(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-13
(45)【発行日】2024-02-21
(54)【発明の名称】固体燃料の製造方法及び使用方法、並びに固体燃料の製造装置
(51)【国際特許分類】
C10L 5/48 20060101AFI20240214BHJP
【FI】
C10L5/48
(21)【出願番号】P 2019053048
(22)【出願日】2019-03-20
【審査請求日】2022-01-17
(73)【特許権者】
【識別番号】521297587
【氏名又は名称】UBE三菱セメント株式会社
(74)【代理人】
【識別番号】100088155
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100145012
【氏名又は名称】石坂 泰紀
(72)【発明者】
【氏名】藤井 健史
(72)【発明者】
【氏名】井関 哲生
(72)【発明者】
【氏名】田邉 正英
【審査官】岡田 三恵
(56)【参考文献】
【文献】特開2018-016695(JP,A)
【文献】特開2011-057750(JP,A)
【文献】特開平06-108064(JP,A)
【文献】特開2012-011299(JP,A)
【文献】特開2018-165009(JP,A)
【文献】特開2011-068771(JP,A)
【文献】中国特許出願公開第106103562(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
C10L 5/48
C10L 5/00
C08J 11/04
B09B 3/40
(57)【特許請求の範囲】
【請求項1】
炭素繊維強化プラスチックを含む廃棄物を、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱工程と、
前記軟化物から得られる塊状物を粉砕して粉砕物を得る粉砕工程と、
前記加熱工程で発生する可燃性ガスを回収して燃焼させる燃焼工程と、を有し、
前記燃焼工程で発生した排ガスを水と接触させて冷却して得た冷却排ガスを、前記ガスとして供給する、固体燃料の製造方法。
【請求項2】
前記加熱工程の前に、前記廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別工程をさらに有し、
前記加熱工程では前記第1廃棄物を加熱して前記軟化物を得る、請求項1に記載の固体燃料の製造方法。
【請求項3】
炭素繊維強化プラスチックを含む廃棄物を、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱工程と、
前記軟化物から得られる塊状物を粉砕して粉砕物を得る粉砕工程と、
前記加熱工程の前に、前記廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別工程と、を有し、
前記加熱工程では前記第1廃棄物
のみを加熱して前記軟化物を得る、固体燃料の製造方法。
【請求項4】
前記ガスの酸素濃度を制御する制御工程をさらに有する、請求項1~3のいずれか一項に記載の固体燃料の製造方法。
【請求項5】
前記加熱工程では、1~n種類(n:1以上の整数)のガスが個別に供給され、
前記制御工程は、下記式(1)によって算出される前記ガス全体の酸素濃度の値Yを16体積%以下に制御する、請求項4に記載の固体燃料の製造方法。
【数1】
(上記式(1)中、Cxは個別に供給されるガスXの乾き酸素濃度、VDxは個別に供給されるガスXの乾き体積流量、及び、VWxは個別に供給されるガスXの湿り体積流量をそれぞれ示す。Xはガス毎に附番される1~nの整数である。)
【請求項6】
前記低酸素雰囲気中の酸素濃度は16体積%以下である、請求項1~5のいずれか一項に記載の固体燃料の製造方法。
【請求項7】
前記低酸素雰囲気中の酸素濃度は前記水蒸気の量によって調整される、請求項1~6のいずれか一項に記載の固体燃料の製造方法。
【請求項8】
前記加熱工程では、前記廃棄物とともに粒状又は粉末状の副原料を加熱する、請求項1~7のいずれか一項に記載の固体燃料の製造方法。
【請求項9】
前記粉砕物を分級し、前記粉砕物の大きさに応じて前記粉砕物の少なくとも一部を回収する回収工程を有する、請求項1~8のいずれか一項に記載の固体燃料の製造方法。
【請求項10】
前記加熱工程は、前記廃棄物を200~500℃の温度範囲で2時間を超える時間加熱する、請求項1~9のいずれか一項に記載の固体燃料の製造方法。
【請求項11】
前記加熱工程の前に、前記廃棄物を破砕する破砕工程を有する、請求項1~10のいずれか一項に記載の固体燃料の製造方法。
【請求項12】
前記燃焼工程で発生した排ガスを前記加熱工程において熱源として利用する、請求項1又は2に記載の固体燃料の製造方法。
【請求項13】
炭素繊維強化プラスチックを含む廃棄物を、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱部と、
前記軟化物から得られる塊状物を粉砕して粉砕物を得る粉砕部と、
前記加熱部で発生した可燃性ガスを燃焼させる燃焼部と、
前記燃焼部で発生した排ガスを水と接触させて冷却するガス冷却部と、
前記ガス冷却部で冷却された冷却排ガスを、前記ガスとして前記加熱部に導入する導入部と、を備える、固体燃料の製造装置。
【請求項14】
前記廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別部を備え、前記加熱部では前記第1廃棄物を加熱して前記軟化物を得る、請求項13に記載の固体燃料の製造装置。
【請求項15】
炭素繊維強化プラスチックを含む廃棄物を、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱部と、
前記軟化物から得られる塊状物を粉砕して粉砕物を得る粉砕部と、
前記廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別部と、を備え、
前記加熱部では前記第1廃棄物
のみを加熱して前記軟化物を得る、固体燃料の製造装置。
【請求項16】
前記加熱部に供給する前記ガスの酸素濃度を制御する制御部をさらに備える、請求項13~15のいずれか一項に記載の固体燃料の製造装置。
【請求項17】
前記加熱部には、1~n種類(n:1以上の整数)のガスが個別に供給され、
前記制御部は、下記式(1)によって算出される前記ガス全体の酸素濃度の値Yを16体積%以下に制御する、請求項16に記載の固体燃料の製造装置。
【数2】
(上記式(1)中、Cxは個別に供給されるガスXの乾き酸素濃度、VDxは個別に供給されるガスXの乾き体積流量、及び、VWxは個別に供給されるガスXの湿り体積流量をそれぞれ示す。Xはガス毎に附番される1~nの整数である。)
【請求項18】
前記加熱部における前記低酸素雰囲気中の酸素濃度は16体積%以下である、請求項13~17のいずれか一項に記載の固体燃料の製造装置。
【請求項19】
前記加熱部は、廃棄物とともに粒状又は粉末状の副原料を加熱するように構成される、請求項13~18のいずれか一項に記載の固体燃料の製造装置。
【請求項20】
前記粉砕物を分級し、前記粉砕物の大きさに応じて前記粉砕物の少なくとも一部を回収する回収部を備える、請求項13~19のいずれか一項に記載の固体燃料の製造装置。
【請求項21】
前記廃棄物を加熱する前に破砕する破砕部を備える、請求項13~20のいずれか一項に記載の固体燃料の製造装置。
【請求項22】
前記加熱部は、前記廃棄物を200~500℃の温度範囲で2時間を超える時間加熱する、請求項13~21のいずれか一項に記載の固体燃料の製造装置。
【請求項23】
前記燃焼部で発生した排ガスを加熱部の熱源として導入する熱源導入部を備える、請求項13又は14に記載の固体燃料の製造装置。
【請求項24】
請求項1~12のいずれか一項に記載の製造方法で得られる固体燃料をセメント製造設備のキルン又は仮焼炉で燃焼させる工程を有する、固体燃料の使用方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、固体燃料の製造方法及び使用方法、並びに固体燃料の製造装置に関する。
【背景技術】
【0002】
炭素繊維強化プラスチック(CFRP)は、軽量及び高強度といった炭素繊維の特性を利用して、日用品、パソコン、家電、自動車、航空機、スポーツ用品及び建築土木分野等の様々な用途に使用されている。これらの製品の廃棄処分で生じるシュレッダーダストには、炭素繊維強化プラスチックを含む。
【0003】
廃プラスチックの有効利用の手段として、廃プラスチックを含む廃棄物から固体燃料を得る技術が検討されている。例えば、特許文献1では、CFRPを所定条件で加熱処理してCFRPの粉砕性を向上し、加熱処理後に粉砕して得られた粉砕物をセメント製造装置の燃料として用いる技術が提案されている。
【先行技術文献】
【特許文献】
【0004】
【発明の概要】
【発明が解決しようとする課題】
【0005】
炭素繊維が高い強度を有するため炭素繊維強化プラスチックは他の廃棄物成分よりも粉砕され難い。このため、他の廃棄物成分に比べて大きいサイズを維持し易い。このようにサイズの大きい炭素繊維強化プラスチックを含む廃棄物を固体燃料として用いると、炭素繊維が燃え残ってしまうことが懸念される。ここで、廃棄物を特許文献1のように大気中で加熱すると、安全性が損なわれること、及び、固体燃料のカロリーが減少してしまうことが懸念される。
【0006】
そこで、本開示は、炭素繊維強化プラスチックを含む廃棄物から、燃焼性に優れる固体燃料を安定的に製造することが可能な固体燃料の製造方法、及び、固体燃料の製造装置を提供する。また、炭素繊維強化プラスチックを含む廃棄物から安定的に製造され、燃焼性に優れる固体燃料を使用する、固体燃料の使用方法を提供する。
【課題を解決するための手段】
【0007】
本開示の一側面に係る固体燃料の製造方法は、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱工程と、軟化物から得られる塊状物を粉砕して粉砕物を得る粉砕工程と、を有する。
【0008】
上記製造方法では、空気よりも酸素濃度が低い低酸素雰囲気中で廃棄物を加熱していることから、加熱によって炭素繊維の脆化を促進しつつも、加熱時におけるプラスチックの燃焼による消失を抑制し高いカロリーを維持することができる。また、脆化された炭素繊維は粉砕工程で円滑に粉砕される。したがって、上記製造方法では、燃焼性に優れる固体燃料を安定的に製造することができる。上記ガスは、主成分として、当該設備で発生する副生成物を含んでよいし、近隣設備の副生成物を含んでもよい。これによって、酸素濃度を低くするための新たな原料ガスを製造することなく、空気よりも酸素濃度が低い低酸素雰囲気に簡便に調整することができる。
【0009】
上記製造方法は上記ガスの酸素濃度を制御する制御工程をさらに有することが好ましい。炭素繊維強化プラスチックを含む廃棄物を加熱すると、処理の進行に伴って気体が生成する。生成する気体は、加熱されるプラスチック(樹脂)の種類及び比率、並びに反応状態により変動する。このため、加熱工程を行う加熱部内の厳密な予測及び管理が難しくなる場合がある。そこで、上記の制御工程で制御することによって、反応条件が安定化し、加熱工程の雰囲気を円滑に管理することができる。これによって、一層安定した品質を有する固体燃料を製造することができる。
【0010】
上記加熱工程では、1~n種類(n:1以上の整数)のガスが個別に供給され、上記制御工程は、下記式(1)によって算出される前記ガス全体の酸素濃度の値Yを16体積%以下に制御することが好ましい。
【化1】
ここで、上記式(1)中、Cxは個別に供給されるガスXの乾き酸素濃度、V
Dxは個別に供給されるガスXの乾き体積流量、及び、V
Wxは個別に供給されるガスXの湿り体積流量をそれぞれ示す。Xはガス毎に附番される1~nの整数である。
【0011】
上述のとおり、個別に供給されるガスの加重平均によって加熱雰囲気(低酸素雰囲気)を制御すれば、例えば酸素濃度が互いに異なる複数のガスを利用する場合でも、加熱雰囲気の酸素濃度の変動を十分に抑制することが可能となる。これによって、加熱工程を一層安定化することができる。
【0012】
上記低酸素雰囲気中の酸素濃度は16体積%以下であることが好ましい。このような低酸素雰囲気中で廃棄物を加熱することによって、加熱時におけるプラスチックの燃焼による消失を十分に抑制することができる。
【0013】
上記低酸素雰囲気中の酸素濃度は、水蒸気の量によって調整されることが好ましい。これによって燃焼性に優れる固体燃料を低コストで製造することができる。水蒸気としては、例えば、上記製造方法で副生する水蒸気を用いることができる。
【0014】
加熱工程には、廃棄物とともに粒状又は粉末状の副原料を加熱してもよい。副原料としては、助燃剤、塩素固定化剤、粉砕助剤、融着防止剤などが挙げられる。副原料が融着防止剤を含むことによって、溶解したプラスチック同士が融着すること、及び、溶解したプラスチックが加熱設備に付着することを抑制できる。また、副原料が塩素固定化剤を含むことによって、塩素を含むプラスチックから発生した塩素を固定化することができる。さらに、上記低酸素雰囲気の酸素濃度が12体積%以下であれば、融着防止剤として微粉炭を用いた場合でも、高い安全性を維持することができる。
【0015】
上記製造方法は、粉砕物を分級し、粉砕物の大きさに応じて粉砕物の少なくとも一部を回収する回収工程を有することが好ましい。例えば、所定のサイズよりも大きいサイズを有する粉砕物を回収し、回収物を粉砕工程で再度粉砕することで、固体燃料に粗大物が含まれることを抑制して、固体燃料の燃え残りを一層低減することができる。また、所定のサイズよりも大きい粉砕物(回収物)は加熱工程で再加熱してもよい。
【0016】
上記加熱工程の前に、廃棄物を破砕する破砕工程を有することが好ましい。これによって、加熱工程及び粉砕工程を一層円滑に行うことが可能となる。
【0017】
上記加熱工程は、廃棄物を、200~500℃の温度範囲で2時間を超える時間加熱することが好ましい。このような条件で加熱することによって、樹脂の改質並びに炭素繊維の脆化が十分に進行し、炭素繊維強化プラスチックの粉砕性を一層向上することができる。さらに、酸素濃度16体積%以下の低酸素雰囲気中で加熱すれば、上述の温度及び時間条件で加熱しても、十分に高いカロリーを維持することができる。
【0018】
上記加熱工程の前に、廃棄物を破砕する破砕工程を有することが好ましい。これによって、加熱工程及び粉砕工程を一層円滑に行うことが可能となる。
【0019】
上記製造方法は、加熱工程で発生する可燃性ガスを回収して燃焼させる燃焼工程を有することが好ましい。燃焼工程で可燃性ガスを燃焼させることによって、ガス処理を円滑に行うことができる。また、この時に発生する燃焼熱、すなわち、燃焼工程で発生する可燃性ガスの燃焼熱を、加熱工程の熱源、排熱ボイラーの熱源、又は処理前の廃棄物乾燥用の熱源として有効利用してよい。これによって、エネルギー効率を向上することができる。
【0020】
上記製造方法は、上記燃焼工程で発生した排ガスを上記加熱工程において熱源として利用してもよい。これによって、燃焼工程で発生する可燃性ガスの燃焼熱を加熱工程の熱源として有効利用し、エネルギー効率を向上することができる。
【0021】
燃焼工程で発生した上記排ガスを水と接触させて冷却して得た冷却排ガスを、加熱工程における上記ガスとして供給してもよい。これによって、空気よりも酸素濃度が低い低酸素雰囲気とするためのガスを別途準備しなくても、加熱工程の低酸素雰囲気中の酸素濃度を簡便に調整することができる。
【0022】
加熱工程の前に、廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別工程をさらに有し、加熱工程では第1廃棄物及び第2廃棄物のどちらか一方を加熱することが好ましい。これによって、例えば、廃棄物に含まれる成分の中で強度が高く且つ燃え難い炭素繊維強化プラスチックの体積割合が大きい第1廃棄物のみに対して加熱及び粉砕等の工程を施すことが可能となる。これによって、加熱工程の負荷を低減することができる。第2廃棄物は、例えば、加熱工程を行わずに、粉砕工程で粉砕してもよい。あるいは、第1廃棄物は酸処理等の炭素繊維分離工程で炭素繊維とプラスチックとを分離してもよい。この場合、第2廃棄物のみを加熱工程で加熱することになるため、加熱工程の負荷を低減することができる。
【0023】
本開示の一側面に係る固体燃料の製造装置は、炭素繊維強化プラスチックを含む廃棄物を、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱部と、軟化物から得られる塊状物を粉砕して粉砕物を得る粉砕部と、を有する。
【0024】
上記製造装置は、空気よりも酸素濃度が低い低酸素雰囲気中での加熱によって炭素繊維の脆化を促進しつつも、加熱時におけるプラスチックの燃焼による消失を抑制して高いカロリーを維持することができる。また、脆化された炭素繊維は粉砕部で円滑に粉砕される。したがって、上記製造装置では、燃焼性に優れる固体燃料を安定的に製造することができる。
【0025】
上記製造装置は、加熱部に供給するガスの酸素濃度を制御する制御部をさらに備えることが好ましい。炭素繊維強化プラスチックを含む廃棄物を加熱すると、処理の進行に伴って気体が生成する。生成する気体は、加熱されるプラスチック(樹脂)の種類及び比率、並びに反応状態により変動する。このため、加熱部内の雰囲気の厳密な予測及び管理が難しくなる場合がある。そこで、上記制御部で制御することによって、反応条件が安定化し、加熱部の雰囲気を円滑に管理することができる。これによって、一層安定した品質を有する固体燃料を製造することができる。
【0026】
上記加熱部には、1~n種類(n:1以上の整数)のガスが個別に供給され、上記制御部は、下記式(1)によって算出されるガス全体の酸素濃度の値Yを16体積%以下に制御することが好ましい。
【化2】
上記式(1)中、Cxは個別に供給されるガスXの乾き酸素濃度、V
Dxは個別に供給されるガスXの乾き体積流量、及び、V
Wxは個別に供給されるガスXの湿り体積流量をそれぞれ示す。Xはガス毎に附番される1~nの整数である。
【0027】
上述のとおり、個別に供給されるガスの加重平均によって加熱雰囲気(低酸素雰囲気)を制御すれば、例えば酸素濃度が互いに異なる複数のガスを利用する場合でも、加熱雰囲気の酸素濃度の変動を十分に抑制することが可能となる。これによって、加熱部の運転を一層安定化することができる。
【0028】
加熱部における低酸素雰囲気中の酸素濃度は16体積%以下であることが好ましい。このような低酸素雰囲気中で廃棄物を加熱することによって、加熱時におけるプラスチックの燃焼による消失を十分に抑制することができる。
【0029】
加熱部は、廃棄物とともに粒状又は粉末状の副原料を加熱するように構成されることが好ましい。副原料としては、助燃剤、塩素固定化剤、粉砕助剤、融着防止剤などが挙げられる。副原料が融着防止剤を含むことによって、溶解したプラスチック同士が融着すること、及び溶解したプラスチックが加熱部の内壁等に付着することを抑制することができる。また、副原料が塩素固定化剤を含むことによって、塩素を含むプラスチックから発生した塩素を固定化することができる。さらに、加熱部における低酸素雰囲気中の酸素濃度が12体積%以下であれば、副原料(融着防止剤)として微粉炭を用いた場合でも、高い安全性を維持することができる。
【0030】
上記製造装置は、粉砕物を分級し、粉砕物の大きさに応じて粉砕物の少なくとも一部を回収する回収部を備えることが好ましい。例えば、所定のサイズよりも大きいサイズを有する粉砕物を回収し、加熱部で再加熱することによって、固体燃料の粗大物の残留を防止して、固体燃料の燃え残りを一層低減することができる。加熱部において、回収部で回収された所定のサイズの大きい粉砕物(回収物)を再加熱してもよい。
【0031】
上記製造装置は、廃棄物を加熱する前に破砕する破砕部を備えることが好ましい。これによって、加熱部及び粉砕部等において廃棄物が詰まったり閉塞したりすることを抑制し、固体燃料の製造を一層円滑に行うことが可能となる。
【0032】
加熱部は、廃棄物を200~500℃の温度範囲で2時間を超える時間加熱することが好ましい。このような条件で加熱することによって、炭素繊維強化プラスチックの粉砕性を一層向上することができる。
【0033】
上記製造装置は、加熱部で発生した可燃性ガスを燃焼させる燃焼部を備えることが好ましい。可燃性ガスを燃焼させる燃焼部を備えることによって、ガス処理を円滑に行うことができる。また、燃焼部で発生する可燃性ガスの燃焼熱を、加熱部の熱源、排熱ボイラーの熱源、処理前の廃棄物乾燥用の熱源として有効利用してよい。これによって、エネルギー効率を向上することができる。
【0034】
上記燃焼部で発生した排ガスを加熱部の熱源として導入する熱源導入部を備えることが好ましい。これによって、燃焼部で発生する可燃性ガスの燃焼熱を加熱部の熱源として有効利用し、エネルギー効率を向上することができる。
【0035】
上記製造装置は、上記燃焼部で発生した排ガスを水と接触させて冷却するガス冷却部を有してもよい。また、ガス冷却部で冷却された冷却排ガスを、上記ガスとして加熱部に導入する導入部を備えてもよい。このようにして、水蒸気を含有する冷却排ガスを加熱部に導入してもよい。これらの構成を備えることによって、酸素濃度を低くするための新たな原料ガスを製造することなく、加熱部を、空気よりも酸素濃度が低い低酸素雰囲気に簡便に調整することができる。
【0036】
上記製造装置は、廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別部を備え、加熱部では、第1廃棄物及び第2廃棄物のどちらか一方を加熱することが好ましい。これによって、例えば、廃棄物に含まれる成分の中で強度が高く且つ燃え難い炭素繊維の体積割合が大きい第1廃棄物のみに対して加熱部に供給することが可能となる。これによって、加熱部の負荷を低減することができる。第2廃棄物は、例えば、加熱部に供給せずに、塊状物とともに粉砕部に供給してもよい。あるいは、第1廃棄物は酸処理等の炭素繊維分離部に供給して炭素繊維とプラスチックとを分離してもよい。この場合、第2廃棄物のみを加熱工程で加熱することになるため、加熱工程の負荷を低減することができる。
【0037】
本開示の一側面に係る固体燃料の使用方法は、上述の製造方法で得られる固体燃料をセメント製造設備のキルン又は仮焼炉で燃焼させる工程を有する。この使用方法によれば、炭素繊維強化プラスチックを含む廃棄物から安定的に製造され、燃焼性に優れる固体燃料をセメント製造設備のキルン又は仮焼炉で燃焼させることができる。
【発明の効果】
【0038】
本開示によれば、炭素繊維強化プラスチックを含む廃棄物から、燃焼性に優れる固体燃料を安定的に製造することが可能な固体燃料の製造方法、及び、固体燃料の製造装置を提供することができる。また、炭素繊維強化プラスチックを含む廃棄物から安定的に製造され、燃焼性に優れる固体燃料を使用する、固体燃料の使用方法を提供することができる。
【図面の簡単な説明】
【0039】
【
図1】固体燃料の製造装置の一実施形態を示す図である。
【
図2】固体燃料の製造装置の別の実施形態を示す図である。
【
図3】固体燃料の製造装置のさらに別の実施形態を示す図である。
【
図4】固体燃料の製造装置のさらに別の実施形態を示す図である。
【発明を実施するための形態】
【0040】
以下、場合により図面を参照して、本開示の実施形態について説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。説明において、同一要素又は同一機能を有する要素には同一符号を用い、場合により重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、各要素の寸法比率は図示の比率に限られるものではない。
【0041】
一実施形態に係る固体燃料の製造方法は、炭素繊維強化プラスチック(CFRP)を含む廃棄物を、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを供給することによって空気よりも酸素濃度が低い低酸素雰囲気中で加熱して廃棄物の軟化物を得る加熱工程と、軟化物を水で冷却して塊状物を得る冷却工程と、炭素繊維を含む塊状物を粉砕して粉砕物を得る粉砕工程と、粉砕物を分級し、粉砕物の大きさに応じて粉砕物の一部を回収する回収工程と、加熱工程で発生した可燃性ガスを燃焼させる燃焼工程と、上記ガスの酸素濃度を制御する制御工程と、を有する。加熱工程は、廃棄物とともに融着防止剤を加熱してもよい。融着防止剤としては、微粉炭が挙げられる。融着防止剤を用いることによって、溶解したプラスチック同士が融着すること、及び、溶解したプラスチックが加熱設備に付着することを抑制できる。
【0042】
炭素繊維強化プラスチックは、炭素繊維とプラスチックを含む。プラスチックとしては、例えば、ポリエチレン、ポリプロピレン、ポリスチレン等の熱可塑性樹脂、並びに、フェノール樹脂、エポキシ樹脂等の熱硬化性樹脂等が挙げられる。炭素繊維としては、例えば、アクリル繊維又はピッチ等を原料として高温で炭化して作製されたものが挙げられる。ただし、炭素繊維強化プラスチックは、上述以外の成分を含むものであってよい。
【0043】
廃棄物は、日用品、パソコン、家電、自動車、航空機、スポーツ用品及び建築土木分野等に由来するものであってよい。これらの廃棄物は、自動車及び家電等の廃棄で生じるシュレッダーダストであってよい。廃棄物は、炭素繊維強化プラスチックのみならず、炭素繊維を含有しないプラスチック等の樹脂成分を含んでいてよい。廃棄物は、炭素繊維及び樹脂成分の他に、金属及びゴム等の異物を含んでもよい。
【0044】
加熱工程では、廃棄物を200~500℃の温度範囲で2時間を超える時間加熱することが好ましい。このような温度範囲とすることによって、エネルギー消費量を抑制しつつ炭素繊維の脆化を十分に進行させることができる。上記温度範囲は、同様の観点から、250~450℃であってよく、300~400℃又は300~350℃であってもよい。上記温度範囲における加熱時間は2.1時間以上であってよいし、2.5時間以上であってもよいし、3時間以上であってもよい。加熱時間を長くすることによって、樹脂の改質及び炭素繊維の脆化を十分に進行させることができる。
【0045】
一方、エネルギー消費量を抑制する観点から、上記温度範囲における加熱時間は5時間以下であってよく、4時間以下であってもよい。加熱工程における圧力は大気圧以下であってよいし、大気圧未満であってよい。圧力を大気圧未満とすることによって、軟化物からの発生ガスがキルンなどの加熱炉等から流出することを抑制することができる。また、加熱によって生じるタール分の気化が促進され、軟化物同士の融着を抑制することができる。
【0046】
加熱工程における低酸素雰囲気の酸素濃度は、加熱工程で供給するガスの酸素濃度及び流量の少なくとも一方によって調整してもよい。停止状態から通常の運転状態に入った後は、供給するガスの酸素濃度を制御することによって固体燃料を十分に安定して製造することができる。
【0047】
加熱工程における低酸素雰囲気の酸素濃度を16体積%以下とすることによって、廃棄物の燃焼を十分に抑制し、固体燃料のカロリーを高く維持することができる。さらに、加熱工程における低酸素雰囲気の酸素濃度を12体積%以下とすることによって、一層高い安全性で加熱工程を行うことができる。
【0048】
加熱工程に供給されるガスの酸素濃度は、制御工程で制御される。制御工程で制御されるガスの酸素濃度は、同様の観点から、12体積%以下であってよく、10体積%以下であってもよく、8体積%以下であってもよい。ガスの酸素濃度の下限は、例えば2体積%以上であってよく、4体積%以上であってよい。本開示における「体積%」は、標準状態(摂氏0℃、気圧1bar)における体積割合である。加熱工程における低酸素雰囲気の酸素濃度の調整は供給されるガスの酸素濃度で調整することができる。
【0049】
加熱工程に供給されるガスが複数種類ある場合、制御工程は、各ガスの加重平均でガス全体の酸素濃度を制御することが好ましい。例えば、酸素濃度が互いに異なる複数(n種類)のガスを加熱工程に供給する場合、供給されるガス全体の酸素濃度の値Yは、以下の式(1)によって計算することができる。
【0050】
【化3】
上記式(1)中、Cxは個別に供給されるガスXの乾き酸素濃度、V
Dxは個別に供給されるガスXの乾き体積流量、及び、V
Wxは個別に供給されるガスXの湿り体積流量をそれぞれ示す。Xはガス毎に附番される1~nの整数である。制御工程では、ガス全体の酸素濃度の値Yを、16体積%以下に制御してもよく、12体積%以下に制御してもよく、10体積%以下に制御してもよく、8体積%以下に制御してもよい。
【0051】
上記の式(1)は、例えば、加熱工程に供給するガスが2種類(n=2)の場合、具体的に以下のように表現される。
供給されるガス全体の酸素濃度の値Y=
{(C1×VD1)+(C2×VD2)}/(VW1+VW2)
2種類のガス(ガス1及びガス2)の一方のみで加熱工程の低酸素雰囲気の酸素濃度を調整してもよい。この場合、ガス1及びガス2の他方は、原料投入口、又は構造上把握できる通気口等から持ち込まれる空気であってよい。
【0052】
供給されるガスの一部が酸素濃度を全く又は殆ど調整できないガス(空気)である場合、供給されるガス全体の酸素濃度は、供給されるガスのうち1種類又は2種類以上の酸素濃度を調整可能なガスの湿り酸素濃度を操作することで調整してよい。このとき、例えば、調整可能なガスに水蒸気、二酸化炭素及び窒素からなる群より選ばれる少なくとも一種を加えることで酸素濃度を調整してもよい。
【0053】
供給されるガスに含まれる水蒸気、二酸化炭素及び窒素からなる群より選ばれる少なくとも一種は、固体燃料の本製造方法におけるいずれかの工程に由来することが好ましい。これによって、加熱工程の低酸素雰囲気における酸素濃度を調整するために別途のガスを新たに調達することを回避でき、より低いコストで運転を行うことができる。なお、必要に応じて、水蒸気発生装置等を用いて不足する供給ガスを補ってもよい。
【0054】
なお、ガス中の酸素濃度の測定は、例えば、ジルコニア式又は磁気力式等の酸素濃度計によって計測してもよいし、別途設けられる酸素濃度の分析工程において分析してもよい。
【0055】
加熱工程で得られる軟化物は、炭素繊維強化プラスチックに含まれるプラスチックの溶融物を含んでよい。軟化物は、炭素繊維等の固体と液体(溶融物)を含んでよい。軟化物は、冷却されて固形の塊状物となる。塊状物は、炭素繊維とプラスチックの炭化物等の有機物と微粉炭を含んでよい。
【0056】
冷却工程は、加熱工程で得られる軟化物を水によって冷却して塊状物を得る。冷却工程では、水と軟化物を直接接触させて軟化物を冷却してもよいし、冷却媒体等を介して間接的に冷却してもよい。例えば、軟化物を鉄製の筒内に導入し、筒の外側から散水して冷却してもよい。このような冷却工程を行うことによって、軟化物が円滑に冷却され、固体燃料の製造に所要する時間を短縮することができる。
【0057】
粉砕工程では、塊状物を粉砕して粉砕物を得る。加熱工程において樹脂が改質され、炭素繊維が脆化されていることから、炭素繊維を含む塊状物は粉砕工程において円滑に粉砕される。ここで得られる粉砕物を固体燃料として用いることができる。このように塊状物を粉砕することによって炭素繊維が小さくなり、固体燃料として用いたときの燃え残りを低減することができる。これによって燃焼性が向上する。また、固体燃料の燃焼ガスを処理する電気集塵機に、炭素繊維の燃え残りが導入されることを抑制し、設備のメンテナンス頻度を低減することができる。粉砕物(固体燃料)のサイズは特に限定されず、例えば、10mm以下であってよいし、5mm以下であってよい。粉砕工程は、例えば竪型ミルを用いて行ってもよいし、チューブミルを用いて行ってもよい。竪型ミルを用いることによって、粉砕工程と回収工程とを並行して行ってもよい。
【0058】
回収工程では、粉砕物を分級し、粉砕物の大きさに応じて粉砕物の一部を回収する。例えば、炭素繊維が十分に脆化されておらず、粉砕工程で十分に小さいサイズに粉砕されない粗大物(粗大な炭素繊維)が残存している場合には、粉砕物を分級して粗大物を回収することが好ましい。分級は、分級機によって行ってもよいし、粉砕機能と分級機能を兼ね備える竪型ミルで行ってもよい。
【0059】
回収工程で回収された粗大物は、粉砕工程で再度粉砕されてもよい。このような回収工程を有することによって、サイズの大きな炭素繊維が、固体燃料に含まれることを抑制できる。粗大物が取り除かれた粉砕物は、燃焼性に優れる固体燃料として使用できる。例えば、セメント製造設備のキルン又は仮焼炉で燃焼させてよい。このような燃焼工程を行えば、炭素繊維を含む廃棄物を、燃料として有効利用することができる。
【0060】
上記製造方法によれば、炭素繊維強化プラスチックを含む廃棄物から、燃焼性に優れる固体燃料を安定的に製造することができる。加熱工程で生じた可燃性ガスは、例えばボイラー又はセメントキルン等で燃焼して有効利用してもよい。
【0061】
上記製造方法は、例えば、
図1に示す一実施形態に係る製造装置100を用いて行ってもよい。
図1の製造装置100は、炭素繊維強化プラスチックを含む廃棄物を融着防止剤等の粒状又は粉末状の副原料とともに空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱部20と、軟化物を水で冷却することで塊状物を得る冷却部30と、塊状物を粉砕して粉砕物を得る粉砕部40と、粉砕物を分級し、粉砕物の大きさに応じて粉砕物の少なくとも一部を回収する回収部50と、加熱部20で発生した可燃性ガスを燃料として用いる燃焼部60と、加熱部20に供給するガスの酸素濃度を制御する制御部90を備える。
【0062】
加熱部20では加熱工程を行ってよい。冷却部30では冷却工程を行ってよい。粉砕部40では粉砕工程を行ってよい。加熱部20は外熱式の加熱装置であることが好ましい。例えば、外熱式ロータリーキルンを使用することができる。また、粉砕部40を例えば竪型ミルとして、塊状物の粉砕と粉砕物の分級とを並行して行ってよい。したがって、各工程の説明内容を、製造装置100の各構成部分に適用することができる。製造装置100は、炭素繊維強化プラスチックを含む廃棄物から、燃焼性に優れる固体燃料を安定的に製造することができる。
【0063】
制御部90は、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガスを加熱部20に供給して、加熱部20の雰囲気を空気よりも酸素濃度が低い低酸素雰囲気に調整する。制御部90は、水蒸気を含むガスを加熱部20に供給することが好ましい。水蒸気としては、冷却部30で軟化物を冷却することによって得られる水蒸気を利用してもよい。これによって、加熱後の軟化物の冷却を迅速に行いつつ、加熱工程中の低酸素雰囲気中の酸素濃度を簡便に低減することができる。制御部90は、ガス流量を調節する調節弁と、目標とするガス流量を設定する演算部、演算部と調節弁との信号をやり取りする伝達部とを有していてもよい。加熱部20に複数(n)のガスが個別に供給される場合、制御部90は、上記式(1)によって算出されるガス全体の酸素濃度の値Yを16体積%以下に制御してもよい。この場合、例えば、複数種類のガス流量の割合を変えることでガス全体の酸素濃度を制御することができる。ガス全体の酸素濃度の値Yは、12体積%以下に制御されてよく、10体積%以下に制御されてもよく、8体積%以下に制御されてもよい。
【0064】
図2は、別の実施形態に係る製造装置を示す図である。
図2の製造装置101は、
図1の製造装置100の構成に加えて、燃焼部60からの排ガスの少なくとも一部を冷却するガス冷却部62を備える。ガス冷却部62では、例えば、水と排ガスを接触させることで排ガスを冷却して冷却排ガスを得てもよい。
【0065】
ガス冷却部62で冷却されたガス(冷却排ガス)は、制御部91及び冷却部30を経由して加熱部20に導入される。なお、冷却排ガスは、冷却部30を経由することなく、加熱部20に直接導入されてもよい。ガス冷却部62で得られた冷却排ガスの加熱部20への供給流量は、制御部91で調整する。なお、制御部91は
図1の制御部90の機能に加えて、加熱部20に供給される冷却排ガスの流量を算出し、余剰な排ガスを大気に放出する機能を有してもよい。
【0066】
制御部91は、ガス冷却部62で冷却された冷却排ガスの流量を調製することで加熱部20に供給されるガスの酸素濃度を制御してもよい。また、ガス冷却部62で冷却された冷却排ガスと、これとは異なる別のガス(例えば、水蒸気、二酸化炭素、及び窒素からなる群より選ばれる少なくとも一種を含むガス)との混合比を調整して、加熱部20に供給されるガスの酸素濃度を制御してもよい。制御部91は、加熱部20と冷却部30の間に設けてもよい。
【0067】
図2の製造装置101のその他の構成は、
図1の製造装置100と同様であり、製造装置100の説明内容を適用することができる。
【0068】
図3は、さらに別の実施形態に係る製造装置を示す図である。
図3の製造装置102では、回収部50で回収された回収物を加熱部20に再投入する点が
図1の製造装置100と異なっている。これによって、回収物(粗大物)に含まれる炭素繊維の脆化がさらに進行し、再度粉砕部40に導入された際により粉砕されやすくすることができる。
【0069】
図3の製造装置102では、燃焼部60で生じた排ガスを、ガス供給部74(熱源導入部)によって加熱部20へ供給している。このように排ガスを加熱部20の熱源として用いてもよい。この場合、制御部90は、ガス供給部74からの排ガスの流量及び酸素濃度を加味して、加熱部20の供給するガスの流量及び酸素濃度を制御する。このようにして、エネルギー効率を一層向上することができる。
【0070】
図3の製造装置102のその他の構成は
図1の製造装置100と同様であり、製造装置100の説明内容を適用することができる。上述の固体燃料の製造方法に関する内容は、
図1,
図2,
図3の各製造装置100,101,102に適用され得る。
【0071】
別の実施形態に係る固体燃料の製造方法は、加熱工程の前に、廃棄物を破砕する破砕工程を行ってもよい。破砕工程は、例えば、製造装置100,101,102のいずれかの加熱部20の上流側に設けられる破砕部(不図示)によって行ってよい。破砕工程では、廃棄物を例えば10~100mmのサイズに破砕してもよい。破砕部としては、通常の破砕機を用いることができる。破砕部を設けることによって、加熱部20、冷却部30、粉砕部40及び回収部50において廃棄物が詰まったり閉塞したりすることを抑制し、固体燃料の製造を一層円滑に行うことが可能となる。
【0072】
さらに別の実施形態に係る固体燃料の製造方法では、加熱工程の前に、廃棄物を、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別工程を有する。これによって、脆化する必要性が高い第1廃棄物のみに加熱処理を施すことが可能となり、運転コスト及び設備コスト低減することができる。炭素繊維強化プラスチックの体積割合が小さい又は炭素繊維強化プラスチックを含まない第2廃棄物は、別の用途に用いてもよいし、燃焼工程を行わずにそのまま塊状物とともに、または塊状物と別に破砕工程を行って固体燃料の一部としてもよい。
【0073】
上記別の実施形態に係る製造方法は、例えば、
図4の製造装置103を用いて行ってもよい。
図4の製造装置103は、炭素繊維強化プラスチックを含む第1廃棄物と当該第1廃棄物よりも炭素繊維強化プラスチックの体積割合が小さい第2廃棄物とに分別する分別部10と、第1廃棄物を副原料とともに空気よりも酸素濃度が低い低酸素雰囲気中で加熱して軟化物を得る加熱部20と、軟化物を水で冷却することで塊状物を得る冷却部30と、塊状物を粉砕して粉砕物を得る粉砕部40と、第2廃棄物を破砕する破砕部41とを備える。
【0074】
分別部10、破砕部41を備える点、並びに、回収部50、燃焼部60及び制御部90を備えない点で、
図1の製造装置100と異なっている。分別部10では上述の分別工程を行ってよい。その他の構成は
図1の製造装置100と同様であるから、製造装置100の説明内容が適用可能である。すなわち、加熱部20では加熱工程を行ってよい。冷却部30では冷却工程を行ってよい。粉砕部40では粉砕工程を行ってよい。製造装置103は、炭素繊維強化プラスチックを含む廃棄物から、燃焼性に優れる固体燃料を安定的に製造することができる。
【0075】
図5は、加熱工程に用いられる加熱部の一例を示す図である。
図5に示される外熱式のロータリーキルン21は、回転可能に図示しない支持部で支持される内筒部71と、内筒部71の外周面上に設けられ、内筒部71を加熱する加熱ガスの流路となる外熱炉72と、内筒部71の両端にそれぞれ設けられる入口側フード77及び出口側ホッパー78を有する。内筒部71は、外熱炉72、入口側フード77及び出口側ホッパー78に対してその中心軸回りに回転可能に支持されている。
【0076】
入口側フード77には、廃棄物150を供給するホッパー22が接続されている。内筒部71は、入口側(
図5の左側)に比べ、出口側(
図5の右側)の方が低くなるように水平面に対して若干傾斜した状態で設置されている。ホッパー22から内筒部71の内部に供給された廃棄物150は、内筒部71の回転に伴って撹拌されながら、入口側から出口側に向かって移動する。このとき、外熱炉72には、例えば、200~500℃の加熱ガスがガス供給部74から連続的に供給されていることから、この熱によって廃棄物150の少なくとも一部は内筒部71において溶融する。
【0077】
溶融物を含む軟化物が内筒部71の内壁に融着すること、また軟化物同士が融着し大塊化することを抑制するため、融着防止剤等の副原料は、図示しない供給口から内筒部71内に供給されてもよい。所定時間加熱されて生じた軟化物は、出口側ホッパー78の下部に設けられた排出部79から排出される。排出部79から排出された軟化物は、冷却部に導入されて冷却され塊状物となる。
【0078】
外熱炉72を流通した加熱ガスは、ガス排出部76から排出される。加熱ガスとしては、例えば、ボイラー又は焼成炉の排ガスを用いてもよい。ガス排出部76から排出されるガスは、大気放出してもよいし、再び加熱して循環使用してもよい。
【0079】
内筒部71における廃棄物の加熱によって、プラスチックが分解してガスが生じる。このようなガスは可燃性成分を多く含むため、可燃性ガスとして利用することができる。例えば、
図3に示されるボイラー等の燃焼部60の燃料として用いてもよい。可燃性ガスは、例えば、出口側ホッパー78の上部に設けられる導出部80から回収することができる。
【0080】
燃焼部60で生じた排ガスを、加熱部20の熱源として用いてもよい。例えば、排ガスは、加熱ガスとして、
図5のガス供給部74から外熱炉72に供給される。導出部80及び導入部82,84の位置及び数は図示のものに限定されない。
【0081】
燃焼部60で生じた排ガスを、加熱工程における低酸素雰囲気中に導入してもよい。例えば、
図2のように、燃焼部60で生じた排ガスは、ガス冷却部62に供給される。ガス冷却部62では排ガスを水により冷却する。ガス冷却部62で発生した水蒸気を含んだ冷却排ガスは、
図5のロータリーキルン21の導入部82,84から導入される。このように水蒸気を導入することによって、内筒部71内を大気圧未満の圧力としても、内筒部71内の酸素濃度を低く維持することができる。導出部80及び導入部82,84の位置及び数は図示のものに限定されない。
【0082】
図6は、分別工程に用いられる分別部の一例を示す図である。
図6の分別部10Aは、廃棄物150の画像を取得する画像取得部110と、炭素繊維を含有する第1廃棄物151及び第1廃棄物151よりも炭素繊維の体積割合が小さい第2廃棄物152の少なくとも一方を検知する検知部120とを備える。
【0083】
廃棄物150は、コンベア136上(
図6の左側)に供給される。コンベア136上に供給された廃棄物150は、コンベア136によって、
図6中、左から右に向かって搬送される。
【0084】
画像取得部110は、廃棄物150の静止画又は動画を撮像するカメラを備えている。カメラによって撮像された画像信号は、検知部120に入力される。検知部120は、必要に応じて、画像処理を行った後、画像の中に、炭素繊維に由来する情報(模様、形状又は色彩等)を検知する。炭素繊維に由来する画像情報としては、繊維に由来する網目模様、毛羽立ち形状及びささくれ立った形状、黒色又は黒色に近い色彩等が挙げられる。これらの画像情報のうち、検知精度向上の観点から、模様及び形状を検知することが好ましい。炭素繊維に由来する模様、形状又は色彩が含まれている廃棄物が第1廃棄物151として検知される。
【0085】
検知部120には、画像取得部110から廃棄物の位置情報も入力される。検知部120から、第1廃棄物151の位置情報が、ロボットアーム134を制御する制御部131に入力される。制御部131は、検知部120からの第1廃棄物151の位置情報に基づいて、ロボットアーム134を制御する。ロボットアーム134は第1廃棄物151を把持してコンベア136から持ち上げる。このようにして、ロボットアーム134は、廃棄物150から第1廃棄物151を取り出す。ロボットアーム134は、
図6中、図示しない案内部に沿って制御部131とともに右方に移動し、第1収容部161の上方で第1廃棄物151を解放する。これによって、第1収容部161に第1廃棄物151が収容される。
【0086】
一方、検知部120で炭素繊維に由来する情報が検知されなかった廃棄物は、コンベア136によって搬送され、コンベア136の下流側に設置された第2収容部162に収容される。このようにして、廃棄物150は、第1廃棄物151と第2廃棄物152に分別される。
【0087】
第2廃棄物152は炭素繊維を含んでいてもよい。第1収容部161に収容された第1廃棄物151全体と、第2収容部162に収容された第2廃棄物152全体とを対比して、第1廃棄物151全体の方が第2廃棄物152全体よりも炭素繊維の体積割合が大きければ、分別部10Aは、炭素繊維強化プラスチックを含む廃棄物の処理の円滑化に寄与する。
【0088】
検知部120による、第1廃棄物151の検知は、炭素繊維に由来する情報のうち、模様、形状及び色彩のいずれか一つの情報に基づいて行ってもよいし、これらうちの2つの情報の組み合わせに基づいて行ってもよいし、これらの3つの情報の組み合わせに基づいて行ってもよい。
【0089】
変形例では、炭素繊維に由来する模様、形状又は色彩の大きさ、或いはこれらの割合に応じて、廃棄物を2種類又は3種類以上に分別してもよい。この場合、例えば、炭素繊維に由来する模様、形状又は色彩の割合が最も大きい第1廃棄物151と、炭素繊維に由来する模様、形状又は色彩の割合が最も小さい第2廃棄物152と、炭素繊維に由来する模様、形状又は色彩の割合が第1廃棄物151と第2廃棄物152の間である第3廃棄物とに分別してもよい。この場合、第1廃棄物151のみを加熱部に供給してもよいし、第3廃棄物のみを加熱部に供給してもよい。このとき、炭素繊維の体積割合が最も高い第1廃棄物151は、炭素繊維をリサイクルするためのリサイクル設備に供給されてもよい。
【0090】
さらに別の変形例では、コンベア136に配置された廃棄物150の中から、第2廃棄物152をロボットアーム134で把持して取り出してもよい。この場合、ロボットアーム134によって取り出されない、炭素繊維を含有する第1廃棄物151は、コンベア136の下流側に設置された収容部に落下して収容されることとなる。このように、ロボットアーム134は、第2廃棄物152を廃棄物150から取り出すことによって、廃棄物150から第1廃棄物151を分別してもよい。
【0091】
図7は、分別工程に用いられる分別部の別の例を示す図である。
図7の分別部10Bは、炭素繊維強化プラスチックを含有する廃棄物150をその帯電性による静電気力の違いに応じて分別する。分別部10Bは、炭素繊維強化プラスチックを含有する廃棄物150を帯電させる帯電部111と、静電気力で廃棄物の落下軌道を変えることによって廃棄物150を第1廃棄物151と第2廃棄物152に分別する。
【0092】
炭素繊維強化プラスチックを含有する廃棄物150は、帯電部111において帯電する。帯電の極性は特に限定されない。帯電部111としては、電界発生装置を備えるものが挙げられる。電界発生装置による電界内を、廃棄物150が通過することによって、廃棄物150が帯電する。廃棄物150に含まれる炭素繊維強化プラスチックの電気抵抗率は、例えば、1×10-1[Ω・m]以下である。これに対し、炭素繊維を含まないプラスチック等の絶縁体で構成される廃棄物の電気抵抗率は1×106[Ω・m]以上である。このように、廃棄物は、含有成分によって電気抵抗率が大きく異なることから、廃棄物150が電界内を通過すると含有成分によって帯電性が異なることとなる。
【0093】
帯電部111に備えられる電界発生装置は公知のものを用いることが可能であり、例えば、高電圧が印可される針状電極と導電体とを備え、両者間でコロナ放電界を形成するものが挙げられる。帯電部111は電界発生装置を備えるものに限定されず、例えば回転ドラム又は振動器等の摩擦発生装置を備えるものであってもよい。この場合、廃棄物を回転ドラム又は振動器中で動かして生じる摩擦によって静電気を発生させ、帯電させることができる。このような方式によっても、廃棄物はその含有成分によって帯電性が異なることとなる。廃棄物を十分に帯電させる観点から、摩擦発生装置の内壁は絶縁体で構成されることが好ましい。
【0094】
帯電された廃棄物150は、コンベア136上(
図7の左側)に供給される。コンベア136上に供給された廃棄物150は、コンベア136によって、
図5中、分別部10Bの帯電ドラム132に向かって搬送される。コンベア136は帯電ドラム132の下方に配置される。これによって、帯電ドラム132の回転面の下側に廃棄物150が供給される。このように回転面の下側に廃棄物150を供給することによって、回転面と廃棄物150とが直接接触しなくても廃棄物150を分別することができる。
【0095】
帯電ドラム132の回転面は、廃棄物とは反対極に帯電している。コンベア136によって廃棄物150が帯電ドラム132の下方に到達すると、帯電ドラム132の回転面とは反対極に帯電し、当該回転面との電位差が大きい第2廃棄物152は、静電気的な引力によって回転面に付着する。その後、帯電ドラム132の回転面とともに回転し、回転面に沿って設けられたスクレーパ133によって回転面から剥がされて落下し、第2収容部162に収容される。スクレーパ133は例えば掻き落としブラシ等であってもよい。
【0096】
一方、帯電していない第1廃棄物151、又は帯電ドラム132の回転面とは反対極に帯電しているが第2廃棄物152よりも回転面との電位差が小さい第1廃棄物151は、帯電ドラム132の回転面と第1廃棄物151間の静電引力よりも重力の方が大きいため、帯電ドラム132の回転面に付着することなく落下し、第1収容部161に収容される。このように、廃棄物150に含まれる第1廃棄物151及び第2廃棄物152は、それぞれの帯電性(帯電ドラム132の回転面との電位差)に応じて、第1廃棄物151と第2廃棄物152とが分別され別々の収容部に収容される。このようにして、廃棄物150は、第1廃棄物151と第2廃棄物152とに分別される。第1収容部161と第2収容部162には、それぞれに収容された第1廃棄物151と第2廃棄物152とが電気的に中性になるようにアースが接続されていてもよい。
【0097】
炭素繊維強化プラスチックは、紙屑及び樹脂等の絶縁体からなる廃棄物に比べて帯電し難いため、第1廃棄物151として回収される傾向にある。一方、絶縁体からなる廃棄物は、炭素繊維強化プラスチックを含む廃棄物よりも帯電し易いため、第2廃棄物152として回収される傾向にある。すなわち、炭素繊維強化プラスチックを含む第1廃棄物151は、プラスチック、ゴム、紙屑等を含む第2廃棄物152よりも高い導電性を有することから、このような廃棄物成分を含む廃棄物150を分別すると、第2廃棄物152よりも第1廃棄物151の方が炭素繊維の含有量が高くなる。
【0098】
ただし、第2廃棄物152は炭素繊維を含んでいてもよい。第1収容部161に収容された第1廃棄物151全体と、第2収容部162に収容された第2廃棄物152全体とを対比して、第1廃棄物151全体の方が第2廃棄物152全体よりも炭素繊維の含有量が高ければ、分別部10Bは、炭素繊維を含む廃棄物の処理の円滑化に寄与する。
【0099】
分別部10A及び10Bは、廃棄物150を分別することによって、加熱部で処理する廃棄物の量を低減することができる。すなわち、炭素繊維強化プラスチックの含有量に応じて適切な処理を施すことが可能になる。加熱部に導入されない廃棄物は、例えば、廃棄物に含まれる樹脂成分を酸によって溶解する酸処理部で処理してもよい。
【0100】
上記製造方法又は上記製造装置で得られた固体燃料は、セメント原燃料としてもよいし、セメント製造設備のキルン又は仮焼炉の燃料として使用してもよい。これによって、セメント製造設備の燃料コストを低減することができる。
【0101】
以上、幾つかの実施形態について説明したが、本発明は上記実施形態に何ら限定されるものではない。例えば、固体燃料の製造方法の各実施形態に係る内容を組み合わせてもよい。各製造装置100,101又は102の要素を製造装置103に加えてもよいし、製造装置103の要素を製造装置100,101又は102に加えてもよい。また例えば、分別部で分別された、炭素繊維強化プラスチックを含まない第2廃棄物又は炭素繊維強化プラスチックの体積割合が第1廃棄物よりも小さい第2廃棄物は、第1廃棄物よりも粉砕が容易であるから、加熱工程を行わず、粉砕工程で塊状物とともに粉砕されてもよい。すなわち、
図4の点線で示されるように、第2廃棄物は加熱部20及び冷却部30をバイパスして、粉砕部40に導入されてよい。
【0102】
なお、第1廃棄物ではなく、炭素繊維強化プラスチックを含む第2廃棄物を加熱工程に供してもよい。この場合、炭素繊維強化プラスチックの体積割合が第2廃棄物よりも大きい第1廃棄物は、酸処理部を有する炭素繊維分離部などで炭素繊維リッチ分とプラスチックリッチ分とに分離してよい。炭素繊維リッチ分を用いて炭素繊維を再生してもよい。
【0103】
また例えば、
図4の分別部10の上流側及び/又は分別部10と加熱部20との間に破砕部を設けてもよい。炭素繊維強化プラスチックを小さいサイズに破砕することによって、閉塞、引っ掛かり等の不具合の発生を抑制することができる。
【0104】
分別部は、上述の例に限定されず、例えば、比重差によって分別するものであってよく、導電性に応じて分別するものであってもよい。
【産業上の利用可能性】
【0105】
本開示によれば、炭素繊維強化プラスチックを含む廃棄物から、燃焼性に優れる固体燃料を安定的に製造することが可能な固体燃料の製造方法、及び、固体燃料の製造装置を提供することができる。また、炭素繊維強化プラスチックを含む廃棄物から安定的に製造され、燃焼性に優れる固体燃料を使用する、固体燃料の使用方法を提供することができる。
【符号の説明】
【0106】
10,10A,10B…分別部、20…加熱部、21…ロータリーキルン、22…ホッパー、30…冷却部、40…粉砕部、41…破砕部、50…回収部、60…燃焼部、62…ガス冷却部、71…内筒部、72…外熱炉、74…ガス供給部、76…ガス排出部、77…入口側フード、78…出口側ホッパー、79…排出部、80…導出部、82,84…導入部、90,91…制御部、100,101…製造装置、110…画像取得部、111…帯電部、120…検知部、131…制御部、132…帯電ドラム、133…スクレーパ、134…ロボットアーム、136…コンベア、150…廃棄物、151…第1廃棄物、152…第2廃棄物、161…第1収容部、162…第2収容部。