(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-09
(45)【発行日】2024-01-17
(54)【発明の名称】電解液及び電気化学デバイス
(51)【国際特許分類】
H01M 10/0567 20100101AFI20240110BHJP
H01M 10/052 20100101ALI20240110BHJP
H01M 4/38 20060101ALI20240110BHJP
H01M 4/587 20100101ALI20240110BHJP
H01M 4/36 20060101ALI20240110BHJP
H01G 11/64 20130101ALI20240110BHJP
H01G 11/32 20130101ALI20240110BHJP
H01G 11/30 20130101ALI20240110BHJP
【FI】
H01M10/0567
H01M10/052
H01M4/38 Z
H01M4/587
H01M4/36 E
H01G11/64
H01G11/32
H01G11/30
(21)【出願番号】P 2020560021
(86)(22)【出願日】2019-12-05
(86)【国際出願番号】 JP2019047689
(87)【国際公開番号】W WO2020116580
(87)【国際公開日】2020-06-11
【審査請求日】2022-10-14
(31)【優先権主張番号】P 2018228481
(32)【優先日】2018-12-05
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】000004455
【氏名又は名称】株式会社レゾナック
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100128381
【氏名又は名称】清水 義憲
(74)【代理人】
【識別番号】100169454
【氏名又は名称】平野 裕之
(74)【代理人】
【識別番号】100185591
【氏名又は名称】中塚 岳
(72)【発明者】
【氏名】今野 馨
(72)【発明者】
【氏名】山田 薫平
【審査官】山本 佳
(56)【参考文献】
【文献】国際公開第2016/054621(WO,A1)
【文献】国際公開第2016/006488(WO,A1)
【文献】特開2015-213014(JP,A)
【文献】国際公開第2020/116574(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
H01M 10/052 - 10/0569
H01M 4/38
H01M 4/587
H01G 11/64
CAplus/REGISTRY(STN)
(57)【特許請求の範囲】
【請求項1】
下記式(1)で表される化合物と、
ケイ素原子を有さず、硫黄原子を含む環を有する環状化合物と、を含有する電解液。
【化1】
[式(1)中、R
1~R
3は、それぞれ独立に、アルキル基又はフッ素原子を示し、R
4はアルキレン基を示し、R
5は、硫黄原子を含む有機基を示す。]
【請求項2】
前記R
1~R
3の少なくとも1つはフッ素原子である、請求項1に記載の電解液。
【請求項3】
前記式(1)で表される化合物1分子中のケイ素原子の数は1個である、請求項1又は2に記載の電解液。
【請求項4】
前記R
5は、下記式(3)、式(4)又は式(5)のいずれかで表される基である、請求項1~3のいずれか一項に記載の電解液。
【化2】
[式(3)中、R
8はアルキル基を示し、*は結合手を示す。]
【化3】
[式(4)中、R
9はアルキル基を示し、*は結合手を示す。]
【化4】
[式(5)中、R
10はアルキル基を示し、*は結合手を示す。]
【請求項5】
前記環状化合物は、環状スルホン酸エステル化合物を含む、請求項1~4のいずれか一項に記載の電解液。
【請求項6】
前記環状スルホン酸エステル化合物は、下記式(X)で表される化合物を含む、請求項5に記載の電解液。
【化5】
[式(X)中、A
1は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を含む基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基、アリール基、又はフルオロ基で置換されていてもよい。]
【請求項7】
前記式(X)で表される化合物は、1,3-プロパンスルトン及び1-プロペン-1,3-スルトンからなる群より選ばれる少なくとも1種を含む、請求項6に記載の電解液。
【請求項8】
前記環状化合物は、式(Y)で表される化合物及び式(Z)で表される化合物からなる群より選ばれる少なくとも1種を含む、請求項1~7のいずれか一項に記載の電解液。
【化6】
[式(Y)中、A
2は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基又はアリール基で置換されていてもよい。]
【化7】
[式(Z)中、A
3は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基又はアリール基で置換されていてもよい。]
【請求項9】
前記式(1)で表される化合物の含有量及び前記環状化合物の含有量の合計は、前記電解液全量を基準として10質量%以下である、請求項1~8のいずれか一項に記載の電解液。
【請求項10】
正極と、負極と、請求項1~9のいずれか一項に記載の電解液と、を備える電気化学デバイス。
【請求項11】
前記負極は炭素材料を含有する、請求項10に記載の電気化学デバイス。
【請求項12】
前記炭素材料は黒鉛を含有する、請求項11に記載の電気化学デバイス。
【請求項13】
前記負極は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料を更に含有する、請求項11又は12に記載の電気化学デバイス。
【請求項14】
前記電気化学デバイスは、非水電解液二次電池又はキャパシタである、請求項10~13のいずれか一項に記載の電気化学デバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、電解液及び電気化学デバイスに関する。
【背景技術】
【0002】
近年、携帯型電子機器、電気自動車等の普及により、リチウムイオン二次電池に代表される非水電解液二次電池、キャパシタ等の高性能な電気化学デバイスが必要とされている。電気化学デバイスの性能を向上させる手段としては、例えば、電解液に所定の添加剤を添加する方法が検討されている。特許文献1には、サイクル特性及び内部抵抗特性を改善するために、特定のシロキサン化合物を含有させた非水電解液電池用電解液が開示されている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
本発明は、電気化学デバイスの性能を向上させることが可能な電解液を提供することを目的とする。
【課題を解決するための手段】
【0005】
本発明の一側面は、下記式(1)で表される化合物と、ケイ素原子を有さず、硫黄原子を含む環を有する環状化合物と、を含有する電解液である。
【化1】
式(1)中、R
1~R
3は、それぞれ独立に、アルキル基又はフッ素原子を示し、R
4はアルキレン基を示し、R
5は、硫黄原子を含む有機基を示す。
【0006】
この電解液によれば、一側面において、電気化学デバイスの性能として、電気化学デバイスを高温下で保存した後の体積増加を抑制することができる。また、この電解液によれば、他の一側面において、電気化学デバイスのサイクル特性の向上(特に、サイクル試験後の容量維持率の向上、及び、サイクル試験後の放電DCRの上昇の抑制)が図られる。また、この電解液によれば、他の一側面において、電気化学デバイスを高温下で保存した後の放電DCRを低減させることができる。
【0007】
R1~R3の少なくとも1つは、フッ素原子であってよい。式(1)で表される化合物1分子中のケイ素原子の数は、1個であってよい。
【0008】
R
5は、下記式(3)、式(4)又は式(5)のいずれかで表される基であってよい。
【化2】
式(3)中、R
8はアルキル基を示し、*は結合手を示す。
【化3】
式(4)中、R
9はアルキル基を示し、*は結合手を示す。
【化4】
式(5)中、R
10はアルキル基を示し、*は結合手を示す。
【0009】
環状化合物は、環状スルホン酸エステル化合物を含んでよい。環状スルホン酸エステル化合物は、下記式(X)で表される化合物を含んでよい。
【化5】
式(X)中、A
1は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を含む基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基、アリール基、又はフルオロ基で置換されていてもよい。
【0010】
式(X)で表される化合物は、1,3-プロパンスルトン及び1-プロペン-1,3-スルトンからなる群より選ばれる少なくとも1種を含んでよい。
【0011】
環状化合物は、式(Y)で表される化合物及び式(Z)で表される化合物からなる群より選ばれる少なくとも1種を含んでよい。
【化6】
式(Y)中、A
2は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基又はアリール基で置換されていてもよい。
【化7】
式(Z)中、A
3は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基又はアリール基で置換されていてもよい。
【0012】
式(1)で表される化合物の含有量及び環状スルホン酸エステル化合物の含有量の合計は、電解液全量を基準として10質量%以下であってよい。
【0013】
本発明の他の一側面は、正極と、負極と、上記電解液と、を備える電気化学デバイスである。
【0014】
負極は、炭素材料を含有してよい。炭素材料は黒鉛を含有してよい。負極は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料を更に含有してよい。
【0015】
電気化学デバイスは、非水電解液二次電池又はキャパシタであってよい。
【発明の効果】
【0016】
本発明によれば、電気化学デバイスの性能を向上させることが可能な電解液を提供することができる。
【図面の簡単な説明】
【0017】
【
図1】一実施形態に係る電気化学デバイスとしての非水電解液二次電池を示す斜視図である。
【
図2】
図1に示した二次電池の電極群を示す分解斜視図である。
【発明を実施するための形態】
【0018】
以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。
【0019】
図1は、一実施形態に係る電気化学デバイスを示す斜視図である。本実施形態において、電気化学デバイスは非水電解液二次電池である。
図1に示すように、非水電解液二次電池1は、正極、負極及びセパレータから構成される電極群2と、電極群2を収容する袋状の電池外装体3とを備えている。正極及び負極には、それぞれ正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極及び負極が非水電解液二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。電池外装体3内には、電解液(図示せず)が充填されている。非水電解液二次電池1は、上述したようないわゆる「ラミネート型」以外の形状の電池(コイン型、円筒型、積層型等)であってもよい。
【0020】
電池外装体3は、例えばラミネートフィルムで形成された容器であってよい。ラミネートフィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等の樹脂フィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
【0021】
図2は、
図1に示した非水電解液二次電池1における電極群2の一実施形態を示す分解斜視図である。
図2に示すように、電極群2は、正極6と、セパレータ7と、負極8とをこの順に備えている。正極6及び負極8は、正極合剤層10側及び負極合剤層12側の面がそれぞれセパレータ7と対向するように配置されている。
【0022】
正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。
【0023】
正極集電体9は、例えば、アルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等で形成されている。正極集電体9は、接着性、導電性及び耐酸化性向上の目的で、アルミニウム、銅等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。正極集電体9の厚さは、電極強度及びエネルギー密度の点から、例えば1~50μmである。
【0024】
正極合剤層10は、一実施形態において、正極活物質と、導電剤と、結着剤とを含有する。正極合剤層10の厚さは、例えば20~200μmである。
【0025】
正極活物質は、例えばリチウム酸化物であってよい。リチウム酸化物としては、例えば、LixCoO2、LixNiO2、LixMnO2、LixCoyNi1-yO2、LixCoyM1-yOz、LixNi1-yMyOz、LixMn2O4及びLixMn2-yMyO4(各式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す(ただし、Mは、各式中の他の元素と異なる元素である)。x=0~1.2、y=0~0.9、z=2.0~2.3である。)が挙げられる。LixNi1-yMyOzで表されるリチウム酸化物は、LixNi1-(y1+y2)Coy1Mny2Oz(ただし、x及びzは上述したものと同様であり、y1=0~0.9、y2=0~0.9であり、かつ、y1+y2=0~0.9である。)であってよく、例えばLiNi1/3Co1/3Mn1/3O2、LiNi0.5Co0.2Mn0.3O2、LiNi0.6Co0.2Mn0.2O2、LiNi0.8Co0.1Mn0.1O2であってよい。LixNi1-yMyOzで表されるリチウム酸化物は、LixNi1-(y3+y4)Coy3Aly4Oz(ただし、x及びzは上述したものと同様であり、y3=0~0.9、y4=0~0.9であり、かつ、y3+y4=0~0.9である。)であってよく、例えばLiNi0.8Co0.15Al0.05O2であってもよい。
【0026】
正極活物質は、例えばリチウムのリン酸塩であってもよい。リチウムのリン酸塩としては、例えば、リン酸マンガンリチウム(LiMnPO4)、リン酸鉄リチウム(LiFePO4)、リン酸コバルトリチウム(LiCoPO4)及びリン酸バナジウムリチウム(Li3V2(PO4)3)が挙げられる。
【0027】
正極活物質の含有量は、正極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。
【0028】
導電剤は、アセチレンブラック、ケッチェンブラック等のカーボンブラック、黒鉛、グラフェン、カーボンナノチューブなどの炭素材料であってよい。導電剤の含有量は、正極合剤層全量を基準として、例えば、0.01質量%以上、0.1質量%以上、又は1質量%以上であってよく、50質量%以下、30質量%以下、又は15質量%以下であってよい。
【0029】
結着剤は、例えば、ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリメチルメタクリレート、ポリイミド、芳香族ポリアミド、セルロース、ニトロセルロース等の樹脂;SBR(スチレン-ブタジエンゴム)、NBR(アクリロニトリル-ブタジエンゴム)、フッ素ゴム、イソプレンゴム、ブタジエンゴム、エチレン-プロピレンゴム等のゴム;スチレン・ブタジエン・スチレンブロック共重合体又はその水素添加物、EPDM(エチレン・プロピレン・ジエン三元共重合体)、スチレン・エチレン・ブタジエン・エチレン共重合体、スチレン・イソプレン・スチレンブロック共重合体又はその水素添加物等の熱可塑性エラストマー;シンジオタクチック-1、2-ポリブタジエン、ポリ酢酸ビニル、エチレン・酢酸ビニル共重合体、プロピレン・α-オレフィン共重合体等の軟質樹脂;ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、フッ素化ポリフッ化ビニリデン、ポリテトラフルオロエチレン・エチレン共重合体、ポリテトラフルオロエチレン・フッ化ビニリデン共重合体等のフッ素含有樹脂;ニトリル基含有モノマーをモノマー単位として有する樹脂;アルカリ金属イオン(例えばリチウムイオン)のイオン伝導性を有する高分子組成物などが挙げられる。
【0030】
結着剤の含有量は、正極合剤層全量を基準として、例えば、0.1質量%以上、1質量%以上、又は1.5質量%以上であってよく、30質量%以下、20質量%以下、又は10質量%以下であってよい。
【0031】
セパレータ7は、正極6及び負極8間を電子的には絶縁する一方でイオンを透過させ、かつ、正極6側における酸化性及び負極8側における還元性に対する耐性を備えるものであれば、特に制限されない。このようなセパレータ7の材料(材質)としては、樹脂、無機物等が挙げられる。
【0032】
樹脂としては、オレフィン系ポリマー、フッ素系ポリマー、セルロース系ポリマー、ポリイミド、ナイロン等が挙げられる。セパレータ7は、電解液に対して安定で、保液性に優れる観点から、好ましくは、ポリエチレン、ポリプロピレン等のポリオレフィンで形成された多孔質シート又は不織布である。
【0033】
無機物としては、アルミナ、二酸化珪素等の酸化物、窒化アルミニウム、窒化珪素等の窒化物、硫酸バリウム、硫酸カルシウム等の硫酸塩が挙げられる。セパレータ7は、例えば、不織布、織布、微多孔性フィルム等の薄膜状基材に、繊維状又は粒子状の無機物を付着させたセパレータであってよい。
【0034】
負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
【0035】
負極集電体11は、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム-カドミウム合金等で形成されている。負極集電体11は、接着性、導電性、耐還元性向上の目的で、銅、アルミニウム等の表面にカーボン、ニッケル、チタン、銀等で処理が施されたものであってもよい。負極集電体11の厚さは、電極強度及びエネルギー密度の点から、例えば1~50μmである。
【0036】
負極合剤層12は、例えば、負極活物質と、結着剤とを含有する。
【0037】
負極活物質は、リチウムイオンを吸蔵及び放出可能な物質であれば特に制限されない。負極活物質としては、例えば、炭素材料、金属複合酸化物、錫、ゲルマニウム、ケイ素等の第四族元素の酸化物又は窒化物、リチウムの単体、リチウムアルミニウム合金等のリチウム合金、Sn、Si等のリチウムと合金を形成可能な金属などが挙げられる。負極活物質は、安全性の観点からは、好ましくは炭素材料及び金属複合酸化物からなる群より選択される少なくとも1種である。負極活物質はこれらの1種単独又は2種以上の混合物であってよい。負極活物質の形状は、例えば、粒子状であってよい。
【0038】
炭素材料としては、非晶質炭素材料、天然黒鉛、天然黒鉛に非晶質炭素材料の被膜を形成した複合炭素材料、人造黒鉛(エポキシ樹脂、フェノール樹脂等の樹脂原料、又は、石油、石炭等から得られるピッチ系原料を焼成して得られるもの)などが挙げられる。金属複合酸化物は、高電流密度充放電特性の観点からは、好ましくはチタン及びリチウムのいずれか一方又は両方を含有し、より好ましくはリチウムを含有する。
【0039】
負極活物質の中でも炭素材料は、導電性が高く、低温特性及びサイクル安定性に特に優れている。炭素材料の中でも高容量化の観点からは、黒鉛が好ましい。黒鉛においては、好ましくはX線広角回折法における炭素網面層間(d002)が0.34nm未満であり、より好ましくは0.3354nm以上0.337nm以下である。このような条件を満たす炭素材料を、擬似異方性炭素と称する場合がある。
【0040】
負極活物質には、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料が更に含まれていてもよい。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料は、ケイ素又はスズの単体、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物であってよい。当該化合物は、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む合金であってよく、例えば、ケイ素及びスズの他に、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる少なくとも1種を含む合金である。ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む化合物は、酸化物、窒化物、又は炭化物であってもよく、具体的には、例えば、SiO、SiO2、LiSiO等のケイ素酸化物、Si3N4、Si2N2O等のケイ素窒化物、SiC等のケイ素炭化物、SnO、SnO2、LiSnO等のスズ酸化物などであってよい。
【0041】
負極8は、低温入力特性等の電気化学デバイスの性能を更に向上させる観点から、負極活物質として、好ましくは炭素材料を含み、より好ましくは黒鉛を含み、更に好ましくは、炭素材料と、ケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料との混合物を含み、特に好ましくは、黒鉛とケイ素酸化物との混合物を含む。当該混合物におけるケイ素及びスズからなる群より選ばれる少なくとも1種の元素を含む材料(ケイ素酸化物)に対する炭素材料(黒鉛)の含有量は、当該混合物全量を基準として、1質量%以上、又は3質量%以上であってよく、30質量%以下であってよい。
【0042】
負極活物質の含有量は、負極合剤層全量を基準として、80質量%以上、又は85質量%以上であってよく、99質量%以下であってよい。
【0043】
結着剤及びその含有量は、上述した正極合剤層における結着剤及びその含有量と同様であってよい。
【0044】
負極合剤層12は、粘度を調節するために増粘剤を含有してもよい。増粘剤は、特に制限されないが、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、カゼイン、これらの塩等であってよい。増粘剤は、これらの1種単独又は2種以上の混合物であってよい。
【0045】
負極合剤層12が増粘剤を含む場合、その含有量は特に制限されない。増粘剤の含有量は、負極合剤層の塗布性の観点からは、負極合剤層全量を基準として、0.1質量%以上であってよく、好ましくは0.2質量%以上であり、より好ましくは0.5質量%以上である。増粘剤の含有量は、電池容量の低下又は負極活物質間の抵抗の上昇を抑制する観点からは、負極合剤層全量を基準として、5質量%以下であってよく、好ましくは3質量%以下であり、より好ましくは2質量%以下である。
【0046】
電解液は、一実施形態において、下記式(1)で表される化合物と、ケイ素原子を有さず、硫黄原子を含む環を有する環状化合物(以下、単に「環状化合物」ともいう)と、電解質塩と、非水溶媒とを含有する。
【化8】
式(1)中、R
1~R
3は、それぞれ独立に、アルキル基又はフッ素原子を示し、R
4はアルキレン基を示し、R
5は、硫黄原子を含む有機基を示す。
【0047】
R1~R3で表されるアルキル基の炭素数は、1以上であってよく、3以下であってよい。R1~R3は、メチル基、エチル基、又はプロピル基であってよく、直鎖状でも分岐状でもよい。R1~R3の少なくとも1つは、好ましくはフッ素原子である。R1~R3のいずれか1つがフッ素原子であってよく、R1~R3のいずれか2つがフッ素原子であってよく、R1~R3のすべてがフッ素原子であってよい。
【0048】
R4で表されるアルキレン基の炭素数は、1以上又は2以上であってよく、5以下又は4以下であってよい。R4で表されるアルキレン基は、メチレン基、エチレン基、プロピレン基、ブチレン基、又はペンチレン基であってよく、直鎖状でも分岐状でもよい。
【0049】
一実施形態において、式(1)で表される化合物1分子中のケイ素原子の数は、1個である。すなわち、一実施形態において、R5で表される有機基は、ケイ素原子を含まない。
【0050】
R
5は、電気化学デバイスの性能を更に向上させることができる観点から、好ましくは、下記式(3)、式(4)又は式(5)のいずれかで表される基であってよい。
【化9】
式(3)中、R
8はアルキル基を示す。アルキル基は、上述したR
1~R
3で表されるアルキル基と同様であってよい。*は結合手を示す。
【化10】
式(4)中、R
9はアルキル基を示す。アルキル基は、上述したR
1~R
3で表されるアルキル基と同様であってよい。*は結合手を示す。
【化11】
式(5)中、R
10はアルキル基を示す。アルキル基は、上述したR
1~R
3で表されるアルキル基と同様であってよい。*は結合手を示す。
【0051】
式(1)で表される化合物の含有量は、電気化学デバイスの性能を更に向上させることができる観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であり、8質量%以下、5質量%以下、3質量%以下、2質量%以下、又は1質量%以下である。
【0052】
環状化合物は、硫黄原子を含む環(複素環)を有する化合物である。なお、環状化合物は、上記式(1)で表される化合物以外の化合物である。言い換えれば、環状化合物は、ケイ素原子を有さない化合物である。
【0053】
環状化合物は、例えば、環状スルホン酸エステル化合物(スルトン化合物とも呼ばれる)の少なくとも1種を含んでいてよい。環状スルホン酸エステル化合物は、-OSO2-基を含む環を有する化合物である。環状スルホン酸エステル化合物は、-OSO2-基を1つ又は2つ含む環を有している。
【0054】
-OSO
2-基を1つ含む環を有する環状スルホン酸エステル化合物は、例えば下記式(X)で表される化合物であってよい。
【化12】
式(X)中、A
1は、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基、アリール基、又はフルオロ基で置換されていてもよい。
【0055】
上記アルキル基の炭素数は、例えば1~12であってよい。上記シクロアルキル基の炭素数は、例えば3~6であってよい。上記アリール基の炭素数は、例えば6~12であってよい。
【0056】
A
1は、好ましくは、炭素数3のアルキレン基又は炭素数3のアルケニレン基である。すなわち、環状スルホン酸エステル化合物は、好ましくは、下記式(X-1)又は式(X-2)で表される化合物である。
【化13】
【0057】
式中、R11~R20は、それぞれ独立に、水素原子、アルキル基、シクロアルキル基、アリール基、又はフルオロ基を表す。R11~R20で表されるアルキル基、シクロアルキル基及びアリール基の炭素数は、式(X)について説明したアルキル基、シクロアルキル基及びアリール基の炭素数とそれぞれ同様である。R11~R20は、好ましくは水素原子である。
【0058】
式(X)で表される環状スルホン酸エステル化合物としては、例えば、1,3-プロパンスルトン、1,4-ブタンスルトン、2,4-ブタンスルトン、1,3-プロペンスルトン、1,4-ブテンスルトン、1-メチル-1,3-プロパンスルトン、3-メチル-1,3-プロパンスルトン、1-フルオロ-1,3-プロパンスルトン、3-フルオロ-1,3-プロパンスルトン等のモノスルホン酸エステルなどが挙げられる。これらのうち、電気化学デバイスの性能を更に向上させることができる観点から、1,3-プロパンスルトン(式(X-1)において、R11~R16のすべてが水素原子である化合物)又は1-プロペン-1,3-スルトン(式(X-2)において、R17~R20のすべてが水素原子である化合物)が好ましい。
【0059】
-OSO
2-基を2つ含む環を有する環状スルホン酸エステル化合物は、例えば下記式(X-3)で表される化合物であってよい。
【化14】
式中、B
1及びB
2は、それぞれ独立に、炭素数1~5のアルキレン基又は炭素数1~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基、アリール基、又はフルオロ基で置換されていてもよい。
【0060】
B1及びB2は、好ましくは、炭素数1又は2の無置換のアルキレン基である。このような環状スルホン酸エステル化合物は、メチレンメタンジスルホン酸エステル、エチレンメタンジスルホン酸エステル等のジスルホン酸エステルであってよい。
【0061】
環状化合物は、例えば、式(Y)で表される化合物及び式(Z)で表される化合物からなる群より選ばれる少なくとも1種を含んでいてもよい。
【化15】
【化16】
式(Y),(Z)中、A
2及びA
3は、それぞれ独立に、炭素数3~5のアルキレン基又は炭素数3~5のアルケニレン基を表し、該アルキレン基及び該アルケニレン基における水素原子は、アルキル基、シクロアルキル基又はアリール基で置換されていてもよい。
【0062】
A2及びA3におけるアルキル基、シクロアルキル基及びアリール基の炭素数は、式(X)について説明したアルキル基、シクロアルキル基及びアリール基の炭素数とそれぞれ同様である。
【0063】
式(Y)で表される化合物としては、例えば、スルホラン、2-メチルスルホラン、3-メチルスルホラン、2-エチルスルホラン、3-エチルスルホラン、2,4-ジメチルスルホラン、2-フェニルスルホラン、3-フェニルスルホラン、スルホレン、3-メチルスルホレン等が挙げられる。式(Y)で表される化合物は、電気化学デバイスの性能を更に向上させることができる観点から、好ましくはスルホランである。
【0064】
式(Z)で表される化合物としては、例えば、エチレンサルファイト、プロピレンサルファイト、ブチレンサルファイト、ビニレンサルファイト、フェニルエチレンサルファイト等が挙げられる。式(Z)で表される化合物は、電気化学デバイスの性能を更に向上させることができる観点から、好ましくはエチレンサルファイトである。
【0065】
環状化合物は、環状スルホン酸エステル化合物、式(Y)で表される化合物及び式(Z)で表される化合物からなる群より選ばれる少なくとも1種を含んでもよく、式(X)で表される化合物、式(Y)で表される化合物及び式(Z)で表される化合物からなる群より選ばれる少なくとも1種を含んでもよく、式(X)で表される化合物及び式(Z)で表される化合物からなる群より選ばれる少なくとも1種を含んでもよい。
【0066】
環状化合物の含有量は、電気化学デバイスの性能を更に向上させることができる観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.05質量%以上、又は0.1質量%以上であり、5質量%以下、3質量%以下、2質量%以下、又は1質量%以下である。
【0067】
式(1)で表される化合物の含有量及び環状化合物の含有量の合計は、電気化学デバイスの性能を更に向上させることができる観点から、電解液全量を基準として、好ましくは、0.001質量%以上、0.005質量%以上、0.01質量%以上、0.1質量%以上、又は0.5質量%以上であり、好ましくは、10質量%以下、7質量%以下、5質量%以下、3質量%以下、又は2質量%以下である。
【0068】
環状化合物の含有量に対する式(1)で表される化合物の含有量の質量比(式(1)で表される化合物の含有量/環状化合物の含有量)は、電気化学デバイスの性能を更に向上させることができる観点から、好ましくは、0.01以上、0.05以上、0.1以上、0.2以上、又は0.25以上であり、また、好ましくは、500以下、100以下、50以下、20以下、10以下、5以下、又は4以下である。
【0069】
電解質塩は、例えばリチウム塩であってよい。リチウム塩は、例えば、LiPF6、LiBF4、LiClO4、LiB(C6H5)4、LiCH3SO3、CF3SO2OLi、LiN(SO2F)2(Li[FSI]、リチウムビスフルオロスルホニルイミド)、LiN(SO2CF3)2(Li[TFSI]、リチウムビストリフルオロメタンスルホニルイミド)、及びLiN(SO2CF2CF3)2からなる群より選ばれる少なくとも1種であってよい。リチウム塩は、溶媒に対する溶解性、二次電池の充放電特性、出力特性、サイクル特性等に更に優れる観点から、好ましくはLiPF6を含む。
【0070】
電解質塩の濃度は、充放電特性に優れる観点から、非水溶媒全量を基準として、好ましくは0.5mol/L以上、より好ましくは0.7mol/L以上、更に好ましくは0.8mol/L以上であり、また、好ましくは1.5mol/L以下、より好ましくは1.3mol/L以下、更に好ましくは1.2mol/L以下である。
【0071】
非水溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチルラクトン、アセトニトリル、1,2-ジメトキシエタン、ジメトキシメタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、酢酸メチル等であってよい。非水溶媒は、これらの1種単独又は2種以上の混合物であってよく、好ましくは2種以上の混合物である。
【0072】
電解液は、式(1)で表される化合物、環状化合物、電解質塩及び非水溶媒以外のその他の材料を更に含有してもよい。その他の材料は、例えば、フッ素含有環状カーボネート、炭素-炭素二重結合を有する環状カーボネート等の環状カーボネート、窒素原子を有する化合物、式(1)で表される化合物及び環状化合物以外の硫黄原子を有する化合物、環状カルボン酸エステル等であってよい。
【0073】
フッ素含有環状カーボネートは、例えば、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)、1,2-ジフルオロエチレンカーボネート、1,1-ジフルオロエチレンカーボネート、1,1,2-トリフルオロエチレンカーボネート、1,1,2,2-テトラフルオロエチレンカーボネート等であってよく、好ましくは、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)である。炭素-炭素二重結合を有する環状カーボネートは、例えばビニレンカーボネートであってよい。窒素原子を含有する化合物は、例えばスクシノニトリル等のニトリル化合物であってよい。
【0074】
本発明者らは、様々な構造及び官能基を有する化合物を検討した結果、上述した式(1)で表される化合物及び環状化合物を電解液に適用することによって、電気化学デバイスの性能を向上させることができることを明らかにした。本発明者らは、式(1)で表される化合物及び環状化合物を電解液に用いることによる作用効果を以下のように推察している。すなわち、式(1)で表される化合物及び環状化合物が、それぞれリチウムイオン二次電池内において最も効果を発現しやすい場所に作用して、例えば、正極又は負極の安定な被膜形成、又は電解液の安定化に寄与すると考えられる。その結果、非水電解液二次電池1のような電気化学デバイスの性能が向上する。
【0075】
具体的には、一実施形態の電解液によれば、電気化学デバイスの性能として、電気化学デバイスを高温下で保存した後の体積増加を抑制することができる。また、一実施形態の電解液によれば、電気化学デバイスのサイクル特性の向上(特に、サイクル試験後の容量維持率の向上、及び、サイクル試験後の放電DCRの上昇の抑制)が図られる。また、一実施形態の電解液によれば、電気化学デバイスを高温下で保存した後の放電DCRを低減させることができる。
【0076】
続いて、非水電解液二次電池1の製造方法を説明する。非水電解液二次電池1の製造方法は、正極6を得る第1の工程と、負極8を得る第2の工程と、電極群2を電池外装体3に収容する第3の工程と、電解液を電池外装体3に注液する第4の工程と、を備える。
【0077】
第1の工程では、正極合剤層10に用いる材料を混練機、分散機等を用いて分散媒に分散させてスラリー状の正極合剤を得た後、この正極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上に塗布し、その後分散媒を揮発させることにより正極6を得る。分散媒を揮発させた後、必要に応じて、ロールプレスによる圧縮成型工程が設けられてもよい。正極合剤層10は、上述した正極合剤の塗布から分散媒の揮発までの工程を複数回行うことにより、多層構造の正極合剤層として形成されてもよい。分散媒は、水、1-メチル-2-ピロリドン(以下、NMPともいう。)等であってよい。
【0078】
第2の工程は、上述した第1の工程と同様であってよく、負極集電体11に負極合剤層12を形成する方法は、上述した第1の工程と同様の方法であってよい。
【0079】
第3の工程では、作製した正極6及び負極8の間にセパレータ7を挟み、電極群2を形成する。次いで、この電極群2を電池外装体3に収容する。
【0080】
第4の工程では、電解液を電池外装体3に注入する。電解液は、例えば、電解質塩をはじめに溶媒に溶解させてから、その他の材料を溶解させることにより調製することができる。
【0081】
他の実施形態として、電気化学デバイスはキャパシタであってもよい。キャパシタは、上述した非水電解液二次電池1と同様に、正極、負極及びセパレータから構成される電極群と、電極群を収容する袋状の電池外装体とを備えていてよい。キャパシタにおける各構成要素の詳細は、非水電解液二次電池1と同様であってよい。
【実施例】
【0082】
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
【0083】
(実施例1)
[正極の作製]
正極活物質としてのニッケルコバルトマンガン酸リチウム(92質量%)に、導電剤としてアセチレンブラック(AB)(4質量%)と、結着剤(4質量%)とを順次添加し、混合した。得られた混合物に対し、分散媒としてのNMPを添加し、混練することによりスラリー状の正極合剤を調製した。この正極合剤を正極集電体としての厚さ20μmのアルミニウム箔に均等且つ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度2.8g/cm3まで圧密化して、正極を得た。
【0084】
[負極の作製]
黒鉛及びケイ素酸化物を含む負極活物質に、結着剤と、増粘剤としてのカルボキシメチルセルロースとを添加した。これらの質量比については、黒鉛:ケイ素酸化物:結着剤:増粘剤=92:5:1.5:1.5とした。得られた混合物に対し、分散媒としての水を添加し、混練することによりスラリー状の負極合剤を調製した。この負極合剤を負極集電体としての厚さ10μmの圧延銅箔に均等かつ均質に所定量塗布した。その後、分散媒を揮発させてから、プレスすることにより密度1.6g/cm3まで圧密化して、負極を得た。
【0085】
[リチウムイオン二次電池の作製]
13.5cm
2の四角形に切断した正極電極を、セパレータであるポリエチレン製多孔質シート(商品名:ハイポア(登録商標)、旭化成株式会社製、厚さ30μm)で挟み、更に14.3cm
2の四角形に切断した負極を重ね合わせて電極群を作製した。この電極群を、アルミニウム製のラミネートフィルム(商品名:アルミラミネートフィルム、大日本印刷株式会社製)で形成された容器(電池外装体)に収容した。次いで、容器の中に電解液を1mL添加し、容器を熱溶着させ、評価用のリチウムイオン二次電池を作製した。電解液としては、1mol/LのLiPF
6を含むエチレンカーボネート、ジメチルカーボネート及びエチルメチルカーボネートの混合溶液に、混合溶液全量に対して、ビニレンカーボネート(VC)1質量%、4-フルオロ-1,3-ジオキソラン-2-オン(フルオロエチレンカーボネート;FEC)0.5質量%、下記式(6)で表される化合物A 0.5質量%、及び1,3-プロパンスルトン0.5質量%(電解液全量基準)を添加したものを使用した。
【化17】
【0086】
(実施例2)
実施例1において、化合物Aの添加量を2.0質量%に変更した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【0087】
(実施例3)
実施例1において、化合物Aの代わりに、下記式(7)で表される化合物Bを0.3質量%添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【化18】
【0088】
(実施例4)
実施例1において、化合物Aの代わりに、下記式(8)で表される化合物Cを0.1質量%添加した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【化19】
【0089】
(実施例5)
実施例1において、1,3-プロパンスルトンの代わりに1,3-プロペンスルトンを使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【0090】
(実施例6)
実施例1において、1,3-プロパンスルトンの代わりにメチレンメタンジスルホン酸エステル(MMDS)を使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【0091】
(実施例7)
実施例1において、1,3-プロパンスルトンの代わりにエチレンサルファイトを使用した以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【0092】
(比較例1)
実施例1において、化合物A及び1,3-プロパンスルトンを使用しなかった以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【0093】
(比較例2)
実施例1において、化合物Aを使用しなかった以外は、実施例1と同様にしてリチウムイオン二次電池を作製した。
【0094】
[高温保管特性の評価]
作製した各二次電池を、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、それらの二次電池を60℃の恒温槽中で2週間保管した。
上記保管前の各二次電池の体積(V1)、及び、上記保管後に25℃の環境下に30分間静置した各二次電池の体積(V2)を、アルキメデス法に基づく比重計(電子比重計MDS-300、アルファミラージュ社製)により測定した。測定されたV1及びV2を用いて、体積変化率(%)=V2/V1×100を算出した。結果を表1に示す。
【0095】
[サイクル特性の評価]
(初回充放電)
作製した各二次電池について、以下に示す方法で初回充放電を実施した。まず、25℃の環境下において0.1Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.01Cとした。その後、0.1Cの電流値で終止電圧2.7Vの定電流放電を行った。この充放電サイクルを3回繰り返した。なお、電流値の単位として用いた「C」とは、「電流値(A)/電池容量(Ah)」を意味する(以下同様)。
【0096】
(放電DCRの測定)
初回充放電後の各二次電池について、放電時の直流抵抗(放電DCR)を、以下のように測定した。
まず、0.2Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.02Cとした。その後、0.2Cの電流値で終止電圧2.7Vの定電流放電を行い、このときの電流値をI0.2C、放電開始10秒後の電圧変化をΔV0.2Cとした。次に、0.2Cの定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った後(充電終止条件は、電流値0.02Cとした。)、0.5Cの電流値で終止電圧2.7Vの定電流放電を行い、このときの電流値をI0.5C、放電開始10秒後の電圧変化をΔV0.5Cとした。同様の充放電から1Cの電流値をI1C、放電開始10秒後の電圧変化ΔV1Cを評価した。その電流値―電圧変化の3点のプロット(I0.2C、ΔV0.2C)、(I0.5C、ΔV0.5C)、(I1C、ΔV1C)に最小二乗法を用いて一次近似直線を引き、その傾きを放電DCRの値R1とした。
【0097】
(サイクル試験)
初回充放電後の各二次電池について、以下の充放電を繰り返すサイクル試験を実施した。充電パターンとしては、45℃の環境下で、二次電池を0.5Cの電流値で定電流充電を上限電圧4.2Vまで行い、続いて4.2Vで定電圧充電を行った。充電終止条件は、電流値0.05Cとした。放電については、1Cで定電流放電を2.7Vまで行い、放電容量を求めた。この一連の充放電を630サイクル繰り返した。1サイクル目の充放電後の放電容量Q1と、630サイクル目の充放電後の放電容量Q2とを用いて、放電容量維持率(%)=Q1/Q2×100を求めた。結果を表1に示す。
また、500サイクル後の二次電池について、上記と同様に放電DCRの値R2を求めた。初回充放電後の放電DCRの値R1と、630サイクル目の充放電後の放電DCRの値R2とを用いて、放電DCRの上昇率(%)=R2/R1×100を求めた。結果を表1に示す。
【0098】
【0099】
表1から分かるとおり、式(1)で表される化合物及び環状化合物を含有する実施例1~7の電解液を適用したリチウムイオン二次電池は、式(1)で表される化合物及び環状化合物の一方又は両方を含有しない電解液を適用した比較例1~2のリチウムイオン二次電池と比較して、高温保管特性に優れ(高温保管後の体積変化率が小さく)、サイクル特性にも優れている(サイクル試験後の容量維持率が高く、放電DCRの上昇を抑制できる)。これは、環状化合物が正極又は負極にて安定な被膜を形成したことに加えて、式(1)で表される化合物が、電解液の安定化に寄与したためと考えられる。
【0100】
また、実施例1及び比較例1,2の二次電池については、上記高温保管を行った後の放電DCRも測定した。その結果、実施例1の放電DCRは1.70Ω、比較例1の放電DCRは1.98Ω、比較例2の放電DCRは1.79Ωであった。1,3-プロパンスルトンを含み化合物Aを含まない電解液を適用した比較例2のリチウムイオン二次電池は、化合物A及び1,3-プロパンスルトンのどちらも含まない電解液を適用した比較例1のリチウムイオン二次電池と比較して、高温保管後の放電DCRが低下した。これは、1,3-プロパンスルトンが正極又は負極にて安定な被膜を形成したためと考えられる。また、化合物A及び1,3-プロパンスルトンを両方含む電解液を適用した実施例1のリチウムイオン二次電池は、比較例1及び比較例2のリチウムイオン二次電池と比較して、高温保管後の放電DCRがそれぞれ約15%及び約5%良好であった。これは、1,3-プロパンスルトンが正極又は負極にて安定な被膜を形成したことに加えて、化合物Aが、電解液の安定化に寄与したためと考えられる。
【符号の説明】
【0101】
1…非水電解液二次電池(電気化学デバイス)、6…正極、7…セパレータ、8…負極。