IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケーエルエー−テンカー コーポレイションの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-15
(45)【発行日】2024-02-26
(54)【発明の名称】粒子検出のためのシステム及び方法
(51)【国際特許分類】
   G01N 21/956 20060101AFI20240216BHJP
【FI】
G01N21/956 A
【請求項の数】 8
(21)【出願番号】P 2023031193
(22)【出願日】2023-03-01
(62)【分割の表示】P 2021526292の分割
【原出願日】2019-11-13
(65)【公開番号】P2023075201
(43)【公開日】2023-05-30
【審査請求日】2023-03-01
(31)【優先権主張番号】62/767,246
(32)【優先日】2018-11-14
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/577,089
(32)【優先日】2019-09-20
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】レオン ジェン-クエン
(72)【発明者】
【氏名】カバルジエフ ダニエル
(72)【発明者】
【氏名】ジャオ グオヘン
【審査官】井上 徹
(56)【参考文献】
【文献】米国特許第10942135(US,B2)
【文献】中国特許第112969910(CN,B)
【文献】国際公開第2018/128995(WO,A1)
【文献】特開2014-222239(JP,A)
【文献】特開2012-78802(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
G01N 21/84-G01N 21/958
G01B 11/00-G01B 11/30
H01L 21/64-H01L 21/66
JSTPlus/JMEDPlus/JST7580(JDreamIII)
(57)【特許請求の範囲】
【請求項1】
照明ビームを生成するように構成された照明源と、
照明方向に沿って軸外角度で前記照明ビームをサンプルに向けるように構成された1つまたは複数の照明光学系と、
検出器と、
前記照明ビームに応答して前記サンプルから集光された光に基づいて前記検出器上に前記サンプルの暗視野画像を生成するように構成された1つまたは複数の集光光学系と、
前記1つまたは複数の集光光学系の瞳面に位置するラジアル偏光子であって、前記瞳面における前記サンプルからの前記照明ビームの鏡面反射の位置に対応する前記瞳面の基準位置と一致するように、その頂点が前記瞳面において位置合わせされており、前記頂点に関して放射状に偏光されたラジアル偏光を除去し、前記頂点に関して接線方向に偏光された光を通過するように構成されるラジアル偏光子と、
前記1つまたは複数の集光光学系の瞳面に位置する位相マスクであって、前記瞳面の集光範囲の2つ以上の領域において光に別々の位相シフトをもたらして、前記サンプル上の1つまたは複数の粒子から散乱された光の点拡がり関数を再形成するように構成される位相マスクと、を備えるシステムであって、
前記集光範囲が、前記1つまたは複数の集光光学系の開口数に対応し、
前記位相マスクが、
前記集光範囲の第1の4分の1と、前記第1の4分の1に隣接する、前記集光範囲の第2の4分の1とをカバーする第1の半波長板であって、前記瞳面において前記サンプル上の前記照明ビームの入射面における角度に対応する方向に沿ってπ遅延をもたらすように方向付けられた第1の半波長板と、
前記集光範囲の前記第2の4分の1と、前記第2の4分の1に隣接する、前記集光範囲の第3の4分の1とをカバーする第2の半波長板であって、前記瞳面において前記入射面に直交する角度に対応する方向に沿ってπ遅延をもたらすように方向付けられた第2の半波長板と、を含む、システム。
【請求項2】
前記照明ビームは、前記サンプルにおいてp偏光である、請求項1に記載のシステム。
【請求項3】
前記位相マスクの第2のセグメントが、前記集光範囲の第4の4分の1をカバーする開口を含む、請求項2に記載のシステム。
【請求項4】
前記集光範囲の2つ以上の領域は、前記照明方向に沿って分割された、第1の2分の1集光領域と、第2の2分の1集光領域を含む、請求項1に記載のシステム。
【請求項5】
前記第1の半波長板の光軸は、前記照明方向に沿って方向付けられる、請求項1に記載のシステム。
【請求項6】
前記第1の半波長板と前記第2の半波長板の少なくとも1つは、前記第1の半波長板と前記第2の半波長板を通過する光の間の光路の差を少なくとも部分的に補償するように傾斜している、請求項1に記載のシステム。
【請求項7】
前記位相マスクが、前記集光範囲の第4の4分の1をカバーする、伝搬方向に沿って光学的に均質な材料から形成された補償板をさらに含む、請求項1に記載のシステム。
【請求項8】
照明方向に沿って斜めの角度でp偏光照明ビームでサンプルを照明するステップと、
前記照明ビームに応答して、1つまたは複数の集光光学系を用いて暗視野モードで前記サンプルからの光を集光するステップと、
前記1つまたは複数の集光光学系の瞳面に位置するラジアル偏光子を通して前記サンプルからの光を伝搬するステップであって、前記ラジアル偏光子が、前記瞳面における前記サンプルからの前記照明ビームの鏡面反射の位置に対応する前記瞳面の基準位置と一致するように、その頂点が前記瞳面において位置合わせされており、前記頂点に関して放射状に偏光されたラジアル偏光を除去し、前記頂点に関して接線方向に偏光された光を通過するように構成されるステップと、
前記瞳面に位置する位相マスクを通して前記サンプルからの光を伝搬するステップであって、前記位相マスクは、前記瞳面の集光範囲の2つ以上の領域において光に別々の位相シフトをもたらして、前記サンプル上の1つまたは複数の粒子から散乱された光の点拡がり関数を再形成するように構成され、前記集光範囲が、前記1つまたは複数の集光光学系の開口数に対応するステップと、
前記照明ビームに応答して、前記ラジアル偏光子および前記位相マスクを通って伝播する光に基づいて前記サンプルの暗視野画像を生成するステップであって、前記サンプルの前記暗視野画像が、前記サンプルの表面上の1つまたは複数の粒子によって散乱された光に基づくステップと
を含む方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、概して、粒子検査、より具体的には、暗視野粒子検査に関連する。
【背景技術】
【0002】
関連出願の相互参照
本出願は、米国特許法第119条(e)に基づいて、Jenn-Kuen Leong、Daniel Kavaldjiev、John Fielden、およびGuoheng Zhaoを発明者とする、2018年11月14日に出願された米国仮特許出願第62/767,246号、発明の名称「PARTICLE DETECTION WITH IMPROVED RESOLUTION ON WAFER INSPECTION SYSTEM」の優先権を主張するものであり、同仮出願の全文は参照することにより本明細書に組み込まれるものとする。
【0003】
粒子検出システムは、ウェハ(パターン化されていないウェハなどであるが、これに限定されない)上の欠陥または粒子を特定するために、半導体処理ラインで一般的に利用されている。半導体デバイスのサイズが縮小し続けるにつれて、粒子検出システムは、対応する感度および解像度の増加を必要とする。測定感度を制限する可能性のあるノイズの大きな原因は、ウェハ上の表面散乱であり、これは、光学研磨された表面にも存在する可能性がある。
【先行技術文献】
【特許文献】
【0004】
【文献】米国特許出願公開第2018/0188188号
【文献】米国特許出願公開第2017/0363547号
【文献】米国特許出願公開第2016/0301914号
【発明の概要】
【発明が解決しようとする課題】
【0005】
粒子からの散乱に対して表面散乱を抑制するために様々な方法が提案されてきたが、そのような方法は、所望の感度レベルを達成できないおそれがあり、かつ/または画質の低下を犠牲にして感度を達成するおそれがある。したがって、上記の欠陥を軽減するシステムおよび方法を開発する必要がある。
【課題を解決するための手段】
【0006】
システムは、本開示の1つまたは複数の例示的な実施形態に従って開示される。1つの例示的な実施形態では、本システムは、照明ビームを生成するための照明源を含む。別の例示的な実施形態では、本システムは、照明方向に沿って軸外角度で照明ビームをサンプルに向けるための1つまたは複数の照明光学系を含む。別の例示的な実施形態では、本システムは、検出器を含む。別の例示的な実施形態では、本システムは、照明ビームに応答してサンプルから集光された光に基づいて検出器上にサンプルの暗視野画像を生成するための1つまたは複数の集光光学系を含む。別の例示的な実施形態では、本システムは、1つまたは複数の集光光学系の瞳面に位置するラジアル偏光子であって、サンプルからの照明ビームの鏡面反射に対応する、瞳面における基準点に対するラジアル偏光を有する光を除去するように構成されるラジアル偏光子を含む。
【0007】
システムは、本開示の1つまたは複数の例示的な実施形態に従って開示される。1つの例示的な実施形態では、本システムは、照明ビームを生成するための照明源を含む。別の例示的な実施形態では、本システムは、照明方向に沿って軸外角度で照明ビームをサンプルに向けるための1つまたは複数の照明光学系を含む。別の例示的な実施形態では、本システムは、検出器を含む。別の例示的な実施形態では、本システムは、照明ビームに応答してサンプルから集光された光に基づいて検出器上にサンプルの暗視野画像を生成するための1つまたは複数の集光光学系を含む。別の例示的な実施形態では、本システムは、1つまたは複数の集光光学系の瞳面に位置する位相マスクであって、瞳面の集光範囲の2つ以上の領域において光に別々の位相シフトをもたらして、サンプル上の1つまたは複数の粒子から散乱された光の点拡がり関数を再形成するように構成される位相マスクを含み、集光範囲が、1つまたは複数の集光光学系の開口数に対応する。
【0008】
方法は、本開示の1つまたは複数の例示的な実施形態に従って開示される。1つの例示的実施形態では、本方法は、照明方向に沿って斜めの角度でp偏光照明ビームでサンプルを照明することを含む。別の例示的実施形態では、本方法は、照明ビームに応答して、1つまたは複数の集光光学系を用いて暗視野モードでサンプルから光を集光することを含む。別の例示的実施形態では、本方法は、1つまたは複数の集光光学系の瞳面に位置するラジアル偏光子を通してサンプルからの光を伝搬することを含み、ラジアル偏光子が、サンプルからの照明ビームの鏡面反射に対応する、瞳面における基準点に対するラジアル偏光を有する光を除去するように構成される。別の例示的実施形態では、本方法は、瞳面に位置する位相マスクを通してサンプルからの光を伝搬することを含み、位相マスクは、瞳面の集光範囲の2つ以上の領域において光に別々の位相シフトをもたらして、サンプル上の1つまたは複数の粒子から散乱された光の点拡がり関数を再形成するように構成され、集光範囲が、1つまたは複数の集光光学系の開口数に対応する。別の例示的実施形態では、本方法は、照明ビームに応答して、ラジアル偏光子および位相マスクを通って伝播する光に基づいてサンプルの暗視野画像を生成することを含み、サンプルの暗視野画像が、サンプルの表面上の1つまたは複数の粒子によって散乱された光に基づく。
【0009】
前述の概要および以下の詳細な説明の両方が、例示的かつ説明的なものにすぎず、特許請求される本発明を必ずしも限定するものではないことを理解されたい。本明細書に組み込まれ、その一部を構成する添付の図面は、本発明の実施形態を例示し、概要とともに本発明の原理を説明するのに役立つ。
【0010】
本開示の多くの利点は、以下の添付の図面を参照することにより、当業者によってよりよく理解され得る。
【図面の簡単な説明】
【0011】
図1】本開示の1つまたは複数の実施形態による、粒子検出システムの概念図である。
図2A】本開示の1つまたは複数の実施形態による、斜入射p偏光に応答した表面散乱の瞳面散乱マップである。
図2B】本開示の1つまたは複数の実施形態による、斜入射p偏光に応答した、小さい粒子によって散乱された光の瞳面散乱マップである。
図3A】本開示の1つまたは複数の実施形態による、連続したヘイズ除去偏光子の上面図である。
図3B】本開示の1つまたは複数の実施形態による、セグメント化されたヘイズ除去偏光子の上面図である。
図4A】本開示の1つまたは複数の実施形態による、図2Aの散乱マップ上にオーバーレイされたヘイズ除去偏光子の概念図である。
図4B】本開示の1つまたは複数の実施形態による、図2Bの散乱マップ上にオーバーレイされたヘイズ除去偏光子の概念図である。
図5】本開示の1つまたは複数の実施形態による、サブレゾリューション粒子によるp偏光の光の電界分布と、そのサブレゾリューション粒子の対応する画像とを含む図である。
図6A】本開示の1つまたは複数の実施形態による、位相マスクの概念上面図であって、瞳を4つの領域に分割する4つのセグメントと、サブレゾリューション粒子によって散乱されたp偏光の光に関連する電界分布と、位相マスクに基づく修正電界分布と、その粒子の対応する再形成画像とを含む図である。
図6B】本開示の1つまたは複数の実施形態による、瞳を2つのセグメントに分割するための2つのセグメントを含む位相マスクの概念上面図である。
図7A】本開示の1つまたは複数の実施形態による、位相マスクなしで撮影されたサブ40nmのシリカ粒子を有するシリコンウェハの画像と、それらの粒子のうちの1つの拡大画像を含む挿入図と、その拡大画像の断面を示すプロットとを含む図である。
図7B】本開示の1つまたは複数の実施形態による、位相マスクを用いて撮影された、図7Aに示されたサブ40nmのシリカ粒子を有するシリコンウェハの画像と、それらの粒子のうちの1つの拡大画像を含む挿入図と、その拡大画像の断面を示すプロットとを含む図である。
図8A】本開示の1つまたは複数の実施形態による、ヘイズ除去偏光子も位相マスクもなしで撮影されたサブ40nmのシリカ粒子を有するシリコンウェハの画像と、それらの粒子の断面を示すプロットとを含む図である。
図8B】本開示の1つまたは複数の実施形態による、ヘイズ除去偏光子および位相マスクの両方を用いて撮影された、図8Aに示されたサブ40nmのシリカ粒子を有するシリコンウェハの画像と、それらの粒子の断面を示すプロットとを含む図である。
図9】本開示の1つまたは複数の実施形態による、粒子検出のための方法において実行されるステップを示すフロー図である。
【発明を実施するための形態】
【0012】
添付の図面に示されている、開示の主題をここで詳細に参照する。本開示は、ある特定の実施形態およびその具体的特徴に関して特に図示され、説明される。本明細書に記載の実施形態は、限定的ではなく例示的であると解釈される。本明細書で用いられる場合、「左」、「右」、「上部」、「下部」、「上方」、「下に」、「上側」、「上向きに」、「下側」、および「下がって」などの方向の用語は、説明目的のための相対位置を提供することを目的としており、基準の絶対枠を定める意図はない。本開示の趣旨および範囲から逸脱することなく、形態および詳細の様々な変更および修正を行うことができることは、当業者には容易に明らかであるはずである。
【0013】
本開示の実施形態は、暗視野イメージングに基づく粒子検出のためのシステムおよび方法に関し、瞳面のヘイズ除去偏光子を利用して、表面散乱(例えば、表面ヘイズ)を選択的にフィルタリングして、表面上の粒子から散乱された光の検出を容易にする。具体的には、ヘイズ除去偏光子は、瞳面にわたって予想される表面ヘイズの偏光分布に対応した、空間的に変化する除去方向を有することができる。本開示の目的の場合、粒子としては、対象のサンプル上の任意の表面欠陥、例えば、これらに限定されないが、異物粒子、引かき傷、ピット、穴、隆起を挙げることができる。
【0014】
サンプルからの光の散乱角または放出角は、瞳面の空間位置にマッピングされる。したがって、瞳面に配置された偏光子は、散乱角および偏光に基づいて光を選択的にフィルタリングすることができる。本明細書では、粒子から散乱された光と表面から散乱された光とが、散乱角の関数として異なる電界分布(例えば、偏光および電界強度)を示し得ることが認識されている。さらに、電界分布(例えば、散乱マップ)の違いは、斜入射p偏光の場合、特に大きくなり得る。例えば、斜入射p偏光の光からの表面ヘイズは、鏡面反射の角度に対してほぼ放射状に偏光され得るが、粒子からの散乱は、面法線に対してほぼ放射状に偏光され得る。
【0015】
いくつかの実施形態では、暗視野粒子検出システムは、放射状ヘイズ除去偏光子を含み、この放射状ヘイズ除去偏光子は、放射状ヘイズ除去偏光子の頂角が斜入射p偏光の光の鏡面反射に関連する位置に配置され表面ヘイズを選択的に除去するように、瞳面において方向付けられている。
【0016】
本開示の追加の実施形態は、粒子によって散乱された光の点拡がり関数(PSF)を再形成することに関する。
【0017】
イメージング解像度(例えば、照明波長よりもはるかに小さい)よりも小さい物体(例えば、粒子)の画像は、一般に、イメージングシステムのPSFによって制限される。しかしながら、瞳面における特定の電界分布(例えば、集光された光の角度および偏光)は、そのような物体の画像を、より大きくし、かつ/またはシステムPSFとは異なる形状にすることがある。具体的には、斜めのp偏光の光で照射されたときのイメージング解像度よりも小さい粒子の暗視野画像(例えば、散乱光または回折光で形成された粒子の画像)は、システムPSFよりも広い範囲に広がる環であることがあり、これは粒子検出感度に悪影響を及ぼす。この環形状と、粒子のPSFまたは画像化されたスポットのサイズの増加とが、検出器上に画像化されたスポットの中心における集光された光の弱め合う干渉に関連することがある。
【0018】
いくつかの実施形態では、暗視野粒子検出システムは、粒子散乱と関連付けられた画像化されたスポットの中心における集光された光の強め合う干渉を容易にするために、瞳面に位相マスクを含む。これに関して、画像化された粒子のPSFは、狭めることができ、システムのPSFに近くすることができる。
【0019】
位相マスクは、画像化された粒子のPSFを再形成するのに適した様々な構成を有し得る。いくつかの実施形態では、位相マスクは、瞳面の相異なる領域で光に別々の位相シフトをもたらすための、セグメント化された光学系を含み、少なくとも1つのセグメントが、半波長板から形成される。
【0020】
本開示の追加の実施形態は、放射状ヘイズ除去偏光子と、画像化された粒子のPSFを再形成するための位相板との両方を瞳面に組み込んだ暗視野粒子検出システムに関する。ウェハ検査は、2018年1月1日に発行された米国特許第9,874,526号、2016年3月22日に発行された同第9,291,575号、2014年11月18日に発行された同第8,891,079号、および2018年2月13日に発行された同第9,891,177号に概説されており、これらの特許は全てその全文が本明細書に組み込まれるものとする。
【0021】
ここで、図1図9を参照して、高感度粒子検出のためのシステムおよび方法をより詳細に説明する。
【0022】
図1は、本開示の1つまたは複数の実施形態による、粒子検出システム100の概念図である。一実施形態では、粒子検出システム100は、照明ビーム104を生成するための照明源102と、照明ビーム104をサンプル108に向けるための1つまたは複数の照明光学系を含む照明経路106と、サンプル108から放出される光(例えば、サンプル光112)を集光するための1つまたは複数の集光光学系を含む集光経路110と、を含む。例えば、集光経路110は、サンプル光112の少なくとも一部を集光するための対物レンズ114を含み得る。サンプル光112としては、照明ビーム104に応答してサンプル108から放出される任意のタイプの光を含むことができ、散乱光、反射光、回折光、または発光が挙げられるが、これらに限定されない。
【0023】
照明ビーム104としては、1つまたは複数の選択された波長の光を含むことができ、紫外線(UV)放射、可視放射、または赤外線(IR)放射が挙げられるが、これらに限定されない。例えば、照明源102は、約350nmよりも短い波長を有する照明ビーム104を提供することもできるが、提供しなくてもよい。別の例として、照明ビーム104は、約266nmの波長を提供してもよい。別の例として、照明ビーム104は、約213nmの波長を提供してもよい。本明細書では、照明ビーム104の波長を低減すると、イメージング解像度および小さな粒子からの散乱信号が概して増加し得るように、イメージング解像度および小さな粒子による光散乱(例えば、照明ビーム104の波長に対する)の両方が、波長に概して比例していることが認識されている。したがって、照明ビーム104としては、短波長光を含むことができ、極紫外(EUV)光、深紫外(DUV)光、または真空紫外(VUV)光が挙げられるが、これらに限定されない。
【0024】
照明源102としては、当技術分野で既知の任意のタイプの光源を含むことができる。さらに、照明源102は、任意の選択された空間的または時間的コヒーレンス特性を有する照明ビーム104を提供することができる。一実施形態では、照明源102としては、1つ以上のレーザー源を含み、例えば、1つまたは複数の狭帯域レーザー源、1つまたは複数の広帯域レーザー源、1つまたは複数のスーパーコンティニュームレーザー源、または1つまたは複数の白色光レーザー源が挙げられるが、これらに限定されない。別の実施形態では、照明源102としては、レーザー駆動光源(LDLS)を含み、例えば、レーザー持続プラズマ(LSP)源が挙げられるが、これに限定されない。例えば、照明源102としては、これらに限定されないが、LSPランプ、LSP電球、またはレーザー源によって励起されプラズマ状態になると広帯域照明を発することができる1つまたは複数の要素を収容するのに適したLSPチャンバを挙げることができる。別の実施形態では、照明源102としては、ランプ源を含み、例えば、アークランプ、放電ランプ、または無電極ランプが挙げられるが、これらに限定されない。
【0025】
別の実施形態では、照明源102は、整調可能な照明ビーム104を提供する。例えば、照明源102としては、整調可能な照明源(例えば、1つまたは複数の整調可能なレーザーなど)を含むことができる。別の例として、照明源102としては、任意の組み合わせの固定または整調可能なフィルタに結合された広帯域照明源を含むことができる。
【0026】
照明源102は、さらに、任意の時間プロファイルを有する照明ビーム104を提供することができる。例えば、照明ビーム104は、連続的な時間プロファイル、変調された時間プロファイル、パルス化された時間プロファイルなどを有することができる。
【0027】
本明細書では、表面ヘイズの強度は、複数の要因に依存し得ることが認識されており、複数の要因には、照明ビーム104の入射角または偏光が含まれるが、これらに限定されない。例えば、表面ヘイズの強度は、近垂直入射角では比較的高く、より大きい入射角では低下し得る。一実施形態では、照明経路106は、照明ビーム104を斜入射角でサンプル108に向けて表面ヘイズの発生を低下させるために、1つまたは複数の照明光学系を含み得、例えば、レンズ116、ミラーを含み得るが、これらに限定されない。斜入射角としては、一般に、任意の選択された入射角を含むことができる。例えば、入射角は、面法線に対して60度を超えてもよいが、超えていなくてもよい。
【0028】
別の実施形態では、照明経路106は、照明ビーム104を修正および/または調整するのに適した1つまたは複数の照明ビーム調整構成要素118を含む。例えば、1つまたは複数の照明ビーム調整構成要素118としては、1つまたは複数の偏光子、1つまたは複数の波長板、1つまたは複数のフィルタ、1つまたは複数のビームスプリッタ、1つまたは複数の拡散器、1つまたは複数のホモジナイザ、1つまたは複数のアポダイザ、または1つまたは複数のビーム整形器を挙げることができるが、これらに限定されない。一実施形態では、1つまたは複数の照明ビーム調整構成要素118としては、サンプル108上にp偏光照明ビーム104を提供するように方向付けられた偏光子または波長板を含む。
【0029】
別の実施形態では、粒子検出システム100は、集光経路110によって集光されたサンプル光112の少なくとも一部をキャプチャするように構成された検出器120を含む。検出器120としては、サンプル108から受光した照明を測定するのに適した当技術分野で既知の任意のタイプの光学検出器を含むことができる。例えば、検出器120としては、サンプル108の画像をキャプチャするのに適したマルチピクセル検出器を含むことができ、例えば、電荷結合素子(CDD)検出器、相補型金属酸化膜半導体(CMOS)検出器、時間遅延積分(TDI)検出器、光電子増倍管(PMT)アレイ、アバランシェフォトダイオード(APD)アレイなどが挙げられるが、これらに限定されない。別の実施形態では、検出器120としては、サンプル光112の波長を特定するのに適した分光検出器を含む。
【0030】
集光経路110は、サンプル光112を方向付けるおよび/または修正するための任意の数のビーム調整要素122を含むことができ、ビーム調整要素122としては、1つまたは複数のレンズ、1つまたは複数のフィルタ、1つまたは複数の開口、1つまたは複数の偏光子、または1つまたは複数の位相板が挙げられるが、これらに限定されない。
【0031】
一実施形態では、図1に示されるように、集光経路110は、瞳面124にまたはその近くに配置された1つまたは複数のビーム調整要素122を含む。例えば、以下でより詳細に説明されるように、集光経路110は、例えば、瞳面124におけるまたはその近くにおけるヘイズ除去偏光子(例えば、ラジアル偏光子など)または位相マスクなどであるが、これらに限定されない、ビーム調整要素122を含むことができる。これに関して、粒子検出システム100は、検出器120上に画像を生成するために使用されるサンプル光112の選択された態様を制御および調節することができ、これらの態様には、散乱角および/またはサンプル上の位置の関数としてのサンプル光112の強度、位相、および偏光が含まれるが、これらに限定されない。
【0032】
さらに、集光経路110は、任意の数の瞳面124を有することができる。例えば、図1に示されるように、集光経路110は、瞳面124の画像を生成するための1つまたは複数のレンズ126と、検出器120上にサンプル108の表面の画像を生成するための1つまたは複数のレンズ128とを含むことができる。しかしながら、本明細書では、限られた数のビーム調整要素122を、特定の瞳面124にまたは特定の瞳面124の十分近くに配置して、所望の効果をもたらすことができることが認識されている。したがって、本開示の目的の場合、瞳面124における1つまたは複数の要素への言及は、通常、瞳面124にあるまたは瞳面124に十分に近い、所望の効果を生み出す1つまたは複数の要素を説明したものであり得る。いくつかの実施形態では、図示しないが、集光経路110は、任意の数のビーム調整要素122を瞳面124にまたはその近くに配置することができるように、1つまたは複数の追加の瞳面124を生成するための追加のレンズを含むことができる。
【0033】
別の実施形態では、粒子検出システム100は、メモリ媒体134(例えば、メモリ)上に維持されたプログラム命令を実行するように構成された1つまたは複数のプロセッサ132を含むコントローラ130を含む。さらに、コントローラ130は、粒子検出システム100の任意の構成要素に通信可能に結合することができる。これに関して、コントローラ130の1つまたは複数のプロセッサ132は、本開示全体を通して説明される様々なプロセスステップのいずれも実行することができる。例えば、コントローラ130は、検出器120からの(例えば、サンプル108の画像と関連付けられた)データを受信、分析、および/または処理することができる。別の例として、コントローラ130は、制御信号を使用して、粒子検出システム100の任意の構成要素に対して制御するか、そうでなければ命令することができる。
【0034】
コントローラ130の1つまたは複数のプロセッサ132としては、当技術分野で既知の任意の処理要素を含むことができる。この意味において、1つまたは複数のプロセッサ132としては、アルゴリズムおよび/または命令を実行するように構成された任意のマイクロプロセッサタイプのデバイスを含むことができる。一実施形態では、1つまたは複数のプロセッサ132は、デスクトップコンピュータ、メインフレームコンピュータシステム、ワークステーション、イメージコンピュータ、並列プロセッサ、または本開示全体を通して説明されるように、粒子検出システム100を動作させるように構成されたプログラムを実行するように構成された他の任意のコンピュータシステム(例えば、ネットワークコンピュータ)からなり得る。さらに、「プロセッサ」という用語は、非一時的なメモリ媒体134からのプログラム命令を実行する、1つまたは複数の処理要素を有する任意のデバイスを包含するように広く定義され得ることが認識されている。さらに、本開示全体を通して説明されるステップは、1つのコントローラ130、または、代替的に、複数のコントローラによって実行されることができる。さらに、コントローラ130としては、共有のハウジング内または複数のハウジング内に収容された1つまたは複数のコントローラを含むことができる。このようにして、任意のコントローラまたはコントローラの組み合わせを、粒子検出システム100への統合に適したモジュールとして別個にパッケージ化することができる。
【0035】
メモリ媒体134としては、関連付けられた1つまたは複数のプロセッサ132によって実行可能なプログラム命令を格納するのに適した当技術分野で既知の任意の記憶媒体を含むことができる。例えば、メモリ媒体134としては、非一時的なメモリ媒体を含むことができる。別の例として、メモリ媒体134としては、読み取り専用メモリ(ROM)、ランダムアクセスメモリ(RAM)、磁気または光メモリデバイス(例えば、ディスク)、磁気テープ、ソリッドステートドライブなどを挙げることができる。さらに、メモリ媒体134は、1つまたは複数のプロセッサ132を備えた共有のコントローラハウジングに収容することができることに留意されたい。一実施形態では、メモリ媒体134は、1つまたは複数のプロセッサ132およびコントローラ130の物理的位置に対して遠隔に位置してもよい。例えば、コントローラ130の1つまたは複数のプロセッサ132は、ネットワーク(例えば、インターネット、イントラネットなど)を介してアクセス可能なリモートメモリ(例えば、サーバ)にアクセスすることができる。したがって、上記の説明は、本発明に対する限定として解釈されるべきではなく、単なる例示として解釈されるべきである。
【0036】
本明細書では、粒子検出システム100は、当技術分野で既知の任意のタイプの画像ベースの粒子検出システムとして構成することができることが考えられる。一実施形態では、図1に示されるように、粒子検出システム100は、鏡面反射光を排除するための暗視野イメージングシステムである。これに関して、粒子検出システム100は、サンプル108を、主に散乱光に基づいて画像化することができる。暗視野イメージングは、当技術分野で既知の任意の技術を使用してさらに実施することができる。一実施形態では、対物レンズ114の向きおよび/または開口数(NA)は、対物レンズ114が鏡面反射光を集光しないように選択することができる。例えば、図1に示されるように、対物レンズ114は、サンプル108に対してほぼ垂直に方向付けられており、そのNAは、照明ビーム104の鏡面反射部分を含まない。さらに、対物レンズ114は、約0.9以上のNAを有することができるが、有していなくてもよい。別の実施形態では、粒子検出システム100は、鏡面反射が検出器120に到達するのを阻止するための1つまたは複数の構成要素を含んでもよい。
【0037】
ここで、図2A図4Bを参照すると、瞳面偏光フィルタリングがより詳細に説明されている。
【0038】
一実施形態では、粒子検出システム100は、集光経路110(例えば、集光光学系)の瞳面にヘイズ除去偏光子を含み、サンプル108の表面から散乱された光(例えば、表面ヘイズ)を優先的に除去するが、この光は、粒子検出用途においてノイズと見なされ得るものである。これに関して、サンプル108の画像は、主に、1つまたは複数の粒子(または表面における他の欠陥)によって散乱された光から形成されることができる。
【0039】
図2Aは、本開示の1つまたは複数の実施形態による、斜入射p偏光に応答した表面散乱(例えば、表面ヘイズ)の瞳面散乱マップ202である。図2Bは、本開示の1つまたは複数の実施形態による、斜入射p偏光に応答した、小さな粒子(例えば、粒子検出システム100のイメージング解像度または照明ビーム104の波長に対して小さい)によって散乱された光の瞳面散乱マップ204である。
【0040】
具体的には、散乱マップ202、204は、白が最高強度であり黒が最低強度である陰影によって示された電界強度を含む。さらに、散乱マップ202、204は、オーバーレイされた楕円によって示された、瞳面124における集光角度(例えば、散乱角)の関数としての光の偏光配向を含む。散乱マップ202、204は、瞳面124の集光範囲206によって境界が定められており、この集光範囲は、サンプル光112が粒子検出システム100によって集光される角度範囲と関連付けられている。例えば、集光範囲206は、対物レンズ114の開口数(NA)に対応し得る。
【0041】
散乱マップ202、204は、図1に示される粒子検出システム100の構成に基づいている。したがって、鏡面反射角208は、照明方向210に沿って集光範囲206の外側(例えば、図2Aの円形集光範囲206の右側で集光範囲206の外側)に位置する。
【0042】
加えて、散乱マップ202、204は、多種多様な材料からの散乱を表すことができ、これらの材料としては、シリコン、エピタキシャル、およびポリシリコンウェハが挙げられるが、これらに限定されない。ただし、この散乱マップ202、204は、例示の目的のためだけに提供されたものであり、本開示を限定するものとして解釈されるべきではないことを理解されたい。
【0043】
図2Aおよび図2Bに示されるように、粒子によって散乱された光の電界分布(例えば、電界強度および偏光配向)は、特に照明ビーム104がp偏光されている場合、表面によって散乱された光の電界分布と実質的に異なることがある。例えば、表面ヘイズに関連するサンプル光112は、一般に、図2Aに示されるように、集光範囲206の鏡面反射角208に対して略半径方向の偏光分布を示す。対照的に、粒子散乱に関連するサンプル光112は、一般に、図2Bに示されるように、面法線に対して略半径方向の偏光分布を示す。さらに、散乱されたサンプル光112の偏光は、一般に、楕円形である。図2Aおよび図2Bから分かるように、瞳面124におけるほとんどの位置で、楕円は非常に細長く、これは、一方の直線偏光成分が他方の直線偏光成分よりもはるかに強いことを意味する。小さな粒子から散乱されたサンプル光112(例えば、図2B)の場合、偏光は、瞳の中心近くでより楕円形となることがあり、これは、2つの直線偏光成分が、おおよそ同等の大きさであり得ることを意味する。ただし、瞳のこの領域における光の強度は、比較的低く、小さな粒子からの合計の散乱信号にはほとんど寄与しない。
【0044】
一実施形態では、粒子検出システム100は、表面ヘイズを優先的に除去するために、瞳面124にまたはその近くに位置する偏光子を含む。一般的な意味で、瞳面124にまたはその近くに配置された偏光子は、任意の既知の、測定された、シミュレートされた、またはそうでなければ予想された光の偏光に対応した空間的に変化する偏光フィルタリングをもたらすように設計することができる。本開示の文脈において、瞳面124にまたはその近くに配置された偏光子は、瞳面124における既知の電界分布に基づいて、表面ヘイズを優先的にフィルタリングすることができる。したがって、いくつかの実施形態では、粒子検出システム100は、瞳面124にまたはその近くに位置する放射状ヘイズ除去偏光子を含み、図2Aに示されるほぼ放射状に偏光された表面ヘイズを優先的に除去する。
【0045】
ここで、図3Aおよび図3Bを参照すると、放射状ヘイズ除去偏光子302の様々な実施形態がより詳細に説明されている。図3Aは、本開示の1つまたは複数の実施形態による、連続したヘイズ除去偏光子302の上面図である。図3Bは、本開示の1つまたは複数の実施形態による、セグメント化されたヘイズ除去偏光子302の上面図である。
【0046】
一実施形態では、放射状ヘイズ除去偏光子302は、頂点306に関して半径方向に方向付けられた空間的に変化する除去方向304と、頂点306に対して接線方向に方向付けられた、対応する空間的に変化する通過方向308とを有する。したがって、瞳面124における任意の特定の点について、放射状ヘイズ除去偏光子302は、頂点306に関して放射状に偏光されたサンプル光112を除去(例えば、吸収または反射)し、頂点306に対して接線方向に偏光された(例えば、放射状の除去方向304に直交する)サンプル光112を通過させることができる。
【0047】
頂点306は、ヘイズ除去偏光子302の平面内の任意の点に対応することができる。例えば、頂点306は、図3Aおよび図3Bに示されるように、ヘイズ除去偏光子302上に位置することができる。別の例として、図示しないが、頂点306は、ヘイズ除去偏光子302の境界310の外側にある点に対応してもよい。
【0048】
別の実施形態では、ヘイズ除去偏光子302は、頂点306が鏡面反射角208(例えば、サンプル108からの鏡面反射の角度に対応する、瞳面124における基準位置)と一致するように瞳面124において位置合わせされる。
【0049】
放射状ヘイズ除去偏光子302は、当技術分野で既知の任意の技術を使用して製造され、放射状偏光の除去を達成することができる。例えば、図3Aに示されるように、ヘイズ除去偏光子302は、連続的に変化する偏光除去角度を有するように形成することができる。これに関して、図3Aに示されるヘイズ除去偏光子302は、連続したヘイズ除去偏光子302として作用することができる。
【0050】
別の例として、図3Bに示されるように、ヘイズ除去偏光子302は、瞳面124にわたって配置された任意の数のくさび形セグメント312から形成されてもよく、ここで、各セグメント312は直線偏光子である。例えば、各セグメント312の除去方向304は、図3Aの連続放射状ヘイズ除去偏光子302に近似するように方向付けられることができる。セグメント化されたヘイズ除去偏光子302は、選択された角度範囲をカバーするように配置された任意の数の直線偏光子を有することができ、選択された角度範囲は、例えば、5°ごと、10°ごと、または15°ごとであるが、これらに限定されない。
【0051】
ヘイズ除去偏光子302は、照明ビーム104をフィルタリングするのに適した当技術分野で既知の任意の材料から形成することができる。例えば、小さな粒子による短い波長では比較的強い散乱となるため、小さな粒子を検出するためにはUV波長が特に有用であり得る。したがって、ヘイズ除去偏光子302は、短い波長で高い透過率を有する材料から製造することができ、それらの材料は、例えば、アルミナ、石英、溶融シリカ、フッ化カルシウム、またはフッ化マグネシウムであるが、これらに限定されない。
【0052】
図4Aおよび図4Bは、本開示の1つまたは複数の実施形態による、図2Aおよび図2Bの散乱マップ上にオーバーレイされたヘイズ除去偏光子302の概念図である。図4Aに示されるように、瞳面124における表面ヘイズの偏光は、瞳面124にわたってヘイズ除去偏光子302の頂点306に対して概して放射状であり、そのためヘイズ除去偏光子302が、その表面ヘイズを実質的に除去する。対照的に、図4Bは、粒子散乱の偏光が、瞳面124にわたって多くの位置で頂点306に対して少なくとも部分的に接線方向であり、そのため、ヘイズ除去偏光子302が、粒子散乱のかなりの部分を通過させることを示している。
【0053】
本明細書では、さらに、ヘイズ除去偏光子302は、小さな粒子によって散乱された光の全てを通過させなくてもよいが、ヘイズ除去偏光子302は、不要な表面ヘイズを除去することと所望の粒子散乱を通過させることとの間の良好なバランスをもたらして、高信号対ノイズ比をもたらすことができ、これにより、高感度の粒子検出が容易になり得ることが認識されている。さらに、広範囲の散乱角について少なくともいくらかの光を通過させることにより、本明細書に記載のヘイズ除去偏光子302を用いた偏光ベースの瞳面フィルタリングは、開口ベースのフィルタリング技術とは対照的に、システムPSFに与える影響が限定的であり得る。具体的には、システムPSFは、通常、瞳面のかなりの部分を(例えば、開口を用いて)遮断してしまうとシステムのPSFが広がって全体的なパフォーマンスが低下することがあるように、フーリエ変換演算による瞳面124における光の電界分布に関係している。
【0054】
ここで、図5図8Bを参照すると、サブレゾリューション粒子によるp偏光の光の散乱と関連付けられたPSFを成形または狭めるための位相マスクが、本明細書でより詳細に説明されている。
【0055】
図5は、本開示の1つまたは複数の実施形態による、サブリゾリューション粒子によるp偏光の光の電界分布502と、そのサブリゾリューション粒子の対応する画像504とを含む。本明細書で前述したように、システムのイメージング解像度よりも小さい粒子の画像は、一般に、システムPSFによって制限され、このシステムPSFは、画像が鏡面反射光から形成されている場合、典型的にはエアリー関数である。しかしながら、粒子と関連付けられた実際のPSF(例えば、粒子PSF)、ひいてはその粒子の実際の画像は、瞳面124の粒子からの光の特定の電界分布に関係しており、特に画像が散乱光から形成される場合には、システムPSFとは異なるサイズまたは形状を有し得る。
【0056】
図5に示されるように、p偏光された散乱光に基づく粒子の画像504は、エアリー関数ではなく環状であり、これは、少なくとも部分的には、瞳面124における光の特定の偏光分布と関連した干渉パターンによるものである。具体的には、図5の電界分布502に関連する画像504の中心点506での弱め合う干渉により、結果的に、中心点506で強度が減少し、強度が半径方向に外側にシフトする。その結果、粒子の画像に関連する信号強度、ひいては信号対雑音比が悪影響を受ける。
【0057】
いくつかの実施形態では、粒子検出システム100は、瞳面124にまたはその近くに配置された位相マスクを含み、サブレゾリューション粒子によって散乱されたp偏光の光のPSFを再形成する。位相マスクは、瞳面124における位置に基づいて光の位相を変更するための任意の数の構成要素を含み得る。
【0058】
例えば、位相マスクは、瞳面124にわたって配置された2つ以上のセグメントを含むことができるか、またはそのようなセグメントを有するとして特徴付けられることができ、各セグメントは、瞳面124の相異なる領域における光の位相を調節する。各セグメントとしては、当技術分野で既知の任意のタイプの光学部品を含むことができ、これらの光学部品としては、位相板(例えば、複屈折板など)、補償板(例えば、光学的に均質な板)、または開口が挙げられるが、これらに限定されない。例えば、位相板としては、結晶を通る伝搬方向に対して垂直に方向付けられた光軸と、任意の選択された厚さと、を有してカットされた、一軸結晶から形成された波長板であって、直交偏光成分間の任意の選択された位相遅延(例えば、半波長板の場合はπ位相シフト、四分の一波長板の場合はπ/2位相シフトなど)をもたらす波長板を挙げることができる。
【0059】
図6Aは、本開示の1つまたは複数の実施形態による、位相マスク602の概念上面図であって、瞳を4つの領域(象限)に分割する4つのセグメントと、サブレゾリューション粒子によって散乱されたp偏光の光に関連する電界分布502と、位相マスク602に基づく修正電界分布604と、その粒子の対応する再形成された画像606とを含む図である。具体的には、粒子の再形成された画像606は、位相マスク602なしで生成された図5の画像504の中心点506における弱い信号とは対照的に、強い中央ローブ608を含む。
【0060】
一実施形態では、位相マスク602は、垂直方向にそれぞれの光軸を有するように成形および配置された2つの重なり合う半波長板を含む。これに関して、各半波長板は、光軸の配向に基づいて、瞳面124の当該領域内の光の偏光を回転させることができる。例えば、図6Aに示されるように、位相マスク602は、Y方向(例えば、照明ビーム104の入射面に垂直)に沿った光軸を有する半波長板から形成され、直交偏光に関してX方向に沿って偏光された光にπの位相シフト(eExとして表される)を導入するセグメント610と、X方向(例えば、照明ビーム104の入射面に平行)に沿った光軸を有する半波長板から形成され、直交偏光に関してY方向に沿って偏光された光にπの位相シフト(eEyとして表される)を導入するセグメント612と、を含むことができる。さらに、位相マスク602は、2つの重なり合う波長板から形成セグメント614を含むことができ、これらの2つの重なり合う波長板について、一方の波長板は、X方向に沿って偏光された光にπの位相シフトを導入するように方向付けされており、一方の波長板は、Y方向に沿って偏光された光にπの位相シフトを導入するように方向付けされており、その組み合わせ効果は、eEx,yとして表される。
【0061】
位相マスク602は、光の偏光を回転させないセグメント616もまた含むことができる。例えば、セグメント616としては、セグメント616を通る光が、瞳面124の他の象限内の光と同じ(または実質的に同じ)光路長に沿って伝播するように、伝搬方向に沿って光学的に均質な材料から形成された補償板を含むことができる。一実施形態では、補償板は、瞳面124の他の象限のどの半波長板ともほぼ同じ厚さおよび屈折率を有するが、伝搬方向に沿って複屈折しない材料から形成される。別の実施形態では、補償板は、半波長板と同じ材料から形成されるが、補償板を通って伝搬する光が複屈折を経ないように、別の軸に沿ってカットされている。例えば、結晶が、光軸に沿って伝搬する光について光学的に均質となり得るように、一軸結晶の光軸に沿って伝搬する光は、複屈折を経ないでよい。別の例として、セグメント616は、開口であってもよい。
【0062】
さらに、いくつかの実施形態では、位相マスク602は、瞳面124から傾いており、セグメント616と他のセグメント(例えば、セグメント602~606)との間の光路長の差を少なくとも部分的に補償することができる。
【0063】
セグメント化された位相マスク602は、当技術分野で既知の任意の技術を使用して形成することができる。一実施形態では、様々なセグメント(例えば、図6Aのセグメント602~608)は、それらの様々なセグメントが1つの平面に配置される単一の構成要素として形成される。
【0064】
別の実施形態では、様々なセグメントは、複数の積み重ねられた構成要素から形成され、積み重ねられた構成要素を通る組み合わされた経路が、所望のPSF再形成をもたらすようになっている。さらに、積み重ねられた構成要素は、同じまたは別々の瞳面124に配置されることができる。例えば、粒子検出システム100は、複数の共役瞳面を提供するための1つまたは複数のリレー光学系を含むことができる。これに関して、位相マスク602に関連する様々な構成要素を、複数の共役瞳面の間に分配することができる。別の例として、位相マスク602の構成要素を、数ミリメートル以下の厚さで製造できる場合がある。したがって、1つの瞳面124の近くに複数の構成要素を互いに近接して配置することが可能であり得る。1つまたは複数の構成要素が瞳面124からわずかに(例えば、数mmだけ)変位し得る場合でも、それらの構成要素は、それでもなお再形成された画像606内に強い中央ローブ608を作成するように作用することができる。
【0065】
一実施形態では、図6Aに示される位相マスク602は、互いに対して回転した2つの部分(例えば、2つの半波長板)にカットされた1つの半波長板から形成されている。例えば、1つの半波長板は、光軸に沿ってカットすることができ、第1の部分は、光軸がY方向に沿った状態で方向付けられ(例えば、図6Aの集光範囲206の左半分をカバーする)、第2の部分は、光軸がX方向に沿った状態で方向付けられる(例えば、図6Aの集光範囲206の上半分をカバーする)。したがって、セグメント614は、交差した光軸を有する、半波長板の2つの重なり合う部分から形成され得る。
【0066】
さらに、小さい粒子から散乱されたサンプル光112の偏光の配向は、(例えば、図2Bに示されるように)瞳の中心に関して実質的に対称に方向付けられているので、位相マスク602は、波長板の様々に異なる配置で様々に構成され、強力な中央ローブ608を含む、粒子の再形成された画像606を達成することができる。例えば、図6Aの集光範囲206の上部に示されている半波長板を、代わりに、集光範囲206の下部に配置してもよい。同様に、図6Aの集光範囲206の左側に示されている半波長板を、代わりに、集光範囲206の右側に配置してもよい。
【0067】
しかしながら、図6Aおよび関連する説明は、例示の目的のためだけに提供されたものであり、本開示を限定するものとして解釈されるべきではないことを理解されたい。むしろ、位相マスク602は任意の数の配置されたセグメントを含んでよく、これらのセグメントは、粒子から散乱された光のPSFを再形成するように、瞳面124にわたって任意のパターンになる任意の材料の組み合わせから形成される。例えば、ある対象物に関連する、瞳面124における光の既知の電界分布が与えられた(例えば、測定された、シミュレートされたなど)とすると、本明細書に記載のセグメント化された位相マスク602は、瞳面124内の光の様々な領域の位相を選択的に調節して、その対象物の画像のPSFを再形成するように形成されることができる。具体的には、位相マスク602の様々なセグメントは、検出器120での強め合う干渉を容易にするように選択され、(例えば、選択された許容範囲内で)システムPSFに近づく、狭いPSFをもたらすことができる。
【0068】
図6Bは、本開示の1つまたは複数の実施形態による、瞳を2つのセグメント(例えば、半体)に分割するための2つのセグメントを含む位相マスク602の概念上面図である。例えば、図6Bに示されるように、位相マスク602は、X方向に沿った光軸を有する半波長板から形成された、直交偏光に関してY方向に沿って偏光された光にπの位相シフト(eEとして表される)を導入するセグメント618を含むことができる。さらに、位相マスク602は、光の偏光を回転させないセグメント620もまた含むことができる。例えば、セグメント620としては、図6Aに関して上記したような補償板を含むことができる。別の例として、セグメント620は、開口であってもよい。さらに、本明細書で前述したように、位相マスク602は、瞳面124から傾いて、セグメント618とセグメント620との間の光路長の差を少なくとも部分的に補償してもよい。
【0069】
しかしながら、図6Bおよび関連する説明は、例示の目的のためだけに提供されたものであり、本開示を限定するものとして解釈されるべきではないことを理解されたい。例えば、2つのセグメントを有する位相マスク602は、図6Aに示されるように集光範囲206の上部ではなく、下部に配置された半波長板を含んでもよい。
【0070】
本明細書では、位相マスク602の設計が、(例えば、図2Aなどに示されるように)対象の粒子に関連する既知の電界分布に基づく「理想的な」位相マスクと、実際的な設計および/または製造上の考慮事項との間のトレードオフを示す場合があることがさらに認識されている。例えば、理想的またはそうでなければ所望の位相マスク602が、不当に高価であるか、または製造するのに難しい場合がある。ただし、位相マスク602の特定の設計が、製造仕様および性能仕様の両方を満たすことができる場合(例えば、選択された形状を有する粒子PSFなど)もある。したがって、図6Aおよび図6Bに示される位相マスク602の設計は、性能と製造可能性との間での異なるトレードオフをもたらす2つの非限定的な例を示し得る。
【0071】
例えば、図6Bに示される位相マスク602の設計は、図3に示されるようなヘイズ除去偏光子302と組み合わせると有用であり得る。図4Aおよび図4Bから理解できるように、表面(例えば、表面ヘイズ)および粒子から散乱されたサンプル光112の偏光方向は、瞳の左側ではほぼ平行である。したがって、ヘイズを実質的に遮断するように構成されたヘイズ除去偏光子302は、小さな粒子によって瞳の左側に散乱される光のかなりの部分も遮断することができる。瞳の左側のサンプル光112のこの比較的低い強度により、図6Aに示される位相マスク602の比較的複雑な設計によってもたらされる瞳の左側の位相補正が小さな粒子によって散乱されたサンプル光112のPSFに与える影響が、比較的小さくなることがある。したがって、いくつかの用途では、図6Bに示される位相マスク602は、性能と、製造可能性および/またはコストの考慮との間の適切なバランスをもたらし得る。
【0072】
ここで、図7Aおよび図7Bを参照すると、位相マスク602を用いたPSF再形成を示す実験的測定値が説明されている。図7Aは、本開示の1つまたは複数の実施形態による、位相マスク602なしで撮影されたサブ40nmのシリカ粒子を有するシリコンウェハの画像702と、それらの粒子うちの1つの拡大画像704を含む挿入図と、拡大画像704の断面を示すプロット706とを含む。図7Bは、本開示の1つまたは複数の実施形態による、位相マスク602を用いて撮影された、図7Aに示されたサブ40nmのシリカ粒子を有するシリコンウェハの画像708と、それらの粒子うちの1つの拡大画像710を含む挿入図と、拡大画像710の断面を示すプロット712とを含む。具体的には、位相マスク602は、実質的に図6Aに示される構成に従って配置された2つの半波長板を含んでいた。
【0073】
図7Aおよび図7Bに示されるように、本明細書に記載されるような位相マスク602なしで生成された粒子の画像は、中心に強度ディップを有する環状形状を有する。しかしながら、本明細書に記載されるように位相マスク602を組み込むことで、粒子の画像が中心ピークを有し、中心ピークの周りにより狭い強度分布を有するように、PSFが狭められる。
【0074】
いくつかの実施形態では、ヘイズ除去偏光子302および位相マスク602を組み合わせて、粒子検出感度を高めることができる。したがって、粒子検出システム100は、1つまたは複数の共役瞳面に配置されたヘイズ除去偏光子302および位相マスク602の両方を含み得る。
【0075】
図8Aは、本開示の1つまたは複数の実施形態による、ヘイズ除去偏光子302も位相マスク602もなしで撮影されたサブ40nmのシリカ粒子を有するシリコンウェハの画像802と、それらの粒子の断面を示すプロット804とを含む。図8Bは、本開示の1つまたは複数の実施形態による、ヘイズ除去偏光子302および位相マスク602の両方を用いて撮影された、図8Aに示されたサブ40nmのシリカ粒子を有するシリコンウェハの画像806と、それらの粒子の断面を示すプロット808とを含む。具体的には、図806を生成するために利用される位相マスク602は、実質的に図6Bに示される構成に従って配置される。
【0076】
図8Aおよび図8Bに示されるように、表面ヘイズを選択的に除去するためのヘイズ除去偏光子302と、粒子によって散乱された光のPSFを再形成するための位相マスク602との組み合わせは、粒子に関連する画像における鋭いピークと、表面に対する粒子の高い信号対雑音比とをもたらす。
【0077】
図9は、本開示の1つまたは複数の実施形態による、粒子検出のための方法900において実行されるステップを示すフロー図である。出願人は、本明細書で前述した粒子検出システム100の文脈における実施形態および実現技術は、方法900に拡張するように解釈される必要があることを注記する。ただし、方法900は、粒子検出システム100のアーキテクチャに限定されないことにさらに留意されたい。
【0078】
一実施形態では、方法900は、照明方向に沿って斜めの角度でp偏光照明ビームでサンプルを照明するステップ902を含む。別の実施形態では、方法900は、照明ビームに応答して、1つまたは複数の集光光学系を用いて暗視野モードでサンプルから光を集光するステップ904を含む。別の実施形態では、方法900は、1つまたは複数の集光光学系の瞳面に位置する連続偏光子を通してサンプルからの光を(例えば、集光光学系を介して)伝搬するステップ906であって、連続偏光子が、サンプルからの照明ビームの鏡面反射に対応する、瞳面における基準点(例えば、鏡面反射角)に対するラジアル偏光を有する光を除去するように構成される、ステップ906を含む。別の実施形態では、方法900は、瞳面に位置する位相マスクを通してサンプルからの光を伝搬するステップ908であって、位相マスクは、瞳面の集光範囲の2つ以上の領域において光に別々の位相シフトをもたらして、サンプル上の1つまたは複数の粒子から散乱された光の点拡がり関数を再形成するように構成され、集光範囲が、1つまたは複数の集光光学系の開口数に対応する、ステップ908を含む。別の実施形態では、方法900は、照明に応答して連続偏光子および位相マスクを通って伝搬する光に基づいてサンプルの暗視野画像を生成するステップ910を含む。
【0079】
本明細書に記載された主題は、他の構成要素内に収容された、または他の構成要素に接続された別の構成要素を示すことがある。このような描写されたアーキテクチャは単に例示的なものであり、実際には、同一の機能性を達成する他の多くのアーキテクチャが実装され得ることを理解されたい。概念的な意味で、同一の機能性を達成する構成要素の任意の配設は、所望の機能性が達成されるように効果的に「関連付け」られている。したがって、特定の機能性を達成するように組み合わされた本明細書における任意の2つの構成要素は、アーキテクチャまたは中間の構成要素を問わず、所望の機能性が達成されるように互いに「関連付け」られたものとして見なされ得る。同様に、そのように関連付けられた任意の2つの構成要素は、所望の機能性を達成するように互いに「接続されて」いる、または「結合されて」いるものとして見なされ得、そのように関連付けられ得ることが可能な任意の2つの構成要素は、所望の機能性を達成するように互いに「結合可能」であると見なされ得る。結合可能な特定の実施例は、物理的に相互作用可能なおよび/または物理的に相互作用する構成要素および/または無線相互作用可能なおよび/または無線相互作用する構成要素および/または論理的に相互作用可能なおよび/または論理的に相互作用する構成要素を含むが、これらに限定されない。
【0080】
本開示およびそれに伴う多くの利点は、上述の説明によって理解されると考えられ、開示された主題から逸脱することなく、またはその材料の利点のいずれも犠牲にすることなく、構成要素の形態、構成、および配置において種々の変更が行われ得ることは明白である。記載される形態は、単なる説明のためのものであり、そのような変更を包含し、含むことが以下の特許請求の範囲の意図である。さらに、本発明が添付の特許請求の範囲によって定義されることを理解されたい。
図1
図2A
図2B
図3A
図3B
図4A
図4B
図5
図6A
図6B
図7A
図7B
図8A
図8B
図9