するマッピング関係を規定するものである、ローカル変換を計算することと、
前記3つのダイ位置点の複数のセットから、同じセットのメンバーではない少なくとも3つの配向点を選択することと、
選択された前記少なくとも3つの配向点から、前記基板の第1のグローバル変換を計算することと、
前記基板について前記第1のグローバル変換と前記ローカル変換を保存することと、
を含み、
前記基板の前記第1のグローバル変換を計算すること反りを有する実際の前記基板の形状を3Dモデルにモデル化することを含み、前記第1のグローバル変換は、前記予測または計画されたレイアウトにおける反りのない基板上の任意の位置を、反りを有する実際の前記基板の前記形状をモデル化した前記3Dモデル上の対応する位置に変換するマッピング関係を規定するものである、システム。
【請求項7】
前記3Dモデルにモデル化することが、反りを有する実際の前記基板の前記形状を多項式の関数で近似することを含む、請求項6に記載のシステム。
【請求項8】
前記動作が、
リソグラフィツールに処理対象の基板を配置することと、
前記処理対象の基板の3つの基準点を検出することであって、それぞれの基準点について前記三次元座標に沿った3つの測定値を得ることを含む、検出することと、
前記3つの基準点から、前記第1のグローバル変換の計算と同様の方法により、第2のグローバル変換を計算することと
記リソグラフィツールによるスキャン中に、前記第2のグローバル変換を、保存されていた前記ローカル変換と組み合わせてデジタルマスクの補正として適し、前記デジタルマスクが、前記処理対象の基板上における各ダイの実際の位置および配向と合うように補正することと、
をさらに含む、請求項6または7に記載のシステム。
【請求項9】
前記動作が、前記処理対象の基板上の前記ダイにリソグラフィ層をプリントすることをさらに含む、請求項に記載のシステム。
【発明の詳細な説明】
【技術分野】
【0001】
[0001]本開示の実施形態は、一般に、1つ以上の基板を処理する方法に関し、より具体的には、フォトリソグラフィプロセスを実行する方法に関する。
【背景技術】
【0002】
[0002]マイクロリソグラフィ技術が、基板上に形成されたダイの一部として組み込まれる電気的フィーチャ部を作製するために、一般に使用される。この技術によれば、感光性フォトレジストが、通常、基板の表面に塗布される。次に、パターンジェネレータが、感光性フォトレジストの選択領域をパターンの一部として光で露光し、選択領域のフォトレジストに化学変化を生じさせて、マスクを生成する。マスクは、最終的にダイを構成する電気的フィーチャ部の作製中にパターンを転写するために利用される。
【0003】
[0003]ただし、電気的フィーチャ部の形成には複数の工程が含まれるため、個々のダイを形成するマスクの高い配置精度が、接続を位置合わせするために必要である。配置精度の要件により、スループットが制限され、コストが増加する。他の問題の中でも特に、基板の反りは、個々のダイにおける接続の誤配置を引き起こす可能性がある。ピックアンドプレース作業中の過度のダイドリフトもまた、歩留まりの低下につながる。したがって、個片化されたチップを誤配置してモールディングされたパネルを形成すると、従来のリソグラフィを使用した場合、ビルドアッププロセスでパターンオーバーレイが困難になる可能性がある。
【0004】
[0004]したがって、フォトリソグラフィのための改善されたシステムおよび方法が必要である。
【発明の概要】
【0005】
[0005]本発明の一実施形態では、基板上のパターン配置を補正する方法が開示されている。この方法は、基板の3つの基準点を検出することから開始される。3つのダイ位置点の複数のセットが検出され、各セットはダイ構造の配向を示し、複数のセットは、第1のダイに関連付けられた第1のセットと第2のダイに関連付けられた第2のセットを含む。基板上の第1のダイと第2のダイの配向について、ローカル変換が計算される。3つの配向点が、3つのダイ位置点の複数のセットから選択され、配向点は、同じダイのセットメンバーではない。基板の第1のグローバル変換が、点のセットから選択された3つの点から計算され、基板の第1のグローバル変換とローカル変換が保存される。
【0006】
[0006]本発明の上記の特徴を詳細に理解することができるように、上で簡単に要約された本発明のより詳細な説明が、実施形態を参照することによって得られ、実施形態のいくつかが、添付の図面に示されている。しかしながら、添付の図面は、本発明の典型的な実施形態のみを示し、したがって本発明の範囲を限定すると見なされるべきではなく、本発明は他の同等に有効な実施形態を認め得ることに、留意されたい。
【図面の簡単な説明】
【0007】
図1】計測システムに配置された基板の概略図である。
図2A-2D】は、図1の基板の様々なプロファイルを示す。
図3】フォトリソグラフィシステムに配置された基板の概略図である。
図4】基板上のダイのフィーチャ部を示す概略図である。
図5】基板上のダイの位置のグローバル変換を生成する方法を示す。
図6】基板上でのリソグラフィ工程のために有効な変換を生成する方法を示す。
【発明を実施するための形態】
【0008】
[0013]理解を容易にするために、可能な場合には、図面に共通の同一の要素を示すために、同一の参照番号が使用されている。一実施形態に開示された要素は、具体的な記載なしに他の実施形態で有益に利用されてもよいということが、予期されている。
【0009】
[0014]本発明は、フォトリソグラフィプロセス中に基板上のパターン配置を補正するための方法および装置を含む。一実施形態では、基板は、計測ツールに移送される。基板を測定して、基板上のダイ位置、ダイの歪み、基板の反り、およびその他のパターンマッピングを決定する。続いて、基板は、その中で処理するためにデジタルリソグラフィシステムに移動される。基板上のダイの誤配置は、ダイごとのデジタルマスク位置合わせ補正を適用することにより補正される。基板の反りに起因する各ダイの誤配置に対する補正は、計測ツールから取得した測定値に基づいたモデルベースのパターン配置補正アルゴリズムを適用することにより実行される。
【0010】
[0015]図1は、計測システム100に配置された基板104の概略図である。計測システム100は、スキャナ160を有してもよい。スキャナ160は、第1の方向161および第2の方向163に移動して、基板104を完全に測定することができる。スキャナ160は、基板104上に形成されたダイなどの構造に関連する位置情報を測定するために、レーザー、光学もしくは音響センサ、または他の技術を利用してもよい。
【0011】
[0016]計測システム100は、コントローラ170を有してもよい。あるいは、計測システム100は、コントローラ170に結合されてもよい。コントローラ170は、中央処理装置172とメモリ174を有してもよい。コントローラ170は、任意選択で入出力装置176を有してもよく、そこからコントローラ170は、人間のような他のデバイスとインターフェースすることができる。メモリ174は、CPU172で実行するためのプログラムコードを保存してもよい。メモリ174は、基板104に関連する測定値およびプロセスパラメータなどの情報を、さらに保存してもよい。
【0012】
[0017]基板104は、外縁部110、上面118、およびノッチ112を有してもよい。ノッチ112は、基板104を配向するために使用することができる。基板104は、上面118に配置された複数のダイ152を有することができる。ダイ152は、行154および列150に配置することができる。あるいは、ダイ152は、放射状または同心円状などの他の適切な構成で配置されてもよい。
【0013】
[0018]スキャナ160が、基板104を横切って移動し、基板104上の他の特徴部の中でも特に、ダイ152のそれぞれについて、例えば、X、Y、およびZデカルト座標に沿って、または極座標に沿って、測定値を提供することができる。例えば、スキャナ160は、第1のダイ142に沿った、または第1のダイ142内の位置を測定してもよい。スキャナ160は、基板104上の基準マーク(図示せず)をさらに測定してもよい。測定値は、メモリ174に保存され、1つ以上の基板104に関連付けられてもよい。メモリ174に保存された情報は、図3を参照して以下で説明されるフォトリソグラフィシステムなどの他の処理装置にとってアクセス可能にすることができる。
【0014】
[0019]計測システム100からの測定値を使用して、ダイ152の予測または計画されたレイアウトと比較して、ダイ152の位置が歪んでいる、または、ずれているかどうかを、決定することができる。計測システム100からの測定値は、基板104のグローバルプロファイル、すなわち形状を生成するために使用されてもよい。例えば、グローバルプロファイルは、反りを示し、反りについて補正することができる。図2A図2Dは、図1に示される基板104のグローバルプロファイルの例を示す。基板104は、計測システムからの測定データを用いてモデル化され得る代替のグローバルプロファイルを有してもよく、本明細書で提供される例は、1つ以上の基板104が有し得るグローバルプロファイルについての理解を単に伝えるものであることを、理解されたい。
【0015】
[0020]高次の反り効果を、図2Aから図2Dに示すような様々な形で表すことができる。基板の反りは、高次のグローバル2Dモデルによって特徴付けられるが、ダイの誤配置/位置は、線形モデルによってモデル化することができる。補正は、個々のダイ位置に対応する基板の異なる領域に、またはグローバル2Dモデルによって規定された表面に沿って、選択的に適用することができる。しかしながら、反りおよびダイ位置は、その位置およびプロファイルを決定するために3Dモデルを代替的に利用してもよいことも、理解されるべきである。
【0016】
[0021]図2Aは、平面290上に載っている基板104Aを示す。基板104Aは、縁部210が上方に湾曲し、平面290から離れている凹状プロファイルを有することができる。例えば、凹状プロファイルは、皿の形を有しているように見えてもよい。図2Bは、平面290上に載っている基板104Bを示す。基板104Bは、縁部210が平面290と接触しており、基板104の中央部230が平面290から離れて上方に持ち上げられている凸状プロファイルを有することができる。例えば、凸状プロファイルは、逆さまの皿の形を有しているように見えてもよい。さらに、反りは、2つ以上のプロファイルの組み合わせを含んでもよい。このようなプロファイルは、正弦曲線またはその他の曲線タイプの形状として現れてもよい。図2Cは、平面290上に載っている基板104Cを示す。基板104Cは、第1の縁部212が平面290から持ち上げられ、第2の縁部214がその上に配置されている正弦曲線プロファイルを有することができる。図2Dは、平面290上に載っている基板104Dを示す。基板104Dは、単一の周期を超えて延びる正弦曲線プロファイルを有することができる。例えば、第1の縁部212、第2の縁部214、および中央部230が、平面290から持ち上げられていてもよい。基板104Dの他の部分が、その上に配置されている。図2A図2Dに示される基板104のプロファイルは、単に例示的なものであり、単純なおよび複雑な他のプロファイルが基板に存在し、モデル化されてもよいことを、理解されたい。
【0017】
[0022]計測システムからの測定値を利用して、基板104をモデル化し、さらなる処理中に、基板上の誤配置されたダイ位置および反りについて補正することができる。例えば、測定値を利用して、ダイごとのx/y回転、拡大、およびシフト(ローカル変換)を決定するためのローカルレベルダイモデルを作ることができる。モデルは、このようなモデルを計算するために、1つ1つのダイ上の少なくとも3つの点を使用することができる。特定のダイに関連付けられた測定点は、1つのセットに対応し得る。例えば、基板104上のダイの数に対応する「n」個のセットの測定点が、存在し得る。さらに、基板104の反りまたは基板104の上面118全体の全体的なx/y回転、拡大、およびシフト(すなわち、グローバル変換)を示すグローバルモデルを基板104に対して開発することができる。グローバルモデルは、グローバル変換を計算するために、少なくとも3つの点を利用することができ、各点は、ダイ測定値の異なるセット、3つの別々のアライメントマーク、または他の遠位基準測定値から得られる。ローカル変換とグローバル変換の組み合わせを使用して、処理パラメータを変更し、フォトリソグラフィ工程などのダイレベル工程の位置合わせの精度を向上させる。
【0018】
[0023]図3は、フォトリソグラフィシステム300に配置された基板104の概略図である。フォトリソグラフィシステム300は、一対の支持体によって支持される一対のトラックを含むことができる。2つ以上のチャック330が、トラックに沿って第1の方向361および第2の方向363に移動し得る。トラックと支持体は、動作中、エアベアリングシステム、磁気チャネル、または他の適切な技術によって持ち上げられていてもよい。チャック330は、基板104をそれに固定する真空チャックであってもよい。チャック330とそれに固定された基板104との間の位置の差は、最小限である。
【0019】
[0024]フォトリソグラフィシステム300は、1つ以上のチャック330上に配置された基板104の位置情報を測定するためのエンコーダを含むことができる。チャック330上の基板104の位置は、複数の干渉計によって動作中に測定されてもよい。干渉計は、Z方向、つまり垂直方向において、エンコーダよりも、基板のより近くに配置されたミラーと位置合わせされ得る。干渉計は、高安定平面鏡干渉計などの任意の適切な干渉計であり得る。干渉計またはエンコーダによって測定された基板104の位置情報は、チャック330の動きをさらに制御することができるコントローラ170に提供されてもよい。コントローラ170は、計測システム100と電子的に結合され、基板104に関する情報をそれと通信することができる。例えば、計測システム100は、基板104に関するグローバルおよびローカル変換を計算するのに適した測定情報をコントローラ170に提供することができる。
【0020】
[0025]フォトリソグラフィシステム300は、1つ以上の処理ユニット362を含むことができる。処理ユニット362は、前述のコントローラ170と通信することができる。処理ユニット362は、支持体によって支持されてもよい。2つ以上のチャックが、処理ユニット362の下を通ることができる。一実施形態では、処理ユニット362は、フォトリソグラフィプロセスでフォトレジストを露光するように構成されたパターンジェネレータである。いくつかの実施形態では、処理ユニット362は、マスクレスリソグラフィプロセスを実行するように構成されてもよい。処理ユニット362は、基板104のマスクレス直接パターニングを生成するために利用される。処理ユニット362は、ケース内に配置された複数の像投影システムを含むことができる。動作中、1つ以上のチャック330が、ローディング位置から移動し、処理ユニット362の下を通ることができる。チャックは、基板104を処理および/または割り送りするために第2のトラックに沿って移動することにより直交方向に移動してもよい。あるいは、チャック330上に配置された基板104を処理および/または割り送りするために、処理ユニット362が、チャック330上で第1の方向および/または第2の方向に移動してもよい。
【0021】
[0026]計測システム100およびフォトリソグラフィシステム300は、計測システム100からの測定情報を使用して、フォトリソグラフィプロセス中に処理ユニット362によって提供されるデジタルマスクを調整することにより、基板104上のダイの誤配置を補正するために協調して動作することができる。フォトリソグラフィシステム300は、3つ以上の基準点を検出して、基板104の第2のグローバル変換を計算することができる。一般に、これは、計測システム100から得られるグローバル変換とは異なる。第2のグローバル変換は、計測システム100からのダイごとのローカル変換と組み合わされて、基板104の有効な変換が計算される。有効な変換は、基板104の表面の2Dモデル表現であってもよい。あるいは、有効な変換は、基板104の表面の3Dモデルであってもよい。有効な変換は、基板104上に材料の層をプリントするためのスキャン中に、フォトリソグラフィシステム300のデジタルマスクの補正として適用される。誤配置の特徴が繰り返されている場合、つまり、ローカル変換が、ある基板から次の基板へ一貫している場合、全てのダイではなく限られた数のダイのみを測定することにより、計測システム100による個々の基板104のオフライン特性評価を高速化することができる。この手順は、近似で十分な場合など、完全な精度が必要でない、または要求されない場合にも適用することができる。
【0022】
[0027]図4は、基板104上の複数のダイ152を示す概略図である。概略図は、基板104上のダイ152の位置ずれおよび歪みを単に表しているに過ぎない。基板104は、ダイ152の第1の行410、第2の行420、および第nの行430を有してもよい。基板104の上面118上のダイ152は、ダイ152の第1の行410が曲線(点線で示される)に沿うように、ずれていることがある。対照的に、第2の行420は、点線で示されるように、より直線状に揃っていてもよい。いくつかの実施形態では、行410、420、430の各々が、隣接する行と揃っていない、またはある基板104と次の基板とで異なっていることさえある。さらに、ダイ152は、それぞれの行410、420、430内の隣接するダイから斜めになっていてもよい。
【0023】
[0028]第1のダイ142は、その中またはその上に形成された複数のフィーチャ部452を有することができる。第1のダイ142は、その中に形成されたインターコネクト453およびビア455を有することができる。ビア455およびインターコネクト453は、第1のダイ142のフィーチャ部452を第1のダイ142の他のフィーチャ部452と接続することができる。あるいは、フィーチャ部452、ビア455、およびインターコネクト453は、他のダイまたはチップ上に形成されたフィーチャ部と位置合わせされるように構成されてもよい。ローカルおよびグローバル変換は、工程ごとにマスクをフィーチャ部に位置合わせするのに役立ち得る。例えば、第1のダイ142は、第1の行410に沿って配向された第1のフィーチャ部461および第2のフィーチャ部462を有してもよい。ローカル変換が、第1のフィーチャ部461および第2のフィーチャ部462の位置情報を提供して、後続の工程が、前記フィーチャ部と位置合わせされる。例えば、エッチング工程は、第1および第2のフィーチャ部461、462にビアを形成するために、限界寸法内で実行される。このようにして、基板104上に示されたダイ152の位置ずれおよび歪みさえも、上記で導入された基板104およびダイ152のグローバルおよびローカル変換で補正することにより処理することができる。
【0024】
[0029]図5は、基板上のダイの位置のグローバル変換を生成する方法を示す。工程510で、3つ以上の点が、基板上の各ダイ上で検出されて、ローカル変換のために各ダイの配向が計算される。一実施形態では、3つの点は、ダイの外周に沿って互いから間隔を空けて遠位方向に配置されていてもよい。第2の実施形態では、各ダイの頂点を検出して、ダイの形状および配向をより詳細に決定することができる。頂点は、ダイの各辺の線分の交点を提供する。したがって、頂点は、ダイの領域の範囲の外側の境界を表す点を示す。点のセットを各ダイに関連付けることができる。
【0025】
[0030]工程520で、少なくとも3つの点が使用されて、基板のグローバル変換が計算される。グローバル変換を使用して、基板のプロファイルにおける反りまたはその他の不規則性を特徴付けることができる。3つの点の各々が、検出された点の異なるセットから選択される。選択された3つ以上のセットは、基板上で遠位方向に配向されていてもよい。グローバル変換は、基板上に分布する基準点から計算されてもよい。例えば、基板は、ダイに関連付けられていない3つ以上の基準点を持つことができる。基準点が、基板の上面に設けられ、測定され、基板のグローバル変換を計算するために使用されてもよい。
【0026】
[0031]別の代替例では、基板のグローバル変換を計算することは、基板のx/y回転の値を測定すること、基板の拡大の値を測定すること、基板上のダイの配向の値を測定すること、および測定値からグローバル変換を計算すること、を含むことができる。
【0027】
[0032]さらに別の代替例では、各ダイから検出された全ての点を使用して、変動を滑らかな関数にフィッティングさせることによって、基板の反りを特徴付けることができる。ダイの誤配置は、大部分が離散的であるが、反りは、連続的な変動を生成し、多項式で近似することができる。さらに、ダイごとのモデルを作成して、グローバル変換によってモデル化された基板に変動をフィッティングさせることができる。このようにして、ダイごとのレベルでモデル化された結合された問題を設定することにより、2つのモデル、つまりローカル変換とグローバル変換を一緒に生成することができる。したがって、このダイごとの変動とグローバルな反りの影響を補足するための結合されたモデルを、生成することができる。
【0028】
[0033]工程530で、基板のグローバル変換およびローカル変換が、保存される。変換は、他の装置によるアクセスのためにメモリに保存されてもよい。一実施形態では、変換は、計測システムに保存され、他の処理装置によってそこにアクセスされる。別の実施形態では、変換は、フォトリソグラフィシステムに保存される。さらに他の実施形態では、変換は、ネットワーク接続デバイスにとってアクセス可能なネットワークストレージに保存される。
【0029】
[0034]図5に開示されている方法は、基板の基準点とダイ位置を検出することと、基板上のダイのパターン配置を補正するために基板上のダイのローカル変換およびグローバル変換を計算することと、を提供する。変換は、基板の処理に使用される他の半導体処理装置にとってアクセス可能な場所に保存される。この方法は、半導体処理装置での基板の処理に有用に拡張される。例えば、変換は、基板をエッチングするときにマスクを調整または適用するために使用されてもよい。
【0030】
[0035]図6は、基板上でのリソグラフィ工程のために有効な変換を生成する方法を示す。工程610において、少なくとも3つの基準点が、新しいグローバル変換を計算するために検出される。検出は、リソグラフィツール、エッチングツール、または基板が配置される他の適切な半導体処理ツールによって実行されてもよい。一実施形態では、リソグラフィツールが、新しいグローバル変換を計算するために少なくとも3つの基準点を検出する。半導体処理ツールによって計算される新しいグローバル変換は、以前に計測ツールによって計算されたグローバル変換とは異なってもよい。
【0031】
[0036]工程620において、処理ツールによって計算された新しいグローバル変換は、有効な変換を生成するために、計測ツールによって提供されたダイごとのローカル変換と組み合わされる。有効な変換は、ダイごとの歪みと基板のプロファイルの組み合わせである。新しいグローバル変換は、計測ツールによって提供されるグローバル変換を計算するための上記で開示された方法と同様に計算されてもよい。例えば、基準点、ダイ位置マーカー、点もしくは頂点、または基板上の他の適切な測定された位置を使用して、基板のプロファイルをモデル化することができる。
【0032】
[0037]工程630において、有効な変換が、処理ツールのデジタルマスクの補正として適用される。例えば、リソグラフィツールのデジタルマスクは、有効な変換をデジタルマスクに適用することにより、歪められ、回転され、引き伸ばされ、または他の方法で修正されてもよい。再配線リソグラフィ層をプリントするためのスキャン中、デジタルマスクは、基板上の実際のダイ位置と位置合わせされて、フィーチャが許容限界寸法内で正しく形成されるようにする。
【0033】
[0038]図6を参照して説明した方法は、様々な半導体処理ツールで使用することができる。デジタルマスクの有効な変換は、フォトリソグラフィスキャン中のデジタルマスクの補正に適しており、またそのような補正を提供する。有利なことに、有効な変換は、モデルベースのパターン配置補正とともに、ダイごとのデジタルマスクを位置合わせして、ダイ構造の配向とともに基板の反りを補正する。有効な変換は、ダイ構造に再配線リソグラフィ層をプリントする前に、リソグラフィツールにおいて、ダイごとのデジタルマスク位置合わせ補正により、ダイ構造の配向を補正する。
【0034】
[0039]ダイの測定された誤配置が、ある基板から別の基板へと繰り返されている場合、つまり、各基板で共有された繰り返しパターンである場合、全てのダイの代わりに限られた数のダイを測定することにより、計測ツールによるオフライン特性評価を高速化することができる。これは、完全な精度が必要でない場合にも実行することができる。複数のダイが、グループ(ダイグループ)としてピックアンドプレースされる場合、グループ全体のx/y回転、拡大、およびシフトを計算するためには、各グループからの3つの測定で十分である。これにより、冗長な測定が除去され、特性評価のスループットが向上する。ダイが「ダイグループ」になり、測定セットの数が、ダイではなくダイグループの数に対応することを除いて、生成されるモデルは同じままである。
【0035】
[0040]上記は、本発明の実施形態に向けられているが、本発明の基本的な範囲から逸脱することなく、本発明の他のさらなる実施形態を考え出すこともでき、本発明の範囲は、以下の特許請求の範囲によって決定される。
図1
図2A-2D】
図3
図4
図5
図6