IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ラム リサーチ コーポレーションの特許一覧

特許7421482パルス幅変調されたドーズ制御のためのシステムおよび方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-16
(45)【発行日】2024-01-24
(54)【発明の名称】パルス幅変調されたドーズ制御のためのシステムおよび方法
(51)【国際特許分類】
   H01L 21/31 20060101AFI20240117BHJP
   C23C 16/52 20060101ALI20240117BHJP
   C23C 16/455 20060101ALI20240117BHJP
【FI】
H01L21/31 B
C23C16/52
C23C16/455
【請求項の数】 16
(21)【出願番号】P 2020538754
(86)(22)【出願日】2018-09-21
(65)【公表番号】
(43)【公表日】2020-12-03
(86)【国際出願番号】 US2018052246
(87)【国際公開番号】W WO2019067323
(87)【国際公開日】2019-04-04
【審査請求日】2021-09-21
(31)【優先権主張番号】62/563,129
(32)【優先日】2017-09-26
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】62/590,815
(32)【優先日】2017-11-27
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】592010081
【氏名又は名称】ラム リサーチ コーポレーション
【氏名又は名称原語表記】LAM RESEARCH CORPORATION
(74)【代理人】
【識別番号】110000028
【氏名又は名称】弁理士法人明成国際特許事務所
(72)【発明者】
【氏名】グレゴール・マリウシュ
【審査官】小▲高▼ 孔頌
(56)【参考文献】
【文献】特表2004-511905(JP,A)
【文献】特表2003-512519(JP,A)
【文献】韓国登録特許第10-0725615(KR,B1)
【文献】国際公開第2017/160614(WO,A1)
【文献】米国特許出願公開第2012/0156363(US,A1)
【文献】特開2005-347446(JP,A)
【文献】特開2017-032305(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/31
C23C 16/52
C23C 16/455
(57)【特許請求の範囲】
【請求項1】
基板を処理するための基板処理システムであって、
マニホールドと、
処理チャンバに設置される複数のインジェクタアセンブリであって、
前記複数のインジェクタアセンブリの各々は、前記マニホールドと流体連通し、入口および出口を含む弁を含む複数のインジェクタアセンブリと、
ドーズコントローラと
を備えており、
前記ドーズコントローラが、
前記複数のインジェクタアセンブリの各々に含まれる前記弁と連通するように構成され、かつ、
前記複数のインジェクタアセンブリの各々に含まれる前記弁間の製造上の差異と前記複数のインジェクタアセンブリの各々に含まれる前記弁間の不均一性との少なくとも1つに基づいて、前記複数のインジェクタアセンブリの各々に含まれる前記弁に供給されるパルス幅を調整し、前記複数のインジェクタアセンブリの各々に含まれる前記弁から所望のドーズが供給されるように構成される、
基板処理システム。
【請求項2】
請求項1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含む、基板処理システム。
【請求項3】
請求項2に記載の基板処理システムであって、
前記ドーズコントローラは、対応する感知された前記圧力に基づいて各弁のそれぞれの前記パルス幅を調整するように構成される、基板処理システム。
【請求項4】
請求項1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含む、基板処理システム。
【請求項5】
請求項4に記載の基板処理システムであって、
前記ドーズコントローラは、対応する感知された前記ガス温度に基づいて各弁のそれぞれの前記パルス幅を調整するように構成される、基板処理システム。
【請求項6】
請求項1に記載の基板処理システムであって、
前記ドーズコントローラは、前記基板に対する前記複数のインジェクタアセンブリの対応する場所に基づいて前記パルス幅を変化させるように構成される、基板処理システム。
【請求項7】
請求項1に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの対応する経験的データに基づいて前記パルス幅を変化させるように構成される、基板処理システム。
【請求項8】
請求項1に記載の基板処理システムであって、
前記マニホールド内の圧力を調節する圧力レギュレータをさらに備える、基板処理システム。
【請求項9】
請求項1に記載の基板処理システムであって、
前記ドーズコントローラは、前記弁のそれぞれが同じドーズを提供するように前記パルス幅を調整するように構成される、基板処理システム。
【請求項10】
請求項1に記載の基板処理システムであって、
前記ドーズコントローラは、前記弁のそれぞれが異なるドーズを提供するように前記パルス幅を調整するように構成される、基板処理システム。
【請求項11】
請求項1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む、基板処理システム。
【請求項12】
請求項1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、前記バイパス弁の入口が前記弁の前記入口に接続されている、基板処理システム。
【請求項13】
請求項12に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる対応する前記弁における圧力を感知する圧力センサをさらに含み、前記ドーズコントローラは、対応する感知された前記圧力に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
【請求項14】
請求項12に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる対応する前記弁におけるガス温度を感知する温度センサをさらに含み、前記ドーズコントローラは、対応する感知された前記ガス温度に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
【請求項15】
請求項12に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの各々について、前記弁と前記バイパス弁の所望の重なりに基づいて前記弁および前記バイパス弁のそれぞれの前記パルス幅を変化させるように構成される、基板処理システム。
【請求項16】
請求項1に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される、基板処理システム。
【発明の詳細な説明】
【技術分野】
【0001】
(関連出願の相互参照)
本出願は、2017年11月27日出願の米国仮出願第62/590,815号および2017年9月26日出願の米国仮出願第62/563,129号の利益を主張する。上記で参照された出願の全体の開示は、参照により本明細書に組み込まれる。
【0002】
本開示は、基板処理システムに関し、より具体的には、パルス幅変調されたドーズ制御による基板処理システムに関する。
【背景技術】
【0003】
ここで提供される背景の説明は、本開示の内容を概ね提示することを目的とする。この背景技術のセクションで説明されている範囲内における、現時点で名前を挙げられている発明者らによる研究、ならびに出願の時点で先行技術として別途みなされ得ない説明の態様は、明示または暗示を問わず、本開示に対抗する先行技術として認められない。
【0004】
基板処理システムを使用して、半導体ウエハなどの基板を処理することができる。基板処理の例には、エッチング、堆積、フォトレジスト除去などが挙げられる。処理中、基板は静電チャックなどの基板支持体上に配置され、1つまたは複数のプロセスガスが処理チャンバに導入され得る。
【0005】
1つまたは複数の処理ガスは、ガス供給システムによって処理チャンバに供給することができる。いくつかのシステムでは、ガス供給システムは、処理チャンバに設置されるシャワーヘッドに1つまたは複数の導管によって接続されたマニホールドを含む。大部分のガス供給システムは、5秒または10秒を超える期間中にガスを供給する。マニホールド内での混合、導管を通した供給、およびシャワーヘッドの流れ抵抗によって引き起こされる遅延により、迅速にガス混合物を変更したり、または空間的もしくは時間的にガスドーズを変化させたりすることが困難になる。さらに、ガス混合物は、ガス供給システムを通過する間に反応する可能性がある。原子層エッチング(ALE)、原子層堆積(ALD)などのいくつかのプロセスでは、典型的には1秒未満または数秒未満の非常に短い間隔で、異なるガス混合物を処理チャンバに供給する必要がある。
【発明の概要】
【0006】
基板を処理するための基板処理システムは、マニホールドと、処理チャンバに設置される複数のインジェクタアセンブリとを含む。複数のインジェクタアセンブリの各々は、マニホールドと流体連通し、入口および出口を含む弁を含む。ドーズコントローラは、複数のインジェクタアセンブリの各々に含まれる弁と連通するように構成され、かつ、複数のインジェクタアセンブリの各々に含まれる弁間の製造上の差異および複数のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つに基づいて、複数のインジェクタアセンブリの各々に含まれる弁に供給されるパルス幅を調整し、複数のインジェクタアセンブリの各々に含まれる弁から所望のドーズが供給されるように構成される。
【0007】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する感知された圧力に基づいて各弁のそれぞれのパルス幅を調整するように構成される。複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応する感知されたガス温度に基づいて各弁のそれぞれのパルス幅を調整するように構成される。
【0008】
他の特徴では、ドーズコントローラは、基板に対する複数のインジェクタアセンブリの対応する場所に基づいてパルス幅を変化させるように構成される。ドーズコントローラは、複数のインジェクタアセンブリの対応する経験的データに基づいてパルス幅を変化させるように構成される。圧力レギュレータは、マニホールド内の圧力を調節する。ドーズコントローラは、弁のそれぞれがほぼ同じドーズを提供するようにパルス幅を調整するように構成される。ドーズコントローラは、弁のそれぞれが異なるドーズを提供するようにパルス幅を調整するように構成される。複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。
【0009】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる対応する弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する感知された圧力に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる対応する弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応する感知されたガス温度に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。
【0010】
他の特徴では、ドーズコントローラは、複数のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりに基づいてそれぞれのパルス幅を変化させるように構成される。ドーズコントローラは、複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される。
【0011】
基板を処理するための基板処理システムは、マニホールドと、処理チャンバに設置される複数のインジェクタアセンブリとを含む。複数のインジェクタアセンブリの各々は、マニホールドと流体連通し、入口および出口を含む弁を含む。ドーズコントローラは、複数のインジェクタアセンブリの各々に含まれる弁と連通するように構成され、かつ、複数のインジェクタアセンブリの各々に含まれる弁に供給されるパルス幅を調整して空間的ドージングを行うとともに、前のプロセスによって引き起こされた上流のスキューの補償、および後のプロセスから予想される下流のスキューの事前補償の少なくとも1つを行うように構成される。
【0012】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する圧力に基づいてパルス幅を調整するように構成される。複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応するガス温度に基づいてパルス幅を調整するように構成される。
【0013】
他の特徴では、ドーズコントローラは、複数のインジェクタアセンブリの各々に含まれる弁間の製造上の差異および複数のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つに基づいて、パルス幅を変化させるように構成される。圧力レギュレータは、マニホールド内の圧力を調節する。複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する圧力に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。
【0014】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応するガス温度に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。ドーズコントローラは、複数のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりに基づいてパルス幅を変化させるように構成される。
【0015】
他の特徴では、ドーズコントローラは、複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される。
【0016】
基板を処理するための基板処理システムは、N個のマニホールドと、Y個のインジェクタアセンブリグループとを含み、YおよびNは、1よりも大きい整数である。Y個のインジェクタアセンブリグループの各々は、処理チャンバに設置されるN個のインジェクタアセンブリを含む。各インジェクタアセンブリグループに含まれるN個のインジェクタアセンブリの各々は、それぞれN個のマニホールドの1つと流体連通し、入口および出口を含む弁を含む。ドーズコントローラは、Y個のインジェクタアセンブリグループに出力されるパルス幅を制御し、基板の時間的ドージングを行うように構成される。
【0017】
他の特徴では、時間的ドージングは、Y個のインジェクタアセンブリグループの第1のグループを使用してN個のマニホールドの第1のマニホールドから第1のガス混合物を供給すると同時に、Y個のインジェクタアセンブリグループの第2のグループを使用してN個のマニホールドの第2のマニホールドから第2のガス混合物を供給することを含む。
【0018】
他の特徴では、N個のインジェクタアセンブリの各々は、N個のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する感知された圧力に基づいてパルス幅を調整するように構成される。N個のインジェクタアセンブリの各々は、N個のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応するガス温度に基づいてパルス幅を調整するように構成される。
【0019】
他の特徴では、ドーズコントローラは、N個のインジェクタアセンブリの各々に含まれる弁間の製造上の差異およびN個のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つに基づいて、パルス幅を変化させるように構成される。圧力レギュレータは、マニホールド内の圧力を調節する。
【0020】
他の特徴では、N個のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。N個のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。N個のインジェクタアセンブリの各々は、N個のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する圧力に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。
【0021】
他の特徴では、N個のインジェクタアセンブリの各々は、N個のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応するガス温度に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。
【0022】
他の特徴では、ドーズコントローラは、N個のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりに基づいてパルス幅を変化させるように構成される。
【0023】
基板を処理するための基板処理システムは、主ガス流を供給するマニホールドと、処理チャンバに設置される複数のインジェクタアセンブリとを含む。複数のインジェクタアセンブリの各々は、マニホールドと流体連通し、入口および出口を含む弁を含む。ドーズコントローラは、R個の各々が複数のインジェクタアセンブリの少なくとも1つを含むR個のグループを定義するように構成され、Rは、1よりも大きい整数であり、R個のグループの各々に含まれる弁と連通するように構成され、かつ、それぞれR個のグループに関連付けられた弁に出力されるパルス幅を調整することによって、主ガス流を主ガス流のR個の事前定義された流量比に対応するR個のガス流に分割するように構成される。R個の事前定義された流量比の少なくとも1つは、R個の事前定義された流量比の別の1つとは異なる。
【0024】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する圧力に基づいてパルス幅を調整するように構成される。複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応するガス温度に基づいてパルス幅を調整するように構成される。
【0025】
他の特徴では、ドーズコントローラは、複数のインジェクタアセンブリの各々に含まれる弁間の製造上の差異および複数のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つに基づいて、パルス幅を変化させるように構成される。圧力レギュレータは、マニホールド内の圧力を調節する。
【0026】
他の特徴では、複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。ドーズコントローラは、対応する圧力に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。
【0027】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知する温度センサをさらに含む。ドーズコントローラは、対応するガス温度に基づいて弁およびバイパス弁のパルス幅を調整するように構成される。
【0028】
他の特徴では、ドーズコントローラは、複数のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりに基づいてパルス幅を変化させるように構成される。ドーズコントローラは、複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される。
【0029】
基板を処理するための基板処理システムに流体を供給するための方法は、各々が入口および出口を含む弁を含む複数のインジェクタアセンブリを処理チャンバに配置することと、複数のインジェクタアセンブリをマニホールドに結合することと、複数のインジェクタアセンブリの各々に含まれる弁間の製造上の差異、および複数のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つに基づいて、複数のインジェクタアセンブリの各々に含まれる弁に供給されるパルス幅を調整し、複数のインジェクタアセンブリの各々に含まれる弁から所望のドーズを供給することとを含む。
【0030】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知することを含む。方法は、対応する圧力にさらに基づいてパルス幅を調整することを含む。方法は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することを含む。方法は、対応するガス温度にさらに基づいてパルス幅を調整することを含む。方法は、基板に対する複数のインジェクタアセンブリの対応する場所にさらに基づいてパルス幅を変化させることを含む。
【0031】
他の特徴では、方法は、複数のインジェクタアセンブリの対応する経験的データにさらに基づいてパルス幅を変化させることを含む。方法は、マニホールド内の圧力を調節することを含む。方法は、複数のインジェクタアセンブリの各々に対応するパルス幅を調整し、ほぼ同じドーズを提供することを含む。方法は、複数のインジェクタアセンブリの各々に対応するパルス幅を調整し、異なるドーズを提供することを含む。複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。
【0032】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知することと、対応する圧力にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。
【0033】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することと、対応するガス温度にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。
【0034】
他の特徴では、方法は、複数のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりにさらに基づいてパルス幅を変化させることを含む。方法は、複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供することを含む。
【0035】
基板を処理するための基板処理システムに流体を供給するための方法は、各々が入口および出口を含む弁を含む複数のインジェクタアセンブリを処理チャンバに配置することと、複数のインジェクタアセンブリをマニホールドに結合することと、複数のインジェクタアセンブリの各々に含まれる弁に供給されるパルス幅を調整して空間的ドージングを行うとともに、前のプロセスによって引き起こされた上流のスキューの補償、および後のプロセスから予想される下流のスキューの事前補償の少なくとも1つを行うこととを含む。
【0036】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知することを含む。方法は、対応する圧力にさらに基づいてパルス幅を調整することを含む。方法は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することを含む。方法は、対応するガス温度にさらに基づいてパルス幅を調整することを含む。
【0037】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁間の製造上の差異および複数のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つにさらに基づいて、パルス幅を変化させることを含む。方法は、マニホールド内の圧力を調節することを含む。他の特徴では、複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。他の特徴では、複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。
【0038】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知することと、対応する圧力にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。方法は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することと、対応するガス温度にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。
【0039】
他の特徴では、方法は、複数のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりにさらに基づいてパルス幅を変化させることを含む。方法は、複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供することを含む。
【0040】
基板を処理するための基板処理システムに流体を供給するための方法は、Y個のインジェクタアセンブリグループを処理チャンバに配置することを含む。Y個のインジェクタアセンブリグループの各々は、N個のインジェクタアセンブリを含む。方法は、Y個のインジェクタアセンブリグループに含まれるN個のインジェクタアセンブリの各々を、それぞれN個のマニホールドの1つに結合することを含む。N個のインジェクタアセンブリの各々は、入口および出口を含む弁を含む。ここで、YおよびNは、1よりも大きい整数である。方法は、Y個のインジェクタアセンブリグループに出力されるパルス幅を制御し、基板の時間的ドージングを行うことを含む。
【0041】
他の特徴では、時間的ドージングを行うことは、Y個のインジェクタアセンブリグループの1つを使用してN個のマニホールドの1つから第1のガス混合物を供給すると同時に、Y個のインジェクタアセンブリグループの別の1つを使用してN個のマニホールドの別の1つから異なるガス混合物を供給することを含む。方法は、N個のインジェクタアセンブリの各々に含まれる弁における圧力を感知することを含む。方法は、対応する圧力にさらに基づいてパルス幅を調整することを含む。方法は、N個のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することを含む。方法は、対応するガス温度にさらに基づいてパルス幅を調整することを含む。
【0042】
他の特徴では、方法は、N個のインジェクタアセンブリの各々に含まれる弁間の製造上の差異およびN個のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つにさらに基づいて、パルス幅を変化させることを含む。方法は、マニホールド内の圧力を調節することを含む。N個のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。N個のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。
【0043】
他の特徴では、方法は、N個のインジェクタアセンブリの各々に含まれる弁における圧力を感知することと、対応する圧力にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。方法は、N個のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することと、対応するガス温度にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。
【0044】
他の特徴では、方法は、N個のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりにさらに基づいてパルス幅を変化させることを含む。
【0045】
基板を処理するための基板処理システムに流体を供給するための方法は、マニホールドを使用して主ガス流を供給することと、複数のインジェクタアセンブリを処理チャンバに配置することとを含む。複数のインジェクタアセンブリの各々は、マニホールドと流体連通し、入口および出口を含む弁を含む。方法は、R個の各々が複数のインジェクタアセンブリの少なくとも1つを含むR個のグループを定義することであって、Rは、1よりも大きい整数であることと、R個のグループの各々に含まれる弁と連通することと、それぞれR個のグループに関連付けられた弁に出力されるパルス幅を調整することによって、主ガス流を主ガス流のR個の事前定義された流量比に対応するR個のガス流に分割することであって、R個の事前定義された流量比の少なくとも1つは、R個の事前定義された流量比の別の1つとは異なることとを含む。
【0046】
他の特徴では、複数のインジェクタアセンブリの各々は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知する圧力センサをさらに含む。方法は、対応する圧力にさらに基づいてパルス幅を調整することを含む。方法は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することを含む。方法は、対応するガス温度にさらに基づいてパルス幅を調整することを含む。
【0047】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁間の製造上の差異および複数のインジェクタアセンブリの各々に含まれる弁間の不均一性の少なくとも1つにさらに基づいてパルス幅を変化させることを含む。方法は、マニホールド内の圧力を調節することを含む。複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む。複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、バイパス弁の入口が弁の入口に接続されている。
【0048】
他の特徴では、方法は、複数のインジェクタアセンブリの各々に含まれる弁における圧力を感知することと、対応する圧力にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。方法は、複数のインジェクタアセンブリの各々に含まれる弁におけるガス温度を感知することと、対応するガス温度にさらに基づいて弁およびバイパス弁のパルス幅を調整することとを含む。
【0049】
他の特徴では、方法は、複数のインジェクタアセンブリの各々について、弁とバイパス弁の所望の重なりにさらに基づいてパルス幅を変化させることを含む。方法は、複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供することを含む。
【0050】
本開示を適用可能なさらなる領域は、詳細な説明、特許請求の範囲および図面から明らかになるであろう。詳細な説明および特定の例は、例示を目的とすることのみを意図しており、本開示の範囲を限定することを意図するものではない。
【図面の簡単な説明】
【0051】
本開示は、詳細な説明および添付の図面からより完全に理解されるであろう。
【0052】
図1図1は、本開示による、マルチインジェクタシャワーヘッドを含む基板処理システムの例を示す機能ブロック図である。
【0053】
図2図2は、本開示による、製造上の差異または他の不均一性を有する2つのインジェクタを用いてほぼ同じガスドーズを提供するために、パルス幅を意図的に変更する例を示すグラフである。
【0054】
図3図3は、マルチインジェクタシャワーヘッドにおいて、複数のゾーンにインジェクタを配置する例を示す図である。
【0055】
図4A図4Aは、複数のゾーンに配置された個々のインジェクタ間またはインジェクタグループ間のタイミングの変更を示すグラフである。
図4B図4Bは、複数のゾーンに配置された個々のインジェクタ間またはインジェクタグループ間のタイミングの変更を示すグラフである。
図4C図4Cは、複数のゾーンに配置された個々のインジェクタ間またはインジェクタグループ間のタイミングの変更を示すグラフである。
図4D図4Dは、複数のゾーンに配置された個々のインジェクタ間またはインジェクタグループ間のタイミングの変更を示すグラフである。
【0056】
図5図5は、本開示による、マルチインジェクタシャワーヘッドの例を示す機能ブロック図である。
図6図6は、本開示による、マルチインジェクタシャワーヘッドの例を示す機能ブロック図である。
図7図7は、本開示による、マルチインジェクタシャワーヘッドの例を示す機能ブロック図である。
【0057】
図8図8は、本開示による、アクティブシャワーヘッドを含む基板処理システムの例を示す機能ブロック図である。
【0058】
図9図9は、アクティブシャワーヘッドにおけるアクティブインジェクタの例を示す機能ブロック図である。
【0059】
図10図10は、本開示による、インジェクタを動作させるための方法を示すフローチャートである。
図11図11は、本開示による、インジェクタを動作させるための方法を示すフローチャートである。
図12図12は、本開示による、インジェクタを動作させるための方法を示すフローチャートである。
図13図13は、本開示による、インジェクタを動作させるための方法を示すフローチャートである。
【0060】
図14図14は、本開示による、上流および/または下流のスキューを補償するドーズコントローラおよび複数のインジェクタを含む処理チャンバの例を示す機能ブロック図である。
【0061】
図15図15は、本開示による、上流のスキューを補償するドーズコントローラおよび複数のインジェクタを含む処理チャンバの例を示す機能ブロック図である。
【0062】
図16図16は、本開示による、受入基板の上流のスキューを補償するための基板処理方法の例を示すフローチャートである。
【0063】
図17A図17Aは、本開示による、下流のスキューを補償するドーズコントローラおよび複数のインジェクタを含む処理チャンバの例を示す機能ブロック図である。
図17B図17Bは、本開示による、下流のスキューを補償するドーズコントローラおよび複数のインジェクタを含む処理チャンバの例を示す機能ブロック図である。
【0064】
図18図18は、本開示による、下流のスキューを補償するための基板処理方法の例を示すフローチャートである。
【0065】
図19A図19Aは、本開示による、空間的または時間的スキューの補償を可能にするために複数のインジェクタを1つまたは複数のグループに区分けする方法の例を示す図である。
図19B図19Bは、本開示による、空間的または時間的スキューの補償を可能にするために複数のインジェクタを1つまたは複数のグループに区分けする方法の例を示す図である。
図19C図19Cは、本開示による、空間的または時間的スキューの補償を可能にするために複数のインジェクタを1つまたは複数のグループに区分けする方法の例を示す図である。
【0066】
図20図20は、本開示による、空間的スキューのためのインジェクタタイミングの例を示すタイミング図である。
図21図21は、本開示による、空間的スキューのためのインジェクタタイミングの例を示すタイミング図である。
【0067】
図22図22は、本開示による、異なるガス混合物をインジェクタアセンブリに供給して時間ベースのスキューを可能にする複数のマニホールドを含む処理チャンバの例を示す部分機能ブロック図である。
【0068】
図23図23は、本開示による、図22のマニホールドの例の断面図である。
【0069】
図24図24は、本開示による、時間的スキューの例を示すタイミング図である。
【0070】
図25図25は、本開示による、ドーズコントローラと、グループ化され、事前定義された主流量比を提供するよう制御される複数のインジェクタとを有する処理チャンバの例を示す部分機能ブロック図である。
【0071】
図26図26は、複数のインジェクタグループを使用して主流量を複数のガス流に分割するための方法の例を示すフローチャートである。
【0072】
図面において、参照番号は、類似の要素および/または同一の要素を指すために繰り返し使用されることがある。
【発明を実施するための形態】
【0073】
遅延を短縮するために、本開示によるガス供給システムは、複数のガスインジェクタおよび共通のガス供給マニホールドを使用してガスを処理チャンバに供給する。インジェクタは、処理チャンバ内において基板上方の様々な場所に配置される。多くの場合、同じメーカー製の同じタイプのガスインジェクタ間には製造上の差異がある。インジェクタのドーズ(またはパルス幅)が比較的短い場合、同じパルス幅が使用されているときでも、製造上の差異により重大なドーズ変動および/または不均一性が生じる場合がある。弁間のドージングの差異を排除するほど十分に製造公差を減らすには、法外なコストがかかることが証明されている。
【0074】
パルスあたりのドーズは、以前のパルス幅および/または流量にも依存する。ALDおよびALEを実行するシステムでは、正確なドーズ制御が必要であり、異なるガス混合物の間で非常に高速な切り替えが実行される。いくつかの例では、ドーズが供給され、基板は2秒、1秒、0.5秒未満、またはさらに短い時間、ドーズに曝露される。さらに、前のパルス幅または流れに起因するドーズの変動は、ガス混合物の切り替えの頻度を考えると許容することができない。
【0075】
本開示によるシステムおよび方法は、処理チャンバ内に設置される複数のインジェクタを使用して処理チャンバ内へ正確なガスドーズを注入することを可能にする。インジェクタは、チョークまたは非チョーク流れ条件で動作させることができる。チョーク流れ条件で動作されるとき、インジェクタからの流れは下流の圧力の影響を受けない。非チョーク流れ条件で動作されるとき、インジェクタからの流れは下流の圧力の影響を受ける可能性がある。
【0076】
パルス幅は、インジェクタ間の製造上の差異および/または他の不均一性を補償するために、ドーズコントローラによって変更することができる。いくつかの例では、直前のインジェクタのドーズおよび流れなどへの依存性のために、不均一性が生じる場合がある。ドーズコントローラは、時間変化するガス濃度、空間的スキューを有するガスドーズおよび/または時間ベースのスキューを有するガスドーズを提供するためにも使用することができる。
【0077】
インジェクタがチョーク流れ条件で動作されるとき、流れは下流の圧力の影響を受けない。この例では、インジェクタの各々は、可変流量制限器(VFR)と固定流量制限器(FFR)を含む。例えば、遮断弁および制限オリフィスを使用することができる。インジェクタは、共通の供給マニホールドによって供給される。いくつかの例では、マニホールド圧力は、インジェクタのスイッチング周波数よりも高いサンプリングレートを有する圧力センサを用いて、マニホールドおよび/またはインジェクタにおいて測定される。いくつかの例では、マニホールド圧力は、インジェクタのスイッチング周波数よりも少なくとも10倍高いサンプリングレートを有する圧力センサを用いて、マニホールドおよび/またはインジェクタにおいて測定される。いくつかの例では、ガス温度は、インジェクタの各々において測定される。
【0078】
インジェクタの各々の圧力および温度は、ドーズコントローラに出力される。ドーズコントローラは、インジェクタの各々の弁のパルス幅を計算し、インジェクタ流量の設定流量値および流れ関数によって決定される正確な質量流量を提供する。流れ関数は、マニホールド圧力、インジェクタにおけるガス温度、幾何学的パラメータおよび/または経験的試験データに基づいている。いくつかの例では、ドーズのパルス幅は、ガス状態条件なしで定義され、所望のドーズ、および/または経験的データの組み合わせに基づいている。いくつかの例では、マニホールド内の圧力は、圧力レギュレータによってアクティブに制御される。
【0079】
インジェクタが非チョーク流れ条件で動作されると、流れは下流の圧力の影響を受ける可能性がある。この例では、インジェクタは、弁とバイパス弁を含む。いくつかの例では、マニホールドまたは弁におけるマニホールド圧力は、高いサンプリングレートを有する圧力センサを用いて測定される。いくつかの例では、ガス温度は、インジェクタにおいて測定される。
【0080】
測定された圧力および温度は、ドーズコントローラに出力される。ドーズコントローラは、各インジェクタの弁のパルス幅を計算し、インジェクタ流量の設定流量値および流れ関数によって決定される正確な質量流量を提供する。流れ関数は、マニホールド圧力、インジェクタにおけるガス温度、弁とバイパス弁の所望の重なり、幾何学的パラメータおよび/または経験的試験データに基づいている。いくつかの例では、ドーズのパルス幅は、ガス状態条件なしで定義され、所望のドーズ、弁とバイパス弁の所望の重なり、幾何学的パラメータおよび/または経験的試験データの組み合わせに基づいている。いくつかの例では、マニホールド内の圧力は、圧力レギュレータによってアクティブに制御される。
【0081】
次に図1を参照すると、本開示による基板処理システム50の例が示されている。基板処理システム50は、処理チャンバ52を含む。静電チャック(ESC)などの基板支持体54は、処理チャンバ52に配置される。処理の間、基板56は基板支持体54上に載置される。
【0082】
ガス供給システム60は、弁64-1、64-2、…、および64-N(集合的に弁64)に接続されるガス源62-1、62-2、…、および62-N(集合的にガス源62)と、質量流量コントローラ66-1、66-2、…、および66-N(集合的にMFC66)とを含む。MFC66は、ガス源62から、ガスが混合されるマニホールド68へのガスの流れを制御する。マニホールド68の出力は、任意の圧力レギュレータ70を介してマニホールド72に供給される。マニホールド72の出力は、マルチインジェクタシャワーヘッド74に入力される。図にはマニホールド68および72が示されているが、単一のマニホールドを使用することもできる。
【0083】
いくつかの例では、基板支持体54の温度は、抵抗ヒータ76および/または冷却剤チャネル78によって制御されてもよい。冷却剤チャネル78は、流体ストレージ82およびポンプ80から冷却流体を供給する。圧力を測定するために、圧力センサ90、91がそれぞれマニホールド68またはマニホールド72に配置され得る。弁92およびポンプ94を使用して、反応物を処理チャンバ52から排出し、かつ/または処理チャンバ52内の圧力を制御することができる。
【0084】
コントローラ96は、マルチインジェクタシャワーヘッド74によって提供されるドージングを制御するドーズコントローラ98を含む。コントローラ96はまた、ガス供給システム60からのガス供給を制御する。コントローラ96は、弁92およびポンプ94を使用して処理チャンバ内の圧力および/または反応物の排出を制御する。コントローラ96は、基板支持体のセンサ(図示せず)および/または冷却剤温度を測定するセンサ(図示せず)からの温度フィードバックに基づいて、基板支持体54および基板56の温度を制御する。
【0085】
次に図2を参照すると、同じメーカー製の同じタイプの2つのインジェクタは製造上の差異を有する可能性があり、同じパルス幅が使用されるとき、特にパルス幅が短いほど、同じドーズを提供しないことがあり得る。2つのインジェクタ(図2にインジェクタ1およびインジェクタ2として示す)が同じパルス幅で制御される場合、インジェクタ1はインジェクタ2よりも高い最大流量(例えば、標準立方センチメートル/分(sccm))で流れるため、異なるドーズが生成される。本開示によれば、同じドーズが望まれる場合、インジェクタ1およびインジェクタ2を制御する際に異なるパルス幅が使用される。本明細書で使用する場合、同じドーズという用語は、5%、3%、または1%以内のドージングを指す。同じドーズを提供するには、インジェクタ1に出力される第1のパルス幅をインジェクタ2に出力される第2のパルス幅よりも短くする。換言すれば、インジェクタ間の製造上の差異を解決するため、ドーズコントローラ98は、各インジェクタに出力されるパルス幅を補償する。各インジェクタが異なるドージングを提供するように制御されるときにも、同様の補償を行うことができる。いくつかの例では、インジェクタをベンチ試験して、ガスドージングの差異を決定する。他の例では、インジェクタを個々に作動し、ガスドージングを処理チャンバ内でその場で評価する。
【0086】
次に図3および図4A図4Dを参照すると、インジェクタは、複数のゾーンに配置され、同じドーズ、同じドーズタイミング、異なるドーズおよび/または異なるドーズタイミングを提供するように制御され得る。例えば、異なるドーズタイミングを使用して、処理される基板全体にガス波を生成することができる。換言すれば、ガスドーズは、中心に供給され、その後、半径方向の外側方向に(すなわち、縁部から中心へ向かう方向とは反対方向に)連続するゾーンに順次供給され得る。いくつかの例では、個々のインジェクタに対して異なるドーズを使用して、厚さの不均一性を排除することができる。
【0087】
図3では、複数のインジェクタ100(例えば、100-1、100-2、100-3)は、P個のゾーン(例えば、それぞれゾーン1、ゾーン2、ゾーン3)に配置されている。ここで、Pは、ゼロよりも大きい整数である。図4Aでは、複数のゾーンのインジェクタ100は、同じドーズおよび同じドーズタイミングを提供する。図4Bでは、複数のゾーンのインジェクタ100は、タイミングをずらして同じドーズを提供する。図4Aおよび図4Bのインジェクタ100は、上述のように同じドーズを提供するため個々に補償される。
【0088】
図4Cでは、複数のゾーンのインジェクタ100は、異なるドーズを提供し、同時に開始する。図4Dでは、複数のゾーンのインジェクタ100は、異なるドーズを提供し、同時に終了する。図4Cおよび図4Dのインジェクタ100は、上述のように異なるドーズを提供するため個々に補償される。
【0089】
次に図5図7に、マルチインジェクタシャワーヘッド74の様々な配置を示す。図5に示すように、マルチインジェクタシャワーヘッド74は、インジェクタアセンブリ150-1、150-2、…、および150-X(集合的にインジェクタアセンブリ150)(Xは1よりも大きい整数)を含んでいる。インジェクタアセンブリ150は、可変流量制限器(VFR)154-1、154-2、…、および154-X(集合的にVFR154)の入口における圧力を感知するために、それぞれ圧力センサ152-1、152-2、…、および152-X(集合的に圧力センサ152)を含む。VFR154のパルス幅は、以下でさらに説明されるように、ドーズコントローラ98によって制御される。インジェクタアセンブリ150は、ガス温度を感知する温度センサ156-1、156-2、…、および156-X(集合的に温度センサ156)をさらに含む。いくつかの例では、固定流量制限器(FFR)158-1、158-2、…、および158-X(集合的にFFR158)がVFR154の出口に接続される。
【0090】
図6では、マルチインジェクタシャワーヘッド74は、弁164-1、164-2、…、および164-X(集合的に弁164)の入口における圧力を感知するために、それぞれ圧力センサ162-1、162-2、…、および162-X(集合的に圧力センサ162)を含むインジェクタアセンブリ160-1、160-2、…、および160-X(集合的にインジェクタアセンブリ160)(Xは1よりも大きい整数)を含む。弁164のパルス幅は、以下でさらに説明されるように、ドーズコントローラ98によって制御される。インジェクタアセンブリ160は、ガス温度を感知する温度センサ166-1、166-2、…、および166-X(集合的に温度センサ166)をさらに含む。いくつかの例では、固定オリフィス168-1、168-2、…、および168-X(集合的に固定オリフィス168)が弁164の出口に接続される。
【0091】
図7に示すマルチインジェクタシャワーヘッド74は、それぞれ圧力センサ172-1、172-2、…、および172-X(集合的に圧力センサ170)を含むインジェクタアセンブリ170-1、170-2、…、および170-X(集合的にインジェクタアセンブリ170)(Xは1よりも大きい整数)を含んでいる。圧力センサ172は、弁174-1、174-2、…、および174-X(集合的に弁174)およびバイパス弁175-1、175-2、…、および175-X(集合的にバイパス弁175)の入口における圧力を感知する。弁174およびバイパス弁175のパルス幅は、以下でさらに説明されるように、ドーズコントローラ98によって制御される。インジェクタアセンブリ170は、ガス温度を感知する温度センサ176-1、176-2、…、および176-X(集合的に温度センサ176)をさらに含む。いくつかの例では、固定オリフィス178-1、178-2、…、および178-X(集合的に固定オリフィス178)が弁174の出力に配置される。
【0092】
次に図8図9に、図1のマルチインジェクタシャワーヘッド74を実施する他の方法を示す。図8において、アクティブシャワーヘッド200は、複数のインジェクタ204を含む。アクティブシャワーヘッド200の例は、本願の譲受人に譲渡されたXXXXXXXXX、XX、XXXX出願の米国特許出願第15/346,920号(Lam Docket No.4081-1US)でさらに図示および説明されており、この出願に言及することによりその全体が本明細書に組み込まれる。図9は、アクティブシャワーヘッド200のインジェクタ204の例を示しており、支持層250、アクチュエータ層254、ダイヤフラム層258、弁座層262およびガス分配層266が含まれている。理解され得るように、アクティブシャワーヘッド200は、複数のインジェクタを含む。いくつかの例では、アクティブシャワーヘッド200のインジェクタは、半導体ウエハなどの基板層に形成される。基板層を形成し、次に互いに結合してインジェクタを形成することができる。
【0093】
アクチュエータ層254は、ダイヤフラム272を選択的に移動させるアクチュエータ272を含む。いくつかの例では、ダイヤフラムは、任意の突出部273を含む。ダイヤフラム272は、矢印で示すように上下に移動してガスの流れを可能にするか、またはガスの流れを妨げる。ダイヤフラム層258は、空洞274および276を画定する。弁座層262は、空洞282および283を画定する。ガス分配層266は、開口部290ならびに空洞292および294を画定する。いくつかの例では、フィルタ286が空洞294に配置される。マニホールドまたは他のガス源からのガスは、開口部290に供給される。図9に示すようにダイヤフラム272が開いているとき、ガスは、空洞292、空洞282、空洞276を通り、フィルタ286(使用される場合)を通り、かつ空洞294を通って処理チャンバに流れ込む。アクチュエータ272は、その底面(使用される場合は突出部273)を入口284に付勢することによってダイヤフラム272を閉位置に移動させる。いくつかの例では、圧力センサ296および温度センサ298はそれぞれ、空洞282の圧力および温度を測定するために使用される。
【0094】
次に図10図13に、インジェクタを動作させるための方法を示す。図10では、方法300は、310において、複数のインジェクタの各インジェクタについて所望のガスドーズを決定することを含む。320では、圧力がマニホールドまたはガスインジェクタにおいて測定される。330では、ガス温度がガスインジェクタにおいて測定される。340では、各インジェクタに対してパルス幅またはパルス持続時間が流れの関係に基づいて調整され、所望のガスドーズを提供する。流れの関係は、測定された圧力および温度、バイパス弁と流量弁の重なり、幾何学的パラメータ、ならびに/または経験的データの関数である。
【0095】
図11では、ガス状態に関する十分な情報がない状態で、ドーズ調整が方法350で実行される。352において、各インジェクタについて所望のガスドーズが決定される。354では、各インジェクタに対してパルス幅またはパルス持続時間が流れの関係に基づいて調整され、所望のガスドーズを提供する。流れの関係は、バイパス弁と流量弁の重なり、幾何学的パラメータおよび/または経験的データの関数である。
【0096】
図12では、方法400は、410において、複数のインジェクタの各インジェクタについて所望のガスドーズを決定することを含む。420では、圧力がマニホールドまたはガスインジェクタにおいて測定される。430では、ガス温度がガスインジェクタにおいて測定される。440では、各インジェクタに対してパルス幅またはパルス持続時間が流れの関係に基づいて調整され、所望のガスドーズを提供する。流れの関係は、測定された圧力および温度、バイパス弁と流量弁の重なり、幾何学的パラメータ、ならびに/または経験的データの関数である。
【0097】
図13では、ガス状態に関する十分な情報がない状態で、ドーズ調整が方法450で実行される。方法450は、460において、複数のインジェクタの各インジェクタについて所望のガスドーズを決定することを含む。470では、各インジェクタに対してパルス幅またはパルス持続時間が流れの関係に基づいて調整され、所望のガスドーズを提供する。流れの関係は、バイパス弁と流量弁の重なり、幾何学的パラメータおよび/または経験的データの関数である。
【0098】
次に図14を参照すると、基板処理システム480は、上流および/または下流の基板の不均一性またはスキュー(本明細書では集合的にスキューと呼ばれる)を補償する複数のインジェクタ(上述のものなど)を含む1つまたは複数の処理チャンバを含む。スキューデータは、縁部領域よりも厚い中心領域、中心領域よりも厚い縁部領域、左右の差異、または平坦な表面からの他の差異を有する基板膜に対応し得る。スキューは、上流のプロセスによって引き起こされるか、または下流のプロセスから予想される予測スキューである可能性がある。スキューデータは、処理される同じ基板、試験基板、モデリング、および/または、処理される基板に先行する1つまたは複数の基板に対して生成することができる。スキューデータは、2つ以上の基板の関数(平均、移動平均、統計関数など)として生成することができる。
【0099】
処理チャンバ482は、堆積、エッチングまたは他の基板処理などの基板処理を基板に対して実行する。いくつかの例では、実行される基板処理は、下流の処理中に補償されるスキューを生成する。いくつかの例では、計測ステーション484は、処理チャンバ482の下流に位置しており、処理後の基板に対して1つまたは複数の測定を実行し、基板の計測データを生成する。いくつかの例では、計測ステーション484は、膜厚測定に基づいてスキューデータを生成し、かつ/または基板の表面モデルを生成する。計測ステーション484は、計測データを下流の処理チャンバ488に出力する。処理チャンバ488は、複数のインジェクタを含み、本明細書で説明されるドーズ制御を実行してスキューを補償する。処理チャンバ488は、計測データを使用して、処理チャンバ482によって導入されたスキューを相殺するために必要な補償の量を決定する。他の例では、計測ステーション484を省略し、モデリング、プロセスセットアップ中に行われた以前の計測測定結果、または他のデータに基づいて補償を実行する。
【0100】
例えば、処理チャンバ482は、膜の堆積または膜のエッチングを実行することができる。いくつかの例では、処理チャンバ482は、基板の中心または縁部でより厚い膜の堆積を実行する。いくつかの例では、処理チャンバ482は、基板の中心または縁部で、望まれるよりも多くの膜を除去するエッチングを実行する。計測データによってスキューを検出し、処理チャンバ488に関連付けられたドーズコントローラがスキューを補償する。
【0101】
基板を処理チャンバ488で処理した後、その下流の処理チャンバ490でさらに基板を処理してもよい。処理チャンバ490での処理後、計測ステーション492によって計測データを生成する。計測データは、処理チャンバ488にフィードバックされ、下流のスキューの事前補償を可能にする。他の例では、計測ステーション484を省略し、モデリング、セットアップ中に行われた以前の計測測定結果、または他のデータに基づいて補償を実行する。
【0102】
次に図15を参照すると、処理チャンバ488は、ドーズコントローラ504を有するコントローラ502を含む。ドーズコントローラ504は、計測ステーション484、データストア508または別のデータ源からスキューデータを受信する補償モジュール512をさらに含む。補償モジュール512は、受入基板の所望の空間マップ510をさらに受信する。補償モジュール512は、ドーズマッピングモジュール514に出力されるスキュー補償データを生成する。ドーズマッピングモジュール514は、補償モジュール512からのスキュー補償データに基づいてベースドーズマップ516を補償する。例えば、特定の領域においてエッチングまたは堆積を追加することまたは減少させることが望ましいとき、前駆体またはエッチングガスへの曝露の局所的なドーズまたは持続時間を、他の領域と比較してそれぞれ増加または減少させることができる。ドーズマッピングモジュール514は、補償ドーズマップをインジェクタ制御モジュール520に出力し、これに応じてインジェクタ制御モジュール520がインジェクタを制御する。
【0103】
図16に示す方法530は、受入基板のスキューを補償するために、スキューデータを使用して制御される複数のインジェクタを使用する基板処理方法である。540において、受入基板(または、典型的な基板もしくは予想される受入基板)に関して、基板のスキューデータ(空間マップまたはパラメータのセットなど)が受信される。544において、このスキューデータが、所望の空間マップまたはパラメータのセットと比較される。548において、上流のスキューに対する補償が決定される。564において、ベースドーズマップおよび補償に基づいて、補償ドーズマップが生成される。
【0104】
次に、図17Aおよび図17Bに示されるのは、1つまたは複数の下流のプロセスによって引き起こされるスキューを事前補償するように制御されるインジェクタを含む処理チャンバの例である。図17Aでは、処理チャンバ488は、ドーズコントローラ554を有するコントローラ552を含む。ドーズコントローラ554は、1つまたは複数の下流のプロセスによって引き起こされるスキューに対して送出基板を事前補償するために、所望のスキュー558を受信するドーズマッピングモジュール560を含む。ドーズマッピングモジュール560は、送出基板の所望のスキューに基づいてベースドーズマップ564を補償し、下流のスキューを事前補償する。ドーズマッピングモジュール560は、補償ドーズマップをインジェクタ制御モジュール570に出力する。
【0105】
図17Bでは、送出基板に対して所望のスキューを生成するためのシステムの例が示されている。ドーズコントローラ554は、空間マップまたはパラメータのセットを補償モジュール572に出力する計測ステーション492またはデータストア508をさらに含む。補償モジュール572は、下流の基板に対する所望の空間マップ574をさらに受信する。補償モジュール572は、送出基板に対する所望のスキューを生成する。理解され得るように、図17Bに示すシステムは、図17Aに示すシステムと組み合わせることができる。さらに、図17Aおよび図17Bに示すシステムは、図15に示すシステムと組み合わせることができる。
【0106】
図18に示す方法580は、1つまたは複数の下流のプロセスによって引き起こされるスキューを相殺するために、送出基板を補償するインジェクタを使用する基板処理方法である。582において、1つまたは複数の下流のプロセスに関するスキューデータが受信される。584において、このスキューデータが、所望の空間マップと比較される。588において、1つまたは複数の下流のプロセスのスキューを事前補償するため補償が決定される。594において、ベースドーズマップおよび1つまたは複数の下流のプロセスの補償に基づいて、補償ドーズマップが生成される。
【0107】
次に図19A図19Cを参照すると、インジェクタは、個々に場所を指定されて、かつ/またはグループに配置されて、様々なタイプのゾーンまたはゾーン形状を定義することができる。例えば、グループは、放射形ゾーン、パイ形ゾーンおよび/またはスライス形ゾーンに対応し得る。図19Aでは、インジェクタが放射形ゾーンZ1、Z2、Z3およびZ4にグループ化される。ここでは4つの放射形ゾーンが示されているが、放射形ゾーンの数はこれより多くても少なくてもよい。図19Bでは、インジェクタが放射形ゾーンおよび/またはパイ形ゾーンQ1、Q2、Q3およびQ4にグループ化される。ここでは4つのパイ形ゾーンが示されているが、パイ形ゾーンの数はこれより多くても少なくてもよい。図19Cでは、図19Aおよび図19Bの例に加えて、またはその代わりに使用できるスライスS1、S2、…、およびS10が示されている。いくつかの例では、スライスの辺が平行で、隣接するスライスに当接している。スライスの角度配向または角度オフセットは、基板のスロットまたは処理チャンバの所定の基準に対して必要に応じて変えることができる。スライスは、左右のスキューに対応するために使用することができる。
【0108】
図20および図21に示されているのは、個々のインジェクタまたはインジェクタグループによる空間ベースのスキューのためのインジェクタタイミングを示すタイミング図の例である。図20のタイミング図の1つまたは複数は、個々のインジェクタまたはインジェクタグループに異なるインジェクタドーズ制御タイミングを提供する。タイミングプロファイルAに関連付けられた個々のインジェクタまたはインジェクタグループでは、パルス幅が時間の関数としてゆっくりと減少する。タイミングプロファイルBおよびCに関連付けられた個々のインジェクタまたはインジェクタグループでは、パルス幅がタイミングプロファイルAと比較してわずかに速い速度で減少する。タイミングプロファイルDに関連付けられた個々のインジェクタまたはインジェクタグループでは、対応する期間中、パルス幅が固定されている。個々のインジェクタまたはインジェクタグループに関連付けられた可変パルス幅は、空間的および/または時間的ドージングの正確な制御を可能にする。
【0109】
図21では、タイミングプロファイルを使用して、異なる空間パターンを生じさせることができる。タイミングプロファイルDに関連付けられたインジェクタまたはインジェクタグループでは、対応する期間中、パルス幅が固定されている。タイミングプロファイルBおよびCに関連付けられたインジェクタまたはインジェクタグループでは、パルスの持続時間が、タイミングプロファイルDの持続時間の約1/2である。タイミングプロファイルAに関連付けられたインジェクタまたはインジェクタグループでは、一部の時間のパルス幅がタイミングプロファイルBおよびCと同様であり、他の時間においてはスキップされる。個々のインジェクタまたはインジェクタグループに関連付けられた可変パルス幅は、空間的および/または時間的ドージングの正確な制御を可能にする。
【0110】
次に図22に、処理チャンバ650の一部を、複数のマニホールド654-1、654-2、…、および654-N(集合的にマニホールド654)ならびにガス供給システム658-1、658-2、…658-N(集合的にガス供給システム658)を含めて示す。ここで、Nは、1よりも大きい整数である。マニホールド654は、異なるガス混合物をインジェクタアセンブリグループ660-1、660-2、…、および660-Y(集合的にインジェクタアセンブリグループ660)に供給する。ここで、Yは、1よりも大きい整数である。この図では、1つのマニホールドにつき1つのガス供給システムが示されているが、ガス供給システムの数はこれより多くても少なくてもよい。
【0111】
以下でさらに説明されるように、インジェクタアセンブリ660は、時間的スキューを生成するように構成され得る。インジェクタアセンブリグループ660-1、660-2、…、および660-Yの各々は、N個のインジェクタ662-11、662-12、…、および662-YNを含む。インジェクタアセンブリグループ660に含まれるN個のインジェクタの各々は、それぞれN個のマニホールド654-1、654-2、…、および654-Nの1つに接続される。この構成により、N個のマニホールド654に供給されたガス混合物をインジェクタアセンブリグループ660の各々に供給することが可能になる。
【0112】
次に図23を参照すると、マニホールド654-1、654-2、…、および654-Nの各々は、プレナム668-1、668-2、…、および668-N(集合的にプレナム668)を定義し、複数の貫通孔670を含む。いくつかの例では、プレナム668は、概して平らな円筒状である。プレナム668-1からのガス混合物の分離を維持するために、対応する位置合わせされた貫通孔673を有するポスト672が下部プレナム668-2…668-Nに配置されている。これにより、プレナム668-1内のガス混合物が貫通孔670および673を通って移動し、プレナム668-2…668-N内で混ざり合うことなく対応するインジェクタに到達することが可能となる。同様のアプローチは、プレナム668の他のものにも使用される。この図では、マニホールドの特定の配置が示されているが、他のマニホールド配置を使用することもできる。
【0113】
図22図23に示される処理チャンバを使用して、時間的スキューを実行することができる。時間的スキューの一例を図24に示す。第1の場所1(1つまたは複数のインジェクタアセンブリを含む)では、ガス混合物は、時間t1で第1のガス混合物1から第2のガス混合物2に切り替えられ、次に時間t3で第3のガス混合物3に切り替えられる。第2の場所2(1つまたは複数のインジェクタアセンブリを含む)では、ガス混合物は、時間t2で第1のガス混合物1から第2のガス混合物2に切り替えられ、次に時間t4で第3のガス混合物3に切り替えられる。第3の場所3(1つまたは複数のインジェクタアセンブリを含む)では、ガス混合物は、時間t3で第1のガス混合物1から第2のガス混合物2に切り替えられ、次に時間t4で第3のガス混合物3に切り替えられる。第4の場所4(1つまたは複数のインジェクタアセンブリを含む)では、ガス混合物は、時間t4で第1のガス混合物1から第2のガス混合物2に切り替えられ、次に時間t5で第3のガス混合物3に切り替えられる。
【0114】
例えば、第1の場所1は中央ゾーンに対応することができ、場所2~4は中央ゾーンの周りの、半径が大きくなる放射形ゾーンに対応することができる(他の形状を有する他のインジェクタグループにも、同じアプローチを使用することができる)。理解され得るように、使用されるガス混合物はプロセスに依存し、堆積ガス混合物、エッチングガス混合物、パージガス、または他のガス混合物を含み得る。例えば、ガス混合物1はALDまたはALEプロセスのための第1の前駆体を含んでいてもよく、第2のガス混合物はパージガスを含んでいてもよく、第3のガス混合物はALDまたはALEプロセスのための第2の前駆体を含んでいてもよい。
【0115】
次に図25を参照すると、処理チャンバ700は、本明細書で説明される様々な方法でグループ化される複数のインジェクタ722を含む。インジェクタ722は、ドーズコントローラ720によって制御され、事前定義された主流量比を提供する。主流量は、ガス源710およびMFC714を含むガス供給システム708によってマニホールド718に供給される。図25に示す例では、インジェクタ722は、基板のR個の空間領域に関連付けられるR個のグループ(GRP1、GRP2、…およびGRP・R)に分けられる。R個のグループの各々に含まれるインジェクタの数は、同じであっても異っていてもよい。
【0116】
一例では、所定の2つ以上の異なる主流量比を基板のR個の空間領域に提供することが望ましい。例えば、エッチングまたは堆積プロセスにおいて、中心または縁部領域に供給するエッチングガスまたは堆積前駆体ガスを、基板の他の領域に供給するよりも多くすることが必要な場合がある。R個のグループに含まれるインジェクタへのパルス幅を変化させることにより、マニホールド718での所定の比の主流を、フロースプリッタを必要とせずにR個の空間領域に供給することが可能になる。
【0117】
従来、マニホールド718から流れるガスは、フロースプリッタを使用して分割されていた。いくつかの例では、フロースプリッタはソニックノズルを含む。ただし、フロースプリッタを使用するシステムは、定常状態の流れ条件に到達するまでに長い時間がかかる。したがって、フロースプリッタは、ALDおよびALEプロセスのような、空間制御の改善および/または高速ガス交換を必要とするプロセスでは使用が困難である。
【0118】
R個のグループに関連付けられるインジェクタは、R個のパルス幅を使用して制御され、マニホールド718に供給されるR個の所定の主流量比を提供する。ここで、Rは、ゼロよりも大きい整数である。
【0119】
例えば、R個のグループは、そのすべてが、同じパルス幅を使用してパルス化され、同じドーズを供給することができる(ただし、各グループが同じ数のインジェクタを有すると仮定する)。あるいは、2つ以上の異なるパルス幅を使用して、R個のグループの少なくとも一部について比率を変化させることができる。例えば、R個のグループのうち1つは、パルス幅をR個のグループの他のもののパルス幅の1/2にしてパルス化され、R個のグループのうちその1つへの流量を少なくするとともに、R個のグループの他のものへの流量を多くすることができる。別の例では、R個のグループのすべてに対するパルス幅を、増加する空間プロファイル、減少する空間プロファイル、ベル形プロファイル、逆ベル形プロファイルまたは他のガスドージングプロファイルを提供するように変化させる。
【0120】
図26に示す方法750は、主ガス流を、基板のR個の空間領域に供給されるR個のガス流に分割するための方法である。754において、基板のR個の空間領域の各々に供給される主ガス流の比率を決定する。758において、基板のR個の空間領域に対応するインジェクタのパルス幅を決定して、R個の比率を提供する。762において、主ガス流量をマニホールドに供給する。766において、マニホールドに供給されるガス流量を、R個の空間領域内のインジェクタに対応するR個のパルス幅値を使用して分割する。
【0121】
前述の説明は、本質的に単に例示的であり、本開示、その適用、または使用を限定する意図は全くない。本開示の広範な教示は、様々な形態で実施することができる。したがって、本開示は具体的な例を含むが、図面、明細書、および以下の特許請求の範囲を検討すると他の変更が自明となるので、本開示の真の範囲はそのような例に限定されるべきでない。方法における1つまたは複数のステップは、本開示の原理を変更することなく、異なる順序で(または同時に)実行され得ることを理解されたい。さらに、実施形態の各々は、特定の特徴を有するものとして上述されているが、本開示の任意の実施形態に関連して説明されるそれらの特徴の任意の1つまたは複数を、他のいずれかの実施形態において実施してもよく、および/または、明示的な説明がない場合でも、他のいずれかの実施形態の特徴と組み合わせてもよい。換言すれば、説明されている実施形態は、相互に排他的なものではなく、1つまたは複数の実施形態を互いに入れ替えたものは、引き続き本開示の範囲に含まれる。
【0122】
要素間(例えば、モジュール、回路素子、半導体層などの間)の空間的関係および機能的関係は、「接続」、「係合」、「結合」、「隣接」、「隣」、「上部」、「上」、「下」、および「配置」を含む、様々な用語を使用して説明されている。「直接」と明示的に説明されている場合を除き、上記開示において第1の要素と第2の要素の間の関係が説明されているとき、その関係は、第1の要素と第2の要素の間に他の要素が介在しない直接的な関係であり得るが、第1の要素と第2の要素の間に1つまたは複数の要素が(空間的または機能的に)介在する間接的な関係でもあり得る。本明細書で使用する場合、A、B、およびCの少なくとも1つという表現は、非排他的論理ORを使用した論理(AまたはBまたはC)の意味で解釈されるべきであり、「Aの少なくとも1つ、Bの少なくとも1つ、およびCの少なくとも1つ」の意味で解釈されるべきではない。
【0123】
いくつかの実施態様では、コントローラは、上述した例の一部であり得るシステムの一部である。そのようなシステムは、1つまたは複数の処理ツール、1つまたは複数のチャンバ、1つまたは複数の処理用プラットフォーム、および/または特定の処理構成要素(ウエハ台座、ガス流システムなど)を含む半導体処理装置を備えることができる。これらのシステムは、半導体ウエハまたは基板の処理前、処理中、および処理後のシステム動作を制御するための電子機器と一体化されてもよい。そのような電子機器は「コントローラ」と呼ばれることがあり、1つまたは複数のシステムの様々な構成要素または副部品を制御してもよい。コントローラは、処理要件および/またはシステムのタイプに応じて、本明細書に開示されているプロセスのいずれかを制御するようにプログラムされてもよい。そのようなプロセスには、処理ガスの供給、温度設定(例えば、加熱および/または冷却)、圧力設定、真空設定、電力設定、無線周波数(RF)発生器設定、RF整合回路設定、周波数設定、流量設定、流体供給設定、位置および動作設定、ツールに対するウエハ搬送(搬入および搬出)、ならびに、特定のシステムと接続または連動する他の搬送ツールおよび/またはロードロックに対するウエハ搬送(搬入および搬出)が含まれる。
【0124】
広義には、コントローラは、命令を受信し、命令を発行し、動作を制御し、クリーニング動作を可能にし、エンドポイント測定を可能にするなどの様々な集積回路、ロジック、メモリ、および/またはソフトウェアを有する電子機器として定義されてもよい。集積回路は、プログラム命令を記憶するファームウェアの形式のチップ、デジタル信号プロセッサ(DSP)、特定用途向け集積回路(ASIC)として定義されたチップ、および/または、1つまたは複数のマイクロプロセッサ、すなわちプログラム命令(例えば、ソフトウェア)を実行するマイクロコントローラを含んでもよい。プログラム命令は、様々な個々の設定(またはプログラムファイル)の形式でコントローラに通信される命令であって、特定のプロセスを半導体ウエハ上で、または半導体ウエハ用に、またはシステムに対して実行するための動作パラメータを定義してもよい。動作パラメータは、いくつかの実施形態では、1つまたは複数の層、材料、金属、酸化物、ケイ素、二酸化ケイ素、表面、回路、および/またはウエハダイの製作における1つまたは複数の処理ステップを実現するためプロセスエンジニアによって定義されるレシピの一部であってもよい。
【0125】
コントローラは、いくつかの実施態様では、システムと統合されるか、システムに結合されるか、他の方法でシステムにネットワーク接続されるコンピュータの一部であってもよく、またはそのようなコンピュータに結合されてもよく、またはそれらの組み合わせであってもよい。例えば、コントローラは、「クラウド」内にあってもよいし、ファブホストコンピュータシステムのすべてもしくは一部であってもよい。これにより、ウエハ処理のリモートアクセスが可能となる。コンピュータは、システムへのリモートアクセスを可能にして、製作動作の現在の進捗状況を監視し、過去の製作動作の履歴を検討し、複数の製作動作から傾向または性能基準を検討し、現在の処理のパラメータを変更し、現在の処理に続く処理ステップを設定するか、または新しいプロセスを開始してもよい。いくつかの例では、リモートコンピュータ(例えば、サーバ)は、ネットワークを通じてプロセスレシピをシステムに提供することができる。そのようなネットワークは、ローカルネットワークまたはインターネットを含んでいてもよい。リモートコンピュータは、パラメータおよび/または設定のエントリまたはプログラミングを可能にするユーザインターフェースを含んでもよく、そのようなパラメータおよび/または設定は、その後リモートコンピュータからシステムに通信される。いくつかの例では、コントローラは命令をデータの形式で受信する。そのようなデータは、1つまたは複数の動作中に実施される各処理ステップのためのパラメータを特定するものである。パラメータは、実施されるプロセスのタイプ、およびコントローラが連動または制御するように構成されるツールのタイプに特有のものであってもよいことを理解されたい。したがって、上述したように、コントローラは、例えば、互いにネットワーク接続され共通の目的(本明細書に記載のプロセスおよび制御など)に向けて協働する1つまたは複数の個別のコントローラを備えることによって分散されてもよい。このような目的のための分散型コントローラの例として、チャンバ上の1つまたは複数の集積回路であって、(例えば、プラットフォームレベルで、またはリモートコンピュータの一部として)遠隔配置されておりチャンバにおけるプロセスを制御するよう組み合わせられる1つまたは複数の集積回路と通信するものが挙げられるであろう。
【0126】
限定はしないが、例示的なシステムは、プラズマエッチングチャンバまたはモジュール、堆積チャンバまたはモジュール、スピンリンスチャンバまたはモジュール、金属めっきチャンバまたはモジュール、洗浄チャンバまたはモジュール、ベベルエッジエッチングチャンバまたはモジュール、物理気相堆積(PVD)チャンバまたはモジュール、化学気相堆積(CVD)チャンバまたはモジュール、原子層堆積(ALD)チャンバまたはモジュール、原子層エッチング(ALE)チャンバまたはモジュール、イオン注入チャンバまたはモジュール、追跡チャンバまたはモジュール、ならびに半導体ウエハの製作および/または製造に関連するか使用されてもよい任意の他の半導体処理システムを含んでもよい。
【0127】
上述のように、ツールによって実施される1つまたは複数のプロセスステップに応じて、コントローラは、1つまたは複数の他のツール回路もしくはモジュール、他のツール構成要素、クラスタツール、他のツールインターフェース、隣接するツール、近接するツール、工場全体に設置されるツール、メインコンピュータ、別のコントローラ、または半導体製造工場においてツール場所および/もしくはロードポートに対してウエハの容器を搬入および搬出する材料搬送に使用されるツールと通信してもよい。また、本開示は以下の形態として実現できる。
[形態1]
基板を処理するための基板処理システムであって、
マニホールドと、
処理チャンバに設置される複数のインジェクタアセンブリであって、
前記複数のインジェクタアセンブリの各々は、前記マニホールドと流体連通し、入口および出口を含む弁を含む複数のインジェクタアセンブリと、
ドーズコントローラと
を備えており、
前記ドーズコントローラが、
前記複数のインジェクタアセンブリの各々に含まれる前記弁と連通するように構成され、かつ、
前記複数のインジェクタアセンブリの各々に含まれる前記弁間の製造上の差異と前記複数のインジェクタアセンブリの各々に含まれる前記弁間の不均一性との少なくとも1つに基づいて、前記複数のインジェクタアセンブリの各々に含まれる前記弁に供給されるパルス幅を調整し、前記複数のインジェクタアセンブリの各々に含まれる前記弁から所望のドーズが供給されるように構成される、
基板処理システム。
[形態2]
形態1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含む、基板処理システム。
[形態3]
形態2に記載の基板処理システムであって、
前記ドーズコントローラは、対応する感知された前記圧力に基づいて各弁の前記それぞれのパルス幅を調整するように構成される、基板処理システム。
[形態4]
形態1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含む、基板処理システム。
[形態5]
形態4に記載の基板処理システムであって、
前記ドーズコントローラは、対応する感知された前記ガス温度に基づいて各弁の前記それぞれのパルス幅を調整するように構成される、基板処理システム。
[形態6]
形態1に記載の基板処理システムであって、
前記ドーズコントローラは、前記基板に対する前記複数のインジェクタアセンブリの対応する場所に基づいて前記パルス幅を変化させるように構成される、基板処理システム。
[形態7]
形態1に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの対応する経験的データに基づいて前記パルス幅を変化させるように構成される、基板処理システム。
[形態8]
形態1に記載の基板処理システムであって、
前記マニホールド内の圧力を調節する圧力レギュレータをさらに備える、基板処理システム。
[形態9]
形態1に記載の基板処理システムであって、
前記ドーズコントローラは、前記弁のそれぞれがほぼ同じドーズを提供するように前記パルス幅を調整するように構成される、基板処理システム。
[形態10]
形態1に記載の基板処理システムであって、
前記ドーズコントローラは、前記弁のそれぞれが異なるドーズを提供するように前記パルス幅を調整するように構成される、基板処理システム。
[形態11]
形態1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む、基板処理システム。
[形態12]
形態1に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、前記バイパス弁の入口が前記弁の前記入口に接続されている、基板処理システム。
[形態13]
形態12に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる対応する前記弁における圧力を感知する圧力センサをさらに含み、前記ドーズコントローラは、対応する感知された前記圧力に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態14]
形態12に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる対応する前記弁におけるガス温度を感知する温度センサをさらに含み、前記ドーズコントローラは、対応する感知された前記ガス温度に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態15]
形態12に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの各々について、前記弁と前記バイパス弁の所望の重なりに基づいて前記それぞれのパルス幅を変化させるように構成される、基板処理システム。
[形態16]
形態1に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される、基板処理システム。
[形態17]
基板を処理するための基板処理システムであって、
マニホールドと、
処理チャンバに設置される複数のインジェクタアセンブリであって、前記複数のインジェクタアセンブリの各々は、前記マニホールドと流体連通し、入口および出口を含む弁を含む複数のインジェクタアセンブリと、
ドーズコントローラと
を備えており、
前記ドーズコントローラが、
前記複数のインジェクタアセンブリの各々に含まれる前記弁と連通するように構成され、かつ、
前記複数のインジェクタアセンブリの各々に含まれる前記弁に供給されるパルス幅を調整して空間的ドージングを行うとともに、
前のプロセスによって引き起こされた上流のスキューの補償、および
後のプロセスから予想される下流のスキューの事前補償
の少なくとも1つを行うように構成される、
基板処理システム。
[形態18]
形態17に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含む、基板処理システム。
[形態19]
形態18に記載の基板処理システムであって、
前記ドーズコントローラは、対応する前記圧力に基づいて前記パルス幅を調整するように構成される、基板処理システム。
[形態20]
形態17に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含む、基板処理システム。
[形態21]
形態20に記載の基板処理システムであって、
前記ドーズコントローラは、対応する前記ガス温度に基づいて前記パルス幅を調整するように構成される、基板処理システム。
[形態22]
形態17に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの各々に含まれる前記弁間の製造上の差異および前記複数のインジェクタアセンブリの各々に含まれる前記弁間の不均一性の少なくとも1つに基づいて、前記パルス幅を変化させるように構成される、基板処理システム。
[形態23]
形態17に記載の基板処理システムであって、
前記マニホールド内の圧力を調節する圧力レギュレータをさらに備える、基板処理システム。
[形態24]
形態17に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む、基板処理システム。
[形態25]
形態17に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、前記バイパス弁の入口が前記弁の入口に接続されている、基板処理システム。
[形態26]
形態25に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含み、前記ドーズコントローラは、対応する前記圧力に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態27]
形態25に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含み、前記ドーズコントローラは、対応する前記ガス温度に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態28]
形態25に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの各々について、前記弁と前記バイパス弁の所望の重なりに基づいて前記パルス幅を変化させるように構成される、基板処理システム。
[形態29]
形態17に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される、基板処理システム。
[形態30]
基板を処理するための基板処理システムであって、
N個のマニホールドと、
Y個のインジェクタアセンブリグループであって、YおよびNは、1よりも大きい整数であり、前記Y個のインジェクタアセンブリグループの各々は、処理チャンバに設置されるN個のインジェクタアセンブリを含み、各インジェクタアセンブリグループに含まれる前記N個のインジェクタアセンブリの各々は、それぞれ前記N個のマニホールドの1つと流体連通し、入口および出口を含む弁を含むY個のインジェクタアセンブリグループと、
前記Y個のインジェクタアセンブリグループに出力されるパルス幅を制御し、前記基板の時間的ドージングを行うように構成されるドーズコントローラと
を備える、基板処理システム。
[形態31]
形態30に記載の基板処理システムであって、
前記時間的ドージングは、前記Y個のインジェクタアセンブリグループの第1のグループを使用して前記N個のマニホールドの第1のマニホールドから第1のガス混合物を供給すると同時に、前記Y個のインジェクタアセンブリグループの第2のグループを使用して前記N個のマニホールドの第2のマニホールドから第2のガス混合物を供給することを含む、基板処理システム。
[形態32]
形態30に記載の基板処理システムであって、
前記N個のインジェクタアセンブリの各々は、前記N個のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含む、基板処理システム。
[形態33]
形態32に記載の基板処理システムであって、
前記ドーズコントローラは、対応する感知された圧力に基づいて前記パルス幅を調整するように構成される、基板処理システム。
[形態34]
形態30に記載の基板処理システムであって、
前記N個のインジェクタアセンブリの各々は、前記N個のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含む、基板処理システム。
[形態35]
形態34に記載の基板処理システムであって、
前記ドーズコントローラは、対応する前記ガス温度に基づいて前記パルス幅を調整するように構成される、基板処理システム。
[形態36]
形態30に記載の基板処理システムであって、
前記ドーズコントローラは、前記N個のインジェクタアセンブリの各々に含まれる前記弁間の製造上の差異および前記N個のインジェクタアセンブリの各々に含まれる前記弁間の不均一性の少なくとも1つに基づいて、前記パルス幅を変化させるように構成される、基板処理システム。
[形態37]
形態30に記載の基板処理システムであって、
前記マニホールド内の圧力を調節する圧力レギュレータをさらに備える、基板処理システム。
[形態38]
形態30に記載の基板処理システムであって、
前記N個のインジェクタアセンブリの各々は、制限オリフィスをさらに含む、基板処理システム。
[形態39]
形態30に記載の基板処理システムであって、
前記N個のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、前記バイパス弁の入口が前記弁の入口に接続されている、基板処理システム。
[形態40]
形態39に記載の基板処理システムであって、
前記N個のインジェクタアセンブリの各々は、前記N個のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含み、前記ドーズコントローラは、対応する前記圧力に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態41]
形態39に記載の基板処理システムであって、
前記N個のインジェクタアセンブリの各々は、前記N個のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含み、前記ドーズコントローラは、対応する前記ガス温度に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態42]
形態39に記載の基板処理システムであって、
前記ドーズコントローラは、前記N個のインジェクタアセンブリの各々について、前記弁と前記バイパス弁の所望の重なりに基づいて前記パルス幅を変化させるように構成される、基板処理システム。
[形態43]
基板を処理するための基板処理システムであって、
主ガス流を供給するマニホールドと、
処理チャンバに設置される複数のインジェクタアセンブリであって、前記複数のインジェクタアセンブリの各々は、前記マニホールドと流体連通し、入口および出口を含む弁を含む複数のインジェクタアセンブリと、
ドーズコントローラと
を備えており、
前記ドーズコントローラが、
R個の各々が前記複数のインジェクタアセンブリの少なくとも1つを含むR個のグループを定義するように構成され、Rは、1よりも大きい整数であり、
前記R個のグループの各々に含まれる前記弁と連通するように構成され、かつ、
それぞれ前記R個のグループに関連付けられた前記弁に出力されるパルス幅を調整することによって、前記主ガス流を前記主ガス流のR個の事前定義された流量比に対応するR個のガス流に分割するようにように構成され、前記R個の事前定義された流量比の少なくとも1つは、前記R個の事前定義された流量比の別の1つとは異なる、
基板処理システム。
[形態44]
形態43に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含む、基板処理システム。
[形態45]
形態44に記載の基板処理システムであって、
前記ドーズコントローラは、対応する前記圧力に基づいて前記パルス幅を調整するように構成される、基板処理システム。
[形態46]
形態43に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含む、基板処理システム。
[形態47]
形態46に記載の基板処理システムであって、
前記ドーズコントローラは、対応する前記ガス温度に基づいて前記パルス幅を調整するように構成される、基板処理システム。
[形態48]
形態43に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの各々に含まれる前記弁間の製造上の差異および前記複数のインジェクタアセンブリの各々に含まれる前記弁間の不均一性の少なくとも1つに基づいて、前記パルス幅を変化させるように構成される、基板処理システム。
[形態49]
形態43に記載の基板処理システムであって、
前記マニホールド内の圧力を調節する圧力レギュレータをさらに備える、基板処理システム。
[形態50]
形態43に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、制限オリフィスをさらに含む、基板処理システム。
[形態51]
形態43に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、さらにバイパス弁を含んでおり、前記バイパス弁の入口が前記弁の入口に接続されている、基板処理システム。
[形態52]
形態51に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁における圧力を感知する圧力センサをさらに含み、前記ドーズコントローラは、対応する前記圧力に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態53]
形態51に記載の基板処理システムであって、
前記複数のインジェクタアセンブリの各々は、前記複数のインジェクタアセンブリの各々に含まれる前記弁におけるガス温度を感知する温度センサをさらに含み、前記ドーズコントローラは、対応する前記ガス温度に基づいて前記弁および前記バイパス弁の前記パルス幅を調整するように構成される、基板処理システム。
[形態54]
形態51に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリの各々について、前記弁と前記バイパス弁の所望の重なりに基づいて前記パルス幅を変化させるように構成される、基板処理システム。
[形態55]
形態43に記載の基板処理システムであって、
前記ドーズコントローラは、前記複数のインジェクタアセンブリによって出力されるドーズを変化させ、空間的スキューを提供するように構成される、基板処理システム。
図1
図2
図3
図4A
図4B
図4C
図4D
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17A
図17B
図18
図19A
図19B
図19C
図20
図21
図22
図23
図24
図25
図26