(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-21
(45)【発行日】2024-03-01
(54)【発明の名称】吸収性物品の製造装置に関する推定装置、吸収性物品の製造装置に関する推定方法、および吸収性物品の製造装置に関するプログラム
(51)【国際特許分類】
G05B 19/418 20060101AFI20240222BHJP
【FI】
G05B19/418 Z
(21)【出願番号】P 2020003228
(22)【出願日】2020-01-10
【審査請求日】2023-01-05
(73)【特許権者】
【識別番号】000115108
【氏名又は名称】ユニ・チャーム株式会社
(74)【代理人】
【識別番号】110002147
【氏名又は名称】弁理士法人酒井国際特許事務所
(72)【発明者】
【氏名】村上 誠司
(72)【発明者】
【氏名】萩田 浩己
(72)【発明者】
【氏名】宮木 正信
【審査官】石田 宏之
(56)【参考文献】
【文献】特開2018-129030(JP,A)
【文献】特開2017-097839(JP,A)
【文献】特開2018-097494(JP,A)
【文献】特開2017-134786(JP,A)
【文献】米国特許出願公開第2005/0095774(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
G05B 19/418
(57)【特許請求の範囲】
【請求項1】
吸収性物品を製造する製造装置による製造処理に関する処理データを取得する取得部と、
前記取得部によって取得された処理データと、前記製造装置と異なる他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、前記製造装置における異常を推定する推定部とを備え
、
前記推定部は、
前記他の製造装置による吸収性物品の製造処理に関するログデータに基づいて学習された学習モデル、
前記他の製造装置による吸収性物品の製造処理に関するログデータと、前記他の製造装置が正常か否かを示す情報との関係性が学習された学習モデル、
前記他の製造装置による吸収性物品の製造処理に関するログデータと、前記他の製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデル、
前記製造装置による吸収性物品の製造処理に関するログデータと、前記製造装置が正常か否かを示す情報との関係性が学習された学習モデル、
前記製造装置による吸収性物品の製造処理に関するログデータと、前記製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデルのいずれかを用いて、
前記製造装置における異常を推定することを特徴とする吸収性物品の製造装置に関する推定装置。
【請求項2】
前記他の製造装置による吸収性物品の製造処理に関するログデータ、および前記製造装置による吸収性物品の製造処理に関するログデータの少なくとも一方に基づいて前記学習モデルを学習する学習部
をさらに備えることを特徴とする請求項
1に記載の吸収性物品の製造装置に関する推定装置。
【請求項3】
前記取得部は、
異常の発生に対して相互に関連する複数の製造処理に関する処理データを取得し、
前記推定部は、
前記相互に関連する複数の製造処理のうち第1製造処理に関する処理データと、前記他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、前記相互に関連する複数の製造処理のうち第2製造処理における異常を推定する、
ことを特徴とする請求項1
または2に記載の吸収性物品の製造装置に関する推定装置。
【請求項4】
前記他の製造装置による吸収性物品の製造処理に関するログデータは、前記他の製造装置に設けられたセンサによって取得されたセンサデータである、
ことを特徴とする請求項1~
3のいずれか一つに記載の吸収性物品の製造装置に関する推定装置。
【請求項5】
前記他の製造装置に設けられたセンサは、吸収性物品の製造処理における振動を検出する振動センサ、吸収性物品の製造処理における温度を検出する温度センサ、および吸収性物品の製造処理における圧力を検出する圧力センサの少なくとも一つを含む、
ことを特徴とする請求項
4に記載の吸収性物品の製造装置に関する推定装置。
【請求項6】
前記取得部は、
吸収性物品の加工元となる連続体である連続品を異なる位置で加工する複数の製造処理に関する前記処理データを取得する
ことを特徴とする請求項1~
5のいずれか一つに記載の吸収性物品の製造装置に関する推定装置。
【請求項7】
吸収性物品を製造する製造装置による製造処理に関する処理データを取得する取得工程と、
前記取得工程によって取得された処理データと、前記製造装置と異なる他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、前記製造装置における異常を推定する推定工程と
を含
み、
前記推定工程は、
前記他の製造装置による吸収性物品の製造処理に関するログデータに基づいて学習された学習モデル、
前記他の製造装置による吸収性物品の製造処理に関するログデータと、前記他の製造装置が正常か否かを示す情報との関係性が学習された学習モデル、
前記他の製造装置による吸収性物品の製造処理に関するログデータと、前記他の製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデル、
前記製造装置による吸収性物品の製造処理に関するログデータと、前記製造装置が正常か否かを示す情報との関係性が学習された学習モデル、
前記製造装置による吸収性物品の製造処理に関するログデータと、前記製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデルのいずれかを用いて、
前記製造装置における異常を推定することを特徴とする吸収性物品の製造装置に関する推定方法。
【請求項8】
吸収性物品を製造する製造装置による製造処理に関する処理データを取得する取得手順と、
前記取得手順によって取得された処理データと、前記製造装置と異なる他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、前記製造装置における異常を推定する推定手順と
をコンピュータに実行させ
、
前記推定手順は、
前記他の製造装置による吸収性物品の製造処理に関するログデータに基づいて学習された学習モデル、
前記他の製造装置による吸収性物品の製造処理に関するログデータと、前記他の製造装置が正常か否かを示す情報との関係性が学習された学習モデル、
前記他の製造装置による吸収性物品の製造処理に関するログデータと、前記他の製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデル、
前記製造装置による吸収性物品の製造処理に関するログデータと、前記製造装置が正常か否かを示す情報との関係性が学習された学習モデル、
前記製造装置による吸収性物品の製造処理に関するログデータと、前記製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデルのいずれかを用いて、
前記製造装置における異常を推定することを特徴とする吸収性物品の製造装置に関するプログラム。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、吸収性物品の製造装置に関する推定装置、吸収性物品の製造装置に関する推定方法、および吸収性物品の製造装置に関するプログラムに関する。
【背景技術】
【0002】
従来、吸収性物品を製造する製造装置において、製品データと設備データとを関連付け、製品に異常が発生した場合に、異常と判定された製品に関連付けられた製品データ、および設備データの少なくとも一方を特定し、さらに製品の異常の原因となった製造工程を特定する技術が知られている。
【先行技術文献】
【特許文献】
【0003】
【発明の概要】
【発明が解決しようとする課題】
【0004】
しかしながら、上述した技術では、吸収性物品を製造する製造装置で発生する異常の推定精度を向上させる点について改善の余地がある。例えば、上述した技術では、吸収性物品を製造する製造装置において、発生するおそれがある異常を予め推定することができない。
【0005】
本願は、上記に鑑みてなされたものであって、吸収性物品を製造する製造装置における異常の推定精度を向上させることを目的とする。
【課題を解決するための手段】
【0006】
本願に係る吸収性物品の製造装置に関する推定装置は、吸収性物品を製造する製造装置による製造処理に関する処理データを取得する取得部と、前記取得部によって取得された処理データと、前記製造装置と異なる他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、前記製造装置における異常を推定する推定部とを備える。
【発明の効果】
【0007】
実施形態の1態様によれば、吸収性物品を製造する製造装置における異常の推定精度を向上させることが可能となる。
【図面の簡単な説明】
【0008】
【
図1】
図1は、実施例に係る推定装置を備える製造装置を含む製造システムの構成の一例を示すブロック図である。
【
図2】
図2は、実施例に係る製造装置の製造ラインを示す概略側面図である。
【
図3】
図3は、実施例に係る推定装置の構成の一例を示す機能ブロック図である。
【
図4】
図4は、実施例に係る学習処理を説明するフローチャートである。
【
図5】
図5は、変形例に係る製造装置の製造ラインの一部を示す概略側面図である。
【
図6】
図6は、ハードウェア構成の一例を示す図である。
【発明を実施するための形態】
【0009】
本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
【0010】
吸収性物品の製造装置に関する推定装置は、吸収性物品を製造する製造装置による製造処理に関する処理データを取得する取得部と、取得部によって取得された処理データと、製造装置と異なる他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、製造装置における異常を推定する推定部とを備えることを特徴とする。
【0011】
このような推定装置によれば、他の製造装置による吸収性物品の製造処理に関するログデータを用いて製造装置における異常を推定することができる。そのため、推定装置は、例えば、製造装置におけるログデータが少ない場合であっても、製造装置における異常の推定精度を向上させることができる。また、推定装置は、製造装置において発生していない異常を推定することができ、製造装置における異常の推定精度を向上させることができる。
【0012】
また、吸収性物品の製造装置に関する推定装置は、他の製造装置による吸収性物品の製造処理に関するログデータに基づいて学習された学習モデルを用いて、製造装置における異常を推定してもよい。
【0013】
このような推定装置によれば、他の製造装置による吸収性物品の製造処理に関するログデータに基づいて学習され、異常を推定する精度が高い学習モデルを用いて、製造装置における異常を推定することができる。そのため、推定装置は、製造装置における異常の推定精度を向上させることができる。
【0014】
また、吸収性物品の製造装置に関する推定装置は、他の製造装置による吸収性物品の製造処理に関するログデータと、他の製造装置が正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置における異常を推定してもよい。
【0015】
このような推定装置によれば、他の製造装置で生じた異常と同様の異常が製造装置で発生することを推定することができる。推定装置は、他の製造装置で生じた異常が、製造装置に含まれる装置で発生することを推定することができる。そのため、推定装置は、製造装置で発生する異常の推定精度を向上させることができる。
【0016】
また、吸収性物品の製造装置に関する推定装置は、他の製造装置による吸収性物品の製造処理に関するログデータと、他の製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置における異常を推定してもよい。
【0017】
このような推定装置によれば、他の製造装置で生じた吸収性物品の異常と同様の異常が製造装置で製造される吸収性物品で発生することを推定することができる。
【0018】
また、吸収性物品の製造装置に関する推定装置は、製造装置による吸収性物品の製造処理に関するログデータと、製造装置が正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置における異常を推定してもよい。
【0019】
このような推定装置によれば、製造装置で生じた異常と同様の異常が製造装置で発生することを推定することができる。
【0020】
また、吸収性物品の製造装置に関する推定装置は、製造装置による吸収性物品の製造処理に関するログデータと、製造装置における製品が正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置における異常を推定してもよい。
【0021】
このような推定装置によれば、製造装置で生じた吸収性物品の異常と同様の異常が製造装置で発生することを推定することができる。
【0022】
また、吸収性物品の製造装置に関する推定装置は、他の製造装置による吸収性物品の製造処理に関するログデータ、および製造装置による吸収性物品の製造処理に関するログデータの少なくとも一方に基づいて学習モデルを学習する学習部を備えてもよい。
【0023】
このような推定装置によれば、新たなログデータに基づいて学習モデルを更新することができ、製造装置における異常の推定精度を向上させることができる。
【0024】
また、吸収性物品の製造装置に関する推定装置は、異常の発生に対して相互に関連する複数の製造処理に関する処理データを取得し、相互に関連する複数の製造処理のうち第1製造処理に関する処理データと、他の製造装置による吸収性物品の製造処理に関するログデータとに基づいて、相互に関連する複数の製造処理のうち第2製造処理における異常を推定してもよい。
【0025】
このような推定装置によれば、複数の製造処理のうち、或る製造処理に関する処理データに基づいて、他の製造処理における異常を推定することができる。
【0026】
また、他の製造装置による吸収性物品の製造処理に関するログデータは、他の製造装置に設けられたセンサによって取得されたセンサデータであってもよい。例えば、他の製造装置に設けられたセンサは、吸収性物品の製造処理における振動を検出する振動センサ、吸収性物品の製造処理における温度を検出する温度センサ、および吸収性物品の製造処理における圧力を検出する圧力センサの少なくとも一つを含んでもよい。
【0027】
このような推定装置によれば、他の製造装置に設けられたセンサによって取得されたセンサデータに基づいて学習された学習モデルを用いて製造装置における異常を推定する。そのため、推定装置は、実際に取得されたセンサデータに基づいて製造装置における異常を推定することができ、異常の推定精度を向上させることができる。
【0028】
また、吸収性物品の製造装置に関する推定装置は、吸収性物品の加工元となる連続体である連続品を異なる位置で加工する複数の製造処理に関する処理データを取得してもよい。
【0029】
このような推定装置によれば、或る製造処理に関する処理データに基づいて、他の製造処理における異常を推定することができる。
【0030】
以下に、吸収性物品の製造装置に関する推定装置、吸収性物品の製造装置に関する推定方法、および吸収性物品の製造装置に関するプログラムを実施するための形態(以下、「実施形態」と記載する。)の一例について図面を参照しつつ詳細に説明する。なお、この実施形態により推定装置、推定方法、およびプログラムが限定されるものではない。また、以下の実施形態において同一の部位には同一の符号を付し、重複する説明は省略する。
【0031】
[実施形態]
[製造システムの構成の一例]
実施例に係る推定装置10を備える製造装置2を含む製造システム1について
図1を参照し説明する。
図1は、実施例に係る推定装置10を備える製造装置2を含む製造システム1の構成の一例を示すブロック図である。
【0032】
製造システム1は、複数の製造装置2を備える。複数の製造装置2は、吸収性物品を製造する装置である。吸収性物品は、例えば、おむつや、生理用ナプキンや、尿取りパッドである。
【0033】
複数の製造装置2は、同じ種類の吸収性物品を製造してもよい。また、複数の製造装置2は、同じ種類であり、かつ異なるサイズの吸収性物品を製造してもよい。また、複数の製造装置2は、異なる種類の吸収性物品を製造してもよい。例えば、或る製造装置2は、おむつを製造し、他の製造装置2は、生理用ナプキンを製造してもよい。
【0034】
また、複数の製造装置2は、同じ施設内に設置されなくてもよい。すなわち、製造システム1は、異なる施設内、例えば、異なる地域や、異なる国に設置された製造装置2を含んでもよい。
【0035】
複数の製造装置2は、それぞれ推定装置10を備える。各推定装置10は、ネットワークNと有線または無線で接続され、互いに情報の送受信を行う。ネットワークNは、例えば、インターネットなどのWAN(Wide Area Network)であるが、これに限られず、キャリア網などその他の通信網であってもよい。なお、各推定装置10は、ネットワークNによって接続されたサーバと情報の送受信を行ってもよい。
【0036】
[製造ラインの構成の一例]
製造装置2には、吸収性物品が製造される製造ラインPLが設けられる。製造装置2は、製造ラインPLによって、吸収性物品の加工元となる連続体である連続シート(連続品)を異なる位置で加工する複数の製造処理を行う。すなわち、製造ラインPLは、吸収性物品を製造するための一連化された加工工程(製造工程)である。これにより、吸収性物品が製造される。
【0037】
吸収性物品を製造する製造ラインPLについて
図2を参照し説明する。
図2は、実施例に係る製造装置2の製造ラインPLを示す概略側面図である。ここでは、使い捨ておむつを製造する製造ラインPLを一例として説明する。
【0038】
なお、以下では、製造ラインPLの幅方向(
図2の紙面を貫通する方向)を「CD方向」と言い、かかるCD方向に直交する二方向のうち、鉛直な方向を「上下方向」と、水平な方向を「前後方向」と、それぞれ言う場合がある。
【0039】
製造ラインPLには、コアラップ搬送経路R1と、吸収体搬送経路R2と、ファスニングテープ搬送経路R3と、トップシート搬送経路R4と、ターゲットテープ搬送経路R5と、バックシート搬送経路R6と、基材シート搬送経路R7とが含まれる。
【0040】
各搬送経路R1~R7には、搬送装置が設けられる。搬送装置は、ベルトコンベアや、搬送ローラなどによって構成される。ベルトコンベアは、例えば、無端ベルトの外周面に吸着機能を有するサクションベルトコンベアである。なお、搬送装置は、吸着機能を有さないベルトコンベアを含んでもよい。
【0041】
コアラップ搬送経路R1では、コアラップシートCsがコイル状に巻き取られた資材コイル201からコアラップシートCsが繰り出される。すなわち、コアラップ搬送経路R1では、連続シートであるコアラップシートCsが搬送される。コアラップシートCsは、例えば、ティッシュペーパーや、不織布などの液透過性のシート部材である。
【0042】
吸収体搬送経路R2では、コアラップ搬送経路R1から搬送されるコアラップシートCsに吸収体Abが載置される。吸収体Abは、CD方向に沿った回転軸を中心に回転する積繊ドラム202によってコアラップシートCsに載置される。吸収体Abは、液体吸収体素材であり、例えば、パルプ繊維、および高吸収性ポリマー(SAP:Superabsorbent polymer)である。
【0043】
積繊ドラム202の外周面には、回転方向に沿って複数の凹部202aが形成される。凹部202aは、コアラップシートCsに載置された吸収体Abの形状が、平面視矩形状となるように形成される。凹部202aの底面には、吸気孔(不図示)が形成される。吸気孔を介して吸気されることで、凹部202aには散布ダクトから散布されたパルプ繊維とSAPとが積層される。
【0044】
積繊ドラム202は、パルプ繊維とSAPとを積層した凹部202aがコアラップシートCsの上方に位置すると、吸気孔を介した吸気が停止される。これにより、コアラップシートCsには、前後方向に沿って複数の吸収体Abが並んで載置される。
【0045】
また、吸収体搬送経路R2には、カット装置203が設けられる。カット装置203は、吸収体Abが載置されたコアラップシートCsを切断する。カット装置203は、カッターロール203aと、アンビルロール203bとを備える。
【0046】
カッターロール203aは、CD方向に沿った回転軸を中心に回転する。カッターロール203aには、回転軸方向に沿ってカッター刃が設けられる。アンビルロール203bは、CD方向に沿った回転軸を中心に回転する。
【0047】
カット装置203は、吸収体Abが載置されたコアラップシートCsをカッターロール203aおよびアンビルロール203bによって挟圧して切断する。なお、カット装置203は、隣接する吸収体Abの間の位置でコアラップシートCsを切断する。
【0048】
吸収体搬送経路R2では、カット装置203によって切断されたコアラップシートCsが前方に向けて搬送される。
【0049】
ファスニングテープ搬送経路R3では、連続シートであるファスニングテープFt1が搬送される。ファスニングテープ搬送経路R3では、接着剤塗布装置204によって接着剤がファスニングテープFt1に塗布される。接着剤は、例えば、ホットメルト接着剤が用いられる。
【0050】
トップシート搬送経路R4では、トップシートTsがコイル状に巻き取られた資材コイル205からトップシートTsが繰り出される。すなわち、トップシート搬送経路R4では、連続シートであるトップシートTsが搬送される。トップシートTsは、液透過性を有するシート部材であり、例えば、ポリエチレンや、ポリプロピレンなどの熱可塑性樹脂繊維を含有する不織布である。
【0051】
また、トップシート搬送経路R4には、スリップカット装置206が設けられる。スリップカット装置206は、ファスニングテープ搬送経路R3を搬送されたファスニングテープFt1を切断する。スリップカット装置206は、カッターロール206aと、アンビルロール206bとを備える。
【0052】
カッターロール206aは、CD方向に沿った回転軸を中心に回転する。カッターロール206aには、連続シートのファスニングテープFt1を単票状のファスニングテープFt2に切断するカッター刃(不図示)が設けられる。カッター刃は、回転方向に複数設けられる。
【0053】
アンビルロール206bは、接着剤が塗布された連続体のファスニングテープFt1を吸着保持する。アンビルロール206bは、CD方向に沿った回転軸を中心に回転する。アンビルロール206bには、カッターロール206aのカッター刃に対向する受け刃(不図示)が設けられる。
【0054】
スリップカット装置206は、接着剤が塗布された連続シートのファスニングテープFt1をアンビルロール206bによって吸着し、連続シートのファスニングテープFt1をカッターロール206aによって切断し、単票状のファスニングテープFt2を生成する。
【0055】
スリップカット装置206は、単票状に切断したファスニングテープFt2をアンビルロール206bによって吸着させて、トップシートTsに対向する位置まで搬送する。
【0056】
また、トップシート搬送経路R4には、アンビルロール206bの下方に仮プレスロール207が設けられる。仮プレスロール207は、トップシートTsを挟んでアンビルロール206bと対向するように設けられる。
【0057】
仮プレスロール207は、CD方向に沿った回転軸を中心に回転する。仮プレスロール207は、上下方向に移動可能であり、アンビルロール206bに吸着されたファスニングテープFt2がトップシートTsの上方に搬送されたタイミングでアンビルロール206bに向けて押圧する。これにより、連続体であるトップシートTsがアンビルロール206bに押し付けられ、ファスニングテープFt2に塗布された接着剤によって、ファスニングテープFt2がトップシートTsに接着する。これにより、ファスニングテープFt2は、トップシートTsに仮固定される。
【0058】
また、トップシート搬送経路R4には、本プレス装置208が設けられる。本プレス装置208は、トップシート搬送経路R4におけるトップシートTsの搬送方向において、仮プレスロール207よりも下流側に設けられる。
【0059】
本プレス装置208は、トップシートTsに仮固定されたファスニングテープFt2を本固定する。本プレス装置208は、ファスニングテープFt2が仮固定されたトップシートTsを一対のロールによって挟持し、ファスニングテープFt2をトップシートTsに本固定する。
【0060】
各ロールは、CD方向に沿った回転軸を中心に回転する。一対のロールのうち、一方のロールは、他方のロールに向けて往復動する。すなわち、一対のロールは、一対のロールの間隔を変更可能である。
【0061】
また、トップシート搬送経路R4には、接着剤塗布装置209が設けられる。接着剤塗布装置209は、トップシートTsの搬送方向において、本プレス装置208よりも下流側に設けられる。接着剤塗布装置209は、ファスニングテープFt2が本固定されたトップシートTsに接着剤を塗布する。接着剤塗布装置209は、トップシートTsの非肌側面に接着剤を塗布する。接着剤は、例えば、ホットメルト接着剤が用いられる。
【0062】
ターゲットテープ搬送経路R5には、連続シートであるターゲットテープTt1が搬送される。ターゲットテープ搬送経路R5では、接着剤塗布装置210によって接着剤がターゲットテープTt1に塗布される。接着剤は、例えば、ホットメルト接着剤が用いられる。
【0063】
バックシート搬送経路R6では、バックシートBsがコイル状に巻き取られた資材コイル211からバックシートBsが繰り出される。すなわち、バックシート搬送経路R6では、連続シートであるバックシートBsが搬送される。バックシートBsは、液不透過性を有するシート部材であり、例えば、ポリエチレンなどの熱可塑性樹脂フィルムである。
【0064】
また、バックシート搬送経路R6には、スリップカット装置212が設けられる。スリップカット装置212は、ターゲットテープ搬送経路R5を搬送されたターゲットテープTt1を切断する。スリップカット装置212は、カッターロール212aと、アンビルロール212bとを備える。
【0065】
カッターロール212aは、CD方向に沿った回転軸を中心に回転する。カッターロール212aには、連続シートのターゲットテープTt1を単票状のターゲットテープTt2に切断するカッター刃(不図示)が設けられる。カッター刃は、回転方向に複数設けられる。
【0066】
アンビルロール212bは、接着剤が塗布された連続体のターゲットテープTt1を吸着保持する。アンビルロール212bは、CD方向に沿った回転軸を中心に回転する。アンビルロール212bには、カッターロール212aのカッター刃に対向する受け刃(不図示)が設けられる。
【0067】
スリップカット装置212は、接着剤が塗布された連続シートのターゲットテープTt1をアンビルロール212bによって吸着し、連続シートのターゲットテープTt1をカッターロール212aによって切断し、単票状のターゲットテープTt2を生成する。
【0068】
スリップカット装置212は、単票状に切断したターゲットテープTt2をアンビルロール212bによって吸着させて、バックシートBsに対向する位置まで搬送する。
【0069】
また、バックシート搬送経路R6には、アンビルロール212bの下方に仮プレスロール213が設けられる。仮プレスロール213は、バックシートBsを挟んでアンビルロール212bと対向するように設けられる。
【0070】
仮プレスロール213は、CD方向に沿った回転軸を中心に回転する。仮プレスロール213は、上下方向に移動可能であり、アンビルロール212bに吸着されたターゲットテープTt2がバックシートBsの上方に搬送されたタイミングでアンビルロール212bに向けて押圧する。これにより、連続体であるバックシートBsがアンビルロール212bに押し付けられ、ターゲットテープTt2に塗布された接着剤によって、ターゲットテープTt2がバックシートBsに接着する。これにより、ターゲットテープTt2は、バックシートBsに仮固定される。
【0071】
また、バックシート搬送経路R6には、本プレス装置214が設けられる。本プレス装置214は、バックシート搬送経路R6におけるバックシートBsの搬送方向において、仮プレスロール213よりも下流側に設けられる。
【0072】
本プレス装置214は、バックシートBsに仮固定されたターゲットテープTt2を本固定する。本プレス装置214は、ターゲットテープTt2が仮固定されたバックシートBsを一対のロールによって挟持し、ターゲットテープTt2をバックシートBsに本固定する。
【0073】
各ロールは、CD方向に沿った回転軸を中心に回転する。一対のロールのうち、一方のロールは、他方のロールに向けて往復動する。すなわち、一対のロールは、一対のロールの間隔を変更可能である。
【0074】
また、バックシート搬送経路R6には、接着剤塗布装置215が設けられる。接着剤塗布装置215は、バックシートBsの搬送方向において、本プレス装置214よりも下流側に設けられる。接着剤塗布装置215は、ターゲットテープTt2が本固定されたバックシートBsに接着剤を塗布する。接着剤塗布装置215は、バックシートBsの肌側面に接着剤を塗布する。接着剤は、例えば、ホットメルト接着剤が用いられる。
【0075】
上記した吸収体搬送経路R2によって搬送される吸収体Ab、トップシート搬送経路R4によって搬送されるトップシートTs、およびバックシート搬送経路R6によって搬送されるバックシートBsは、合流位置Mpで合流する。
【0076】
具体的には、合流位置Mpでは、吸収体Abの非肌側から連続シートのバックシートBsが合流し、吸収体Abの肌側から連続シートのトップシートTsが合流する。トップシートTs、およびバックシートBsにはそれぞれ接着剤が塗布されているため、トップシートTs、吸収体Ab、およびバックシートBsは、接着剤によって接合されて一体化され、連続シートの基材シートBMsが生成される。基材シートBMsでは、吸収体Abが、前後方向において、おむつDの1ピース分の長さに相当する製品ピッチで連続して並んだ状態となっている。
【0077】
なお、
図2においては、基材シートBMsの搬送方向において合流位置Mpよりも下流側の基材シートBMsを、トップシートTs、吸収体Ab、およびバックシートBsが離間した状態で示しているが、実際にはこれらは一体に接合されている。
【0078】
基材シート搬送経路R7では、基材シートBMsが搬送される。基材シート搬送経路R7には、レッグホールカット装置216が設けられる。レッグホールカット装置216は、CD方向の両側において基材シートBMsの一部を切断し、おむつの脚回り開口部を形成する。レッグホールカット装置216は、カッターロール216aと、アンビルロール216bとを備える。
【0079】
カッターロール216aは、CD方向に沿った回転軸を中心に回転する。カッターロール216aには、回転方向に沿ってカッター刃(不図示)が設けられる。カッター刃は、脚回り開口部の形状に合わせて湾曲形状に設けられる。アンビルロール216bは、CD方向に沿った回転軸を中心に回転する。
【0080】
レッグホールカット装置216における各ロール216a、216bの回転は、基材シートBMsにおける所定の位置に脚回り開口部が形成されるように、基材シートBMsの搬送動作と連動する。
【0081】
レッグホールカット装置216では、カッターロール216aは、アンビルロール216bに向けて移動可能であり、カッターロール216aとアンビルロール216bとの間隔を変更可能である。
【0082】
また、基材シート搬送経路R7には、エンドカット装置217が設けられる。エンドカット装置217は、基材シート搬送経路R7における基材シートBMsの搬送方向において、レッグホールカット装置216よりも下流側に設けられる。
【0083】
エンドカット装置217は、基材シート搬送経路R7によって搬送された基材シートBMsを切断する。エンドカット装置217は、カッターロール217aと、アンビルロール217bとを備える。
【0084】
カッターロール217aは、CD方向に沿った回転軸を中心に回転する。カッターロール217aには、回転軸方向に沿ってカッター刃(不図示)が設けられる。アンビルロール217bは、CD方向に沿った回転軸を中心に回転する。
【0085】
エンドカット装置217は、基材シートBMsにおいて予め設定された位置で基材シートBMsの下流端を切断し、おむつDを生成する。
【0086】
[推定装置の構成の一例]
次に、実施例に係る推定装置10について
図3を参照し説明する。
図3は、実施例に係る推定装置10の構成の一例を示す機能ブロック図である。以下では、製造装置2に対し、製造装置2と異なる他の製造装置、および他の製造装置に含まれる構成に符号「A」を付し、製造装置2、および製造装置2に含まれる構成と区別して説明する。
【0087】
推定装置10は、通信部11と、制御部12と、記憶部13とを備える。
【0088】
通信部11は、ネットワークN(
図1参照)を介して他の製造装置2Aの推定装置10Aなどと通信を行う。通信部11は、例えば、NIC(Network Interface Card)などによって実現される。
【0089】
制御部12は、CPU(Central Processing Unit)などの電子回路に対応する。そして、制御部12は、各種の処理手順を規定したプログラムや制御データを格納するための内部メモリを有し、これらによって種々の処理を実行する。制御部12は、取得部20と、推定部21と、報知部22と、学習部23とを有する。
【0090】
記憶部13は、例えば、RAM(Random Access Memory)、フラッシュメモリなどの半導体メモリ素子、または、ハードディスク、光ディスクなどの記憶装置である。
【0091】
記憶部13は、製造装置2によるおむつ(吸収性物品)の製造処理に関するログデータを記憶する。具体的には、製造装置2によるおむつの製造処理に関するログデータは、製造装置2に設けられたセンサ30によって検出されたセンサデータである。センサ30は、製造装置2において異常を検出する箇所に設けられる。センサ30は、例えば、振動センサ、温度センサ、および圧力センサである。
【0092】
振動センサは、例えば、カット装置203や、スリップカット装置206、212や、レッグホールカット装置216や、エンドカット装置217に設けられる。振動センサは、カッター刃などの振動を検出する。振動センサは、例えば、カット装置203や、スリップカット装置206、212のカッター刃の所定方向(上下方向)における加速度の変化度合いを検出する。なお、振動センサは、搬送装置や、仮プレスロール207、213や、本プレス装置208、214などに設けられてもよい。
【0093】
温度センサは、例えば、接着剤塗布装置204、209、210、215に設けられる。温度センサは、接着剤塗布装置204、209、210、215において接着剤を加熱する加熱部や、加熱された接着剤などの温度を検出する。なお、温度センサは、搬送装置や、カット装置203、スリップカット装置206、212などに設けられてもよい。例えば、温度センサは、搬送装置や、カット装置203、スリップカット装置206、212などを動作させるモータなどの温度を検出してもよい。
【0094】
圧力センサは、例えば、積繊ドラム202や、搬送装置のサクションコンベアや、カット装置203、スリップカット装置206、212のアンビルロール203b、206b、212bに設けられる。圧力センサは、例えば、サクションコンベアの吸引部の負圧を検出する。また、圧力センサは、カット装置203、スリップカット装置206、212のカッターロール203a、206a、212aなどに設けられてもよい。圧力センサは、例えば、カット装置203、スリップカット装置206、212のカッター刃の押し付け圧を検出する。
【0095】
また、記憶部13は、製造装置2における異常を推定するための学習モデルを記憶する。学習モデルは、異常を推定する箇所に応じて複数記憶される。記憶部13は、例えば、カット装置203、スリップカット装置206、212、レッグホールカット装置216、搬送装置、および接着剤塗布装置204、209、210、215の各装置に対応する学習モデルを記憶する。
【0096】
学習モデルは、製造装置2によるおむつの製造処理に関するログデータ、および他の製造装置2Aによるおむつの製造処理に関するログデータに基づいて学習されたモデルである。具体的には、学習モデルは、製造装置2によるおむつの製造処理に関するログデータと、製造装置2の処理状態情報との関係性が学習されたモデルであり、かつ他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aの処理状態情報との関係性が学習されたモデルである。なお、学習モデルは、他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aの処理状態情報との関係性が学習されたモデルであってもよい。また、学習モデルは、複数の他の製造装置2Aによるおむつの製造処理に関するログデータに基づいて学習されたモデルであってもよい。また、学習モデルは、ネットワークNを介して取得されてもよい。
【0097】
他の製造装置2Aによるおむつの製造処理に関するログデータは、他の製造装置2Aに設けられたセンサ30Aによって取得されたセンサデータである。センサ30Aは、上記したセンサ30と同様に、例えば、振動センサや、温度センサや、圧力センサであり、少なくともこれらのセンサの一つが含まれる。
【0098】
処理状態情報は、製造装置2の製造処理、または他の製造装置2Aの製造処理が正常であるか否かを示す情報であり、各製造処理のログデータに紐付けされている。例えば、ログデータが、カット装置203に設けられた振動センサによって取得されたセンサデータである場合、処理状態情報は、カット装置203が「正常」であるか、「異常」であるかを示す情報である。
【0099】
他の製造装置2Aによるおむつの製造処理には、製造装置2によるおむつの製造処理と同じ製造処理に加えて、対応性がある製造処理が含まれる。
【0100】
同じ製造処理は、同じ種類であり、かつ同じサイズのおむつを製造する他の製造装置2Aにおいて同じ工程を実行する装置の製造処理である。例えば、同じ製造処理は、製造装置2で製造するおむつと、同じ種類であり、かつ同じサイズのおむつを製造する他の製造装置2Aの吸収体搬送経路R2Aに設けられ、かつカット装置203と同じカット装置203Aにおける製造処理である。
【0101】
対応性がある製造処理は、製造装置2における異常を推定する学習モデルの学習に適したログデータを得ることができる他の製造装置2Aにおける製造処理である。対応性がある製造処理は、例えば、同じ種類であり、かつ異なるサイズのおむつを製造する他の製造装置2Aにおいて同じ工程を実行する装置の製造処理である。例えば、対応性がある製造処理は、吸収体搬送経路R2に設けられたカット装置203に対し、同じ種類であり、かつ異なるサイズのおむつを製造する他の製造装置2Aの吸収体搬送経路R2Aに設けられたカット装置203Aにおける製造処理である。
【0102】
なお、他の製造装置2Aによるおむつの製造処理は、上記に限られることはなく、製造装置2における異常を推定するための学習モデルを生成可能なログデータに関する製造処理であればよい。また、学習モデルは、後述する学習部23によって学習され、更新される。
【0103】
取得部20は、処理データを取得する。処理データは、製造装置2による製造処理に関するデータである。具体的には、処理データは、おむつの加工元となる連続体であるコアラップシートCsや、トップシートTsや、バックシートBsなどを異なる位置で加工する複数の製造処理に関するデータである。処理データは、製造装置2に設けられたセンサ30によって検出されるセンサデータである。取得された処理データは、製造装置2におけるログデータとして記憶部13に記憶される。
【0104】
推定部21は、取得部20によって取得された製造装置2における処理データを入力として、学習モデルを用いて製造装置2における異常を推定する。なお、推定部21は、記憶部13に記憶された処理データである製造装置2のログデータを入力として、学習モデルを用いて製造装置2における異常を推定してもよい。
【0105】
学習モデルは、上記するように、製造装置2によるおむつの製造処理に関するログデータと、製造装置2の処理状態情報との関係性が学習されたモデルであり、かつ他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aの処理状態情報との関係性が学習されたモデルである。
【0106】
そのため、推定部21は、製造装置2によるおむつの製造処理に関するログデータに加え、他の製造装置2Aによるおむつの製造処理に関するログデータに基づいて学習された学習モデルを用いて、製造装置2における異常を推定する。すなわち、推定部21は、多くのログデータに基づいて学習された学習モデルを用いて製造装置2における異常を推定することができる。
【0107】
推定部21は、製造装置2において発生するおそれがある異常を推定する。すなわち、推定部21は、製造装置2において発生するおそれがある異常を事前に予測する。推定部21は、製造装置2に含まれる各装置の異常を推定する。
【0108】
例えば、推定部21は、カット装置203に設けられた振動センサによって検出されたカッター刃の振動を入力として、学習モデルを用いてカット装置203のカッター刃の異常を推定する。
【0109】
例えば、他の製造装置2Aのカット装置203Aと同じカット装置203が製造装置2に用いられている場合に、推定部21は、他の製造装置2Aのカット装置203Aに設けられた振動センサのログデータに基づいて学習された学習モデルを用いて、製造装置2におけるカット装置203のカッター刃の異常を推定する。
【0110】
これにより、他の製造装置2Aのカット装置203Aにおいて異常が発生した際に検出された振動の傾向と同様の振動の傾向が製造装置2のカット装置203に生じた場合に、カット装置203の異常が推定される。このように、推定部21は、他の製造装置2Aのカット装置203Aのログデータに基づき、製造装置2のカット装置203において実際に異常が発生する前に、カット装置203における異常の発生を検知することができる。
【0111】
そのため、推定部21は、製造装置2のカット装置203におけるログデータが少ない場合であっても、カット装置203における異常の発生を推定することができる。また、推定部21は、製造装置2のカット装置203において過去に発生していない異常の発生を推定することができる。
【0112】
報知部22は、推定部21によって推定された異常を報知する。報知部22は、推定部21によって異常の発生が推定された場合には、異常が発生することを報知する。例えば、報知部22は、モニタ(不図示)に推定される異常を表示させたり、警告灯(不図示)を点灯させたりする。
【0113】
学習部23は、製造装置2において異常を推定するための学習モデルを学習する。学習部23は、異常を推定する箇所に応じた学習モデルを学習する。学習部23は、例えば、カット装置203、スリップカット装置206、212、レッグホールカット装置216、搬送装置、および接着剤塗布装置204、209、210、215における異常を推定する学習モデルをそれぞれ学習する。
【0114】
学習部23は、推定部21によって推定され、報知部22によって報知された異常に対する処理状態情報の入力を受け付け、学習モデルを学習する。このように、学習部23は、製造装置2によるおむつの製造処理に関するログデータに基づいて、学習モデルを学習する。
【0115】
学習部23は、他の製造装置2Aによるおむつの製造処理に関するログデータに基づいて、学習モデルを学習してもよい。学習部23は、他の製造装置2Aによるおむつの製造処理に関するログデータ、および他の製造装置2Aにおける処理状態情報が取得された場合に、学習モデルを学習する。
【0116】
なお、学習部23は、製造装置2によるおむつの製造処理に関するログデータ、および他の製造装置2Aによるおむつの製造処理に関するログデータのいずれか一方に基づいて学習モデルを学習してもよい。すなわち、学習部23は、製造装置2によるおむつの製造処理に関するログデータ、および他の製造装置2Aによるおむつの製造処理に関するログデータの少なくとも一方に基づいて学習モデルを学習する。
【0117】
[推定処理]
次に、実施例に係る推定処理について
図4を参照し説明する。
図4は、実施例に係る学習処理を説明するフローチャートである。なお、推定装置10は、製造装置2において異常の推定を行う箇所の全てにおいて異常の推定を行う。
【0118】
推定装置10は、センサ30から処理データを取得する(S100)。推定装置10は、学習モデルを用いて、取得した処理データに基づいて製造装置2における異常を推定する(S101)。
【0119】
推定装置10は、異常が推定された場合には(S102:Yes)、異常が推定されたことを報知する(S103)。推定装置10は、異常が推定されない場合には(S102:No)、今回の処理を終了する。
【0120】
[変形例]
変形例に係る推定装置10は、学習モデルを生成してもよい。変形例に係る推定装置10は、他の製造装置2Aから他の製造装置2Aによるおむつの製造処理に関するログデータ、および他の製造装置2Aの処理状態情報を取得し、取得したログデータ、および処理状態情報との関係性から学習モデルを生成してもよい。また、変形例に係る推定装置10は、製造装置2によるおむつの製造処理に関するログデータ、および製造装置2の処理状態情報との関係性から学習モデルを生成してもよい。また、変形例に係る推定装置10は、他の製造装置2Aから他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aの処理状態情報との関係性、および製造装置2によるおむつの製造処理に関するログデータと、製造装置2の処理状態情報との関係性に基づいて学習モデルを生成してもよい。すなわち、変形例に係る推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータ、および製造装置2によるおむつの製造処理に関するログデータの少なくとも一方に基づいて学習モデルを生成してもよい。
【0121】
また、変形例に係る推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aにおけるおむつが正常であるか否かを示す製品状態情報との関係性が学習された学習モデルを用いて、製造装置2における異常を推定してもよい。また、変形例に係る推定装置10は、製造装置2によるおむつの製造処理に関するログデータと、製造装置2におけるおむつが正常であるか否かを示す製品状態情報との関係性が学習された学習モデルを用いて、製造装置2における異常を推定してもよい。製品状態情報は、完成品のおむつに対する情報であってもよく、製造途中のおむつに対する情報であってもよい。変形例に係る推定装置10は、製造装置2における異常として製造装置2によって生成されるおむつの異常を推定する。
【0122】
これにより、変形例に係る推定装置10は、学習モデルを用いて製造装置2で生成されるおむつの異常を推定することができる。そのため、変形例に係る推定装置10は、不良品のおむつが生成されることを抑制することができる。
【0123】
変形例に係る推定装置10は、他の製造装置2Aにおける製造処理のログデータに対し、学習モデルの学習に適したログデータを判定し、学習モデルの学習に適したログデータを取得してもよい。例えば、製造装置2、および他の製造装置2Aに含まれる各装置にそれぞれIDが付与され、IDに基づいて学習モデルの学習に適したログデータが判定される。
【0124】
例えば、変形例に係る推定装置10は、製造装置2のカット装置203のIDに対し、学習モデルを学習可能なIDを有する他の製造装置2Aのカット装置203Aのログデータを取得する。なお、学習モデルを学習可能なIDは、予め設定される。そして、変形例に係る推定装置10は、取得したログデータに基づいて学習モデルを学習する。また、変形例に係る推定装置10は、取得したログデータに基づいて学習モデルを生成してもよい。
【0125】
これにより、変形例に係る推定装置10は、他の製造装置2Aにおける製造処理のログデータを自動的に取得し、取得したログデータに基づいて自動的に学習モデルを学習することができる。また、変形例に係る推定装置10は、他の製造装置2Aにおける製造処理のログデータを自動的に取得し、取得したログデータに基づいて自動的に学習モデルを生成することができる。
【0126】
また、上記実施例に係る製造装置2は、積繊ドラム202によって平面視矩形状の吸収体Abを成形したが、これに限られることはない。変形例に係る製造装置2は、
図5に示すように、積繊ドラム300によって、搬送方向に沿って連続する連続積層の吸収体Abを成形し、カット装置301によって切断してもよい。
図5は、変形例に係る製造装置2の製造ラインPLの一部を示す概略側面図である。
【0127】
変形例に係る製造装置2では、積繊ドラム300によって成形された吸収体Abは、圧縮ロール302によって挟持されて圧縮された後に、カット装置301によって切断される。圧縮ロール302は、一対のロールによって吸収体Abを挟持する。一対のロールは、一対のロールの間隔を変更可能である。
【0128】
このような変形例に係る製造装置2において、カット装置301における異常が発生した場合には、カット装置301の異常に加えて、圧縮ロール302における異常が考えられる。例えば、圧縮ロール302に異常が発生し、圧縮ロール302による吸収体Abの圧縮が大きい場合には、カット装置301において吸収体Abを切断するカッター刃などに対する負荷が大きくなり、カット装置301における振動が大きくなる。すなわち、製造装置2においては、異常の発生に対して相互に関連する複数の製造処理が存在する。
【0129】
変形例に係る推定装置10は、異常の発生に対して相互に関連する複数の製造処理に関する処理データを取得する。そして、変形例に係る推定装置10は、相互に関連する複数の製造処理のうち第1製造処理に関する処理データと、他の製造装置2Aによるおむつの製造処理に関するログデータとに基づいて、相互に関連する複数の製造処理のうち第2製造処理における異常を推定する。換言すると、変形例に係る推定装置10は、連続シートである吸収体Abを異なる位置で加工する複数の製造処理において、第1製造処理に関する処理データに基づいて、第2製造処理における異常を推定する。
【0130】
具体的には、変形例に係る推定装置10は、第1製造処理に関する処理データを入力として、上記した学習モデルを用いて第2製造処理における異常を推定する。
【0131】
例えば、変形例に係る推定装置10は、カット装置301における振動のログデータを入力として、学習モデルを用いて圧縮ロール302における異常を推定する。学習モデルは、圧縮が大きい吸収体Abを切断することで生じる振動と、カッター刃の劣化で生じる振動との特徴を示すログデータと、振動の原因となる製造処理との関係性が学習されたモデルである。変形例に係る推定装置10は、カット装置301における振動の特徴に応じて、圧縮ロール302の異常を推定する。なお、変形例に係る推定装置10は、カット装置301における振動の特徴に応じて、振動の原因となる製造処理を特定し、圧縮ロール302の異常、またはカット装置301の異常を推定してもよい。
【0132】
また、変形例に係る製造装置2は、圧縮ロール302を吸収体Abの搬送方向に沿って複数設け、複数の圧縮ロール302によって段階的に吸収体Abを圧縮してもよい。
【0133】
このような変形例に係る製造装置2において、吸収体Abの一部に、例えば、パルプ繊維の塊がある場合には、パルプ繊維の塊が圧縮ロール302を通過する際に各圧縮ロール302で振動が大きくなる。すなわち、変形例に係る製造装置2においては、異常の発生に対して相互に関連する複数の製造処理が存在する。
【0134】
例えば、変形例に係る推定装置10は、各圧縮ロール302における振動のログデータを入力として、学習モデルを用いて各圧縮ロール302における異常を推定する。そして、変形例に係る推定装置10は、複数の圧縮ロール302によって異常が推定される場合には、吸収体Abにおける異常を推定する。また、変形例に係る推定装置10は、複数の圧縮ロール302の一部に異常が推定される場合には、一部の圧縮ロール302の異常を推定する。
【0135】
このように、変形例に係る推定装置10は、異常の発生に対して相互に関連する複数の製造処理に関する処理データを入力として、学習モデルを用いて、製造装置2における異常を推定することで、製造装置2における異常の発生箇所を推定することができる。
【0136】
[ハードウェア構成]
また、上述した実施形態に係る推定装置10は、例えば
図6に示すような構成のコンピュータ1000によって実現される。
図6は、ハードウェア構成の一例を示す図である。コンピュータ1000は、出力装置1010、入力装置1020と接続され、演算装置1030、キャッシュ1040、メモリ1050、出力IF(Interface)1060、入力IF1070、ネットワークIF1080がバス1090により接続される。
【0137】
演算装置1030は、キャッシュ1040やメモリ1050に格納されたプログラムや入力装置1020から読み出したプログラムなどに基づいて動作し、各種の処理を実行する。キャッシュ1040は、RAMなど、演算装置1030が各種の演算に用いるデータを一次的に記憶するキャッシュである。また、メモリ1050は、演算装置1030が各種の演算に用いるデータや、各種のデータベースが登録される記憶装置であり、ROM(Read Only Memory)、HDD(Hard Disk Drive)、フラッシュメモリなどにより実現されるメモリである。
【0138】
出力IF1060は、モニタやプリンタといった各種の情報を出力する出力装置1010に対し、出力対象となる情報を送信するためのインタフェースであり、例えば、USB(Universal Serial Bus)やDVI(Digital Visual Interface)、HDMI(登録商標)(High Definition Multimedia Interface)といった規格のコネクタにより実現されてよい。一方、入力IF1070は、マウス、キーボード、およびスキャナなどといった各種の入力装置1020から情報を受信するためのインタフェースであり、例えば、USBなどにより実現される。
【0139】
例えば、入力装置1020は、CD(Compact Disc)、DVD(Digital Versatile Disc)、PD(Phase change rewritable Disk)などの光学記録媒体、MO(Magneto-Optical disk)などの光磁気記録媒体、テープ媒体、磁気記録媒体、または半導体メモリなどから情報を読み出す装置により実現されてもよい。また、入力装置1020は、USBメモリなどの外付け記憶媒体により実現されてもよい。
【0140】
ネットワークIF1080は、ネットワークNを介して他の機器からデータを受信して演算装置1030へ送り、また、ネットワークNを介して演算装置1030が生成したデータを他の機器へ送信する機能を有する。
【0141】
ここで、演算装置1030は、出力IF1060や入力IF1070を介して、出力装置1010や入力装置1020の制御を行うこととなる。例えば、演算装置1030は、入力装置1020やメモリ1050からプログラムをキャッシュ1040上にロードし、ロードしたプログラムを実行する。例えば、コンピュータ1000が推定装置10として機能する場合、コンピュータ1000の演算装置1030は、キャッシュ1040上にロードされたプログラムを実行することにより、制御部12の機能を実現することとなる。
【0142】
[効果]
推定装置10は、おむつを製造する製造装置2による製造処理に関する処理データを取得する。推定装置10は、取得された処理データと、製造装置2と異なる他の製造装置2Aによるおむつの製造処理に関するログデータとに基づいて、製造装置2における異常を推定する。
【0143】
これにより、推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータを用いて製造装置2における異常を推定することができる。そのため、推定装置10は、例えば、製造装置2におけるログデータが少ない場合であっても、製造装置2における異常の推定精度を向上させることができる。また、推定装置10は、製造装置2において発生していない異常を推定することができ、製造装置2における異常の推定精度を向上させることができる。
【0144】
また、推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータに基づいて学習された学習モデルを用いて、製造装置2における異常を推定する。
【0145】
これにより、推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータに基づいて学習され、異常を推定する精度が高い学習モデルを用いて、製造装置2における異常を推定することができる。そのため、推定装置10は、製造装置2における異常の推定精度を向上させることができる。
【0146】
また、推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aが正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置2における異常を推定する。
【0147】
これにより、推定装置10は、他の製造装置2Aで生じた異常と同様の異常が製造装置2で発生することを推定することができる。推定装置10は、他の製造装置2Aで生じた異常が、製造装置2に含まれる装置、具体的にはカット装置203などで発生することを推定することができる。そのため、推定装置10は、製造装置2で発生する異常の推定精度を向上させることができる。
【0148】
また、推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータと、他の製造装置2Aにおけるおむつが正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置2における異常を推定する。
【0149】
これにより、推定装置10は、他の製造装置2Aで生じたおむつの異常と同様の異常が製造装置2で製造されるおむつで発生することを推定することができる。
【0150】
また、推定装置10は、製造装置2によるおむつの製造処理に関するログデータと、製造装置2が正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置2における異常を推定する。
【0151】
これにより、推定装置10は、製造装置2で生じた異常と同様の異常が製造装置2で発生することを推定することができる。
【0152】
また、推定装置10は、製造装置2によるおむつの製造処理に関するログデータと、製造装置2における製品が正常か否かを示す情報との関係性が学習された学習モデルを用いて、製造装置2における異常を推定する。
【0153】
これにより、推定装置10は、製造装置2で生じたおむつの異常と同様の異常が製造装置2で発生することを推定することができる。
【0154】
また、推定装置10は、他の製造装置2Aによるおむつの製造処理に関するログデータ、および製造装置2によるおむつの製造処理に関するログデータの少なくとも一方に基づいて学習モデルを学習する。
【0155】
これにより、推定装置10は、新たなログデータに基づいて学習モデルを更新することができ、製造装置2における異常の推定精度を向上させることができる。
【0156】
また、推定装置10は、異常の発生に対して相互に関連する複数の製造処理に関する処理データを取得する。そして、推定装置10は、相互に関連する複数の製造処理のうち第1製造処理に関する処理データと、他の製造装置2Aによるおむつの製造処理に関するログデータとに基づいて、相互に関連する複数の製造処理のうち第2製造処理における異常を推定する。
【0157】
これにより、推定装置10は、複数の製造処理のうち、或る製造処理に関する処理データに基づいて、他の製造処理における異常を推定することができる。
【0158】
また、他の製造装置2Aによるおむつの製造処理に関するログデータは、他の製造装置2Aに設けられたセンサ30Aによって取得されたセンサデータである。具体的には、他の製造装置2Aに設けられたセンサ30Aは、おむつの製造処理における振動を検出する振動センサ、おむつの製造処理における温度を検出する温度センサ、およびおむつの製造処理における圧力を検出する圧力センサの少なくとも一つを含む。
【0159】
これにより、推定装置10は、他の製造装置2Aに設けられたセンサ30Aによって取得されたセンサデータに基づいて学習された学習モデルを用いて製造装置2における異常を推定する。そのため、推定装置10は、実際に取得されたセンサデータに基づいて製造装置2における異常を推定することができ、異常の推定精度を向上させることができる。
【0160】
また、推定装置10は、おむつの加工元となる連続体である連続シートを異なる位置で加工する複数の製造処理に関する処理データを取得する。
【0161】
これにより、推定装置10は、或る製造処理に関する処理データに基づいて、他の製造処理における異常を推定することができる。
【0162】
以上、本願の実施形態を図面に基づいて詳細に説明した。しかしながら、これらは例示であり、本願の実施形態は、発明の開示の欄に記載の態様を始めとして、所謂当業者の知識に基づいて種々の変形、改良を施した他の形態で実施することが可能である。また、上述してきた「部(section、module、unit)」は、「手段」や「回路」などに読み替えることができる。
【符号の説明】
【0163】
1 製造システム
2 製造装置
10 推定装置
12 制御部
13 記憶部
20 取得部
21 推定部
23 学習部