(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-06
(45)【発行日】2024-02-15
(54)【発明の名称】簡略化モデルを用いるトモグラフィ依拠半導体計測
(51)【国際特許分類】
G01N 23/201 20180101AFI20240207BHJP
G01N 23/046 20180101ALI20240207BHJP
G01N 21/956 20060101ALI20240207BHJP
【FI】
G01N23/201
G01N23/046
G01N21/956 A
(21)【出願番号】P 2022532855
(86)(22)【出願日】2020-12-01
(86)【国際出願番号】 US2020062630
(87)【国際公開番号】W WO2021113191
(87)【国際公開日】2021-06-10
【審査請求日】2023-09-01
(32)【優先日】2019-12-02
(33)【優先権主張国・地域又は機関】US
(32)【優先日】2020-11-18
(33)【優先権主張国・地域又は機関】US
【早期審査対象出願】
(73)【特許権者】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】パンデフ スティリアン
【審査官】井上 徹
(56)【参考文献】
【文献】米国特許出願公開第2018/0350699(US,A1)
【文献】米国特許出願公開第2020/0080836(US,A1)
【文献】米国特許出願公開第2016/0335753(US,A1)
【文献】米国特許出願公開第2017/0069080(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84-G01N 21/958
G01N 23/00-G01N 23/2276
G01B 11/00-G01B 11/30
H01L 21/64-H01L 21/66
G06T 7/00-G06T 7/90
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
第1半導体計測システムの照明源から一群の照明輻射を供給し、半導体ウェハ上に配された構造へと前記一群の照明輻射を差し向け、
前記一群の照明輻射に応じ前記構造から散乱されてきた一群の輻射を、前記第1半導体計測システムの検出器により検出し、
前記構造の各計測インスタンスに係り前記構造から検出された前記一群の輻射を特徴付ける1セットの計測画像を、前記第1半導体計測システムにより生成し、
前記構造のボクセルモデルの各ボクセルに係る初期値を決定し、但し前記ボクセルモデルが第1複数個のボクセルを含み、前記ボクセルモデルの前記第1複数個のボクセルそれぞれに係る値が前記ボクセルモデルの前記第1複数個のボクセルのうちその他のボクセルそれぞれに係る値に対し独立で、前記ボクセルモデルが有する自由度の個数が前記第1複数に等しく、
前記第1半導体計測システムによる前記構造の各計測を特徴付ける第1セットのシミュレート画像を、前記ボクセルモデルに依拠して生成し、
前記構造の制約付ボクセルモデルを受け取り、但し前記制約付ボクセルモデルにおけるボクセルの個数が前記第1複数に等しく、前記制約付ボクセルモデルが有する自由度の個数が前記第1複数未満であり、
前記構造の前記ボクセルモデルの各ボクセルに係る前記値を、前記セットの計測画像と前記第1セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと前記制約付ボクセルモデルとの間の差異、に基づき反復的に更新し
、
計測下構造を特徴付ける1個又は複数個の注目パラメタの値を、前記ボクセルモデルをもとに推定
し、
前記制約付ボクセルモデルを、前記セットの計測画像、前記セットの計測画像のサブセット、第2半導体計測システムにより前記構造から収集された一群の計測データ、或いはそれらの組合せをもとに決定し、
前記制約付ボクセルモデルの前記決定に際し、
前記構造を特徴付ける1個又は複数個の注目パラメタの値を、前記セットの計測画像、前記セットの計測画像の前記サブセット、前記第2半導体計測システムにより前記構造から収集された前記一群の計測データ、或いはそれらの組合せをもとに決定し、
前記制約付ボクセルモデルを、訓練済デコーダモデルに依拠し前記1個又は複数個のパラメタの前記値をもとに生成し、
前記構造を特徴付ける前記1個又は複数個の注目パラメタの前記値の前記決定が、前記セットの計測画像と前記セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと前記制約付ボクセルモデルとの間の差異、の最小化に依拠するものである、
方法。
【請求項2】
請求項1に記載の方法であって、前記制約付ボクセルモデルを訓練済制約付ボクセルモデル合成モジュールにより決定する方法。
【請求項3】
請求項1に記載の方法であって、前記構造を特徴付ける前記1個又は複数個の注目パラメタの前記値の前記決定が、回帰モデル又は訓練済機械学習依拠モデルに依拠するものである方法。
【請求項4】
請求項1に記載の方法であって、更に、
前記半導体計測システムによる前記構造の各計測を特徴付ける第2セットのシミュレート画像を、前記制約付ボクセルモデルに依拠して生成する方法であり、前記構造の前記ボクセルモデルの各ボクセルに係る前記値の前記更新も、前記セットの計測画像又は前記セットの計測画像のサブセットと、前記第2セットのシミュレート画像と、の間の差異に基づくものである方法。
【請求項5】
請求項1に記載の方法であって、更に、
前記半導体計測システムによる前記構造の各計測を特徴付ける第2セットのシミュレート画像を、前記制約付ボクセルモデルに依拠して生成する方法であり、前記構造の前記ボクセルモデルの各ボクセルに係る前記値の前記更新も、前記第1セットのシミュレート画像と、前記第2セットのシミュレート画像と、の間の差異に基づくものである方法。
【請求項6】
請求項1に記載の方法であって、更に、
前記構造を特徴付ける1個又は複数個の
注目パラメタの値の実験計画法(DOE)セット、前記構造を作成するのに利用された半導体製造プロセスを特徴付ける1個又は複数個のプロセスパラメタの値のDOEセット、或いはその双方を生成し、
前記構造の1セットのパラメタ化モデルを、前記1個又は複数個の
注目パラメタの値の前記DOEセット中の個々の値、前記1個又は複数個のプロセスパラメタの値の前記DOEセット中の個々の値、或いはその双方に基づき決定し、
前記構造の1セットのボクセルモデルを、前記構造の前記セットのパラメタ化モデルそれぞれに基づき決定し、且つ
前記
訓練済デコーダモデルを、前記1個又は複数個の
注目パラメタの値の前記DOEセット、前記1個又は複数個のプロセスパラメタの値の前記DOEセット、或いはその双方と、前記セットのボクセルモデルと、に基づき訓練する方法。
【請求項7】
請求項1に記載の方法であって、更に、
前記構造の複数個のインスタンスを有する1枚又は複数枚の実験計画法(DOE)ウェハを作成し、但し各インスタンスが、前記構造を特徴付ける1個又は複数個の
注目パラメタ、前記構造を作成するのに利用された半導体製造プロセスを特徴付ける1個又は複数個のプロセスパラメタ、或いはその双方の値が異なるものであり、
前記1枚又は複数枚のDOEウェハ上に配された前記構造の各インスタンスを、高信頼参照計量システムを用い
て計測し、
前記1個又は複数個の
注目パラメタ、前記1個又は複数個のプロセスパラメタ、或いはその双方の値の
差分を、前記構造の前記インスタンスについての前記高信頼参照計量システムによる計測を踏まえて推定し、
前記構造の1セットのボクセルモデルを、前記1個又は複数個の
注目パラメタ、前記1個又は複数個のプロセスパラメタ、或いはその双方の前記
差分に基づき決定し、且つ
前記
訓練済デコーダモデルを前記セットのボクセルモデルに依拠して訓練する方法。
【請求項8】
請求項1に記載の方法であって、更に、
前記構造の1セットのボクセルモデルをユーザから受け取り、且つ
前記
訓練済デコーダモデルを前記セットのボクセルモデルに依拠して訓練する方法。
【請求項9】
請求項1に記載の方法であって、各計測インスタンスにて前記半導体ウェハ
の表面上
の計測サイトへと差し向けられる前記一群の照明輻射を、複数の別々な入射角、複数の別々なアジマス角、或いはその双方にて供給する方法。
【請求項10】
請求項1に記載の方法であって、前記1個又は複数個の注目パラメタのなかに、注目幾何パラメタ、注目プロセスパラメタ、注目電気パラメタ及び注目分散パラメタのうち何れかを含める方法。
【請求項11】
請求項1に記載の方法であって、前記1個又は複数個の注目パラメタのなかに、オーバレイ寸法、限界寸法、リソグラフィ焦点及びリソグラフィ照射量のうち何れかを含める方法。
【請求項12】
請求項1に記載の方法であって、前記第1半導体計測システムが小角X線スキャタロメータである方法。
【請求項13】
請求項1に記載の方法であって、前記第2半導体計測システムが分光エリプソメータ、分光リフレクトメータ、軟X線リフレクトメータ、イメージングシステム及びハイパースペクトルイメージングシステムのうち何れかである方法。
【請求項14】
第1半導体計測システムの照明源であり、半導体ウェハ上に配された構造に向かう一群の照明輻射を供給するよう構成されている照明源と、
前記第1半導体計測システムの検出器であり、前記一群の照明輻射に応じ前記構造から散乱されてきた一群の輻射を検出するよう構成されている検出器と、
命令が格納されている非一時的コンピュータ可読媒体と、を備え、それら命令が1個又は複数個のプロセッサにより実行されたときに、前記1個又は複数個のプロセッサが、
前記構造の各計測インスタンスに係り前記構造から検出された前記一群の輻射を特徴付ける1セットの計測画像を、前記第1半導体計測システムにより生成し、
前記構造のボクセルモデルの各ボクセルに係る初期値を決定し、但し前記ボクセルモデルが第1複数個のボクセルを含み、前記ボクセルモデルの前記第1複数個のボクセルそれぞれに係る値が前記ボクセルモデルの前記第1複数個のボクセルのうちその他のボクセルそれぞれに係る値に対し独立で、前記ボクセルモデルが有する自由度の個数が前記第1複数に等しく、
前記第1半導体計測システムによる前記構造の各計測を特徴付ける第1セットのシミュレート画像を、前記ボクセルモデルに依拠して生成し、
前記構造の制約付ボクセルモデルを受け取り、但し前記制約付ボクセルモデルにおけるボクセルの個数が前記第1複数に等しく、前記制約付ボクセルモデルが有する自由度の個数が前記第1複数未満であり、
前記構造の前記ボクセルモデルの各ボクセルに係る前記値を、前記セットの計測画像と前記第1セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと前記制約付ボクセルモデルとの間の差異、に基づき反復的に更新し
、
計測下構造を特徴付ける1個又は複数個の注目パラメタの値を、前記ボクセルモデルをもとに推定
し、
前記制約付ボクセルモデルを、前記セットの計測画像、前記セットの計測画像のサブセット、第2半導体計測システムにより前記構造から収集された一群の計測データ、或いはそれらの組合せをもとに決定し、
前記制約付ボクセルモデルの前記決定に際し、
前記構造を特徴付ける1個又は複数個の注目パラメタの値を、前記セットの計測画像、前記セットの計測画像の前記サブセット、前記第2半導体計測システムにより前記構造から収集された前記一群の計測データ、或いはそれらの組合せをもとに決定し、
前記制約付ボクセルモデルを、訓練済デコーダモデルに依拠し前記1個又は複数個のパラメタの前記値をもとに生成し、
前記構造を特徴付ける前記1個又は複数個の注目パラメタの前記値の前記決定が、前記セットの計測画像と前記セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと前記制約付ボクセルモデルとの間の差異、の最小化に依拠するものである、
システム。
【請求項15】
請求項14に記載のシステムであって、前記非一時的コンピュータ可読媒体に更に命令が格納されており、それら命令が前記1個又は複数個のプロセッサにより実行されたときに、前記1個又は複数個のプロセッサが、
前記半導体計測システムによる前記構造の各計測を特徴付ける第2セットのシミュレート画像を、前記制約付ボクセルモデルに依拠して生成するシステムであり、前記構造の前記ボクセルモデルの各ボクセルに係る前記値の前記更新も、前記セットの計測画像又は前記セットの計測画像のサブセットと、前記第2セットのシミュレート画像と、の間の差異に基づくものであるシステム。
【請求項16】
請求項14に記載のシステムであって、前記非一時的コンピュータ可読媒体に更に命令が格納されており、それら命令が前記1個又は複数個のプロセッサにより実行されたときに、前記1個又は複数個のプロセッサが、
前記半導体計測システムによる前記構造の各計測を特徴付ける第2セットのシミュレート画像を、前記制約付ボクセルモデルに依拠して生成するシステムであり、前記構造の前記ボクセルモデルの各ボクセルに係る前記値の前記更新も、前記第1セットのシミュレート画像と、前記第2セットのシミュレート画像と、の間の差異に基づくものであるシステム。
【請求項17】
半導体計測システムであって、
半導体ウェハ上に配された構造に向かう一群の照明輻射を供給するよう構成されている照明源と、
前記一群の照明輻射に応じ前記構造から散乱されてきた一群の輻射を検出するよう構成されている検出器と、
情報処理システムと、を備え、その情報処理システムが、
前記構造の各計測インスタンスに係り前記構造から検出された前記一群の輻射を特徴付ける、1セットの計測画像を生成し、
前記構造のボクセルモデルの各ボクセルに係る初期値を決定し、但し前記ボクセルモデルが第1複数個のボクセルを含み、前記ボクセルモデルの前記第1複数個のボクセルそれぞれに係る値が前記ボクセルモデルの前記第1複数個のボクセルのうちその他のボクセルそれぞれに係る値に対し独立で、前記ボクセルモデルが有する自由度の個数が前記第1複数に等しく、
前記構造の各計測を特徴付ける第1セットのシミュレート画像を、前記ボクセルモデルに依拠して生成し、
前記構造の制約付ボクセルモデルを受け取り、但し前記制約付ボクセルモデルにおけるボクセルの個数が前記第1複数に等しく、前記制約付ボクセルモデルが有する自由度の個数が前記第1複数未満であり、
前記構造の前記ボクセルモデルの各ボクセルに係る前記値を、前記セットの計測画像と前記第1セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと前記制約付ボクセルモデルとの間の差異、に基づき反復的に更新し、且つ
計測下構造を特徴付ける1個又は複数個の注目パラメタの値を、前記ボクセルモデルをもとに推定
し、
前記制約付ボクセルモデルを、前記セットの計測画像、前記セットの計測画像のサブセット、第2半導体計測システムにより前記構造から収集された一群の計測データ、或いはそれらの組合せをもとに決定し、
前記制約付ボクセルモデルの前記決定に際し、
前記構造を特徴付ける1個又は複数個の注目パラメタの値を、前記セットの計測画像、前記セットの計測画像の前記サブセット、前記第2半導体計測システムにより前記構造から収集された前記一群の計測データ、或いはそれらの組合せをもとに決定し、
前記制約付ボクセルモデルを、訓練済デコーダモデルに依拠し前記1個又は複数個のパラメタの前記値をもとに生成し、
前記構造を特徴付ける前記1個又は複数個の注目パラメタの前記値の前記決定が、前記セットの計測画像と前記セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと前記制約付ボクセルモデルとの間の差異、の最小化に依拠するものであるように、
構成されている半導体計測システム。
【請求項18】
請求項17に記載の半導体計測システムであって、前記情報処理システムが更に、
前記半導体計測システムによる前記構造の各計測を特徴付ける第2セットのシミュレート画像を、前記制約付ボクセルモデルに依拠して生成するよう構成されており、前記構造の前記ボクセルモデルの各ボクセルに係る前記値の前記更新も、前記セットの計測画像又は前記セットの計測画像のサブセットと、前記第2セットのシミュレート画像と、の間の差異に基づくものである半導体計測システム。
【請求項19】
請求項17に記載の半導体計測システムであって、前記情報処理システムが更に、
前記半導体計測システムによる前記構造の各計測を特徴付ける第2セットのシミュレート画像を、前記制約付ボクセルモデルに依拠して生成するよう構成されており、前記構造の前記ボクセルモデルの各ボクセルに係る前記値の前記更新も、前記第1セットのシミュレート画像と、前記第2セットのシミュレート画像と、の間の差異に基づくものである半導体計測システム。
【発明の詳細な説明】
【技術分野】
【0001】
記載されている諸実施形態は計量システム及び方法に関し、より具体的には改善された半導体構造計測方法及びシステムに関する。
【背景技術】
【0002】
[関連出願への相互参照]
本件特許出願では、「簡略化モデルを用いるデータドリブンハイブリッドトモグラフィ」(Data Driven Hybrid Tomography Using Simplified Models)と題する2019年12月2日付米国仮特許出願第62/942735号に基づき米国特許法第119条の規定による優先権を主張し、その暫定特許出願の主題の全容を参照により本願に繰り入れる。
【0003】
半導体デバイス、例えば論理デバイス及びメモリデバイスを製造する際には、通常、一連の処理工程が試料に適用される。それら半導体デバイスの様々なフィーチャ(外形特徴)及び複数個の階層が、それらの処理工程によって形成される。例えば、その中でもリソグラフィは、半導体ウェハ上でのパターン生成を伴う半導体製造プロセスの一つである。半導体製造プロセスの更なる例としては、これに限られるものではないが化学機械研磨、エッチング、堆積及びイオンインプランテーションがある。複数個の半導体デバイスを単一の半導体ウェハ上に作成した上で、それらを分けて個別の半導体デバイスにすることができる。
【0004】
計量プロセスが、ウェハ上の欠陥を検出することで歩留まり向上を促進するため、半導体製造プロセス中の様々な工程にて用いられている。光学及びX線依拠計量技術には、標本破壊のリスク無しで高いスループットが得られる見込みがある。多数の計量依拠技術、例えばスキャタロメトリ(散乱計測法)、リフレクトメトリ(反射計測法)及びエリプソメトリ(楕円偏向法)の装置並びにそれらに関連する分析アルゴリズムが、限界寸法、膜厚、組成、オーバレイその他、ナノスケール構造のパラメタを解明するため広く用いられている。
【0005】
多くの計量技術では、間接的な方法により計測下試料の物理特性が計測される。大抵の場合は、生の計測信号を用いて試料の物理特性を直に判別することができない。その代わりに、ある種の計測モデルを反復的に解いて、その生の計測信号にマッチさせることができる。解かれた後は、その計測モデルを利用して、1個又は複数個の注目パラメタの値を推定することができる。
【0006】
幾つかの例では、トモグラフィック技術を用い画像データを分析することで、トモグラフィック計測モデルが解かれている。幾つかの例では、そのトモグラフィック計測モデルを、ある三次元ボリュームに亘るボクセルのグリッドアレイとし、その中に被計測構造を包み込んでいる。そのアレイを構成するボクセルのサイズ及び間隔は、アプリオリ(先験的)に既知である。トモグラフィ(断層撮像法)は、そのボクセルモデルの各ボクセルに係る特性(例.透明度、電子密度等)の値を決めるのに利用される最適化プロセスである。この最適化プロセスにて、各ボクセルに係る特性の値でありシミュレート画像データ・計測画像データ間差分が最小になる値が求められ、ひいてはその被計測構造が分解ボクセルモデルとして再構築される。
【0007】
通常の半導体計量アプリケーションでは、被計測構造のボクセルモデル内に多数のボクセル(例.百万個以上のボクセル)を含めることで、注目パラメタ(例.限界寸法、高さ、側壁角等)を正確に推定するのに十分な分解能がもたらされるようにする。そのため、そのトモグラフィック最適化問題が数学的に劣決定的なもの、即ち比較的少数の実計測標本に基づき解くべきボクセルパラメタが百万個以上のものとなる。トモグラフィック最適化問題のこの生来的劣決定性を克服するため、一形式又は複数形式の正則化(整理)がその最適化プロセスの一部として利用されている。
【先行技術文献】
【特許文献】
【0008】
【文献】米国特許第7929667号明細書
【文献】米国特許出願公開第2015/0110249号明細書
【発明の概要】
【発明が解決しようとする課題】
【0009】
不運なことに、トモグラフィック分析にて利用されている典型的な一般的正則化(例.全変分正則化、L1正則化等)では計測性能が制限される。ある種の例では、一般的正則化項の適用が弱いため、その最適化が局所極小解に陥ることや、非現実的で不正確な計測結果につながることがある。ある種の例では、一般的正則化項の適用によって過剰に強い正則化がもたらされ、十分な細部を欠く計測結果につながっている。
【0010】
将来型計量アプリケーションでは、ますます精細化していく分解能条件、多パラメタ相関、ますます複雑化していく幾何構造、並びに不透明素材の使用の増加を原因とする、計量関係の難題が引き起こされる。半導体計量にて利用されている典型的なトモグラフィック技術では、計測下構造向けに仕立て上げられていない一般的正則化が利用されている。このことが、往々にして、局所極小解での収束や不正確な再構築につながる。即ち、半導体構造のトモグラフィ依拠計測に係る改善された正則化方法及びシステムが望まれている。
【課題を解決するための手段】
【0011】
半導体構造の計測を踏まえたトモグラフィック分解像に係る改善された正則化方法及びシステムが、本願にて提示される。より具体的には、本願記載の正則化は、データ(例.シミュレートデータ、実データ又はその双方)と、既知のプロセス変動を捉える制約付ボクセルモデルのパラメタ化とに、依拠している。その制約付ボクセルモデルは、計測下構造を特徴付ける簡略化幾何モデル、プロセスモデル又はその双方に基づき決定される。プロセス変動を正確に表す制約付ボクセルモデルに依拠する正則化により、その被計測構造のより正確な再構築に至る収束を、より少ない情報処理労力で以て果たすことが可能になる。これにより、半導体計測に関し、データ獲得条件を削減すること、例えば計測角を少数通りとすること、並びにMAM(move-acquire-move)時間を縮めることが、可能になる。
【0012】
三次元ボクセルモデルはボクセル即ち三次元ボリュームのアレイを内包するものであり、それにより計測下構造が内包される。各ボクセルにより、空間内における個別ボリュームの所在個所と、各個別ボリュームを占める素材の特性とが定義される。無制約ボクセルモデルを構成する各ボクセルに係る値は、そのボクセルモデルのその他のボクセルに対し独立である。即ち、無制約ボクセルモデルが有する自由度の個数は、そのボクセルモデルに備わるボクセルの個数に等しい。
【0013】
ある態様では、トモグラフィック計測エンジンがその計測下構造の制約付ボクセルモデルを受け取る。制約付ボクセルモデルは、前記ボクセルモデルと同じ個数のボクセルを同じ配列で有するものである。それでいて、制約付ボクセルモデルは、前記ボクセルモデルに比し劇的に少ない自由度を有するものである。制約付ボクセルモデルの各ボクセルに係る値は比較的少数の独立変数に依存し、それら独立変数の制約が、その計測下構造及びその構造を作成するのに利用されたプロセスについての知識により与えられる。
【0014】
トモグラフィック計測エンジンは、計測下構造の1セットの計測画像であり半導体計測システムによるものをも受け取る。加えて、トモグラフィック計測エンジンは、その半導体計量システムによるその構造の計測について、ボクセルモデルに依拠しシミュレート(模擬導出)する。更に、トモグラフィック計測エンジンは、ボクセルモデルの各ボクセルに係る値を、そのセットの計測画像とそのセットのシミュレート画像との間の差異、並びに前記ボクセルモデルと制約付ボクセルモデルとの間のボクセル毎差異、の両者に基づき更新する。
【0015】
更なる態様では、トモグラフィック計測エンジンが、その構造の制約付ボクセルモデルを、トモグラフィック最適化を推し進めるフルセットの計測画像、そのフルセットの計測画像のサブセット、別の半導体計測システムによりその計測下構造から収集された一群の計測データ、或いはそれらの組合せをもとに生成する。
【0016】
ある種の実施形態では、制約付ボクセルモデルを、前記ボクセルモデルを更新するのに利用される最適化に対し独立に合成する。ある種の実施形態では、訓練済制約付ボクセルモデル合成モジュールが、制約付ボクセルモデルを、計測データをもとに直に決定する。ある種の実施形態では、回帰モデル又は訓練済機械学習依拠モデルを利用することで、その計測下構造を特徴付ける1個又は複数個のパラメタの値を、計測データをもとに決定し、訓練済デコーダモデルが、制約付ボクセルモデルを、その1個又は複数個のパラメタの値をもとに生成する。
【0017】
他のある種の実施形態では、制約付ボクセルモデルを、前記ボクセルモデルを更新するのに利用される最適化の一環として合成する。
【0018】
別の更なる態様では、トモグラフィック最適化を、その構造の1セットの計測画像と、その構造の各計測を特徴付ける1セットのシミュレート画像であり制約付ボクセルモデルに依拠し生成されたものと、の間の差異により推し進める。
【0019】
なおも別の更なる態様では、トモグラフィック最適化を、その構造の各計測を特徴付ける1セットのシミュレート画像であり前記ボクセルモデルに依拠し生成されたものと、その構造の各計測を特徴付ける1セットのシミュレート画像であり制約付ボクセルモデルに依拠し生成されたものと、の間の差異により推し進める。
【0020】
別の更なる態様では、デコーダモデルを幾つかの実施形態に従い利用することで、比較的小さなセットの独立パラメタを、かなり大きな寸法を有するボクセルモデル表現へと変換する。言い換えれば、デコーダモデルにより、少数パラメタ空間からボクセル空間へのマッピングを行う。
【0021】
ある種の実施形態では、デコーダモデルを、合成生成データ、実計測データ又はユーザ定義データに基づき訓練された、機械学習依拠モデル(例.線形モデル、ニューラルネットワークモデル、畳込みニューラルネットワークモデル等)とする。とはいえ、一般に、デコーダモデルは好適な線形又は非線形モデルであればよい。
【0022】
以上は概要であり、従って随所に単純化、一般化及び細部省略が含まれているので、本件技術分野に習熟した者(いわゆる当業者)には察せられる通り、この概要は専ら例証的なものであり如何様であれ限定的なものではない。本願記載の装置及び/又はプロセスの他の態様、独創的特徴及び長所については、本願中で説明される非限定的詳細記述にて明らかとされよう。
【図面の簡単な説明】
【0023】
【
図1】一実施形態におけるトモグラフィック計測エンジン例150を表す図である。
【
図2】本願提示の諸方法例に係る試料特性計測用小角X線スキャタロメトリ(SAXS)計量ツールの一実施形態を表す図である。
【
図3】台形構造の形状を特徴付ける単純な幾何的パラメタ化モデルを表す図である。
【
図4】台形構造を特徴付ける三次元ボクセルモデルの断面外観を表す図である。
【
図5】別の実施形態におけるトモグラフィック計測エンジン例を表す図である。
【
図6】一実施形態における制約付ボクセルモデル合成モジュールを表す図である。
【
図7】別の実施形態における制約付ボクセルモデル合成モジュールを表す図である。
【
図8】更に別の実施形態におけるトモグラフィック計測エンジン例を表す図である。
【
図9】更に別の実施形態におけるトモグラフィック計測エンジン例を表す図である。
【
図10】一実施形態におけるデコーダ訓練エンジンを表す図である。
【
図11】別の実施形態におけるデコーダ訓練エンジンを表す図である。
【
図12】更に別の実施形態におけるデコーダ訓練エンジンを表す図である。
【
図13】更に別の実施形態におけるデコーダ訓練エンジンを表す図である。
【
図14】ボクセルモデル及び制約付ボクセルモデルに依拠し注目パラメタ値を推定する方法300のフローチャートである。
【発明を実施するための形態】
【0024】
以下、本発明の背景例及びある種の実施形態を詳細に参照し、またその諸例を添付図面に描出する。
【0025】
半導体構造の計測を踏まえたトモグラフィ的分解像に係り改善された正則化方法及びシステムが、本願にて提示される。より具体的には、本願記載の正則化は、データ(例.シミュレートデータ、実データ又はその双方)と、既知のプロセス変動を捉える制約付ボクセルモデルのパラメタ化とに、依拠するものである。制約付ボクセルモデルは、計測下構造を特徴付ける簡略化幾何モデル、プロセスモデル又はその双方に基づき決定される。プロセス変動を正確に表す制約付ボクセルモデルに依拠する正則化により、その被計測構造のより正確な再構築に至る収束を、より少ない情報処理労力で以て果たすことが可能になる。これにより、半導体計測に関し、データ獲得条件を削減すること、例えば計測角を少数通りとすること、並びにMAM(move-acquire-move)時間を短縮することが、可能になる。
【0026】
図1は、一実施形態におけるトモグラフィック計測エンジン例150を表す図である。
図1に示されている通り、トモグラフィック計測エンジン150は最適化モジュール151、電磁ソルバモジュール152及びパラメタ抽出モジュール153を有している。トモグラフィック計測エンジン150は、X線依拠計量システムによる計測下にある半導体構造等、計測下構造を特徴付ける注目パラメタの値162を推定する。ある種の実施形態では、それら注目パラメタに注目幾何パラメタ、注目プロセスパラメタ、注目電気パラメタ、注目分散パラメタ等を含める。非限定的な例によれば、注目パラメタの一つをオーバレイ寸法、限界寸法、リソグラフィ焦点、リソグラフィ照射量、エッチング露出時間等とすることができる。
【0027】
図1に示されている通り、トモグラフィック計測エンジン150は半導体計量システム、例えば小角X線スキャタロメトリ(SAXS)計量システム等による計測の下にある構造の1セットの計測画像126を受け取る。ある例では、各計測画像が、その計測下構造にて回折されSAXS計量システムの検出器により捕捉されたX線光子からなる像となる。そのセットの計測画像126には、それぞれ別々の計測インスタンス(事例)に係る複数の回折像が入り込む。各計測インスタンスは、別々の定格入射角、定格アジマス角又はその双方にて行われる計測のことである。このやり方では、そのセットの計測画像126のなかに、複数の別々な定格入射角、定格アジマス角又はその双方にて収集された画像が含まれることとなる。
【0028】
図1に示されている通り、最適化モジュール151は、その計測下構造のボクセルモデルの初期値154を受け取る。
図4に、台形構造165を特徴付ける三次元ボクセルモデルの断面外観を示す。
図4に示されている通り、ボクセルモデル166はボクセル即ち三次元ボリュームのアレイを有しており、各ボクセルが立方体形状を有している。
図4に示されている実施形態では、各ボクセルが同じサイズ及び形状である。そのボクセルアレイによって計測下構造が包摂されている。ボクセルの個数はアプリオリに既知であり、トモグラフィック分析の間、一定に保たれる。各ボクセルにより、空間内における個別ボリュームの所在個所と、各個別ボリュームを占める素材の特性とが定義される。X線依拠計量文脈では、非限定的な例によればその特性を電子密度とすることができる。光学計量文脈では、非限定的な例によればその特性を透明度とすることができる。
【0029】
図4における描写では、各ボクセルが、各ボクセルに係る素材特性の値に依存し別様に陰影付けされている。例えば、ボクセル166Aが、比較的低い電子密度を有する空気により完全に占められる一方、ボクセル166Bが、比較的高い電子密度を有する半導体素材により完全に占められている。幾つかのボクセル、例えばボクセル166Cは、空気により部分的に満たされ且つ半導体素材により部分的に満たされている。即ち、ボクセル166Cの素材特性の値は、ボクセル166Aに係る値とボクセル166Bに係る値との間にある。最適化モジュール151により受け取られた初期値154は、その計測下構造の初期ボクセルモデルを定義するのに利用される。ある種の例によれば、初期値154をランダムに選択することができる。別の諸例では、初期値154が、その計測下構造の期待形状及び素材特性を最良にモデル化するよう選択される。
【0030】
ボクセルモデル157等、無制約ボクセルモデルの各ボクセルは、そのボクセルモデルの他のボクセルに対し独立である。言い換えれば、そのボクセルモデルのボクセルそれぞれに係る素材値が、そのボクセルモデルの他のボクセルそれぞれに係る値に対し独立である。即ち、そのボクセルモデルが有する自由度の個数が、そのボクセルモデルに備わるボクセルの個数に等しい。ある種の実施形態では、半導体計測に利用されるボクセルモデル内に、100×100×100アレイをなすボクセル群を含める。一般に、半導体計測に利用されるボクセルモデル内には百万個以上のボクセルを含める。
【0031】
図1に描かれている通り、ボクセルモデル157は電磁ソルバモジュール152に送られる。電磁ソルバモジュール152は、ボクセルモデル157により特徴付けられる構造の計測であり各計測インスタンスにて半導体計量システムにより行われるものを、シミュレートする。こうして、電磁ソルバ152は、前記セットの計測画像126に対応する1セットのシミュレート画像159を生成する。
【0032】
トモグラフィック計測エンジン150は、前記セットのシミュレート画像159及び計測画像126のうち、それぞれ対応しているシミュレート画像と計測画像との間の差分を求める。その差分画像160の振幅を、所定の停止基準に照らしチェックする。
【0033】
その差分が停止基準内である場合、現在のボクセルモデル157をパラメタ抽出モジュール153に送る。パラメタ抽出モジュール153は、その計測下構造を特徴付ける1個又は複数個の注目パラメタの値162を、そのボクセルモデル157をもとに推定する。
図3に、台形構造165の形状を特徴付ける単純な幾何パラメタ化モデルを示す。
図3に描かれている通り、この幾何モデルでは、台形状構造165のサイズ及び形状を、高さパラメタH、限界寸法パラメタCD及び側壁角パラメタSWAにより特徴付けている。一般に、どのようなものであれ好適なパラメタ化モデルを利用することで、計測下構造のサイズ及び形状を記述することができる。パラメタ抽出モジュール153は、そのパラメタ化モデルのパラメタ例えばH、CD及びSWAの値として、ボクセルモデル157により与えられる構造165の電子密度マップにより概述されるところの、構造165の形状に最良フィットするものを選択する。この要領で、パラメタ抽出モジュール153は、注目パラメタ例えばH、CD及びSWAのうち何れかの値を推定する。
【0034】
差分画像160の振幅がその停止基準内でない場合、その差分画像160を最適化モジュール151に送る。
【0035】
ある態様では、トモグラフィック計測エンジン150がその構造の制約付ボクセルモデル155を受け取る。制約付ボクセルモデル155は前記ボクセルモデルと同数のボクセルを同配列にて有するもの、即ち同じ場所を占める同じサイズのボクセルを有するものである。それでいて、この制約付ボクセルモデルが有する自由度は、前記ボクセルモデルのそれに比し劇的に少ない。言い換えれば、この制約付ボクセルモデルのボクセルそれぞれに係る素材値は、その制約付ボクセルモデルの他のボクセルそれぞれに係る値に対し独立でない。より具体的には、制約付ボクセルモデルのボクセルそれぞれに係る素材値が比較的少数の独立変数に依存しており、それら独立変数の制約が、その計測下構造及びその構造を作成するのに利用されたプロセスについての知識により与えられる。
【0036】
図1に示されている通り、トモグラフィック計測エンジン150は、ボクセルモデル157・制約付ボクセルモデル155間差分158を求める。ボクセルモデル157・制約付ボクセルモデル155間差分158はボクセル毎に求める。更に、最適化モジュールが、ボクセルモデル157の各ボクセルに係る値を、前記セットの計測画像126と前記セットのシミュレート画像159との間の差分160、並びにボクセルモデル157・制約付ボクセルモデル155間差分158、の双方に基づき更新する。ある例では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、等式(1)により表される損失関数が最小になるものへと更新する。
【数1】
【0037】
等式(1)により表されている通り、損失関数Jには、加重係数γ1により加重されたボクセルモデル正則化項RegVが含まれている。このやり方では、最適化が、計測画像Imgと前記ボクセルモデルをもとに導出されるシミュレート画像EMSolv(Vox)との差分の二乗により、推し進められる。ある例では、その正則化項RegVが、前記ボクセルモデルVoxと制約付ボクセルモデルCVoxとの間の差分とされる。加えて、損失関数Jに付加的な正則化項、例えば全変分L1等を含めてもよい。一般に、制約付ボクセルモデルの変数空間が前記ボクセルモデルのそれよりかなり小さく、例えば1000000ではなく100オーダの寸法であるため、正則化項RegVによりその最適化プロセスが正則化されることとなる。正則化項RegVにより、その最適化が、効果的に局所極小解から引き離され大域最小解に向かうこととなる。
【0038】
前述した通り、その計測下構造の前記セットの計測画像126を、SAXS計量システムにより生成することができる。
図2には、本願提示の諸方法例に係る試料特性計測用SAXS計量ツール100の一実施形態が描かれている。
図2に示されている通り、このシステム100を用い、試料位置決めシステム140上に配された試料101の計測エリア102内で、構造のX線スキャタロメトリ計測を実行することができる。ある種の実施形態では、その計測エリア102のスポットサイズが80μm以下とされる。ある種の実施形態では、その計測エリア102のスポットサイズが50μm以下とされる。ある種の実施形態では、その計測エリア102のスポットサイズが40μm以下とされる。
【0039】
図示実施形態では、SAXS計量ツール100が、X線スキャタロメトリ計測に適したX線輻射を生成するX線照明源110を有している。ある種の実施形態では、そのX線照明源110にて生成される波長が0.01nm~1nmとされる。X線照明源110にて生成されるX線ビーム117は、試料101の検査エリア102上に入射する。
【0040】
一般に、高スループットインライン計量を十分に行える光束レベルにて高輝度X線を生成しうる何れの好適な高輝度X線照明源でも、本願記載の通りX線スキャタロメトリ計測向けにX線照明を供給しうるものと、考えることができる。ある種の実施形態ではX線源が可調モノクロメータを有するものとされるので、そのX線源により配給されるX線輻射の波長を様々に選択することが可能となる。
【0041】
ある種の実施形態では、15keV超の光子エネルギで以て輻射を発する1個又は複数個のX線源が利用されるため、確と、そのX線源から供給される光の波長が、デバイス全体及びウェハ基板を通じ存分な透過が可能なものとなる。非限定的な例によれば、粒子加速器線源、液体アノード線源、回動アノード線源、静止固体アノード線源、マイクロフォーカス線源、マイクロフォーカス回動アノード線源及び逆コンプトン線源の何れも、X線照明源110として利用することができる。ある例によれば、米国カリフォルニア州パロアルト所在のLyncean Technologies,Inc.から入手可能な逆コンプトン線源を、想定することができる。逆コンプトン線源には、ある光子エネルギ域に亘りX線を生成でき、ひいてはそのX線源により配給されるX線輻射の波長を様々に選択することができる、という付加的長所がある。X線源の例には、固体又は液体ターゲットを砲撃することでX線輻射を誘起するよう構成された電子ビーム式線源がある。ある種の実施形態では、X線照明源110が液体金属式X線照明システムとされる。一種類又は複数種類の元素入りの液体金属ジェットが生成される。非限定的な例によれば、その液体金属ジェットが、アルミニウム、ガリウム、インジウム、スズ、タリウム及びビスマスのうち何れかを含有するものとされる。電子ビーム源(例.電子銃)が電子流を生成し、電子光学系がその電子流を液体金属ジェットへと差し向ける。好適な電子光学系としては、電磁石、永久磁石又は電磁石及び永久磁石の組合せを有し、それによりその電子ビームを集束させてそのビームを液体金属ジェットに差し向けるものがある。それら液体金属ジェット及び電子流の遭遇によりX線ビーム117が発生し、それが試料101の検査エリア102上に入射する。こうして、その液体金属ジェットにより、その成分元素に対応するX線ラインが生成される。ある実施形態では、その液体金属ジェットが、ガリウム及びインジウムの合金を含有するものとされる。
【0042】
高輝度液体金属X線照明生成方法及びシステムが、KLA-Tencor Corp.に対し2011年4月19日付で発行された特許文献1中に記載されているので、参照によりその全容を本願に繰り入れることにする。
【0043】
ある実施形態では、その入射X線ビーム117が、24.2keVのインジウムkαラインに位置する。そのX線ビームを、X線スキャタロメトリ計測用の多層X線光学系を用い、1mrad未満の発散度まで平行化させる。
【0044】
ある種の実施形態では、本願記載のX線散乱計測が、スクリーンをX線源・計測下試料間に配置し用いることなく達成される。こうした実施形態によれば、ある入射角域、複数通りの波長又はその双方の組合せに亘る、そのビームの計測強度により十分な情報がもたらされるため、その被計測構造の所望素材特性(例.複素屈折率、電子密度又は吸収率)の分布マップ(即ち画像)を解明することができる。他方、他のある種の例によれば、ピンホールその他のアパーチャを、それが無ければ不透明なスクリーンの上に所在させ、またそのスクリーンをX線源・計測下試料間に所在させることで、そのX線ビームの平行化具合を改善することができる。その回折パターンの強度は、幾通りかのアパーチャ位置に関し計測される。他のある種の実施形態では、疑似ランダムアパーチャパターンを有するスクリーンが用いられ、その回折パターンが複数枚のスクリーンに関し計測される。これらの手法も、付加的な情報をもたらすことでその被計測構造の所望素材特性の三次元分布を解明するものであると、考えることができる。
【0045】
ある種の実施形態では、入射X線ビームのプロファイルが複数個のアパーチャ、スリット又はその組合せにより制御される。更なる実施形態では、そのアパーチャ、スリット又はその双方が、試料の向きと歩調を合わせ回動するよう、ひいては個々の入射角、アジマス角又はその双方に関しその入射ビームのプロファイルが最適化されるよう構成される。
【0046】
図2に示されている通り、X線光学系115は入射X線ビーム117を整形して試料101へと差し向ける。ある種の例ではX線光学系115がX線モノクロメータを有するものとされ、それにより単色化されたX線ビームが試料101上に入射する。ある例では結晶モノクロメータ、例えばロクスレイ・タナー・ボーエンモノクロメータを利用し、そのX線輻射ビームが単色化される。ある種の例では、X線光学系115が、X線ビーム117を平行化し又は試料101の検査エリア102上へと集束させ、多層X線光学系を用いその発散度を1mrad未満とする。ある種の実施形態では、X線光学系115が、1個又は複数個のX線平行化鏡、X線アパーチャ、X線ビームストップ、屈折型X線光学系、回折光学系例えばゾーンプレート、鏡面X線光学系例えばかすめ入射楕円体鏡、ポリキャピラリ光学系例えば中空キャピラリX線導波路、多層光学系又はシステム、或いはそれらの何らかの組合せを有するものとされる。更なる詳細が特許文献2に記載されているので、参照によりその全容を本願に繰り入れることにする。
【0047】
一般に、この照明光学システムの焦平面は計測アプリケーション毎に最適化される。その要領でシステム100を構成することで、計測アプリケーションに依りつつその試料内の様々な深さに焦平面を所在させることができる。
【0048】
X線検出器116は、試料101から散乱されてきたX線輻射125を収集し、入射X線輻射に対し感応的な、試料101の諸特性を示す出力信号126を生成する。ある種の実施形態では、散乱X線125をX線検出器116により収集する一方で試料位置決めシステム140により試料101を位置決め及び向き決めすることで、角度分解散乱X線が生成される。
【0049】
計量システム100は、広いダイナミックレンジ(例.105超)を有する1個又は複数個の光子計数型検出器と、最小限の寄生後方散乱で以て損傷なしに直接ビーム(即ち0次ビーム)を吸収する厚手な高吸収性結晶基板とを有している。フルビームX線スキャタロメトリに適する検出器素材の例としては、テルル化カドミウム(CdTe)、ゲルマニウム(Ge)及び砒化ガリウム(GaAs)の結晶その他がある。ある種の実施形態では、検出器素材が、線源エネルギに対応する狭いエネルギ帯にて高い変換効率がもたらされるよう選択される。
【0050】
ある種の実施形態では、単一の光子計数型検出器が被検出光子の位置及び個数を検出する。ある種の実施形態では、SNRを改善すべくデュアル閾値検出器を利用する。
【0051】
X線検出器116は、一通り又は複数通りのX線光子エネルギを分解し、その試料の特性を示すX線エネルギ成分毎の信号を生成する。ある種の実施形態では、X線検出器116が、CCDアレイ、マイクロチャネルプレート、フォトダイオードアレイ、マイクロストリップ型比例計数器、気体充填型比例計数管、シンチレータ及び蛍光素材のうち何れかを有するものとされる。
【0052】
このやり方では、その検出器内でのX線光子相互作用が、画素位置及び計数値に加えエネルギにより弁別される。ある種の実施形態では、それらX線光子相互作用の弁別が、そのX線光子相互作用のエネルギを所定の上閾値及び所定の下閾値と比較することで行われる。ある実施形態ではその情報が出力信号126を媒介にして情報処理システム130に送られ、更なる処理及び格納に供される。
【0053】
高アスペクト比垂直製造構造は、平行化X線ビームを回折させ諸次回折波をもたらす。各次回折波は予測可能な特定方向に進行する。諸次回折波の角度間隔は、その試料の格子定数を波長により除したものに反比例する。諸次回折波は、ウェハから幾ばくかの距離のところに置かれた検出器アレイによって検出される。その検出器の各画素が、その画素に射突した光子の個数を示す信号を出力する。
【0054】
図2に示されている通り、SAXS計量システム100は情報処理システム130を有しており、それを利用することで、検出器116により生成された信号126を獲得しその獲得信号に少なくとも部分的に基づき注目構造の特性を判別することができる。
図1、
図5、
図8及び
図9に示されている図解はトモグラフィック計測エンジン150の様々な実施形態であり、複合的半導体構造を特徴付ける1個又は複数個の幾何パラメタ、組成パラメタ又はその双方の値を、その複合的半導体構造に係るX線スキャタロメトリ計測データに基づき推定するものである。ある種の実施形態では、X線スキャタロメトリデータ126をX線スキャタロメトリシステム、例えば
図2に示されている計量システム100によりウェハから収集する。更に、ある種の実施形態では、情報処理システム130が、本願記載の通りトモグラフィック計測エンジン150として構成される。
【0055】
更なる態様では、トモグラフィック計測エンジンが、その構造の制約付ボクセルモデルを、トモグラフィック最適化を推し進めるフルセットの計測画像、そのフルセットの計測画像のサブセット、別の半導体計測システムによりその計測下構造から収集された一群の計測データ、或いはそれらの組合せをもとに生成する。
【0056】
ある種の実施形態では、制約付ボクセルモデル155を、フルボクセルモデル157を更新するのに利用される最適化とは独立に合成する。
図5に、別の実施形態におけるトモグラフィック計測エンジン150を示す。
図5での図示及び
図1を参照しての記載にて同じ番号が付されている要素は、同様のものである。
図5に描かれている通り、トモグラフィック計測エンジン150は制約付ボクセルモデル合成モジュール163を有している。制約付ボクセルモデル合成モジュール163は、制約付ボクセルモデル155を、計測データ164をもとに生成する。ある種の実施形態では計測データ164が前記セットの計測画像126とされる。他のある種の実施形態では、計測データ164が、前記セットの計測画像126のサブセット、例えば定格入射角、定格アジマス角又はその双方のサブセットから収集された画像とされる。他のある種の実施形態では、計測データ164が、そのトモグラフィック最適化を正則化するのに利用される様々な計測源からの計測信号を含むものとされる。そうした実施形態では、信号情報が、複数通りの計測テクノロジで得られる計測結果を組み入れること、例えば分光エリプソメトリ、分光リフレクトメトリ、軟X線リフレクトメトリ、その他のイメージング依拠計量例えばハイパースペクトルイメージング計量等によるそれで、増強されることとなる。
【0057】
ある種の実施形態では、制約付ボクセルモデル合成モジュール163に訓練済制約付ボクセルモデル合成モジュールが組み込まれる。その訓練済モデルが、入力たる計測データ164を受け取り、出力たる制約付ボクセルモデルを直に決定する。ある種の実施形態では、その訓練済モデルが機械学習依拠計測モデル(例.線形モデル、ニューラルネットワークモデル、畳込みニューラルネットワークモデル等)とされる。こうした実施形態では、そのモデルが、既知値の注目パラメタを有する構造に係り、ひいては既知のボクセルモデル表現を有する構造に係る計測データに基づき、訓練される。その訓練データは、合成生成データ、参照計量システムからの実計測データ、或いはその双方に基づくものとすることができる。
【0058】
ある種の実施形態では、制約付ボクセルモデル合成モジュール163が、その計測下構造を特徴付ける1個又は複数個のパラメタの値を、計測データ164をもとに決定し、制約付ボクセルモデルを、その1個又は複数個のパラメタの値をもとに訓練済デコーダモデルに依拠して生成する。
【0059】
図6に、一実施形態における制約付ボクセルモデル合成モジュール163を示す。
図6に示されている通り、制約付ボクセルモデル合成モジュール163は回帰モジュール165及びデコーダモジュール166を有している。回帰モジュール165は、計測データ164を受け取り、その計測下構造を特徴付ける1個又は複数個のパラメタの値167を、計測データ164を対象とした物理モデル依拠回帰分析により決定する。デコーダモジュール166には訓練済デコーダモデルが組み込まれており、それによって、その構造を特徴付ける1個又は複数個のパラメタ例えばCD、SWA、Hの値が、制約付ボクセルモデル155へと変換される。
【0060】
図7に、別の実施形態における制約付ボクセルモデル合成モジュール163を示す。
図7に示されている通り、制約付ボクセルモデル合成モジュール163は機械学習依拠計測モジュール168及びデコーダモジュール169を有している。機械学習依拠計測モジュール168に備わる訓練済機械学習依拠モデルが、計測データ164を受け取り、その計測下構造を特徴付ける1個又は複数個のパラメタの値170を直に決定する。デコーダモジュール169には訓練済デコーダモデルが組み込まれており、その構造を特徴付ける1個又は複数個のパラメタの値が、それによって制約付ボクセルモデル155へと変換される。こうした実施形態では、その機械学習依拠モデルが、その計測下構造を特徴付けるパラメタの値が既知な構造に係る計測データに基づき訓練される。その訓練データは、合成生成データ、参照計量システムからの実計測データ、或いはその双方に基づくものとすることができる。
【0061】
ある種の実施形態では、前記制約付ボクセルモデル155の合成が、フルボクセルモデル157を更新するのに利用される最適化の一部として行われる。
図8に、更に別の実施形態におけるトモグラフィック計測エンジン150を示す。
図8における図示及び
図1を参照しての記載にて同じ番号が付されている要素は同様のものである。
図8に描かれている通り、トモグラフィック計測エンジン150はデコーダモジュール171を有している。最適化モジュール151は、その構造を特徴付ける1個又は複数個のパラメタの値172を、前記セットの計測画像126と前記セットのシミュレート画像159との間の差分160、並びにボクセルモデル157・制約付ボクセルモデル155間差分158、の最小化に依拠して決定する。デコーダモジュール171には訓練済デコーダモデルが組み込まれており、その構造を特徴付ける1個又は複数個のパラメタの値が、それにより制約付ボクセルモデル155へと変換される。
【0062】
更なる態様では、トモグラフィック最適化が、その構造の1セットの計測画像と、制約付ボクセルモデルに依拠して生成されておりその構造の各計測を特徴付ける1セットのシミュレート画像と、の間の差分により推し進められる。
【0063】
図9に、更に別の実施形態におけるトモグラフィック計測エンジン150を示す。
図9での図示並びに
図1及び
図8を参照しての記載にて同じ番号が付されている要素は同様のものである。
図9に描かれている通り、トモグラフィック計測エンジン150は1セットの計測画像174を受け取る。ある種の実施形態では、そのセットの計測画像174が前記セットの計測画像126と同一のものとされる。他のある種の実施形態では、そのセットの計測画像174が前記セットの計測画像126のサブセット、例えば定格入射角、定格アジマス角又はその双方のサブセットから収集された画像とされる。
【0064】
加えて、制約付ボクセルモデル155が電磁ソルバモジュール152に送られる。電磁ソルバモジュール152は、制約付ボクセルモデル155により特徴付けられる構造の計測であり、前記セットの計測画像174に含まれる各計測インスタンスにてその半導体計量システムにより行われるものを、シミュレートする。こうして、電磁ソルバ152は、前記セットの計測画像174に対応する1セットのシミュレート画像173を生成する。トモグラフィック計測エンジン150は、前記セットのシミュレート画像173及び計測画像174のうち、それぞれ対応しているシミュレート画像と計測画像との間の差分を求める。その差分画像175が最適化モジュール151に送られる。最適化モジュール151は、その構造のボクセルモデル157の各ボクセルに係る値を、部分的に差分画像175に基づき更新する。
【0065】
即ち、ある種の実施形態では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、前記セットの計測画像126と前記セットのシミュレート画像159との間の差分160、ボクセルモデル157・制約付ボクセルモデル155間差分158、並びに前記セットの計測画像174と前記セットのシミュレート画像173との間の差分175、の三者に基づき更新する。ある例では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、等式(2)により表される損失関数が最小になるものに更新する。
【数2】
【0066】
等式(2)により表されている通り、損失関数Jには等式(1)を参照し記述された諸項が含まれているが、それに加え、その最適化が、1セットの計測画像Sと制約付ボクセルモデルをもとに導出されるシミュレート画像EMSolv(CVox)との間の差分の二乗により、推し進められている。この項によって、その最適化が、大域最小解へと効果的に引き込まれることとなる。
【0067】
別の更なる態様では、トモグラフィック最適化が、前記ボクセルモデルに依拠し生成されておりその構造の各計測を特徴付ける1セットのシミュレート画像と、制約付ボクセルモデルに依拠し生成されておりその構造の各計測を特徴付ける1セットのシミュレート画像と、の間の差分により推し進められる。
【0068】
図9に、更に別の実施形態におけるトモグラフィック計測エンジン150を示す。
図9での図示並びに
図1及び
図8を参照しての記載にて同じ番号が付されている要素は同様のものである。
図9に描かれている通り、トモグラフィック計測エンジン150は1セットの計測画像174を受け取る。ある種の実施形態では、そのセットの計測画像174が1セットの計測画像126と同一のものとされる。他のある種の実施形態では、そのセットの計測画像174が、前記セットの計測画像126のサブセット、例えば定格入射角、定格アジマス角又はその双方のサブセットをもとに収集された画像とされる。
【0069】
図9に示されている通り、トモグラフィック計測エンジン150は、前記セットのシミュレート画像173及び計測画像174のうち、それぞれ対応しているシミュレート画像と計測画像との間の差分を求める。同様に、トモグラフィック計測エンジン150は、前記セットのシミュレート画像159及び計測画像126のうち、それぞれ対応しているシミュレート画像と計測画像との間の差分を求める。加えて、トモグラフィック計測エンジン150は、差分画像175・差分画像160間差分176を求める。その差分画像176が最適化モジュール151へと遡行的に送られる。最適化モジュール151は、その構造のボクセルモデル157の各ボクセルに係る値を、部分的に差分画像176に基づき更新する。
【0070】
即ち、ある種の実施形態では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、前記セットの計測画像126と前記セットのシミュレート画像159との間の差分160、ボクセルモデル157・制約付ボクセルモデル155間差分158、並びに差分画像160・差分画像175間差分176、に基づき更新する。ある例では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、等式(3)により表される損失関数により表される損失関数が最小になるものに更新する。
【数3】
【0071】
等式(3)により表されている通り、損失関数Jには等式(1)を参照し記述された諸項が含まれているが、それに加え、加重係数γ2により加重された画像正則化項RegIが損失関数Jに含まれている。正則化項RegIは、計測画像Imgと前記ボクセルモデルに依拠し生成された対応するシミュレート画像EMSolv(Vox)との間の差分により生成された差分画像、並びに計測画像Sとそれに対応するシミュレート画像EMSolv(VCox)との間の差分により生成された差分画像、の間の差分である。
【0072】
更に、ある種の実施形態では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、前記セットの計測画像126と前記セットのシミュレート画像159との間の差分160、ボクセルモデル157・制約付ボクセルモデル155間差分158、差分画像160・差分画像175間差分176、並びに前記セットの計測画像174と前記セットのシミュレート画像173との間の差分175、に基づき更新する。ある例では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、等式(4)により表される損失関数により表される損失関数が最小になるものに更新する。
【数4】
【0073】
前述した通り、デコーダモデルを幾つかの実施形態に従い利用することで、比較的小さなセットの独立パラメタが、かなり大きな寸法を有するボクセルモデル表現へと変換される。言い換えれば、デコーダモデルにより、少数パラメタ空間からボクセル空間へのマッピングが行われる。
【0074】
ある種の実施形態では、デコーダモデルが、合成生成データ、実計測データ又はユーザ定義データに基づき訓練された機械学習依拠モデル(例.線形モデル、ニューラルネットワークモデル、畳込みニューラルネットワークモデル等)とされる。とはいえ、一般に、デコーダモデルは好適な線形又は非線形モデルとするのがよい。
【0075】
図10に、一実施形態におけるデコーダ訓練エンジン180を示す。ある種の例では、情報処理システム130がデコーダ訓練エンジン180として構成される。
図10に描かれている通り、デコーダ訓練エンジン180はパラメタ化構造化モデル合成モジュール181、ボクセルモデル合成モジュール182及びデコーダ訓練モジュール183を有している。
【0076】
図10に描かれている通り、デコーダ訓練エンジン180は、計測下構造を特徴付ける1個又は複数個の幾何パラメタの値184の実験計画法(DOE)セット、その構造を作成するのに利用された半導体製造プロセスを特徴付ける1個又は複数個のプロセスパラメタの値のDOEセット、或いはその双方を受け取る。パラメタ化構造モデル合成モジュール181は、その構造の1セットのパラメタ化モデル185を、その1個又は複数個の幾何パラメタの値のDOEセット中の個々の値、その1個又は複数個のプロセスパラメタの値のDOEセット中の個々の値、或いはその双方に基づき決定する。ボクセルモデル合成モジュール182は、その構造の1セットのボクセルモデル186を、その構造の前記セットのパラメタ化モデル185それぞれに基づき決定する。デコーダ訓練モジュール183は、そのデコーダモデルを、その1個又は複数個の幾何パラメタの値184のDOEセット、その1個又は複数個のプロセスパラメタの値のDOEセット、或いはその双方と、前記セットのボクセルモデル186のうちそれぞれ対応しているボクセルモデルと、のそれぞれに基づき訓練する。訓練済デコーダモデル187はメモリ内、例えばメモリ132内に格納される。
図10に描かれている通り、デコーダ訓練モジュールは、パラメタ184のDOEセット及びそれに対応するセットのボクセルモデル186の双方を訓練に利用する。
【0077】
図11に、一実施形態におけるデコーダ訓練エンジン190を示す。ある種の例では、情報処理システム130がデコーダ訓練エンジン190として構成される。
図11に描かれている通り、デコーダ訓練エンジン190はパラメタ化構造化モデル合成モジュール181、ボクセルモデル合成モジュール182及びエンコーダ/デコーダ訓練モジュール191を有している。
図11に描かれている通り、エンコーダ/デコーダ訓練モジュール191は、前記セットのボクセルモデル186を利用し、オートエンコーダ(自己符号化器)及びデコーダの双方を同時訓練する。
【0078】
図11に描かれている通り、デコーダ訓練エンジン190は、計測下構造を特徴付ける1個又は複数個の幾何パラメタの値184の実験計画法(DOE)セット、その構造を作成するのに利用された半導体製造プロセスを特徴付ける1個又は複数個のプロセスパラメタの値のDOEセット、或いはその双方を受け取る。パラメタ化構造モデル合成モジュール181は、その構造の1セットのパラメタ化モデル185を、その1個又は複数個の幾何パラメタの値のDOEセット中の個々の値、その1個又は複数個のプロセスパラメタの値のDOEセット中の個々の値、或いはその双方に基づき決定する。ボクセルモデル合成モジュール182は、その構造の1セットのボクセルモデル186を、その構造の前記セットのパラメタ化モデル185それぞれに基づき決定する。エンコーダ/デコーダ訓練モジュール191は、訓練済デコーダに入力として供給されるべきパラメタ空間の所望寸法についての指示192を受け取る。例えば、そのパラメタ空間の寸法を1~100の範囲内の整数とすることができる。エンコーダ/デコーダ訓練モジュール191は、前記セットのボクセルモデル186の各ボクセルモデルをその所望寸法を有するパラメタ空間の各パラメタの1セットの値へとマッピングするオートエンコーダと、そのセットのパラメタ値をボクセルモデルへとマッピングするデコーダとを、同時に訓練する。この訓練は、ボクセルモデル186の各ボクセルモデルと、それに対応するボクセルモデルでありそのオートエンコーダにより求められたパラメタをもとにそのデコーダが求めたボクセルモデルと、の間の差異が最小化されるまで反復される。その訓練済デコーダモデル193がメモリ、例えばメモリ132内に格納される。
図11に描かれている通り、エンコーダ/デコーダ訓練モジュール191は、パラメタ184のDOEセットを訓練にて明示的に利用しておらず、寧ろ、前記セットのボクセルモデル186に埋め込まれているパラメタ184のDOEセットをもとにした情報が、訓練中に利用されている。
【0079】
ある種の実施形態では、デコーダモデルが実計測データに基づき訓練される。
図12に、一実施形態におけるデコーダ訓練エンジン200を示す。ある種の例では、情報処理システム130がデコーダ訓練エンジン200として構成される。
図12に描かれている通り、デコーダ訓練エンジン200はボクセルモデル合成モジュール182及びエンコーダ/デコーダ訓練モジュール191を有している。
【0080】
ボクセルモデル合成モジュール182は、高信頼参照計量システムに発する計測データから導出されたパラメタ変分201を受け取る。1枚又は複数枚の実験計画法(DOE)ウェハには、計測下構造の複数個のインスタンス(実施物)が作り込まれている。その構造の各インスタンスには、その構造を特徴付ける1個又は複数個の幾何パラメタ、その構造を作成するのに利用された半導体製造プロセスを特徴付ける1個又は複数個のプロセスパラメタ、或いはその双方の値に、違いがある。高信頼参照計量システムを利用し計測されるのは、その1枚又は複数枚のDOEウェハ上に配された構造の各インスタンスである。その参照計量システムによりもたらされる計測結果は、十分に正確である点で、ユーザにとり信頼の置けるものである。その1個又は複数個の幾何パラメタ、その1個又は複数個のプロセスパラメタ、或いはその双方の値の変分は、高信頼参照計量システムによるその構造の諸インスタンスの計測をもとにして求まる。ボクセルモデル合成モジュール182は、その構造の1セットのボクセルモデル186を、その1個又は複数個の幾何パラメタ、その1個又は複数個のプロセスパラメタ、或いはその双方の値の変分に基づき決める。
【0081】
エンコーダ/デコーダ訓練モジュール191は、訓練済デコーダに入力として供給されるべきパラメタ空間の所望寸法についての指示192を受け取る。エンコーダ/デコーダ訓練モジュール191は、前記セットのボクセルモデル186の各ボクセルモデルをその所望寸法を有するパラメタ空間の各パラメタの1セットの値へとマッピングするオートエンコーダと、そのセットのパラメタ値をボクセルモデルへとマッピングするデコーダとを、同時に訓練する。この訓練は、ボクセルモデル186の各ボクセルモデルと、そのオートエンコーダにより求められたパラメタをもとにそのデコーダが求めた対応するボクセルモデルと、の間の差異が最小化されるまで反復される。その訓練済デコーダモデル193がメモリ、例えばメモリ132内に格納される。
【0082】
ある種の実施形態では、デコーダモデルがユーザ定義データに基づき訓練される。
図13に、一実施形態におけるデコーダ訓練エンジン210を示す。ある種の例では、情報処理システム130がデコーダ訓練エンジン210として構成される。
図13に描かれている通り、デコーダ訓練エンジン210はエンコーダ/デコーダ訓練モジュール191を有している。
【0083】
エンコーダ/デコーダ訓練モジュール191は、その構造の1セットのボクセルモデル211をユーザから受け取る。加えて、エンコーダ/デコーダ訓練モジュール191は、訓練済デコーダに入力として供給されるべきパラメタ空間の所望寸法についての指示192を受け取る。エンコーダ/デコーダ訓練モジュール191は、前記セットのボクセルモデル211の各ボクセルモデルをその所望寸法を有するパラメタ空間の各パラメタの1セットの値へとマッピングするオートエンコーダと、そのセットのパラメタ値をボクセルモデルへとマッピングするデコーダとを、同時に訓練する。この訓練は、ボクセルモデル211の各ボクセルモデルと、そのオートエンコーダにより求められたパラメタをもとにそのデコーダが求めた対応するボクセルモデルと、の間の差異が最小化されるまで反復される。その訓練済デコーダモデル212がメモリ、例えばメモリ132内に格納される。
【0084】
本願記載の通り、幾通りかの別々なデータドリブン正則化例を、トモグラフィック最適化を推し進めるのに利用することができる。一般に、それらデータドリブン正則化例の何れの組合せも、トモグラフィック最適化を推し進めるべく同時利用することができる。例えば、複数個の別々な制約付ボクセルモデル、例えば別々な計測源又は別々な組合せの計測源をもとに生成された制約付ボクセルモデルを同時に利用して、ボクセル依拠正則化、画像依拠正則化又はその双方を通じたトモグラフィック最適化を推し進めることができる。その制約付ボクセルモデルを、様々な計測源又は様々な組合せの計測源から導出されたデータをもとに生成することができる。加えて、様々なサイズの独立パラメタ空間を利用する制約付ボクセルモデルを、利用することができる。
【0085】
ある種の例では、最適化モジュール151が、ボクセルモデル157の各ボクセルに係る値を、複数個の誤差項、ボクセル依拠正則化項、画像依拠正則化項又はそれらの何らかの組合せを含んでおり等式(5)により表される損失関数が最小になる値に、更新する。
【数5】
【0086】
図2に示されている通り、システム100には一通りの計測テクノロジ(即ちSAXS)が組み込まれている。しかしながら、一般に、システム100に幾通りの別々な計測テクノロジを組み込んでもよい。非限定的な例によれば、システム100を、反射型小角X線スキャタロメータ(散乱計)、軟X線リフレクトメータ(散乱計)、分光エリプソメータ(楕円偏向計)(例えばミュラー行列エリプソメトリ)、分光リフレクトメータ、分光スキャタロメータ、オーバレイスキャタロメータ、角度分解ビームプロファイルリフレクトメータ、偏向分解ビームプロファイルリフレクトメータ、ビームプロファイルリフレクトメータ、ビームプロファイルエリプソメータ、何らかの単一又は複数波長エリプソメータ、ハイパースペクトルイメージングシステム、或いはそれらの何らかの組合せとして、構成することができる。更に、一般に、別々な計測テクノロジにより収集され本願記載の諸方法に従い分析される計測データの収集元を、複数個のツールとしても、複数通りのテクノロジが統合された単一のツールとしても、或いはその組合せとしてもよい。
【0087】
更なる実施形態によれば、システム100に1個又は複数個の情報処理システム130を設け、それを利用することで、構造の計測を実行して本願記載の諸方法に従い注目パラメタ値を推定することができる。その1個又は複数個の情報処理システム130を検出器116に可通信結合させることができる。ある態様では、その1個又は複数個の情報処理システム130が、計測下構造(例.試料101上に配された構造)の計測に係る計測データ126を受け取るよう構成される。
【0088】
なおも別の更なる態様によれば、本願記載の諸計測結果を用い、プロセスツール(例.リソグラフィツール、エッチングツール、堆積ツール等)への能動フィードバックを提供することができる。例えば、本願記載の計測方法に依拠し求められた計測パラメタ値をエッチングツールに送り、エッチング時間を調整することで、所望のエッチング深さを達成することができる。同様のやり方で、エッチングパラメタ(例.エッチング時間、拡散率等)や堆積パラメタ(例.時間、濃度等)を計測モデルに組み込み、エッチングツールや堆積ツールそれぞれへの能動フィードバックを提供することができる。ある例によれば、計測されたデバイスパラメタ値に基づきプロセスパラメタに対する補正量を決定し、プロセスツールに送ることができる。ある実施形態では、情報処理システム130が1個又は複数個の注目パラメタの値を決定する。加えて、情報処理システム130が、その1個又は複数個の注目パラメタの決定値に基づきプロセスコントローラに制御コマンドを送る。それら制御コマンドに従い、プロセスコントローラがプロセスの状態を変化させる(例.エッチングプロセスを停止させる、拡散率を変化させる等)。ある例では、制御コマンドに従い、プロセスコントローラが、リソグラフィシステムの焦点、そのリソグラフィシステムの照射量、或いはその双方を調整する。また、ある例では、制御コマンドに従い、プロセスコントローラが、エッチングレートを変化させることで、CDパラメタの被計測ウェハ均一度を改善する。
【0089】
ある種の例では、計測モデルが、米国カリフォルニア州ミルピタス所在のKLA-Tencor Corporationから入手可能なSpectraShape(商標)光学限界寸法計量システムの一要素として実現される。このやり方であれば、スペクトルがそのシステムにより収集された直後に、そのモデルが生成され使用準備が整う。
【0090】
他のある種の例では、計測モデルが、例えば、米国カリフォルニア州ミルピタス所在のKLA-Tencor Corporationから入手可能なAcuShape(登録商標)ソフトウェアを実行する情報処理システムにより、オフライン実現される。それによりもたらされる訓練済モデルを、計測を実行する計量システムによるアクセスが可能なAcuShape(登録商標)ライブラリの一要素として、組み込むことができる。
【0091】
図14には、少なくとも1個の新規態様に従いボクセルモデル及び制約付ボクセルモデルをもとに1個又は複数個の注目パラメタ値を推定する方法300が描かれている。方法300は、本発明の
図2に描かれている計量システム100等、計量システムによる実施に適している。ある態様によれば、認識頂けるように、方法300の諸データ処理ブロックを、予めプログラミングされているアルゴリズムを情報処理システム130又は他の何らかの汎用情報処理システムに備わる1個又は複数個のプロセッサにより実行することを通じ、実行することができる。本願での認識によれば、計量システム100の具体的な構造的諸側面は限定を表すものではなく、専ら例証として解されるべきである。
【0092】
ブロック301では、一群の照明輻射が第1半導体計測システムの照明源により供給される。その一群の照明輻射が、半導体ウェハ上に配された構造へと差し向けられる。
【0093】
ブロック302では、その一群の照明輻射に応じその構造から散乱されてきた一群の輻射が、第1半導体計測システムの検出器により検出される。
【0094】
ブロック303では、その構造の各計測インスタンスに係りその構造から検出された一群の輻射を特徴付ける1セットの計測画像が、第1半導体計測システムにより生成される。
【0095】
ブロック304では、その構造のボクセルモデルの各ボクセルに係る初期値が決定される。そのボクセルモデルには第1複数個のボクセルを含める。そのボクセルモデルの第1複数個のボクセルそれぞれに係る値は、そのボクセルモデルの第1複数個のボクセルのうちその他のボクセルそれぞれに係る値に対し独立である。そのボクセルモデルが有する自由度の個数はその第1複数に等しい。
【0096】
ブロック305では、第1半導体計測システムによるその構造の各計測を特徴付ける第1セットのシミュレート画像が、そのボクセルモデルに依拠して生成される。
【0097】
ブロック306では、その構造の制約付ボクセルモデルが受け取られる。その制約付ボクセルモデルにおけるボクセルの個数は第1複数に等しいが、その制約付ボクセルモデルが有する自由度の個数は第1複数未満である。
【0098】
ブロック307では、その構造のボクセルモデルの各ボクセルに係る値が、前記セットの計測画像と第1セットのシミュレート画像との間の差異、並びに前記ボクセルモデルと制約付ボクセルモデルとの間の差異、に基づき反復的に更新される。
【0099】
ブロック308では、その計測下構造を特徴付ける1個又は複数個の注目パラメタの値が、前記ボクセルモデルをもとに推定される。
【0100】
更なる実施形態では、システム100に備わる1個又は複数個の情報処理システム130を利用し、本願記載の諸方法に従い計測データに基づく半導体構造の計測が実行される。その1個又は複数個の情報処理システム130を、1個又は複数個の検出器、能動光学素子、プロセスコントローラ等に可通信結合させることができる。
【0101】
認識されるべきことに、本件開示の随所に記載の1個又は複数個のステップを、単一コンピュータシステム130により実行してもよいし、それに代え複数コンピュータシステム130により実行してもよい。更に、システム100の様々なサブシステムに、本願記載のステップのうち少なくとも一部分を実行するのに適したコンピュータシステムを組み込んでもよい。従って、前掲の記述は、本発明に対する限定事項としてではなく、単なる例証として解されるべきである。
【0102】
加えて、コンピュータシステム130を計量システムの他要素に可通信結合させてもよく、その要領を本件技術分野で既知な何れの要領としてもよい。例えば、1個又は複数個の情報処理システム130を、検出器と連携する情報処理システムに結合させてもよい。また例えば、その検出器を、コンピュータシステム130に結合された単一コンピュータシステムにより直に制御してもよい。
【0103】
システム100のコンピュータシステム130を、本システムの諸サブシステム(例.検出器等)からのデータ又は情報を伝送媒体、例えば有線及び/又は無線区間を有するそれにより受領及び/又は獲得するよう、構成してもよい。この要領で、その伝送媒体を、コンピュータシステム130とシステム100の他サブシステムとの間のデータリンクとして働かせることができる。
【0104】
システム100のコンピュータシステム130を、他システムからのデータ又は情報(例.計測結果、モデル化入力、モデル化結果、参照計測結果等)を伝送媒体、例えば有線及び/又は無線区間を有するそれにより受領及び/又は獲得するよう、構成してもよい。この要領で、その伝送媒体を、コンピュータシステム130と他システム(例.システム100のオンボードメモリ、外部メモリ又は他の外部システム)との間のデータリンクとして働かせることができる。例えば、情報処理システム130を、データリンクを介し格納媒体(即ちメモリ132又は外部メモリ)から計測データを受け取るよう構成することができる。一例としては、本願記載の検出器を用い得られた計測結果を恒久的又は半恒久的メモリデバイス(例.メモリ132又は外部メモリ)内に格納させることができる。この構成によれば、その計測結果をオンボードメモリから、或いは外部メモリシステムからインポートすることができる。更に、コンピュータシステム130から伝送媒体を介し他システムにデータを送ってもよい。一例としては、コンピュータシステム130により決定された推定パラメタ値又は計測モデルを送り、外部メモリ内に格納させることができる。この構成によれば、計測結果を他システムにエキスポートすることができる。
【0105】
情報処理システム130には、これに限られるものではないが、パーソナルコンピュータシステム、メインフレームコンピュータシステム、ワークステーション、イメージコンピュータ、並列プロセッサその他、本件技術分野で既知なあらゆる装置が包含されうる。一般に、語「情報処理システム」は、記憶媒体から得た命令を実行するプロセッサを1個又は複数個有するデバイス全てが包括されるよう、広く定義することができる。
【0106】
方法例えば本願記載のそれらを実現するプログラム命令134を、伝送媒体例えばワイヤ、ケーブル又は無線伝送リンク上で伝送させてもよい。例えば、
図2に描かれている通り、メモリ132に格納されているプログラム命令134を、バス133上を経てプロセッサ131へと伝送させる。プログラム命令134はコンピュータ可読媒体(例.メモリ132)内に格納されている。コンピュータ可読媒体の例としては、リードオンリメモリ、ランダムアクセスメモリ、磁気又は光ディスク、並びに磁気テープがある。
【0107】
本願記載の語「限界寸法」には、構造のあらゆる限界寸法(例.下部限界寸法、中部限界寸法、上部限界寸法、側壁角、格子高さ等々)、任意の2個以上の構造間の限界寸法(例.2個の構造間の距離)、並びに2個以上の構造間のずれ(例.重なり合う格子構造間のオーバレイ位置ずれ等)が包含される。構造の例としては三次元構造、パターン化構造、オーバレイ構造等があろう。
【0108】
本願記載の語「限界寸法アプリケーション」や「限界寸法計測アプリケーション」にはあらゆる限界寸法計測が包含される。
【0109】
本願記載の語「計量システム」には、計測アプリケーション例えば限界寸法計量、オーバレイ計量、焦点/照射量計量及び組成計量を初め、その態様を問わず試料の解明に少なくとも部分的に利用されるシステム全てが包含される。とはいえ、こうした技術用語により本願記載の語「計量システム」の範囲が限定されるわけではない。加えて、システム100をパターン化ウェハの計測向けに構成しても、及び/又は、無パターンウェハの計測向けに構成してもよい。その計量システムを、LED検査ツール、エッジ検査ツール、背面検査ツール、マクロ検査ツール又はマルチモード検査ツール(1個又は複数個のプラットフォームから同時にデータを得るものを含む)その他、本願記載の諸技術から利を受けるどのような計量又は検査ツールとして構成してもよい。
【0110】
本願では、何らかの半導体処理ツール(例.検査システムやリソグラフィシステム)内で試料を計測するのに使用されうる半導体計測システムに関し様々な実施形態が記述されている。本願で用いられている語「試料」は、本件技術分野で既知な手段により処理(例.印刷又は欠陥検査)されうるウェハ、レティクルその他、あらゆる標本を指している。
【0111】
本願中の用語「ウェハ」は、総じて、半導体又は非半導体素材で形成された基板のことを指している。その例としては、これに限られるものではないが、単結晶シリコン、ヒ化ガリウム及び燐化インジウムがある。そうした基板は半導体製造設備にて普通に見出すことができ、及び/又は、処理することができる。場合によっては、ウェハが基板のみで構成されていることがある(いわゆるベアウェハ)。そうではなく、ウェハが、基板上に形成された1個又は複数個の異種素材層を有していることもある。ウェハ上に形成された1個又は複数個の層が「パターニング」されていることも「未パターニング」なこともありうる。例えば、ウェハ内に複数個のダイがありそれらが可反復パターンフィーチャを有していることがありうる。
【0112】
「レティクル」は、レティクル製造プロセスのどの段階にあるレティクルでもよいし、レティクルの完成品でもよいし、また半導体製造設備での使用向けにリリースされていてもいなくてもよい。レティクル或いは「マスク」は、一般に、その上にほぼ不透明な領域が形成されておりその領域がパターンの態で構成されているほぼ透明な基板として、定義される。その基板は、例えば、ガラス素材例えばアモルファスSiO2を含有するものとすることができる。レジストで覆われたウェハの上方にレティクルを配してリソグラフィプロセスのうち露出工程を行うことで、そのレティクル上のパターンをそのレジストへと転写することができる。
【0113】
ウェハ上に形成される1個又は複数個の層がパターンをなしていてもよいし、なしていなくてもよい。例えば、ウェハが複数個のダイを有していて、そのそれぞれが可反復パターンフィーチャを有するのでもよい。そうした素材層の形成及び処理によって、最終的にはデバイスの完成品が得られよう。多種多様なデバイスがウェハ上に形成されうるのであり、本願中の用語ウェハの意図は、本件技術分野で既知な何れかの種類のデバイスがその上に作成されるウェハを包括することにある。
【0114】
1個又は複数個の例示的実施形態では、前述の機能がハードウェア、ソフトウェア、ファームウェア又はそれらの何らかの組合せの態で実現されうる。ソフトウェアでの実現時には、それらの機能が1個又は複数個の命令又はコードとしてコンピュータ可読媒体上に格納され又はその媒体上で伝送されよう。コンピュータ可読媒体にはコンピュータ格納媒体及び通信媒体の双方、例えばコンピュータプログラムをある場所から別の場所へと転送するのに役立つ媒体全てが包含される。格納媒体は、汎用又は専用コンピュータによるアクセスされうる何れの入手可能媒体であってもよい。例えば、限定するものではないが、そうしたコンピュータ可読媒体は、RAM、ROM、EEPROM、CD-ROMその他の光ディスクストレージ、磁気ディスクストレージその他の磁気格納装置、或いは他の何らかの媒体であり、命令又はデータ構造の形態を採る所望のプログラムコード手段の搬送又は格納に使用することができ、且つ汎用又は専用コンピュータ或いは汎用又は専用プロセッサによりアクセスされうるものを、備えるものとすることができる。また、どのような接続であれコンピュータ可読媒体と称して差し支えない。例えば、そのソフトウェアをウェブサイト、サーバその他のリモートソースから送信するに当たり同軸ケーブル、光ファイバケーブル、ツイストペア、ディジタル加入者線(DSL)又は無線テクノロジ例えば赤外線、無線周波数若しくはマイクロ波が用いられるのであれば、それら同軸ケーブル、光ファイバケーブル、ツイストペア、DSL又は無線テクノロジ例えば赤外線、無線周波数及びマイクロ波は、媒体の定義に収まる。本願中の用語ディスク(disk/disc)には、コンパクトディスク(CD)、レーザディスク、光ディスク、ディジタルバーサタイルディスク(DVD)、フロッピー(登録商標)ディスク及びブルーレイ(登録商標)ディスクを初め、通常はデータが磁気的に再生されるディスク(disk)及びレーザで以てデータが光学的に再生されるディスク(disc)が包含される。上掲のものの組合せもまたコンピュータ可読媒体の範囲内に包含されるべきである。
【0115】
ある種の具体的諸実施形態を教示目的で上述したが、本件特許出願の教示は一般的な適用可能性を有するものであり、上述の具体的諸実施形態に限定されるものではない。従って、特許請求の範囲中で説明されている発明の技術的範囲から離隔することなく、上述の諸実施形態の諸特徴につき様々な修正、適合化並びに組合せを実施することができる。