(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-01-18
(45)【発行日】2024-01-26
(54)【発明の名称】多成分型熱伝導性シリコーンゲル組成物、熱伝導性部材および放熱構造体
(51)【国際特許分類】
C08L 83/07 20060101AFI20240119BHJP
C08K 5/5415 20060101ALI20240119BHJP
C08L 83/04 20060101ALI20240119BHJP
C08L 83/05 20060101ALI20240119BHJP
C09K 5/14 20060101ALI20240119BHJP
H01L 23/36 20060101ALI20240119BHJP
H01M 10/613 20140101ALI20240119BHJP
H01M 10/653 20140101ALI20240119BHJP
【FI】
C08L83/07
C08K5/5415
C08L83/04
C08L83/05
C09K5/14 102E
H01L23/36 D
H01M10/613
H01M10/653
(21)【出願番号】P 2021511420
(86)(22)【出願日】2020-03-18
(86)【国際出願番号】 JP2020012000
(87)【国際公開番号】W WO2020203299
(87)【国際公開日】2020-10-08
【審査請求日】2023-03-06
(31)【優先権主張番号】P 2019065809
(32)【優先日】2019-03-29
(33)【優先権主張国・地域又は機関】JP
(73)【特許権者】
【識別番号】719000328
【氏名又は名称】ダウ・東レ株式会社
(74)【代理人】
【識別番号】100108453
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】太田 健治
【審査官】小森 勇
(56)【参考文献】
【文献】国際公開第2019/021826(WO,A1)
【文献】特開2011-144234(JP,A)
【文献】国際公開第2018/016566(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08L 83/00-83/16
C08K 5/5415
H01L 23/36
H01M 10/613
H01M 10/653
C09K 5/14
(57)【特許請求の範囲】
【請求項1】
(A)以下の成分(A-1)および成分(A-2)からなるアルケニル基含有オルガノポリシロキサン
(A-1)シロキサン重合度が5~100の範囲であるアルケニル基含有オルガノポリシロキサン、
(A-2)シロキサン重合度が400
~4470であるアルケニル基含有オルガノポリシロキサン、
(B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
(C)触媒量のヒドロシリル化反応用触媒、
(D)熱伝導性充填剤、
(E)1種類以上のシランカップリング剤またはその加水分解縮合物、および
(F)分子鎖末端に加水分解性シリル基を有するオルガノポリシロキサン
を含有する(I)液および(II)液からなり、
(I)液中における成分(D)の含有量が成分(A-1)100質量部に対して、600~3,500質量部の範囲であり、
(II)液中における成分(D)の含有量が成分(A-1)100質量部に対して、600~3,500質量部の範囲であり、かつ、
成分(A-1)と成分(A-2)が同一系内に存在し、これら混合ポリマーの25℃における粘度が、成分(A-1)の25℃における粘度の1.15~5.5倍の範囲内である、多成分型熱伝導性シリコーンゲル組成物。
【請求項2】
上記の成分(A-1)の25℃における粘度が10~100mPa・sの範囲であり、
上記の成分(A-2)の25℃における粘度が10,000mPa・s以上であり、かつ、
成分(A-1)と成分(A-2)が同一系内に存在し、これら混合ポリマーの25℃における粘度が成分(A-1)の1.2~2.0倍の範囲内である、請求項1に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項3】
熱伝導率が2.0W/mK以上であることを特徴とする、請求項1または請求項2に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項4】
成分(E)が、(E1)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランを含有してなり、前記の成分(D)が、成分(E)および成分(F)により表面処理されていることを特徴とする、請求項1~請求項3のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項5】
成分(F)が、下記一般式(1)または一般式(2)で表されるオルガノポリシロキサン、またはそれらの混合物である、請求項1~請求項4のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
(i) 一般式(1):
【化1】
(式中、R
1は独立に非置換または置換の一価炭化水素基であり、R
2は独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・s未満であるオルガノポリシロキサン
(ii) 一般式(2):R
4
3SiO(R
4
2SiO)
pR
4
2Si-R
5-SiR
4
(3-b)(OR
2)
b (2)
(式中、R
4は同種もしくは異種の一価炭化水素基であり、R
5は酸素原子または二価炭化水素基であり、R
2は前記と同様の基であり、pは100~500の整数であり、bは前記と同様の整数である。)で表されるオルガノポリシロキサン
【請求項6】
上記の(I)液および(II)液中の成分(D)の含有量が、各々の組成物全体の80~98質量%の範囲であり、成分(D)以外の充填剤を実質的に含まないことを特徴とする、請求項1~請求項5のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項7】
前記の成分(B)が、(B1)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンを含有してなり、組成物中の成分(B1)中のケイ素原子結合水素原子([H
B1])と、成分(B1)以外のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の含有量([H
non-B1])について、[H
non-B1]/([H
B1]+[H
non-B1])の値が0.0~0.70の範囲となる関係が成立することを特徴とする、請求項1~請求項6のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項8】
さらに、(G)耐熱性付与剤を含有してなる、請求項1~請求項7のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項9】
前記の成分(D)が、(D1)平均粒径が0.1~150μmである板状の窒化ホウ素粉末、(D2)平均粒径が0.1~500μmである顆粒状若しくは球状に成形された窒化ホウ素粉末、(D3)平均粒径が0.01~50μmである球状溶融固化及び/若しくは破砕状の酸化アルミニウム粉末、又は(D4)平均粒径が0.01~50μmであるグラファイト、或いはこれらの2種類以上の混合物である、請求項1~請求項8のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項10】
上記の(I)液および(II)液からなる2成分型熱伝導性シリコーンゲル組成物である、請求項1~請求項9のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物。
【請求項11】
請求項1~請求項10のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物またはその硬化物からなる熱伝導性部材。
【請求項12】
請求項11に記載の熱伝導性部材を備えた放熱構造体。
【請求項13】
放熱部品または該放熱部品を搭載した回路基板に、請求項1~請求項10のいずれか1項に記載の多成分型熱伝導性シリコーンゲル組成物またはその硬化物を介して放熱部材を設けてなる放熱構造体。
【請求項14】
電気・電子機器である、請求項12または請求項13に記載の放熱構造体。
【請求項15】
電気・電子部品または二次電池である、請求項12または請求項13に記載の放熱構造体。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、高い熱伝導率を有しながら優れた押し出し性、混合安定性を持ち、2液型等の多成分型組成物のパッケージでも各液(組成物)が分離しにくく、安定に保管することができ、かつ、放熱部品等に対するギャップフィル性および所望によりリペア性に優れた熱伝導性シリコーンゲル組成物、それからなる熱伝導性部材およびそれを用いる放熱構造体に関する。
【背景技術】
【0002】
近年、トランジスター、IC、メモリー素子等の電子部品を登載したプリント回路基板やハイブリッドICの高密度・高集積化、二次電池(セル式)の容量の増大にともなって、電子部品や電池等の電子・電気機器から発生する熱を効率よく放熱するために、オルガノポリシロキサン、および酸化アルミニウム粉末、酸化亜鉛粉末等の熱伝導性充填剤からなる熱伝導性シリコーン組成物が広く利用されており、特に、高い放熱量に対応すべく、多量の熱伝導性充填剤を充填した熱伝導性シリコーン組成物が提案されている。
【0003】
例えば、特許文献1および特許文献2には、熱伝導性充填剤の表面を、長鎖アルキル基を有する加水分解性シランで処理することにより、これらの熱伝導性シリコーン組成物に対して、熱伝導性無機充填剤を高充填化しても、成形物に柔軟性と耐熱機械特性が付与され、また、粘度上昇を低減して成形加工性を向上させ、高い熱伝導率を有する熱伝導性シリコーン組成物が実現可能であることが提案されている。また、特許文献3には、分子量の異なる2種以上の処理剤により表面処理した熱伝導性充填剤が配合された熱伝導性シリコーン組成物であって、その処理剤添加のタイミングを変えることで、熱伝導性充填剤を高充填性してもそのコンパウンドの流動性を損なわないことが提案されている。
【0004】
しかしながら、これらの熱伝導性シリコーン組成物にあっては、一定の粘度低減や成形性の改善は認められるものの、その流動性が不十分であるために、高度に精密化された電気・電子材料の構造に対する精密塗布が困難であり、かつ、放熱すべき電子部材との間に間隙(ギャップ)が生じて潜熱の原因になるなど、十分な放熱性が実現できない場合がある。
【0005】
なお、電子材料用途の付加硬化型のシリコーン材料として、架橋剤であるオルガノハイドロジェンポリシロキサンを含む組成物と、含まない組成物を個別に保存される異なるパッケージにして流通させ、使用時に混合する多成分型組成物の形態が知られているが、上記の特許文献1~3には多成分型の熱伝導性シリコーン組成物は開示されておらず、特に、架橋剤であるオルガノハイドロジェンポリシロキサンおよび熱伝導性充填剤を大量に含む組成物について、安定な多成分型の熱伝導性シリコーン組成物は知られていない。
【先行技術文献】
【特許文献】
【0006】
【文献】特開平11-209618号公報
【文献】特開2000-001616号公報
【文献】特開2005-162975号公報
【発明の概要】
【発明が解決しようとする課題】
【0007】
さらに、本発明者らは新たな課題を見出した。熱伝導性シリコーン組成物において、その保存安定性および取扱作業性の改善のために多成分型の組成物の形態を選択しようとした場合、上記のとおり、2.0W/mK以上の高放熱領域の組成物においては、熱伝導性充填剤の含有量が極めて高いことが必要である。一方、多成分を構成する各組成物の粘度や熱伝導性充填剤の含有量が大きく異なると、使用時に押し出し性や、ミキサー内で各組成物を均一に混合することが困難になる。しかしながら、熱伝導性充填剤の含有率が高く、架橋剤であるオルガノハイドロジェンポリシロキサンを含む多成分型組成物の液を設計した場合、経時で熱伝導性充填剤の分離が生じ、安定したパッケージとして多成分型の熱伝導性シリコーン組成物を設計することが困難であった。なお、本発明者らは、上記特許文献1~3に提案された表面処理剤を用いても、これらの表面処理剤が熱伝導性充填剤から分離し、長期間の安定保存が困難であることを見出した。また、安定した吐出が出来ない事から、ミキサー内で組成物の不均一混合が生じ、硬化性のばらつきや外観不良が起こることが確認されている。
【0008】
本発明は、上記課題を解決すべくなされたものであり、2.0W/mK以上の高熱伝導性であり、熱伝導性無機充填剤を高充填化した場合であっても、混合後の組成物全体が高い流動性を維持するために間隙の多い電子部品等に対する精密塗布性およびギャップフィル性に優れながら、2液型等の多成分型組成物のパッケージでも各液(組成物)、特に流動性を付与する低粘度のオルガノポリシロキサンを含む組成物が分離しにくく、またスタティックミキサーによる混合時に、該オルガノポリシロキサンの分離とヒドロシリル化反応用触媒分散不良が要因とされる不均一硬化を防止することができる多成分型熱伝導性シリコーンゲル組成物を提供することを目的とする。更に得られる熱伝導性硬化物は柔らかいゲル組成物であることから、電子部品と放熱構造体の熱膨張率の違いにより生じる応力を緩和することにより、部材の破損を防止できる。また、本発明は、当該熱伝導性シリコーンゲル組成物を用いた熱伝導性部材、同部材を用いた放熱構造体を提供することを目的とする。
【課題を解決するための手段】
【0009】
鋭意検討の結果、本発明者らは、高い熱伝導率を与えるために熱伝導性充填剤を多量に含む組成であって、主剤となる成分(A-1)のオルガノポリシロキサンと同一の系内に、成分(A-2)のオルガノポリシロキサンを、これら混合ポリマーの粘度が成分(A-1)の25℃における粘度の1.15~5.5倍となる範囲で含むように設計した多成分型熱伝導性シリコーンゲル組成物により上記課題を解決可能であることを見出し、本発明に到達した。
【0010】
すなわち、本発明の目的は、
(A)以下の成分(A-1)および成分(A-2)からなるアルケニル基含有オルガノポリシロキサン
(A-1)シロキサン重合度が5~100の範囲であるアルケニル基含有オルガノポリシロキサン、
(A-2)シロキサン重合度が400以上であるアルケニル基含有オルガノポリシロキサン、
、 (B)オルガノハイドロジェンポリシロキサン:成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量、
(C)触媒量のヒドロシリル化反応用触媒、
(D)熱伝導性充填剤、
(E)1種類以上のシランカップリング剤またはその加水分解縮合物、および
(F)分子鎖末端に加水分解性シリル基を有するオルガノポリシロキサン
を含有する(I)液および(II)液からなり、
(I)液中における成分(D)の含有量が、成分(A-1)100質量部に対して、600~3,500質量部であり、
(II)液中における成分(D)の含有量が、成分(A-1)100質量部に対して、600~3,500質量部であり、かつ、
成分(A-1)と成分(A-2)が同一系内に存在し、これら混合ポリマーの25℃における粘度が、成分(A-1)の25℃における粘度の1.15~5.5倍の範囲内である、多成分型熱伝導性シリコーンゲル組成物によって解決される。
【0011】
ここで、上記の成分(A-1)の25℃における粘度が10~100mPa・sの範囲であり、上記の成分(A-2)の25℃における粘度が10,000mPa・s以上であり、かつ、成分(A-1)と成分(A-2)が同一系内に存在し、これら混合ポリマーの25℃における粘度が成分(A-1)の1.2~2.0倍の範囲内であるものが特に好ましい。
また、当該組成物にあって、上記の(I)液および(II)液中の成分(D)の含有量が、各々の組成物全体の80~98質量%の範囲であり、成分(D)以外の充填剤を実質的に含まないことが好ましい。さらに、当該組成物が、熱伝導率が2.0W/mK以上、好適には、3.5W/mK以上、より好適には4.0W/mK以上であることが好ましい。
【0012】
また、本発明の目的は、上記の成分(E)が、(E1)分子内に炭素原子数6以上のアルキル基を有するアルコキシシランを含有してなり、前記の成分(D)が、成分(E)および成分(F)により表面処理されている場合に好適に解決される。さらに、前記の成分(E)および成分(F)による表面処理が、加熱表面処理であり、前記の成分(E1)が、炭素原子数6~18のアルキル基を有するトリアルコキシシランであることがより好ましい。なお、上記の(I)液および(II)液中の成分(E)および成分(F)による成分(D)の表面処理は成分(E)を主とする成分で成分(D)の表面処理行い、次いで、成分(F)を主とする成分で成分(D)の表面処理を行う形態であることが特に好ましい。
【0013】
成分(F)は、好適には
、下記一般式(1)または一般式(2)で表されるオルガノポリシロキサン、またはそれらの混合物であ
る。
(i) 一般式(1):
【化2】
(式中、R
1は独立に非置換または置換の一価炭化水素基であり、R
2は独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・s未満であるオルガノポリシロキサン
(ii) 一般式(2):R
4
3SiO(R
4
2SiO)
pR
4
2Si-R
5-SiR
4
(3-b)(OR
2
)
b
(2)
(式中、R
4は同種もしくは異種の一価炭化水素基であり、R
5は酸素原子または二価炭化水素基であり、R
2
は前記と同様の基であり、pは100~500の整数であり、
bは前記と同様の整数である。)で表されるオルガノポリシロキサン
【0014】
また、本発明の目的は、前記の成分(B)が、(B1)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンを含有してなり、組成物中の成分(B1)中のケイ素原子結合水素原子([HB1])と、成分(B1)以外のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の含有量([Hnon-B1])について、[Hnon-B1]/ ([HB1]+[Hnon-B1])の値が0.0~0.70の範囲となる関係が成立することを特徴とする多成分型熱伝導性シリコーンゲル組成物により、好適に解決される。なお、同値は、0.0~0.50、0.0~0.25、0.0であってよい。
【0015】
また、本発明の目的は、さらに、(G)耐熱性付与剤を含有してなる熱伝導性シリコーンゲル組成物により、好適に解決される。
【0016】
同様に、本発明の目的は、成分(D)が、(D1)平均粒径が0.1~150μmである板状の窒化ホウ素粉末、(D2)平均粒径が0.1~500μmである顆粒状若しくは球状に成形された窒化ホウ素粉末、(D3)平均粒径が0.01~50μmである球状溶融固化及び/若しくは破砕状の酸化アルミニウム粉末、又は(D4)平均粒径が0.01~50μmであるグラファイト、或いはこれらの2種類以上の混合物である多成分型熱伝導性シリコーンゲル組成物により、好適に解決される。
【0017】
さらに、本発明の目的は、これらの多成分型熱伝導性シリコーンゲル組成物からなる熱伝導性部材、特に、同組成物を硬化させてなる熱伝導性部材により、好適に解決される。また、これらの熱伝導性部材を備えた放熱構造体により、好適に解決される。
【0018】
特に、本発明の目的は、放熱部品または該放熱部品を搭載した回路基板に、前記の多成分型熱伝導性シリコーンゲル組成物またはその硬化物を介して放熱部材を設けてなる放熱構造体により、好適に解決される。
【0019】
当該放熱構造体は特に限定されないが、電気・電子部品、二次電池等の電気・電子機器であることが好ましく、微細な放熱構造について、所望のBLT(Bond Line Thickness)を設計して適用してもよい。
【発明の効果】
【0020】
本発明により、3.5W/mK以上の高熱伝導性であり、熱伝導性無機充填剤を高充填化した場合であっても、混合後の組成物全体が高い流動性を維持するために間隙の多い電子部品等に対する精密塗布性およびギャップフィル性に優れながら、2液型等の多成分型組成物のパッケージでも各液(組成物)、特に流動性を付与する低粘度のオルガノポリシロキサンを含む組成物が分離しにくく、またスタティックミキサーによる混合時に、該オルガノポリシロキサンの分離とヒドロシリル化反応用触媒分散不良が要因とされる不均一硬化を防止することができる多成分型熱伝導性シリコーンゲル組成物が提供される。更に得られる熱伝導性硬化物は柔らかいゲル組成物であることから、電子部品と放熱構造体の熱膨張率の違いにより生じる応力を緩和することにより、部材の破損を防止できる。加えて、得られる熱伝導性硬化物の剥離性が高く、電子部品のリペア性に優れた組成が設計可能である。また、本発明により、当該熱伝導性シリコーンゲル組成物を用いた熱伝導性部材、同部材を用いた放熱構造体(特に、電気・電子部品の放熱構造および二次電池の放熱構造を含む、電気・電子機器の放熱構造体)を提供することができる。
【発明を実施するための形態】
【0021】
[多成分型熱伝導性シリコーンゲル組成物]
本発明に係る組成物は、
(A)以下の成分(A-1)および成分(A-2)からなるアルケニル基含有オルガノポリシロキサン
(A-1)シロキサン重合度が5~100の範囲であるアルケニル基含有オルガノポリシロキサン、
(A-2)シロキサン重合度が400以上であるアルケニル基含有オルガノポリシロキサン、
(B)オルガノハイドロジェンポリシロキサン、(C)ヒドロシリル化反応用触媒、(D)熱伝導性充填剤、(E)1種類以上のシランカップリング剤またはその加水分解縮合物、(F)分子鎖末端に加水分解性シリル基を有するオルガノポリシロキサンを含有してなり、個別に保存される以下の(I)液および(II)液を少なくとも含む多成分型熱伝導性シリコーンゲル組成物である。ここで、成分(A-1)は好適には、25℃における粘度が10~100mPa・sであるアルケニル基含有オルガノポリシロキサンであり、成分(A-2)は好適には、25℃における粘度が10,000mPa・s以上であるアルケニル基含有オルガノポリシロキサンであり、これら混合ポリマーの25℃における粘度が、成分(A-1)の25℃における粘度の1.15~5.5倍の範囲内である。
【0022】
本発明において、個別に保存される各組成物は、上記の成分(A)、成分(B)成分および成分(C)を同時に含まないことが必要である。これは、成分(A)、成分(B)成分および成分(C)を同時に配合すると架橋反応が自発的に始まり、当該組成物の貯蔵安定性が短期間に失われ、多成分型組成物の目的である長期にわたる貯蔵安定性および取扱作業性が実現できなくなるためである。
【0023】
本発明において、(I)液および(II)液を少なくとも含むとは、個別に保存される組成物であって、以下に定義される二つの異なる組成物を少なくとも含む、複数の組成物から構成される多成分型の組成物であることを意味するものであり、2成分以上の個別に保存される組成物から構成されていれば特に制限されるものではない。なお、これらの組成物は、個別に保存される際に容器にパッケージされていることが好ましく、使用時に共通容器中でミキサー等の機械力を用いて攪拌したり、多成分の混合に対応したディスペンサー等を用いて混合されて塗布ないし適用される。組成物の取扱作業性および混合操作の簡便の見地から、本発明の多成分型熱伝導性シリコーンゲル組成物は、実質的に、下記の(I)液および(II)液から構成される、2成分型熱伝導性シリコーンゲル組成物であることが好ましい。
【0024】
[(I)液:アルケニル基含有オルガノポリシロキサンを含む組成物]
(I)液は、本組成物の主剤である、アルケニル基含有オルガノポリシロキサンを含む組成物であり、前記の成分(A-1)、(A-2)、(C)、(D)、(E)および(F)を含み、成分(B)を含まない組成物であることが必要であり、任意で成分(G)またはその他の成分を含んでも良い。
【0025】
[(II)液:オルガノハイドロジェンポリシロキサンを含む組成物]
(II)液は、本組成物の架橋剤である、オルガノハイドロジェンポリシロキサンを含む組成物であり、前記の成分成分(A-1)、(A-2)、(B)、(D)、(E)および(F)を含み、成分(C)を含まない組成物であることが必要であり、任意で成分(G)またはその他の成分を含んでも良い。 また、任意で成分(A-1)、(A-2)を含まなくてもよい。
【0026】
本発明組成物は、高い熱伝導率を実現するために、組成物全体として大量の熱伝導性充填剤を含有するものであり、これらの(I)液および(II)液は、両液を均一に混合する見地から、成分(D)の含有量が、各々の組成物全体の80~98質量%の範囲であることが好ましい。なお、分離の問題を解決するために、架橋剤である、オルガノハイドロジェンポリシロキサンを含む組成物((II)液)について、単純に成分(D)の含有量を低減するアプローチをとった場合、仮に(I)液中に大量の熱伝導性充填剤を配合して補った場合であっても、組成物全体として大量の熱伝導性充填剤を含有させ、組成物の熱伝導率が2.0W/mK以上、好適には3.5W/mK以上、より好適には4.0W/mK以上となる組成を設計することが困難となる場合がある。さらに、(II)液中の熱伝導性充填剤の含有量のみを低減した場合、(I)液と(II)液である各組成物の粘度および液性が極端に異なる結果となり、多成分型熱伝導性シリコーンゲル組成物として、使用時にミキサーやディスペンサー等の簡便な方法で均一混合することが困難になり、取扱作業性に著しく劣る結果となる場合がある。
【0027】
本発明にかかる多成分型熱伝導性シリコーンゲル組成物は、組成物全体としても、上記の(I)液および(II)液である各組成物としても、大量の熱伝導性充填剤を含有する組成を設計することが可能であり、組成物全体の熱伝導率および取扱作業性をなんら損なうことなく、長期間にわたる保存安定性を実現するものである。さらに、本発明にかかる多成分型熱伝導性シリコーンゲル組成物は、上記の(I)液および(II)液をスタティックミキサー等で混合する際、成分の分散不良が起こらないため、混合後の組成物全体が安定して高い流動性を維持するために間隙の多い電子部品等に対する精密塗布性およびギャップフィル性に優れ、かつ、所望により、硬化前かつ混合後における組成物の粘度やチキソトロピー性、硬化後の熱伝導性シリコーンゲルの剥離性・リペア性等を調整することが可能であり、塗工時の垂直保持性やシリコーンゲルのリペア性に優れた組成設計が可能である。
【0028】
上記のとおり、本発明の多成分型熱伝導性シリコーンゲル組成物は、その使用に際して、(I)液および(II)液を含む、個別に保存される複数の組成物を混合して使用する。その混合方法としては、保存容器から計量ポンプを用いて多成分型熱伝導性シリコーンゲル組成物の各成分を機械的混合装置(例えば、スタティックミキサー等の汎用ミキサー)に導入して混合使用する方法、あるいは、各成分のパッケージを装填し、一定の体積量ないし体積比で各成分を絞り出すことにより混合可能なディスペンサーの使用が例示される。なお、開放系のミキサーで多成分型熱伝導性シリコーンゲル組成物の各成分を混合して使用する際には混合物を脱泡操作してから使用してもよく、かつ、好ましい。本発明の多成分型熱伝導性シリコーンゲル組成物を構成する(I)液および(II)液は、長期の貯蔵安定性に優れ、分離の問題を生じず、かつ、簡便な方法により均一混合可能であるため、取扱作業性に著しく優れる。
【0029】
以下、本発明にかかる多成分型熱伝導性シリコーンゲル組成物の構成成分について説明する。
【0030】
[(A)アルケニル基含有オルガノポリシロキサン]
成分(A)であるアルケニル基含有オルガノポリシロキサンは、(A-1)シロキサン重合度が5~100の範囲であるアルケニル基含有オルガノポリシロキサン、および(A-2)シロキサン重合度が400以上であるアルケニル基含有オルガノポリシロキサンからなる。ここで、シロキサン重合度は、NMRを用いて得られるオルガノポリシロキサンの数平均分子量から計算されるシロキサン単位の個数である。
【0031】
成分(A-1)であるアルケニル基含有オルガノポリシロキサンは、熱伝導性シリコーンゲル組成物の主剤であり、シロキサン重合度が5~100の範囲であり、好適には、25℃における粘度が10~100mPa・sの範囲内である。成分(A-1)の25℃における粘度は、10~100mPa・sの範囲内であることが好ましい。成分(A-1)の重合度が前記下限未満であったり、成分(A-1)の粘度が10mPa・s未満であると、得られるシリコーンゲルの物理的特性が低下する傾向がある。一方、成分(A-1)の重合度が前記上限を超え、特に、成分(A-1)の粘度が100mPa・sを超えると、得られるシリコーンゲル組成物の押し出し性およびスタティクミキサー等による混合性が低下する傾向がある。
【0032】
成分(A-2)であるアルケニル基含有オルガノポリシロキサンは、熱伝導性シリコーンゲル組成物の主剤である成分(A-1)の分離抑制剤であり、シロキサン重合度が400以上であり、好適には、25℃における粘度が10,000mPa・s以上の高粘度を有するものである。成分(A-2)の25℃における粘度は、10,000~10,000,000mPa・sの範囲内であってよく、成分(A-2)は可塑度を有するガム状のアルケニル基含有オルガノポリシロキサンであってもよい。具体的には、25℃において10,000mPa・s以上の粘度を有するか、JIS K6249に規定される方法に準じて測定された可塑度が50~200の範囲にある生ゴム状のアルケニル基含有オルガノポリシロキサンであってよい。さらに、好適には、25℃における粘度が(A-1)の10倍から100,000倍の範囲内である。成分(A-2)の25℃における粘度が10倍未満であると、成分(A-1)の分離を効果的に防止することが出来ない場合がある。全体粘度の見地から、成分(A-2)の25℃における粘度は10,000~50,000mPa・sの範囲内であってもよい。また、成分(A-2)の含有量は成分(A-1)と成分(A-2)の混合粘度が成分(A-1)粘度の1.15~5.5倍となる量であり、混合粘度が成分(A-1)粘度の1.2~5.25倍となる範囲であってよく、1.2~3.0倍となる量がより好ましく、1.2~2.0倍となる量が特に好適である。この時、成分(A-1)と成分(A-2)の混合粘度は実測値の他、シリコーンメーカーから提供されるオイルのブレンドチャートや、低粘度オイルと高粘度オイルの粘度をそれぞれ両端にプロットしてラインを結び、その時の配合比率から読み取られた値から粘度[A-1][A-2]を計算することが出来る。粘度[A-1][A-2]/粘度[A-1]が1.15以下の場合、成分(A-2)の効果を得ることが出来ず、5.5を超える場合は期待される効果以上に吐出性の低下が起こることから、1.15~5.5の範囲であることが必要であり、吐出性の見地から、度[A-1][A-2]/粘度[A-1]は、1.20~2.0とすることが特に好適である。特に、成分(A-1)と成分(A-2)の混合後の全体粘度が200mPa・s以下、より好適には、150mPa・s以下となる成分(A-1)と成分(A-2)の組み合わせが好適に使用されうる。
【0033】
成分(A)は、1種又は2種以上のアルケニル基含有オルガノポリシロキサンで構成される。こうしたアルケニル基含有オルガノポリシロキサンの分子構造は、特に限定されず、例えば、直鎖状、分枝鎖状、環状、三次元網状構造、並びにこれらの組み合わせが挙げられる。成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンのみからなっていてもよく、分枝構造を有するアルケニル基含有オルガノポリシロキサンのみからなっていてもよく、または、直鎖状のオルガノポリシロキサンと分枝構造を有するアルケニル基含有オルガノポリシロキサンとの混合物からなっていてもよい。また、分子内のアルケニル基として、ビニル基、アリル基、ブテニル基、ヘキセニル基等が例示される。また、成分(A)中のアルケニル基以外の有機基として、メチル基、エチル基、プロピル基等のアルキル基;フェニル基、トリル基等のアリール基;3,3,3-トリフロロプロピル基等のハロゲン化アルキル基等のアルケニル基を除く一価炭化水素基が例示される。
【0034】
特に好適には、成分(A)は、直鎖状のアルケニル基含有オルガノポリシロキサンであり、少なくとも分子鎖両末端にアルケニル基を含有することが好ましく、分子鎖両末端のみにアルケニル基を含有していてもよい。こうした成分(A)としては、特に限定されないが、例えば、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端シラノール基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、これらの重合体のメチル基の一部がエチル基、プロピル基等のメチル基以外のアルキル基や3,3,3-トリフロロプロピル基等のハロゲン化アルキル基で置換された重合体、これらの重合体のビニル基がアリル基、ブテニル基、ヘキセニル基等のビニル基以外のアルケニル基で置換された重合体、およびこれらの重合体の2種以上の混合物が挙げられる。なお、これらのアルケニル基含有オルガノポリシロキサンは、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
【0035】
本発明の成分(A)は、さらに、ケイ素原子に結合した一般式:
【化2】
(式中、R
1は同じかまたは異なる、脂肪族不飽和結合を有さない一価炭化水素基であり、R
2はアルキル基であり、R
3は同じかまたは異なるアルキレン基であり、aは0~2の整数であり、pは1~50の整数である。)
で表されるアルコキシシリル含有基を有しても良い。これらの官能基を有するオルガノポリシロキサンは、未硬化状態における組成物の増粘を抑制し、かつ分子中にアルコキシシリル基を有するため、成分(D)の表面処理剤としても機能する。このため、得られる組成物の増粘やオイルブリードが抑制され、取扱作業性が損なわれないという恩恵を得られる場合がある。
【0036】
[(B)オルガノハイドロジェンポリシロキサン]
成分(B)は、上記の(II)液の構成成分であり、本発明の熱伝導性シリコーンゲル組成物の主たる架橋剤であり、分子内に2個以上のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンが特に制限なく利用できるが、得られる熱伝導性シリコーンゲル硬化物の柔軟性および垂直保持性の見地から、オルガノハイドロジェンポリシロキサンの分子中のケイ素原子結合水素原子の個数(平均値)は8個を超えない範囲が好ましい。
【0037】
[組成物中のオルガノハイドロジェンポリシロキサン(架橋剤)の量]
本発明の組成物は、成分(B)について、少なくとも成分(A)に含まれるアルケニル基1モルに対して、成分(B)中のケイ素原子結合水素原子が0.2~5モルとなる量の範囲にあることが必要であり、0.3~2.0モルとなる量、または0.4~1.0モルとなる量の範囲であることが、得られる熱伝導性シリコーンゲル硬化物の形成および同硬化物の剥離性およびリペア性の見地から、特に好ましい。具体的には、成分(B)中のケイ素原子結合水素原子の含有量が前記下限未満では、熱伝導性シリコーンゲル組成物の硬化不良の原因となる場合があり、前記上限を超えると、ケイ素原子結合水素原子の量が過剰となって、同硬化物の剥離性およびリペア性が損なわれる場合がある。
【0038】
[好適な架橋延長剤:成分(B1)]
本発明にかかる組成物を硬化して得られる熱伝導性シリコーンゲル硬化物の剥離性、リペア性の見地から、成分(B)は、(B1)25℃における粘度が1~1,000mPa・sであり、分子内に平均して2~4個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンを少なくとも含むことが好ましい。なお、上記の成分(B1)の構造は、成分(B1)が本組成物において、分子鎖側鎖上のケイ素原子結合水素原子のヒドロシリル化反応により架橋延長剤として機能することを意味する。
【0039】
成分(B1)は、本発明の熱伝導性シリコーンゲル組成物において、成分(A)の架橋延長剤として機能し、組成物全体を、緩やかに架橋させ、ゲル状の硬化物を形成する。ここで、成分(B)は、分子鎖側鎖上に平均して少なくとも2個のケイ素原子結合水素原子を有し、かつ、分子内のケイ素原子結合水素原子を平均して2~4個のみ含むことから、主として側鎖上の2個~4個のケイ素原子結合水素原子による架橋延長反応が進行して、部材からの剥離性に優れ、修繕・再利用等のリペア性に優れた熱伝導性シリコーンゲル硬化物を形成する。
【0040】
剥離性およびリペア性の改善の見地から、成分(B)は、(B1-1)分子内に平均して2~3個のケイ素原子結合水素原子を含有し、そのうち、少なくとも2個を分子鎖側鎖に有する直鎖状のオルガノハイドロジェンポリシロキサンであることが好ましく、(B1-1-1)分子鎖側鎖のみに平均して2~3個のケイ素原子結合水素原子を有するオルガノハイドロジェンポリシロキサンであることが特に好ましい。なお、成分(B1)中のケイ素原子結合水素原子は、分子鎖側鎖のみに平均して2個のみであることが最も好ましい。
【0041】
このような成分(B1)は、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体が例示される。なお、これらの例示は非限定的であり、メチル基の一部はフェニル基、水酸基、アルコキシ基等で置換されていてもよい。
【0042】
成分(B1)の25℃における粘度は特に限定されないが、好ましくは、1~500mPa・sの範囲内であり、さらに、接点障害防止等の見地から、低分子量のシロキサンオリゴマー(オクタメチルテトラシロキサン(D4)、デカメチルペンタシロキサン(D5))が低減ないし除去されていることが好ましい。
【0043】
[その他の架橋剤の併用]
本発明の成分(B)は、成分(B1)以外のオルガノハイドロジェンポリシロキサン、例えば、分子内のケイ素原子結合水素原子を平均して4個を超える数含む分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内のケイ素原子結合水素原子を平均して4個を超える数含む分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、メチルハイドロジェンシロキシ基含有シロキサンレジン等を架橋剤として含んでも良い。しかしながら、少なくとも、上記の量の成分(B1)を、架橋延長剤として含むことが好適であり、その他のオルガノハイドロジェンポリシロキサンを併用する場合であっても、本発明の組成物の硬化特性および硬化物の剥離性およびリペア性の見地から、成分(B1)の比率が一定量以上であることが好ましい。
【0044】
具体的には、組成物中の成分(B1)中のケイ素原子結合水素原子([HB1])と、成分(B1)以外のオルガノハイドロジェンポリシロキサン中のケイ素原子結合水素原子の含有量([Hnon-B1])について、[Hnon-B1]/ ([HB1]+[Hnon-B1])の値が0.0~0.70の範囲であることが好ましく、同値は0.0~0.50、0.0~0.25、0.0であってよい。[Hnon-B1]/ ([HB1]+[Hnon-B1])の値が前記上限を超えると、組成物中の架橋剤全体に占める成分(B)の影響が相対的に小さくなり、硬化物の剥離性およびリペア性が損なわれたり、硬化不良の原因となる場合がある。
【0045】
本発明の技術的効果の見地から、本組成物中の架橋剤であるオルガノハイドロジェンポリシロキサンは、以下の組み合わせが好適である。
(B’1): 成分(B1)のみ、または、組成中に意図的に他のオルガノハイドロジェンポリシロキサンが配合されておらず、実質的に成分(B1)のみ
(B’2):成分(B1)に加えて、
分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、
分子内のケイ素原子結合水素原子を平均して5~8個含む分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、および
分子内のケイ素原子結合水素原子を平均して5~8個含む分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体
から選ばれる1種類又は2種類以上を含有する、オルガノハイドロジェンポリシロキサン混合物
ただし、仮に上記の成分(B’2)を用いる場合であっても、[Hnon-B1]/ ([HB1]+[Hnon-B1])の値は上記同様の範囲であることが好ましい。
【0046】
特に、組成物中のオルガノハイドロジェンポリシロキサンが、前記の(B’2)で示した混合物、特に、成分(B1)と分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサンの混合物である場合、同組成物の硬化性を改善する見地から、オルガノハイドロジェンポリシロキサンの中のケイ素原子結合水素原子が0.5~1.5モルとなる量であることが好ましく、0.7~1.0モルとなる量の範囲であることがより好ましい。一方、組成物中のオルガノハイドロジェンポリシロキサンが、実質的に成分(B1)のみである場合、オルガノハイドロジェンポリシロキサンの中のケイ素原子結合水素原子が0.3~1.5モルとなる量であることが好ましく、0.4~1.0モルとなる量の範囲であることがより好ましい。組成物中のオルガノハイドロジェンポリシロキサンの種類および含有量が前記範囲内である場合、本発明の技術的効果である、熱伝導性シリコーンゲル組成物の流動性、ギャップフィル性に最も優れ、かつ、得られる熱伝導性シリコーンゲル硬化物の物理的特性、特に、剥離性およびリペア性が最も良好となる。
【0047】
[(C)ヒドロシリル化反応用触媒]
ヒドロシリル化反応用触媒は、上記の(I)液の構成成分であり、白金系触媒、ロジウム系触媒、パラジウム系触媒が例示され、本組成物の硬化を著しく促進できることから白金系触媒が好ましい。この白金系触媒としては、白金微粉末、塩化白金酸、塩化白金酸のアルコール溶液、白金-アルケニルシロキサン錯体、白金-オレフィン錯体、白金-カルボニル錯体、およびこれらの白金系触媒を、シリコーン樹脂、ポリカーボネート樹脂、アクリル樹脂等の熱可塑性樹脂で分散あるいはカプセル化した触媒が例示され、特に、白金-アルケニルシロキサン錯体が好ましい。このアルケニルシロキサンとしては、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、これらのアルケニルシロキサンのメチル基の一部をエチル基、フェニル基等で置換したアルケニルシロキサン、これらのアルケニルシロキサンのビニル基をアリル基、ヘキセニル基等で置換したアルケニルシロキサンが例示される。特に、この白金-アルケニルシロキサン錯体の安定性が良好であることから、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンであることが好ましい。加えて、取扱作業性および組成物のポットライフの改善の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。なお、ヒドロシリル化反応を促進する触媒としては、鉄、ルテニウム、鉄/コバルトなどの非白金系金属触媒を用いてもよい。
【0048】
ヒドロシリル化反応用触媒の添加量は触媒量であり、成分(A)に対して、金属原子が質量単位で0.01~500ppmの範囲内となる量、0.01~100ppmの範囲内となる量、あるいは、0.01~50ppmの範囲内となる量であることが好ましい。
【0049】
[ヒドロシリル化反応抑制剤]
本発明の組成物には、その取扱作業性の見地から、さらにヒドロシリル化反応抑制剤を含むことが好ましい。ヒドロシリル化反応抑制剤は、本発明の熱伝導性シリコーンゲル組成物のヒドロシリル化反応を抑制するための成分であって、具体的には、例えば、エチニルシクロヘキサノールのようなアセチレン系、アミン系、カルボン酸エステル系、亜リン酸エステル系等の反応抑制剤が挙げられる。反応抑制剤の添加量は、通常、シリコーンゲル組成物全体の0.001~5質量%である。特に、シリコーンゲル組成物の取扱作業性を向上させる目的では、3-メチル-1-ブチン-3-オール、3,5-ジメチル-1-ヘキシン-3-オール、3-フェニル-1-ブチン-3-オール等のアセチレン系化合物;3-メチル-3-ペンテン-1-イン、3,5-ジメチル-3-ヘキセン-1-イン等のエンイン化合物;1,3,5,7-テトラメチル-1,3,5,7-テトラビニルシクロテトラシロキサン、1,3,5,7-テトラメチル-1,3,5,7-テトラヘキセニルシクロテトラシロキサン等のシクロアルケニルシロキサン;ベンゾトリアゾール等のトリアゾール化合物等が特に制限なく使用することができる。
【0050】
[(D)熱伝導性充填剤]
成分(D)は、上記の(I)液および(II)液に共通する構成成分であり、本組成物および本組成物を硬化させてなる熱伝導性部材に熱伝導性を付与するための熱伝導性充填剤である。このような成分(D)としては、純金属、合金、金属酸化物、金属水酸化物、金属窒化物、金属炭化物、金属ケイ化物、炭素、軟磁性合金及びフェライトからなる群から選ばれた、少なくとも1種以上の粉末及び/又はファイバーであることが好ましく、金属系粉末、金属酸化物系粉末、金属窒化物系粉末、または炭素粉末が好適である。
【0051】
かかる熱伝導性充填剤は、後述する成分(E)であるアルコキシシランにより、その全部又は一部について表面処理がなされていることが好ましい。さらに、成分(E)と別に、あるいは成分(E)と共に、これらの粉体及び/又はファイバーとして、カップリング剤として知られている各種表面処理剤により処理されているものを用いてもよい。成分(D)の粉体及び/又はファイバーを処理するための表面処理剤としては、成分(E)のほか、界面活性剤、その他のシランカップリング剤、アルミニウム系カップリング剤及びシリコーン系表面処理剤などが挙げられる。
【0052】
純金属としては、ビスマス、鉛、錫、アンチモン、インジウム、カドミウム、亜鉛、銀、銅、ニッケル、アルミニウム、鉄及び金属ケイ素が挙げられる。合金としては、ビスマス、鉛、錫、アンチモン、インジウム、カドミウム、亜鉛、銀、アルミニウム、鉄及び金属ケイ素からなる群から選択される二種以上の金属からなる合金が挙げられる。金属酸化物としては、アルミナ、酸化亜鉛、酸化ケイ素、酸化マグネシウム、酸化ベリリウム、酸化クロム及び酸化チタンが挙げられる。金属水酸化物としては、水酸化マグネシウム、水酸化アルミニウム、水酸化バリウム、及び水酸化カルシウムが挙げられる。金属窒化物としては、窒化ホウ素、窒化アルミニウム及び窒化ケイ素が挙げられる。金属炭化物としては、炭化ケイ素、炭化ホウ素及び炭化チタンが挙げられる。金属ケイ化物としては、ケイ化マグネシウム、ケイ化チタン、ケイ化ジルコニウム、ケイ化タンタル、ケイ化ニオブ、ケイ化クロム、ケイ化タングステン及びケイ化モリブデンが挙げられる。炭素としては、ダイヤモンド、グラファイト、フラーレン、カーボンナノチューブ、グラフェン、活性炭及び不定形カーボンブラックが挙げられる。軟磁性合金としては、Fe-Si合金、Fe-Al合金、Fe-Si-Al合金、Fe-Si-Cr合金、Fe-Ni合金、Fe-Ni-Co合金、Fe-Ni-Mo合金、Fe-Co合金、Fe-Si-Al-Cr合金、Fe-Si-B合金及びFe-Si-Co-B合金が挙げられる。フェライトとしては、Mn-Znフェライト、Mn-Mg-Znフェライト、Mg-Cu-Znフェライト、Ni-Znフェライト、Ni-Cu-Znフェライト及びCu-Znフェライトが挙げられる。
【0053】
なお、成分(D)として好適には、銀粉末、アルミニウム粉末、酸化アルミニウム粉末、酸化亜鉛粉末、窒化アルミニウム粉末またはグラファイトである。また、本組成物に、
電気絶縁性が求められる場合には、金属酸化物系粉末、または金属窒化物系粉末であることが好ましく、特に、酸化アルミニウム粉末、酸化亜鉛粉末、または窒化アルミニウム粉末であることが好ましい。
【0054】
成分(D)の形状は特に限定されないが、例えば、球状、針状、円盤状、棒状、不定形状が挙げられ、好ましくは、球状、不定形状である。また、成分(D)の平均粒子径は特に限定されないが、好ましくは、0.01~500μmの範囲内であり、さらに好ましくは、0.01~300μmの範囲内である。
【0055】
成分(D)は、(D1)平均粒径が0.1~150μmである板状の窒化ホウ素粉末、(D2)平均粒径が0.1~500μmである顆粒状若しくは球状に成形された窒化ホウ素粉末、(D3)平均粒径が0.01~50μmである球状溶融固化及び/若しくは破砕状の酸化アルミニウム粉末、又は(D4)平均粒径が0.01~50μmである球状及び/若しくは破砕状グラファイト、或いはこれらの2種類以上の混合物であることが特に好ましい。好適な成分(D)の一例として、平均粒径が0.01~50μmである球状および破砕状の酸化アルミニウム粉末の2種類以上の混合物である。特に、粒径の大きい酸化アルミニウム粉末と粒径の小さい酸化アルミニウム粉末を最密充填理論分布曲線に従う比率で組み合わせることにより、充填効率が向上して、低粘度化及び高熱伝導化が可能になる。
【0056】
成分(D)の含有量は、(I)液および(II)液の各々について、組成物全体における成分(A-1)100質量部に対して600~3,500質量部の範囲内であり、好ましくは、1200~3,000質量部の範囲内である。すなわち、組成物全体として、(I)液および(II)液中の成分(D)の総和は1200~7000質量部の範囲であり、当該総和は2400~6000質量部の範囲であってよく、2400~5500質量部の範囲であってもよい。これは、成分(D)の含有量が上記範囲の下限未満であると、得られる組成物の熱伝導性が2.0W/mK未満となり、一方、上記範囲の上限を超えると、成分(E)を配合又は成分(D)の表面処理に用いた場合であっても、得られる組成物の粘度が著しく高くなり、その取扱作業性、ギャップフィル性等が低下するからである。
【0057】
本発明組成物は、熱伝導性が2.0W/mK以上であり、成分(D)の含有量は、組成物全体の80~98質量%の範囲であることが好ましく、82~95質量%の範囲であることがより好ましく、85~95質量%の範囲が特に好ましい。上記範囲内においては、本発明の目的である優れたギャップフィル性および流動性を維持しながら、2.0W/mK以上、好適には3.5W/mK以上、より好適には4.0W/mK以上、特に好適には5.0W/mK以上の熱伝導率を実現する熱伝導性シリコーンゲル組成物が設計可能である。
【0058】
[その他の無機充填剤]
本発明の組成物は、任意成分として、例えば、ヒュームドシリカ、湿式シリカ、粉砕石英、酸化チタン、炭酸マグネシウム、酸化亜鉛、酸化鉄、ケイ藻土、カーボンブラック等の無機充填剤(「無機充填材」ともいう)、こうした無機充填剤の表面を有機ケイ素化合物(シラザン類等)により疎水処理してなる無機充填剤を配合することを完全に妨げられるものではないが、本発明の技術的効果、特に、高い熱伝導性およびギャップフィル性を両立する見地からは、成分(D)以外の充填剤を実質的に含まないことが好ましい。特に、補強性シリカ類のような広いBET比表面積を持った補強性充填剤を本組成に配合した場合、3.5W/km以上の熱伝導性を与える量の成分(D)を組成中に配合して、本発明に特徴的なレオロジー特性を実現することが困難となる場合がある。なお、「実質的に含まない」とは、組成中における成分(D)以外の充填剤の含有量が1質量%未満であることが好ましく、0.5質量%未満であることがより好ましい。なお、最も好適には、成分(D)以外の充填剤の意図的な添加量が組成中に0.0質量%であることである。
【0059】
[成分(D)の表面処理]
本組成物は、化学的構造の異なる2種類の表面処理剤:成分(E)および成分(F)を特定量含有するものである。具体的には、本発明の成分(D)全体を100質量%とした場合、これらの成分が0.1~5.0質量%の範囲で配合されており、成分(D)がこれらの成分により表面処理されていることが好ましい。成分(D)の表面処理工程は任意であるが、本組成物の流動性、ギャップフィル性およびチクソトロピー性の改善の見地から、特に成分(E)により、成分(D)の少なくとも一部が表面処理され、次いで、成分(F)により成分(D)が表面処理されている工程が好適に例示される。
【0060】
[(E)1種類以上のシランカップリング剤またはその加水分解縮合物]
成分(E)は成分(D)の表面処理剤であり、上記の(I)液および(II)液に共通する構成成分であり、成分(D)の配合量を改善し、かつ、組成物全体の粘度および流動性を改善する成分である。このような成分(E)は公知のシランカップリング剤またはその加水分解縮合物を特に制限なく使用することができるが、特に、後述する成分(E1):分子内に炭素原子数6以上のアルキル基を有するアルコキシシランを含むことが好適である。
【0061】
成分(E)であるシランカップリング剤は、一般式:
R1
(4-c)Si(OR2)c
で表される。式中、R1は、一価炭化水素基、エポキシ基含有有機基、メタクリル基含有有機基、またはアクリル基含有有機基である。R1の一価炭化水素基としては、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、デシル基等の直鎖状アルキル基;イソプロピル基、ターシャリーブチル基、イソブチル基等の分岐鎖状アルキル基;シクロヘキシル基等の環状アルキル基;ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基、ヘプテニル基等のアルケニル基;フェニル基、トリル基、キシリル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;3,3,3-トリフルオロプロピル基、3-クロロプロピル基等のハロゲン化アルキル基等の置換もしくは非置換の一価炭化水素基が例示される。また、R
1
のエポキシ基含有有機基としては、3-グリシドキシプロピル基、4-グリシドキシブチル基等のグリシドキシアルキル基;2-(3,4-エポキシシクロヘキシル)エチル基、3-(3,4-エポキシシクロヘキシル)プロピル基等のエポキシシクロヘキシルアルキル基が例示される。また、R1のメタクリル基含有有機基としては、3-メタクリロキシプロピル基、4-メタクリロキシブチル基等のメタクリロキシアルキル基が例示される。また、R1のアクリル基含有有機基としては、3-アクリロキシプロピル基、4-アクリロキシシブチル基等のアクリロキシアルキル基が例示される。
【0062】
R2はアルキル基、アルコキシアルキル基、アルケニル基、またはアシル基であり、が例示される。R2のアルキル基としては、前記と同様の直鎖状アルキル基、分岐鎖状アルキル基、および環状アルキル基が例示され、R2のアルコキシアルキル基としては、メトキシエチル基、メトキシプロピル基が例示され、R2のアルケニル基としては、ビニル基、アリル基、ブテニル基、ペンテニル基、ヘキセニル基が例示され、R2のアシル基としては、アセチル基、オクタノイル基が例示される。
【0063】
cは1~3の整数であり、好ましくは3である。
【0064】
このような成分(E)であって、成分(E1)以外のものとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、ブチルトリメトキシシラン、ペンチルトリメトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、メチルビニルジメトキシシラン、アリルトリメトキシシラン、アリルメチルジメトキシシラン、ブテニルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-アクリロキシプロピルメチルジメトキシシランが例示される。
【0065】
[(E1)アルキルアルコキシシラン]
成分(E1)は、成分(B1)と共に本組成物における好適な成分であり、分子内に炭素原子数6以上のアルキル基を有するアルコキシシランである。ここで、炭素原子数6以上のアルキル基の具体例としてはヘキシル基、オクチル基、ドデシル基、テトラデシル基、ヘキサデシル基、オクタデシル基等のアルキル基やベンジル基、フェニルエチル基等のアラルキル基などが挙げられるが、特に炭素数6~20のアルキル基が好ましい。炭素原子数6未満のアルキル基を有するアルコキシシランの場合、組成物の粘度を低下させる効果が不十分であり、組成物の粘度が上昇して、所望の流動性およびギャップフィル性が実現できない場合がある。また、炭素原子数20以上のアルキル基等を有するアルコキシシランを用いた場合、工業的供給性に劣るほか、成分(A)の種類によっては、相溶性が低下する場合がある。
【0066】
好適には、成分(E1)は、下記構造式:
YnSi(OR)4-n
(式中、Yは炭素原子数6~18のアルキル基であり、Rは炭素原子数1~5のアルキル基であり、nは1、2または3の数である)
で表されるアルコキシシランであり、OR基としてメトキシ基、エトキシ基、プロポキシ基、ブトキシ基などが例示され、特にメトキシ基及びエトキシ基が好ましい。また、nは1,2又は3であり、特に1であることが好ましい。
【0067】
このような成分(E1)は、具体的には、C6H13Si(OCH3)3、C8H17Si(OC2H5)3、C10H21Si(OCH3)3、C11H23Si(OCH3)3、C12H25Si(OCH3)3、C14H29Si(OC2H5)3等が例示され、最も好適には、デシルトリメトキシシランである。
【0068】
本発明の成分(E)は、上記の成分(E1)を含むことが好ましい。具体的には、成分(E1)単独であってもよく、成分(E1)と他のシランカップリング剤の混合物であってもよい。また、所望により成分(E1)以外のシランカップリング剤のみを用いてもよく、これらのシランカップリング剤の一部または全部を予め加水分解した形態で用いてもよい。
【0069】
[(F)分子鎖片末端に加水分解性シリル基を有するポリシロキサン型の表面処理剤]
成分(F)は、上記の(I)液および(II)液に共通する構成成分であり、成分(E)と異なり、分子鎖片末端に加水分解性シリル基を有し、かつ、ポリシロキサン構造を有する表面処理剤であり、成分(D)を成分(E)と併用して処理、好適には、成分(E)で表面処理した後に、次いで、成分(F)による表面処理を行うことにより、成分(D)である熱伝導性充填剤が大量に配合されても、本組成物の流動性、ギャップフィル性およびチクソトロピー性が改善された熱伝導性シリコーンゲル組成物を提供することができる。
【0070】
具体的には、成分(F)は、分子鎖末端に加水分解性シリル基を有するオルガノポリシロキサンであり、その構造は特に制限されるものではないが、このような成分(F)は、下記一般式(1)または一般式(2)で表されるオルガノポリシロキサン、またはそれらの混合物である。
(i) 一般式(1):
【化3】
(式中、R
1は独立に非置換または置換の一価炭化水素基であり、R
2は独立に水素原子、アルキル基、アルコキシアルキル基、またはアシル基であり、aは5~250の整数であり、bは1~3の整数である。)で表され、25℃における粘度が10~10,000mPa・s未満であるオルガノポリシロキサン
(ii) 一般式(2):R
4
3SiO(R
4
2SiO)
pR
4
2Si-R
5-SiR
4
(3-b)(OR
2
)
b
(2)
(式中、R
4は同種もしくは異種の一価炭化水素基であり、R
5は酸素原子または二価炭化水素基であり、R
2
は前記と同様の基であり、pは100~500の整数であり、
bは前記と同様の整数である。)で表されるオルガノポリシロキサン
【0071】
(i)一般式(1)で表される成分(F)は、分子鎖の片末端に加水分解性シリル基を有する。当該成分(F)は、成分(D)の表面処理剤として用いることにより、成分(D)を大量に配合した場合であっても取り扱い性および成形性を悪化させることなく、本組成物の流動性、ギャップフィル性およびチクソトロピー性を改善し、垂直保持性に優れた熱伝導性シリコーンゲル組成物を提供することができ、かつ、硬化途上で接触している基材に対して良好な接着性を付与することができる。
一般式(1)中、R1は独立に非置換または置換の一価の炭化水素基であり、その例としては、直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基、アルケニル基、アリール基、アラルキル基、ハロゲン化アルキル基が挙げられる。直鎖状アルキル基としては、例えば、メチル基、エチル基、プロピル基、ヘキシル基、オクチル基が挙げられる。分岐鎖状アルキル基としては、例えば、イソプロピル基、イソブチル基、tert-ブチル基、2-エチルヘキシル基が挙げられる。環状アルキル基としては、例えば、シクロペンチル基、シクロヘキシル基が挙げられる。アルケニル基としては、例えば、ビニル基、アリル基が挙げられる。アリール基としては、例えば、フェニル基、トリル基が挙げられる。アラルキル基としては、例えば、2-フェニルエチル基、2-メチル-2-フェニルエチル基が挙げられる。ハロゲン化アルキル基としては、例えば、3,3,3-トリフルオロプロピル基、2-(ノナフルオロブチル)エチル基、2-(ヘプタデカフルオロオクチル)エチル基が挙げられる。R1は好ましくはメチル基、フェニル基である。
【0072】
一般式(1)中、R2は独立に水素原子、アルキル基、アルコキシアルキル基、アルケニル基、またはアシル基である。アルキル基としては、例えば、R1について例示したのと同様の直鎖状アルキル基、分岐鎖状アルキル基、環状アルキル基が挙げられる。アルコキシアルキル基としては、例えば、メトキシエチル基、メトキシプロピル基が挙げられる。アシル基としては、例えば、アセチル基、オクタノイル基が挙げられる。R2はアルキル基であることが好ましく、特にはメチル基、エチル基であることが好ましい。
【0073】
一般式(1)中、aは5~250の範囲の整数であり、10~200の範囲が好ましい。また、bは1~3の整数であり、好ましくは、2または3である。
【0074】
(ii) 一般式(2)で表される成分(F)は、分子鎖の片末端にアルキレン基等の二価炭化水素基または酸素原子を介して結合した加水分解性シリル基を有する。当該成分(F)は、成分(D)の表面処理剤として用いることにより、成分(D)を大量に配合した場合であっても取り扱い性および成形性を悪化させることなく、本組成物の流動性、ギャップフィル性およびチクソトロピー性を改善し、垂直保持性に優れた熱伝導性シリコーンゲル組成物を提供することができる。
【0075】
式中のR4は同種もしくは異種の一価炭化水素基であり、前記と同様の直鎖アルキル基、分岐鎖状アルキル基、環状アルキル基、アリール基、アラルキル基、アルケニル基、ハロゲン化アルキル基が例示され、好ましくは直鎖状アルキル基であり、特に好ましくはメチル基である。また、上式中のR5は酸素原子または二価炭化水素基である。R5の二価炭化水素基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基等のアルキレン基;エチレンオキシエチレン基、エチレンオキシプロピレン基等のアルキレンオキシアルキレン基が挙げられる。特に、R5は酸素原子であることが好ましい。また、上式中のR
2
は前記と同様の基である。また、上式中のpは100~500の整数であり、好ましくは105~500の整数であり、さらに好ましくは110~500の整数であり、特に好ましくは110~200の整数である。なお、上式中のpが上記範囲の下限未満であると、本発明の熱伝導性シリコーンゲル組成物を得るために成分(D)を多量に含有させることができなくなる傾向があるからであり、一方、上記範囲の上限を超えると、成分(D)の表面に拘束される分子体積が増えすぎて、同様に、組成物中に成分(D)を多量に含有させることができなくなる傾向があるからである。また、上式中のdは1~3の整数であり、好ましくは3である。
【0076】
成分(E)と成分(F)の合計使用量は、前記の成分(D)に対して0.1~5.0質量%となる量であり、0.1~4.0質量%となる量、0.2~3.5質量%となる量であってもよい。これらの成分の使用量が前記下限未満であると、組成物の粘度を低下させる効果が不十分となる場合がある。また、成分(E)と成分(F)の使用量が前記上限を超えると、粘度低下の効果が飽和し、更にアルコキシシランが分離して、組成物の保存安定性が低下する場合がある。
【0077】
本発明において、上記の成分(E)および成分(F)は、前記の成分(D)がこれらの成分により表面処理された形態で配合されることが好ましい。ここで、成分(E)および成分(F)による成分(D)の表面処理は同時であってもよく、いずれか一方の成分で成分(D)の少なくとも一部を表面処理した後に、他方の成分でさらに成分(D)の表面処理を行う形態であっても良い。
【0078】
成分(E)および成分(F)による表面処理方法は(I)液および(II)液において共通であり、特に制限されるものではないが、成分(D)である熱伝導性無機充填剤への直接処理法、インテグラルブレンド法、ドライコンセントレート法等を用いることができる。直接処理法には、乾式法、スラリー法、スプレー法等があり、インテグラルブレンド法としては、直接法、マスターバッチ法等があるが、このうち乾式法、スラリー法、直接法が良く用いられる。好適には、成分(D)と成分(E)の全量または多段階に分けて公知の混合装置を用いて事前に混合し、その表面を処理する形態であってよい。なお、前記の特許文献1および特許文献2に記載の通り、成分(D)の表面で、成分(E)の一部が加水分解ないし重合体を形成していてもよく、本発明における表面処理の概念に包摂されるものである。
【0079】
本発明における、成分(E)と成分(F)による表面処理方法は、直接処理法であることが好ましく、特に、成分(D)と成分(E)、成分(F)を混合し、加熱(ベースヒート)する、加熱表面処理法が最も好適に例示できる。具体的には、成分(D)または成分(D)の一部と成分(E)、任意で主剤である成分(A)または成分(B)の一部を均一に混合した後、成分(F)、および成分(D)の残分を混合、好適には減圧下において、100~200℃で当該混合物を加熱攪拌することができる。このとき、温度条件および攪拌時間はサンプルの量に応じて設計可能であるが、120~180℃かつ、0.25~10時間の範囲が好ましい。
【0080】
なお、本発明において、例えば、特許文献3において提案されているように、成分(D)である熱伝導性充填剤を、成分(E)として、分子量の異なる2種以上の処理剤により表面処理してもよく、その際に、分子量の大きい処理剤を先に添加した後、分子量の小さい処理剤を後に添加する方法で成分(D)に表面処理を施してもよい。ただし、前記の成分(E1)を選択することにより、上記のような多段階の表面処理を行うことなく、一段階の表面処理のみで良好な流動性およびギャップフィル性が実現可能である点で特にプロセス上の実益がある。また、この時に置いても、成分(E1)の添加後に成分(F)を添加することが好適である。
【0081】
上記混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ヘンシェルミキサー等が例示される。
【0082】
[成分(G)]
本発明組成物は、(I)液および(II)液に、前記の成分(A)~(F)、任意で他の架橋剤およびヒドロシリル化反応抑制剤を含んでなるものであるが、混合後の熱伝導性シリコーンゲル組成物およびその硬化物の耐熱性改善の見地から、さらに、(G)耐熱性付与剤を含有することが好ましい。なお、成分(G)は、(I)液および(II)液から選ばれるどちらか一方に配合してもよく、本組成物を3成分以上に設計した場合は、独立した1成分として添加してもよい。成分(G)として、本発明の組成物およびその硬化物に耐熱性を付与できるものならば特に限定されないが、例えば、酸化鉄、酸化チタン、酸化セリウム、酸化マグネシウム、酸化亜鉛等の金属酸化物、水酸化セリウム等の金属水酸化物、フタロシアニン化合物、セリウムシラノレ-ト、セリウム脂肪酸塩、オルガノポリシロキサンとセリウムのカルボン酸塩との反応生成物等が挙げられる。特に好適には、フタロシアニン化合物であり、例えば、特表2014-503680号公報に開示された無金属フタロシアニン化合物及び金属含有フタロシアニン化合物からなる群より選択される添加剤が好適に用いられ、金属含有フタロシアニン化合物のうち、銅フタロシアニン化合物が特に好適である。最も好適かつ非限定的な耐熱性付与剤の一例は、29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅である。このようなフタロシアニン化合物は市販されており、例えば、PolyOne Corporation(Avon Lake,Ohio,USA)のStan-tone(商標)40SP03がある。
【0083】
このような成分(G)の配合量は、組成物全体の0.01~5.0質量%の範囲内とするであってよく、0.05~0.2質量%、0.07~0.1質量%の範囲であってもよい。
【0084】
[その他の添加剤]
本発明の熱伝導性シリコーンゲル組成物は、上記した成分以外にも、本発明の目的を損なわない範囲で任意成分を配合することができる。この任意成分としては、例えば、ケイ素原子結合水素原子およびケイ素原子結合アルケニル基を含有しないオルガノポリシロキサン、耐寒性付与剤、難燃性付与剤、顔料、染料等が挙げられる。また、本発明の熱伝導性シリコーンゲル組成物は、所望により、公知の接着性付与剤、カチオン系界面活性剤、アニオン系界面活性剤、または非イオン系界面活性剤などからなる1種類以上の帯電防止剤;誘電性フィラー;電気伝導性フィラー;離型性成分;チクソ性付与剤;防カビ剤などを含むことができる。また、所望により、有機溶媒を添加してもよい。これらの添加剤は、(I)液および(II)液から選ばれるどちらか一方に配合してもよく、本組成物を3成分以上に設計した場合は、独立した1成分として添加してもよい。
【0085】
[組成物の製造方法]
本発明の熱伝導性シリコーンゲル組成物は、上記の各成分を混合することにより調製でき、例えば(I)液の場合、事前に成分(A-1)、成分(A-2)、成分(D)、成分(E)、成分(F)を混合し、成分(D)の表面を成分(E)と成分(F)で処理した後、成分(C)、必要に応じて成分(G)、並びに他の任意の成分を混合することにより調製できる。
【0086】
(II)液の場合、事前に成分(A-1)、成分(A-2)、成分(D)、成分(E)、成分(F)を混合し、成分(D)の表面を成分(E)、成分(F)で処理した後、成分(B)、必要に応じて成分(G)、並びに他の任意の成分を混合することにより調製できる。また、成分(A-1)、成分(A-2)を使用せず、成分(D)、成分(E)、成分(F)を混合し、成分(D)の表面を成分(E)、成分(F)で処理した後、成分(B)、必要に応じて成分(G)、並びに他の任意の成分を混合することによっても調製できる。さらに、任意成分(G)およびヒドロシリル化反応抑制剤を混合しやすくするため、あらかじめ成分(A-1)、成分(A-2)に混合してから配合する、いわゆるマスターバッチの形態で成分(A-1)、成分(A-2)を配合し、(II)液の成分としてもよく、かつ好適である。
【0087】
各成分の混合方法は、従来公知の方法でよく特に限定されないが、通常、単純な攪拌により均一な混合物となることから、混合装置を用いた混合が好ましい。こうした混合装置としては特に限定がなく、一軸または二軸の連続混合機、二本ロール、ロスミキサー、ホバートミキサー、デンタルミキサー、プラネタリミキサー、ニーダーミキサー、ヘンシェルミキサー等が例示される。
【0088】
[組成物の形態およびパッケージ]
本発明の熱伝導性シリコーンゲル組成物は、分液した多成分を使用時に混合する多成分型(多液型、特に二液型を含む)の組成物であり、個別に保存される複数の組成物を所定の比率で混合して使用することができる。なお、これらのパッケージは、後述する硬化方法や塗布手段、適用対象に応じて所望により選択することができ、特に制限されない。
【0089】
[硬化性]
本発明の熱伝導性シリコーンゲル組成物は、ヒドロシリル化反応により硬化して、熱伝導性に優れたシリコーンゲル硬化物を形成する。このヒドロシリル化反応硬化型のシリコーンゲル組成物を硬化するための温度条件は、特に限定されないが、通常20℃~150℃の範囲内であり、より好ましくは20~80℃の範囲内である。所望により、高温短時間で硬化させてもよく、室温等の低温で長時間(例えば数時間~数日)かけて硬化させてもよく、特に制限されるものではない。
【0090】
本発明のシリコーンゲル硬化物は、JIS K6249で規定されるタイプE硬度計で2~70の範囲を満たすことが好ましく、2~50の範囲を満たすことがさらに好ましい。
こうした範囲の硬度を持つシリコーンゲル硬化物は、低弾性率および低応力といったシリコーンゲルの特徴を有するものになる。一方、硬度が70より大きい場合には、発熱部材との密着性は優れるものの、追従性が悪くなる恐れがあり、硬度が2未満の場合には追従性に優れるものの、発熱部材の固定性が悪くなる恐れがある。
【0091】
[熱伝導率]
本発明の熱伝導性シリコーンゲル組成物は、熱伝導性充填剤を安定的に高充填することができ、2.0W/mK以上、好適には3.5W/mK以上、より好適には4.0W/mK以上、特に好適には5.0W/mKの熱伝導率を備える。なお、本発明の熱伝導性シリコーンゲル組成物においては、4.0~7.0W/mKの組成物およびシリコーンゲル硬化物を設計可能であり、かつ、上記のギャップフィル性を実現可能である。
【0092】
[用途および放熱構造体]
本発明の熱伝導性シリコーンゲル組成物は、熱伝導による発熱性部品の冷却のために、発熱性部品の熱境界面とヒートシンク又は回路基板等の放熱部材との界面に介在させる熱伝達材料(熱伝導性部材)として有用であり、これを備えた放熱構造体を形成することができる。ここで、発熱性部品の種類や大きさ、細部の構造は特に限定されるものではないが、本発明の熱伝導性シリコーンゲル組成物は、高い熱伝導性を有しながら部材へのギャップフィル性に優れ、微細な凹凸や狭いギャップ構造を有する発熱性部材に対しても密着性と追従性が高く、かつ、ゲル特有の柔軟性を併せ持つことから、電気・電子部品又はセル方式の二次電池類を含む電気・電子機器の放熱構造体に好適に適用される。
【0093】
このような放熱構造体の構造は、特に制限されるものではないが、放熱部品または該放熱部品を搭載した回路基板に、前記の熱伝導性シリコーンゲル組成物またはその硬化物を介して放熱部材を設けてなる放熱構造体が例示できる。このような構造は、例えば、放熱性部品である電子部品が回路基板上に搭載され、当該電子部品から発生する熱を熱伝導性シリコーンゲル組成物またはその硬化物の薄膜層を介して放熱部材で放熱する構造が例示され、かつ、これらの部材が水平方向に配置され、熱伝導性シリコーンゲル組成物またはその硬化物の薄膜層が、回路基板と放熱部材により垂直方向に挟持された構造が挙げられる。なお、該回路基板上の回路と前記電子部品は電気的に接続されていてもよく、当該回路基板には、電子部品から発生する熱を効率よく伝えるためにビアホールが形成されていてもよい。
【0094】
このような放熱構造体において、熱伝導性シリコーンゲル組成物またはその硬化物は、回路基板と放熱部材とで狭持されるが、その厚さは特に限定されないが、0.1~2mmの範囲であってもずれ落ちることなく、当該組成物が隙間なく充填された電子部品から発生する熱を放熱部材に効率よく伝えることができる。
【0095】
前記の熱伝導性シリコーン組成物からなる部材を備えた電気・電子機器は特に制限されるものではないが、例えば、セル方式のリチウムイオン電極二次電池、セルスタック式の燃料電池等の二次電池;プリント基板のような電子回路基板;ダイオード(LED)、有機電界素子(有機EL)、レーザーダイオード、LEDアレイのような光半導体素子がパッケージされたICチップ;パーソナルコンピューター、デジタルビデオディスク、携帯電話、スマートフォン等の電子機器に使用されるCPU;ドライバICやメモリー等のLSIチップ等が例示される。特に、高集積密度で形成された高性能デジタル・スイッチング回路においては、集積回路の性能及び信頼性に対して熱除去(放熱)が主要な要素となっているが、本発明に係る熱伝導性シリコーンゲル組成物を用いてなる熱伝導性部材は、輸送機中のエンジン制御やパワー・トレーン系、エアコン制御などのパワー半導体用途に適用した場合にも、放熱性および取扱作業性に優れ、電子制御ユニット(ECU)など車載電子部品に組み込まれて過酷な環境下で使用された場合にも、優れた耐熱性および熱伝導性を実現できる。
【0096】
特に、本発明に係る熱伝導性シリコーンゲル組成物は、そのレオロジーを制御することで、水平面だけでなく傾斜面乃至垂直面にも好適に配置することができ、かつ、電気・電子部品や二次電池等の発熱性部品の微細構造にも侵入して間隙(ギャップ)のない放熱構造体を与えることができる。これにより、過酷な温度環境下、垂直に放置されてもずれ落ち難いので、自動車のコントロールユニットの放熱部材および保護材として好適である。また、当該放熱構造体を備えた電気・電子機器について放熱性が改善され、潜熱や熱暴走の問題が改善されるほか、柔軟なゲル状硬化物により電気・電子機器の部分構造を保護し、その信頼性と動作安定性を改善できる場合がある。
【0097】
上記の電気・電子機器を構成する材料としては、例えば、樹脂、セラミック、ガラス、アルミニウムのような金属等が挙げられる。本発明の熱伝導性シリコーンゲル組成物は、硬化前の熱伝導性シリコーンゲル組成物(流動体)としても、熱伝導性シリコーン硬化物としても、これらの基材に適用して使用することができる。
【0098】
[硬化方法]
発熱性部品について、本発明の熱伝導性シリコーンゲル組成物を用いた放熱構造を形成する方法は限定されず、例えば、電気・電子部品について放熱部分に本発明の熱伝導性シリコーンゲル組成物を注ぎ、十分に間隙まで充填した後、これを加熱したり、室温で放置したりすることにより、この組成物を硬化させる方法が挙げられる。
【0099】
迅速な硬化が求められる用途にあっては、特に、比較的速やかに全体を硬化させることができることから、これを加熱して硬化させる方法が好ましい。この際、加熱温度が高くなると、封止または充填している電気・電子部品封止剤中の気泡や亀裂の発生が促進されるので、50~250℃の範囲内に加熱することが好ましく、特に、70~130℃の範囲内に加熱することが好ましい。また、加熱硬化の場合、取扱作業性の見地から、熱可塑性樹脂で分散あるいはカプセル化した微粒子状の白金含有ヒドロシリル化反応触媒を用いてもよい。
【0100】
一方、本発明の熱伝導性シリコーンゲル組成物は、室温または50度以下の加温下で硬化させることができる。その場合、混合後、室温または50度以下の加温下で1時間から数日間かけて硬化させることが好ましい。
【0101】
なお上記の硬化により得られた熱伝導性シリコーンゲルの形状、厚さおよび配置等は所望により設計可能であり、電気・電子機器の間隙に充填した後に必要に応じて硬化させてもよく、剥離層(セパレータ)を設けたフィルム上に塗布ないし硬化させ、フィルム上の熱伝導性シリコーンゲル硬化物として単独で取り扱ってもよい。また、その場合、公知の補強材により補強された熱伝導性シートの形態であってもよい。
【0102】
[電気・電子機器の具体例]
本発明の熱伝導性シリコーンゲル組成物は、ギャップフィル性に優れ、柔軟かつ熱伝導性に優れたゲル状の熱伝導性部材を形成するので、電気・電子部品中の電極と電極、電気素子と電気素子、電気素子とパッケージ等の隙間が狭いものや、これらの構造がこのシリコーンゲルの膨張・収縮に追随しにくい構造を有するものに対しても有効であり、例えば、IC、ハイブリッドIC、LSI等の半導体素子、このような半導体素子、コンデンサ、電気抵抗器等の電気素子を実装した電気回路やモジュール、圧力センサー等の各種センサー、自動車用のイグナイターやレギュレーター、発電システム、または宇宙輸送システム等のパワーデバイス等に対しても使用することができる。
【実施例】
【0103】
以下、本発明に関して実施例を挙げて説明するが、本発明は、これらによって限定されるものではない。以下に示す実施例では下記の化合物ないし組成物を原料に用いた。
【0104】
成分(A)~(G)を以下のように混合して、実施例1~3および比較例1~6の熱伝導性シリコーンゲル組成物を得た。
その後、ポリプロピレンシート上にポリエチレン製バッカーを用いて高さ15mm、縦100mm、横50mmの枠を作成、得られた組成物を充填し、上にテフロン(登録商標)製シートを平滑になるように押し付け、そのままの状態で25℃の雰囲気下で1日硬化させた。硬化後、テフロン(登録商標)製シートとポリエチレン製バッカーを外し、熱伝導性シリコーンゲル組成物を得た。
【0105】
実施例1~4および比較例1~6に示す部数により得られた熱伝導性シリコーンゲル組成物は5.0W/mKの熱伝導率を得られるように成分(D)を配合している。この熱伝導率は京都電子工業株式会社製TPS-500を使用して、上記で得られた硬化物を2つに切断してホットディスク法にて測定された値である。
【0106】
本発明に関わる効果に関する試験は次のように行った。
なお、熱伝導性シリコーン組成物の粘度、吐出量、オイル滲みだし距離、および硬化性を次のようにして測定した。
[粘度]
熱伝導性シリコーン組成物の25℃における粘度(Pa・s)を、SHIMAZU社製フローテスターCFT-500EXを用いて測定した。キャピラリーダイは直径1mm、ストローク15mm、試験荷重30kgで実施した。熱伝導性シリコーンゲル組成物はエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を充填し、先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながら試験容器内に充填した。測定時のシリンダ圧力は2.94×106(Pa)であった。
[混合ポリマー粘度]
混合ポリマーの25℃における粘度(Pa・s)を、アントンパール社製レオコンパスMCR102を用いて測定した。ジオメトリーは直径20mmのコーンプレートを用い、シェアレイト10.0(1/s)の値を測定した。
[吐出量]
熱伝導性シリコーン組成物の25℃における吐出量(cc/10min)を、SHIMAZU社製フローテスターCFT-500EXを用いて測定した。上記粘度測定と同じ条件で実施した。
[オイル滲みだし距離]
縦50mm、横50mm、厚さ1mmの片面すりガラスのすりガラス面に、同サイズにカットしたキムタオル(日本製紙クレシア株式会社)を粗い面を上にして乗せ、更にその上に縦50mm、横50mm、厚さ3mm、中央部に直径10mmの穴を開けたPTFE製の板を乗せ、両端をクリップで固定した。中央部の穴に熱伝導性シリコーンゲル組成物を隙間が無いように充填し、スパチュラで表面をかきとり、この面を上にした状態で25℃で24時間硬化させた。その後、すりガラスの裏面からオイルの滲みだし距離を縦方向と横方向で測定し、平均値を計算した。直径10mmに対して2倍(20mm)以内の滲みだし距離が理想である。それ以上の滲みだし距離の場合、スタティックミキサー内で組成物成分の分離が生じやすくなる。
[硬化性]
縦50mm、横50mmにカットした厚さ約0.1mmのPPフィルム上に0.5gの熱伝導性シリコーンゲル組成物を上記同様スタティックミキサーMA6.3-12-Sを取り付けたハンドガンから押し出して計量した。その後、上から同サイズのPPフィルムを乗せて約1mmの厚さになるように潰した。繰り返しスタティックミキサーから20ショット吐出し、20個の試験体を作成した。25℃で24時間硬化させた後、PPフィルムを剥がして硬化性を確認した。硬化した熱伝導性シリコーンゲル組成物が破損せずにPPフィルムが剥がれたものを合格とし、硬化した熱伝導性シリコーンゲル組成物が破壊したものを不合格とした。20個全て合格するのが、本発明の最終目的である。
[硬化後外観確認]
上記硬化性確認において、硬化した熱伝導性シリコーンゲル組成物の外観を確認した。(I)液と(II)液の色を変えて混合後の色の均一性を確認し、均一になっているものを合格、斑模様等が見られ、色が均一になっていないものを不合格とした。
【0107】
本発明組成物は以下の各成分により形成されている。
成分(A):
以下、成分(A)であるポリシロキサンのシロキサン重合度は、NMRを用いて得られた各シロキサンの数平均分子量に基づくシロキサン単位の重合度の計算値である。
A-1-1:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度 60mPa・s,Vi含有量 1.53質量%, 重合度96)
non-A-1-2:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度 400mPa・s,Vi含有量 0.43質量%, 重合度206)
A-2-1:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度10,000mPa・s,Vi含有量 0.14質量%, 重合度540)
A-2-2:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン(粘度 42,000mPa・s,Vi含有量 0.09質量%, 重合度797)
A-2-3:分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン(可塑度144,Vi含有量 0.01質量%, 重合度4470)
[可塑度]
可塑度は、JIS K 6249に規定される方法に準じて測定された値(25℃、4.2gの球状試料に1kgfの荷重を3分間かけたときの厚さを1/100mmまで読み、この数値を100倍したもの)で示した。
【0108】
成分(B):
B-1:分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内に平均2個、分子鎖側鎖に平均2個(粘度 20mPa・s,Si-H 含有量 0.10質量%)
non-B-2:分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンシロキサン・ジメチルシロキサン共重合体、分子内に平均5個、分子鎖側鎖に平均5個(粘度 5mPa・s,Si-H 含有量 0.75質量%)
【0109】
成分(C):
C-1:白金濃度が0.6重量%である白金と1,3-ジビニル-1,1,3,3-テトラメチルジシロキサンの錯体
【0110】
成分(D):
D-1:平均粒子径0.4μmの破砕状酸化アルミニウム粉末
D-2:平均粒子径2.5μmの破砕状酸化アルミニウム粉末
D-3:平均粒子径35μmの球状溶融固化酸化アルミニウム粉末
【0111】
成分(E):
E-1:デシルトリメトキシシラン
【0112】
分(F):
F-1:下記式で表されるポリオルガノシロキサン
【化4】
【0113】
成分(G):
G-1:29H,31H-フタロシアニナト(2-)-N29,N30,N31,N32銅
【0114】
[実施例1]
成分(A-1-1)100質量部、成分(A-2-1)4.3質量部、成分(E-1)12.8質量部、成分(F-1)12.8質量部を計量し、そこに60分かけて成分(D-1)427質量部、成分(D-2)427質量部、成分(D-3)1154質量部を順次混合した。均一にしたのち、減圧下で160℃で90分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(C-1)0.486質量部を混合し、熱伝導性シリコーン組成物の(I)液を得た。
次に成分(F-1)100質量部、成分(E-1)4.9質量部、成分(G-1)2.96質量部を計量し、そこに60分かけて成分(D-1)493質量部、成分(D-2)493質量部、成分(D-3)1330質量部を順次混合した。均一にしたのち、減圧下で160℃で90分加熱混合後、室温まで冷却して混合物を得た。
この混合物に、成分(B-1)29.8質量部、成分(Non-B-2)0.74質量部、成分(Non-A-1-2)4.9質量部とマスターバッチ化した反応抑制剤としてフェニルブチノール 0.025質量部を均一混合し、熱伝導性シリコーン組成物の(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は1.23(混合粘度75mPa・s)であった。
【0115】
[実施例2]
実施例1の成分(A-2-1)4.3質量部を成分(A-2-2)4.3質量部に置き換えた以外は、実施例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は1.31(混合粘度80mPa・s)であった。
【0116】
[実施例3]
実施例1の成分(A-2-1)4.3質量部を成分(A-2-2)8.5質量部に置き換えた以外は、実施例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は1.67(混合粘度100mPa・s)であった。
【0117】
【0118】
[実施例4]
実施例1の成分(A-2-1)4.3質量部を成分(A-2-3)1.5質量部に置き換き換えた以外は、実施例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は1.98(混合粘度119mPa・s)であった。
【0119】
[実施例5]
実施例1の成分(A-2-1)4.3質量部を成分(A-2-3)4.0質量部に置き換き換えた以外は、実施例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は5.17(混合粘度310mPa・s)であった。
【表2】
【0120】
[比較例1]
実施例1から成分(A-2-1)4.3質量部を除いた以外は、実施例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物は成分(A-2)を含有しておらず、粘度[A-1][A-2]/粘度[A-1]は1.00(混合粘度60mPa・s)であった。
【0121】
[比較例2]
比較例1の成分(A-1-1)100質量部を成分(non-A-1-2)100質量部に置き換えた以外は、比較例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物は成分(A-1)、成分(A-2)共に含有していない。
【0122】
[比較例3]
比較例1の成分(A-1-1)100質量部を成分(A-1-1)68質量部と成分(non-A-1-2)32質量部に置き換えた以外は、比較例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物は成分(A-2)を含有しておらず、粘度[A-1][A-2]/粘度[A-1]は1.00(混合粘度110mPa・s)であった。
【0123】
[比較例4]
実施例2の成分(A-2-2)4.3質量部を1.0質量部に置き換えた以外は、実施例2と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は1.07(混合粘度65mPa・s)であった。
【0124】
[比較例5]
実施例2の成分(A-2-2)4.3質量部を2.0質量部に置き換えた以外は、実施例2と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物の粘度[A-1][A-2]/粘度[A-1]は1.14(混合粘度70mPa・s)であった。
【0125】
[比較例6]
実施例1の成分(A-2-1)4.3質量部を成分(non-A-1-2)4.3質量部に置き換えた以外は、実施例1と同様に熱伝導性シリコーン組成物の(I)液、(II)液を得た。
上記熱伝導性シリコーン組成物をエディーワイ株式会社製25ccツインカートリッジに(I)液と(II)液を分けて充填した。先端にスタティックミキサーMA6.3-12-Sを取り付け、ハンドガンで押し出し混合しながらSHIMAZU社製フローテスターCFT-500EXで粘度と吐出量を測定した。続けて、オイル滲みだし距離、硬化性、硬化後の外観を確認した。
この組成物は成分(A-2)を含有しておらず、粘度[A-1][A-2]/粘度[A-1]は1.00(混合粘度65mPa・s)であった。
【0126】
【0127】
【0128】
[総括]
実施例1~5に示すとおり、粘度[A-1][A-2]/粘度[A-1]が1.15~5.50の範囲である場合、本発明にかかる各熱伝導性シリコーンゲル組成物(熱伝導率の設計値:5.0W/mK)は、(I)液、(II)液が共に硬化前においてオイルの滲みだしが少なく、かつスタティックミキサーでの混合において良好かつ実用上十分な混合性、かつ安定した硬化性を示していた。特に、実施例1~4に示す、粘度[A-1][A-2]/粘度[A-1]が1.20~2.00の範囲であり、かつ、両者の混合粘度が150mPa・s以下である熱伝導性シリコーンゲル組成物は、上記の特性に加えて、その吐出性にも極めて優れ、取扱作業性および安定性に優れることが確認できた。
【0129】
一方、比較例1、比較例4、比較例5においては、粘度[A-1][A-2]/粘度[A-1]が1.00~1.14であり、硬化前において(I)液でオイルの滲みだしが多く、スタティックミキサーでの混合において硬化性が安定せず、良好な混合性を得ることが出来なかった。従って、粘度[A-1][A-2]/粘度[A-1]が本特許範囲を満たさない場合、安定した多成分型の熱伝導性シリコーンゲル組成物を得ることができないものである。
【0130】
また、比較例2、比較例3においては、硬化前において(I)液でオイルの滲みだしが少なく、スタティックミキサーでの混合において安定した硬化性を示していたが、得られた硬化物の外観は不均一であり、良好な混合性を得ることが出来なかった。主成分である成分(A-1)の粘度が本特許範囲を満たさない場合、また成分(A-2)を使用しない場合、安定した多成分型の熱伝導性シリコーンゲル組成物を得ることができないものである。