(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B1)
(11)【特許番号】
(24)【登録日】2024-02-27
(45)【発行日】2024-03-06
(54)【発明の名称】銅合金板材および絞り加工部品
(51)【国際特許分類】
C22C 9/00 20060101AFI20240228BHJP
C22C 9/10 20060101ALI20240228BHJP
C22F 1/08 20060101ALN20240228BHJP
C22F 1/00 20060101ALN20240228BHJP
【FI】
C22C9/00
C22C9/10
C22F1/08 Q
C22F1/08 B
C22F1/00 606
C22F1/00 623
C22F1/00 630A
C22F1/00 630K
C22F1/00 631A
C22F1/00 650F
C22F1/00 661A
C22F1/00 681
C22F1/00 682
C22F1/00 683
C22F1/00 685A
C22F1/00 691B
C22F1/00 691C
C22F1/00 692B
C22F1/00 692A
C22F1/00 694A
C22F1/00 602
C22F1/00 685Z
C22F1/00 686B
C22F1/00 691A
C22F1/00 694B
(21)【出願番号】P 2023555792
(86)(22)【出願日】2023-04-26
(86)【国際出願番号】 JP2023016415
【審査請求日】2023-09-12
(31)【優先権主張番号】P 2022112739
(32)【優先日】2022-07-13
(33)【優先権主張国・地域又は機関】JP
【早期審査対象出願】
(73)【特許権者】
【識別番号】000005290
【氏名又は名称】古河電気工業株式会社
(74)【代理人】
【識別番号】100114292
【氏名又は名称】来間 清志
(74)【代理人】
【識別番号】100145713
【氏名又は名称】加藤 竜太
(72)【発明者】
【氏名】秋谷 俊太
(72)【発明者】
【氏名】川田 紳悟
(72)【発明者】
【氏名】高澤 司
【審査官】川村 裕二
(56)【参考文献】
【文献】特開2021-110015(JP,A)
【文献】特開2013-194246(JP,A)
【文献】国際公開第2013/031841(WO,A1)
【文献】国際公開第2019/176838(WO,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C22C 9/00- 9/10
C22F 1/00- 1/18
(57)【特許請求の範囲】
【請求項1】
Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、
EBSD法により測定されるβ-fiber(Φ
2=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、
圧延平行方向の引張強さは420MPa以上700MPa以下であり、
導電率は65%IACS以上90%IACS以下である、銅合金板材。
【請求項2】
前記β-fiberの方位密度の最大値は、9.0以上である、請求項1に記載の銅合金板材。
【請求項3】
EBSD法により測定される平均KAM値は、0.5°以上2.0°以下である、請求項1に記載の銅合金板材。
【請求項4】
EBSD法により測定される、(100)面の法線と前記銅合金板材の板面法線とのなす角度が10°以内である原子面を有する領域の面積率は、10%以下である、請求項1に記載の銅合金板材。
【請求項5】
前記合金組成は、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の元素を
、合計で0.10質量%以上1.00質量%以下
、かつMgを0.30質量%以下、Snを0.30質量%以下、Znを0.50質量%以下、Feを0.30質量%以下、Siを0.40質量%以下、およびZrを0.30質量%以下含有する、請求項1に記載の銅合金板材。
【請求項6】
前記銅合金板材が絞り加工用銅合金板材である、請求項1に記載の銅合金板材。
【請求項7】
請求項1~6のいずれか1項に記載の銅合金板材を用いた絞り加工部品。
【発明の詳細な説明】
【技術分野】
【0001】
本開示は、銅合金板材および絞り加工部品に関する。
【背景技術】
【0002】
近年、各分野における高性能化に伴い、絞り加工を施す部材には、高い絞り加工性が要求されている。
【0003】
例えば、特許文献1には、Cu-Cr-Sn-Zn系合金のKAM値とβ-fiberの方位密度とを所定範囲に制御することで、残留応力を低減してエッチング特性を改善した銅合金板が記載されている。
【0004】
しかしながら、特許文献1には、銅合金板の絞り加工性について言及されていない。また、特許文献1では、β-fiberの方位密度の最大値の上限が規定されている一方で、β-fiberの方位密度の最大値の下限は規定されていない。それに加えて、特許文献1では、銅合金板の製造中に、β-fiberの方位密度の平均値を高めるための工程が施されておらず、さらには溶体化処理が行われる。こうした理由から、β-fiberの方位密度の平均値は低いと推定されることから、絞り加工性は低いと考えられる。また、特許文献1では、銅合金板の製造中にテンションレベリングを行っていることから、KAM値が低く、機械的強度も低い。
【先行技術文献】
【特許文献】
【0005】
【発明の概要】
【発明が解決しようとする課題】
【0006】
本開示の目的は、優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有する銅合金板材、および銅合金板材を用いた絞り加工部品を提供することである。
【課題を解決するための手段】
【0007】
[1] Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、EBSD法により測定されるβ-fiber(Φ2=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、圧延平行方向の引張強さは420MPa以上700MPa以下であり、導電率は65%IACS以上90%IACS以下である、銅合金板材。
[2] 前記β-fiberの方位密度の最大値は、9.0以上である、上記[1]に記載の銅合金板材。
[3] EBSD法により測定される平均KAM値は、0.5°以上2.0°以下である、上記[1]または[2]に記載の銅合金板材。
[4] EBSD法により測定される、(100)面の法線と前記銅合金板材の板面法線とのなす角度が10°以内である原子面を有する領域の面積率は、10%以下である、上記[1]~[3]のいずれか1つに記載の銅合金板材。
[5] 前記合金組成は、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の元素を合計で0.10質量%以上1.00質量%以下含有する、上記[1]~[4]のいずれか1つに記載の銅合金板材。
[6] 前記銅合金板材が絞り加工用銅合金板材である、上記[1]~[5]のいずれか1つに記載の銅合金板材。
[7] 上記[1]~[6]のいずれか1つに記載の銅合金板材を用いた絞り加工部品。
【発明の効果】
【0008】
本開示によれば、優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有する銅合金板材、および銅合金板材を用いた絞り加工部品を提供することができる。
【図面の簡単な説明】
【0009】
【
図1】
図1は、EBSDにより測定し、結晶粒方位分布関数解析から得られた銅合金板材の結晶方位分布図の一例である。
【発明を実施するための形態】
【0010】
以下、実施形態を詳細に説明する。
【0011】
本発明者らは、鋭意研究を重ねた結果、所定の合金組成を有し、β-fiberの方位密度を高める工程を行ってβ-fiberの方位密度の平均値を高く制御することで、銅合金板材が優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有することを見出し、かかる知見に基づき本開示を完成させるに至った。
【0012】
実施形態の銅合金板材は、Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、EBSD法により測定されるβ-fiber(Φ2=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、圧延平行方向の引張強さは420MPa以上700MPa以下であり、導電率は65%IACS以上90%IACS以下である。
【0013】
まず、銅合金板材の合金組成について説明する。
【0014】
上記実施形態の銅合金板材は、Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有する。
【0015】
<Cr:0.10質量%以上1.00質量%以下>
Cr(クロム)は、銅合金板材の強度を高めるために必要な元素であり、Crを0.10質量%以上1.00質量%以下含有することが必要である。Crの含有量が0.10質量%以上であると、銅合金板材の機械的強度が増加する。また、Crの含有量が1.00質量%以下であると、粗大な第二相の生成が抑制されるため、絞り加工性が向上する。粗大な第二相は、絞り加工時にクラックの起点になりやすい。このため、Crの含有量の下限値は、0.10質量%以上、好ましくは0.20質量%以上、より好ましくは0.30質量%以上である。また、Crの含有量の上限値は、1.00質量%以下、好ましくは0.80質量%以下、より好ましくは0.70質量%以下である。
【0016】
<銅合金板材の副成分:0.10質量%以上1.00質量%以下>
銅合金板材の合金組成は、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の元素を合計で0.10質量%以上1.00質量%以下含有することができる。すなわち、銅合金板材は、必須の基本成分であるCrに加えて、任意成分である副成分として、さらに、Mg、Sn、Zn、Fe、SiおよびZrからなる群より選択される1種以上の成分を合計で0.10質量%以上1.00質量%以下含有することができる。
【0017】
<Mg:0.10質量%以上0.30質量%以下>
Mg(マグネシウム)の含有量が0.10質量%以上であると、銅合金板材の耐応力緩和特性を向上できる。Mgの含有量が0.30質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Mgの含有量の下限値は0.10質量%以上であることが好ましく、Mgの含有量の上限値は0.30質量%以下であることが好ましい。
【0018】
<Sn:0.10質量%以上0.30質量%以下>
Sn(スズ)の含有量が0.10質量%以上であると、銅合金板材の耐応力緩和特性を向上できる。Snの含有量が0.30質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Snの含有量の下限値は0.10質量%以上であることが好ましく、Snの含有量の上限値は0.30質量%以下であることが好ましい。
【0019】
<Zn:0.10質量%以上0.50質量%以下>
Zn(亜鉛)の含有量が0.10質量%以上であると、Snめっきの密着性やマイグレーション特性を改善できる。Znの含有量が0.50質量%以下であると、銅合金板材の導電率の低下を抑制できる。このため、Znの含有量の下限値は0.10質量%以上であることが好ましく、Znの含有量の上限値は0.50質量%以下であることが好ましい。
【0020】
<Fe:0.05質量%以上0.30質量%以下>
Fe(鉄)の含有量が0.05質量%以上であると、熱間圧延中の動的再結晶後の粒成長を抑制し、絞り加工部品の肌荒れを抑制できる。Feの含有量が0.30質量%以下であると、鋳造時における粗大なFe含有晶出物の生成が抑制されるため、絞り加工性が向上する。粗大なFe含有晶出物は、絞り加工時にクラックの起点になりやすい。このため、Feの含有量の下限値は0.05質量%以上であることが好ましく、Feの含有量の上限値は0.30質量%以下であることが好ましい。
【0021】
<Si:0.02質量%以上0.40質量%以下>
Si(ケイ素)の含有量が0.02質量%以上であると、他の添加元素、例えば、MgやCrとSi化合物を形成し、銅合金板材の強度が増加する。Siの含有量が0.40質量%以下であると、銅合金板材の熱伝導率の低下を抑制でき、十分な放熱性が得られる。このため、Siの含有量の下限値は、好ましくは0.02質量%であり、Siの含有量の上限値は、好ましくは0.40質量%である。
【0022】
<Zr:0.05質量%以上0.30質量%以下>
Zr(ジルコニウム)の含有量が0.05質量%以上であると、熱間圧延中の動的再結晶後の粒成長を抑制し、絞り加工部品の肌荒れを抑制できる。Zrの含有量が0.30質量%以下であると、鋳造時における粗大なZr含有晶出物の生成が抑制されるため、絞り加工性が向上する。粗大なZr含有晶出物は、絞り加工時にクラックの起点になりやすい。このため、Zrの含有量の下限値は0.05質量%以上であることが好ましく、Zrの含有量の上限値は0.30質量%以下であることが好ましい。
【0023】
<残部:Cuおよび不可避不純物>
上述した成分以外の残部は、Cu(銅)および不可避不純物である。不可避不純物は、製造工程上、不可避的に混入してしまう含有レベルの不純物を意味する。不可避不純物の含有量によっては銅合金板材の特性に影響を及ぼす要因になりうるため、不可避不純物の含有量は少ないことが好ましい。不可避不純物としては、例えば、S(硫黄)、C(炭素)、O(酸素)などの非金属元素、およびSb(アンチモン)などの元素が挙げられる。なお、不可避不純物の含有量の上限値は、上記元素毎に500ppm以下であることが好ましく、上記元素の合計で2000ppm以下であることが好ましい。
【0024】
次に、銅合金板材の引張強さについて説明する。
【0025】
銅合金板材の圧延平行方向の引張強さ(以下、単に引張強さともいう)は、420MPa以上700MPa以下である。銅合金板材の引張強さが420MPa以上であると、強度を向上できる。そのため、銅合金板材は、高い強度が要求されるモジュールケースやコネクタ等に好適である。このように、銅合金板材の引張強さは大きいほど好ましい。例えば、銅合金板材の引張強さは、420MPa以上、好ましくは500MPa以上、より好ましくは600MPa以上である。また、銅合金板材の引張強さは、例えば700MPa以下である。
【0026】
銅合金板材の引張強さは、JIS Z 2241:2011に準拠し、13B号試験片を用いて、銅合金板材に対して圧延平行方向に引張試験を行うことによって測定することができる。
【0027】
次に、銅合金板材の導電率について説明する。
【0028】
銅合金板材の導電率は、65%IACS以上90%IACS以下である。銅合金板材の導電率が65%IACS以上であると、通電時のジュール熱を低減できる。また、電磁波シールド性を向上できる。熱伝導率は、ウィーデマン・フランツの法則(Wiedemann-Franz law)によって、導電率から算出することができ、温度が一定であれば、金属の種類によらず、導電率と比例関係にあることが知られていることから、銅合金板材の導電率が増加すると、銅合金板材の放熱性を向上できる。そのため、銅合金板材の導電率が65%IACS以上であると、銅合金板材は、高い電流を通電するコネクタや、高い電磁波シールド性や熱伝導率が要求されるモジュールケースに好適である。また、銅合金板材の導電率の上限値は、例えば90%IACS以下である。
【0029】
銅合金板材の導電率は、4端子法により測定することができる。
【0030】
次に、銅合金板材のβ-fiberの方位密度について説明する。
【0031】
銅合金板材について、EBSD法により測定されるβ-fiber(Φ2=45°~90°)の方位密度の平均値(以下、単にβ-fiberの方位密度の平均値ともいう)は6.0以上10.0以下である。銅合金板材におけるβ-fiberの方位密度の平均値が上記範囲内であると、絞り加工部品の形状の均一性を高くできる。β-fiberの方位密度の平均値が6.0未満であると、絞り加工部品のうねり(みみ、フランジ)の頂点高さが低下し、その結果、順送プレス時のブリッジが形成しづらくなる。また、β-fiberの方位密度の平均値が10.0超であると、銅合金板材の機械的特性の異方性が強くなるため、銅合金板材を絞り加工する際にプレス設計の制約になるという問題がある。上記理由や絞り加工部品の形状を均一にする観点から、銅合金板材のβ-fiberの方位密度の平均値は、6.0以上10.0以下であり、好ましくは7.0以上10.0以下、より好ましくは8.0以上10.0以下である。
【0032】
また、銅合金板材において、EBSD法により測定されるβ-fiber(Φ2=45°~90°)の方位密度の最大値(以下、単にβ-fiberの方位密度の最大値ともいう)は、好ましくは9.0以上である。銅合金板材のβ-fiberの方位密度の最大値が9.0以上であると、β-fiberに属する特定の結晶方位の配向度が高くなり、絞り加工品の形状の均一性が高くなりやすい。
【0033】
方位密度とは、結晶粒方位分布関数(ODF:crystal orientation distribution function)とも表され、集合組織の結晶方位の存在比率および分散状態を定量的に解析する際に用いる。方位密度は、EBSDおよびX線回折測定結果により、(100)正極点図、(110)正極点図、(111)正極点図などの3種類以上の正極点図の測定データを基にして、級数展開法による結晶方位分布解析法により算出される。
【0034】
次に、銅合金板材の平均KAM値について説明する。
【0035】
銅合金板材における、EBSD法により測定される平均KAM値(以下、単に平均KAM値ともいう)について、下限値は、好ましくは0.5°以上、より好ましくは0.6°以上、さらに好ましくは0.7°以上であり、上限値は、好ましくは2.0°以下、より好ましくは1.9°以下、さらに好ましくは1.8°以下である。銅合金板材の平均KAM値が0.5°以上2.0°以下であると、絞り加工時のコーナーRと材料強度とのバランスが良好になる。具体的には、銅合金板材の平均KAM値が0.5°以上であると、材料強度が向上する。また、銅合金板材の平均KAM値が2.0°以下であると、絞り加工時のコーナーRを小さくすることが容易になる。
【0036】
KAM(Kernel Average Misorientation)値とは、測定点とその隣接する全ての測定点との間の結晶方位差の平均値である。KAM値は、転位密度と相関があり、結晶の格子歪量に対応するものである。
【0037】
EBSD測定による結晶方位の測定および解析において、β-fiberの方位密度の解析にはEBSD(Electron BackScatter Diffraction)法を用いる。EBSD法とは、走査型電子顕微鏡(SEM)内で試料である銅合金板材に電子線を照射したときに生じる反射電子菊池線回折を利用した結晶方位解析技術のことである。測定部分は、銅合金板材の圧延方向に平行な面(銅合金板材の主面)を電解研磨で鏡面仕上げした面とし、測定領域は500μm×500μm(250000μm2)とし、スキャンステップは、微細な結晶粒を測定するため、0.2μmとして、EBSD測定を行う。なお、測定面は、圧延方向に平行な断面でも構わない。その場合は、機械研磨、コロイダルシリカでバフ研磨して面出しを行ったのち、500μm×板厚分の測定を行う。EBSD測定結果から、解析にてβ-fiber、KAM値を得ることができる。電子線は、電界放射型走査型電子顕微鏡の電界放出型電子銃を発生源とする。測定時のプローブ径は、約0.015μmとする。解析ソフトには、(株)TSLソリューションズ社製のOIM Analysis7(商品名)を用いる。EBSDによる結晶粒の解析において得られる情報は、電子線が銅合金板材に侵入する、表面から数10nmの深さまでの情報を含んでいる。また、解析では5°以上の方位差を結晶粒界と定義し、信頼性指数CI値が0.1以上の測定点および2ピクセル以上からなる結晶粒を解析の対象とし、Tolerance angleを10°とする。また、結晶方位の面積率の解析には、等価な方位を含める。
【0038】
図1は、EBSDにより測定し、結晶粒方位分布関数(ODF:crystal orientation distribution function)解析から得られた銅合金板材の結晶方位分布図の一例である。
図1に示す銅合金板材の結晶方位分布図は、圧延面内の2軸直交方向である、圧延方向と平行な方向RDおよび板幅方向TDと、圧延面の法線方向NDの3方向のオイラー角で示し、RD軸の方位回転をΦ、ND軸の方位回転をΦ
1、TD軸の方位回転をΦ
2とする。
【0039】
結晶方位をオイラー角表示した際のΦ2の範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の平均値を、EBSD法により測定されるβ-fiberの方位密度の平均値とする。また、結晶方位をオイラー角表示した際のΦ2の範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の最大値を、EBSD法により測定されるβ-fiberの方位密度の最大値とする。
【0040】
また、測定領域における全解析対象点のKAM値の平均値を、EBSD法により測定される平均KAM値とする。
【0041】
また、EBSD法により測定される、(100)面の法線と銅合金板材の板面(主面)法線とのなす角度が10°以内である原子面を有する領域の面積率(以下、単に10°以内の面積率)は、好ましくは10%以下、より好ましくは8%以下である。すなわち、EBSD法の結晶方位解析において、銅合金板材の板面法線方向に向く原子面の集積に関して、全測定点(測定領域)に占める、結晶の(100)面の法線と銅合金板材の板面法線との角度差10°以下の測定点の面積率は、好ましくは10%以下、より好ましくは8%以下である。上記面積率が10%以下であると、絞り加工部品の形状の均一性(うねりの均一性)を向上できる。また、円筒型の絞り加工部品の縁のうねりにおける頂点高さの標準偏差を小さくできる。その結果、順送プレス時のブリッジの長さのばらつきを抑制でき、位置決め性が向上する、破断に起因する歩留まりが向上するなどの効果を得られる。
【0042】
実施形態の銅合金板材は、絞り加工性、機械的強度、放熱性に優れているため、絞り加工用銅合金板材として好適である。絞り加工前の銅合金板材である絞り加工用銅合金板材に絞り加工を施した絞り加工部品、すなわち銅合金板材を用いた絞り加工部品は、電子機器用のコネクタ、リードフレーム、リレー、スイッチ、ソケット、シールドケース、シールドキャン、カメラモジュール、液晶や有機ELディスプレイの放熱部品、バッテリー、MEMSマイク等のMEMSデバイスのケース、自動車車載用のコネクタなどに好適に用いられる。そのなかでも、高い放熱性が要求されるコネクタのホールドダウンやシェル、カメラモジュールケース、バッテリーケース、シールドケース、振動デバイスのケースに好適に用いられる。
【0043】
次に、上記実施形態の銅合金板材を製造する方法の一例について説明する。溶解鋳造[工程1]して得られる上記合金組成を有する鋳塊に対して、再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]、冷間圧延[工程6]、時効熱処理[工程7]、 冷間圧延[工程8]、低温焼鈍[工程9]を順次行い、上記実施形態の銅合金板材を製造できる。溶体化処理およびテンションレベリングは行わない。また、再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]は連続的に行う。再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]の連続工程により発生した表面酸化膜は、冷間圧延[工程6]を実施する前に適宜面削を行うことで除去してもよい。
【0044】
溶解鋳造[工程1]では、合金成分を溶解し、鋳造することによって、上記合金組成を有する銅合金鋳塊を得る。例えば、溶解は高周波溶解炉を用いて大気下で行う。合金成分の種類、鋳造条件などは適宜設定される。
【0045】
再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]は、再熱炉で銅合金鋳塊を所定の温度で所定の時間保持して均質化する熱処理を行う再熱[工程2]、熱処理直後に動的再結晶を伴う熱間圧延を行う熱間圧延[工程3]、熱間圧延後に動的再結晶を伴わない温間圧延を行う温間圧延[工程4]、温間圧延直後に冷却する冷却[工程5]から構成される、4つの連続した素工程から構成される。
【0046】
再熱[工程2]では、銅合金鋳塊を990℃以上1050℃以下の温度範囲で1時間以上10時間以内熱処理する。熱処理温度が990℃未満である場合、温間圧延[工程4]における材料温度が低くなりやすく、温間圧延[工程4]での所望の効果が得られない。熱処理温度が1050℃超である場合、結晶粒界が弱くなり、熱間圧延[工程3]時にクラックが発生しやすい。
【0047】
再熱[工程2]直後に、動的再結晶を伴う熱間圧延[工程3]を行う。熱間圧延[工程3]は、動的再結晶を伴う条件で行えばよい。例えば、再熱温度から750℃までの間に、圧延開始前の厚さと750℃到達までに完了したパス後の厚さとから計算した加工率が50%以上となるように、熱間圧延を行う。動的再結晶が十分に発生しない場合、不均一な組織になりやすい。熱間圧延中の材料温度は、放射温度計で測定することができる。
【0048】
熱間圧延[工程3]に続いて温間圧延[工程4]を行い、動的再結晶を伴わない条件で圧延を継続する。温間圧延[工程4]では、材料温度が700℃から500℃の間で、700℃に到達するパス前の厚さと500℃に到達するパス後の厚さとから計算した加工率が50%以上となるように温間圧延を行う。温間圧延中の材料温度は、放射温度計で測定することができる。この条件により、結晶の回転を促進させて、β-fiberの方位密度を高めて、絞り加工性を向上することができる。700℃より高い温度で圧延を行うと、動的再結晶が生じる可能性があり、β-fiberの方位密度を向上させる効果はない。500℃未満の温度まで圧延を継続すると、析出物が粗大に成長しやすくなるため、材料強度を損なうことと、絞り加工部品の形状均一性を損なう(100)面が最終的に板面に配向する傾向とがある。また、加工率が50%未満である場合、β-fiberの方位密度が低下する。
【0049】
温間圧延[工程4]後には、冷却[工程5]を行う。冷却[工程5]では、水冷や油冷により室温まで冷却する。冷却速度は、例えば50℃/s以上である。冷却開始温度は、500~550℃とする。
【0050】
再熱[工程2]、熱間圧延[工程3]、温間圧延[工程4]、冷却[工程5]の連続工程の後には、冷間圧延[工程6]を行う。冷間圧延[工程6]は、90%以上の加工率、かつ各パス加工率の平均加工率が20%以上であれば、最終製品板厚に応じて条件を適宜選択できる。加工率が90%未満である場合、β-fiberの方位密度が低下する。また、平均加工率が20%未満である場合、板表面のせん断変形が多くなり、β-fiberの方位密度が低下する。また、平均加工率の上限は、特に設定されるものではないが、工業的な冷間圧延機では70%程度である。
【0051】
時効熱処理[工程7]では、連続した二段階の熱処理を行う。第一段階の熱処理後、降温して第二段階の熱処理を行い、その後に室温まで冷却する。第一段階の熱処理は、400℃以上550℃以下で0.5時間以上4時間以内保持する。第二段階の熱処理は、150℃以上250℃以下で0.5時以上4時間以内保持する。昇温速度は50~200℃/h、冷却速度は100~200℃/hである。第一段階の熱処理について、温度が低いもしくは時間が短い場合、Cr化合物の析出が不十分であり、導電率が低下する。第一段階の熱処理について、温度が高いもしくは時間が長い場合、析出物が粗大化しやすく、強度を損なう。また、第二段階の熱処理について、温度が低いもしくは時間が短い場合、歪が過剰となり、低温焼鈍[工程9]での調質を経ても、平均KAM値が過大となる。第二段階の熱処理について、温度が高いもしくは時間が長い場合、析出物が粗大化しやすく、強度を損なう。
【0052】
冷間圧延[工程8]は、加工率5%以上50%以下で行う。加工率が5%未満である場合、強度が不十分である。また、加工率が50%超である場合、低温焼鈍[工程9]での調質を経ても歪が過剰となり、平均KAM値が過大となる。
【0053】
低温焼鈍[工程9]では、温度200~400℃で10秒から30分保持する熱処理を行い、その後に室温まで冷却する。昇温速度および冷却速度は、1~100℃/sである。熱処理の温度が低いもしくは熱処理の時間が短い場合、歪が過剰となり、平均KAM値が過大となる。熱処理の温度が高いもしくは熱処理の時間が長い場合、析出物が粗大化し、強度を損なう。
【0054】
以上説明した実施形態によれば、所定の合金組成を有し、β-fiberの方位密度の平均値を高く制御することで、銅合金板材は優れた絞り加工性を有すると共に、十分な機械的強度および導電率を有することができる。
【0055】
以上、実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、本開示の概念および特許請求の範囲に含まれるあらゆる態様を含み、本開示の範囲内で種々に改変することができる。
【実施例】
【0056】
次に、実施例および比較例について説明するが、本開示はこれら実施例に限定されるものではない。
【0057】
(実施例1~23および比較例1~11)
溶解鋳造[工程1]にて、高周波溶解炉により、大気下で各合金成分を溶解し、金型モールドで鋳造して、表1に示す合金組成、不可避不純物、および表2に示す板厚を有する板材を得た。続いて、990℃以上1050℃以下の温度範囲で1時間以上10時間以内熱処理する再熱[工程2]、表2に示す条件で熱間圧延[工程3]、温間圧延[工程4]および冷却[工程5]を連続して行った。続いて、表2に示す条件で面削を行って、表面酸化膜を除去した。続いて、表2に示す条件で冷間圧延[工程6]を行った。続いて、表2に示す条件で時効熱処理[工程7]を行った。続いて、表2に示す条件で冷間圧延[工程8]を行った。続いて、昇温速度1~100℃/s、温度200~400℃で10秒から30分保持する熱処理を行い、その後に冷却速度1~100℃/sで室温まで冷却する低温焼鈍[工程9]を行うことで、表2に示す最終板厚を有する銅合金板材を得た。
【0058】
【0059】
【0060】
[測定および評価]
上記実施例および比較例で得られた銅合金板材について、下記の測定および評価を行った。結果を表3に示す。
【0061】
[1] EBSD法により測定されるβ-fiberの方位密度の平均値、β-fiberの方位密度の最大値、平均KAM値、および(100)面の法線と銅合金板材の板面法線とのなす角度が10°以内である原子面を有する領域の面積率(10°以内の面積率)
EBSD解析として、測定部分は、上記実施例および比較例で得られた銅合金板材の圧延方向に平行な面を電解研磨で鏡面仕上げした面とし、測定領域は500μm×500μmとし、スキャンステップは0.2μmとして、EBSD測定を行った。電子線は、電界放射型走査型電子顕微鏡の電界放出型電子銃を発生源とした。測定時のプローブ径は、約0.015μmとした。解析ソフトには、(株)TSLソリューションズ社製のOIM Analysis7(商品名)を用いた。また、解析では5°以上の方位差を結晶粒界と定義し、信頼性指数CI値が0.1以上の測定点および2ピクセル以上からなる結晶粒を解析の対象とし、Tolerance angleを10°とした。また、結晶方位の面積率の解析には、等価な方位を含めた。
【0062】
結晶方位をオイラー角表示した際のΦ2の範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の平均値を、EBSD法により測定されるβ-fiberの方位密度の平均値とした。また、結晶方位をオイラー角表示した際のΦ2の範囲が45~90°におけるランダム方位試料を基準としたときのODF強度の最大値を、EBSD法により測定されるβ-fiberの方位密度の最大値とした。また、測定領域における全解析対象点のKAM値の平均値を、EBSD法により測定される平均KAM値とした。また、測定領域に占める結晶の(100)面の法線と銅合金板材の板面法線との角度差10°以下の測定点の面積率を、EBSD法により測定される10°以内の面積率とした。
【0063】
[2] 引張強さ
JIS Z 2241:2011に準拠し、13B号試験片を用いて、上記実施例および比較例で得られた銅合金板材に対して圧延平行方向に引張試験を行った。2つの銅合金板材の測定値(N=2)を平均することで、銅合金板材の圧延平行方向の引張強さを算出した。
【0064】
[3] 導電率
上記実施例および比較例で得られた銅合金板材に対して、4端子法により導電率測定を行った。2つの銅合金板材の測定値(N=2)を平均することで、銅合金板材の導電率を算出した。
【0065】
[4] 絞り加工試験
板厚0.3mmの銅合金板材から直径61mmのブランクをプレス打ち抜きで作り、ブランクを直径33mmのパンチで絞り加工を行った。パンチの先端Rは、0.50mm、0.75mm、1.00mmとした。絞り加工は、潤滑油(R303P)を銅合金板材に塗布して行った。
【0066】
パンチ先端Rの評価について、以下の基準に沿ってランク付けした。銅合金板材が破断することなく絞れた最小の先端Rが0.50mmの場合を◎、銅合金板材が破断することなく絞れた最小の先端Rが0.75mmの場合を○、銅合金板材が破断することなく絞れた最小の先端Rが1.00mmの場合を△、上記いずれの先端Rでも銅合金板材が破断した場合を×とした。そして、上記いずれの先端Rでも銅合金板材が破断した場合、絞り加工部品の形状に関する以下の評価は行わなかった。
【0067】
また、うねりの頂点と谷の高低差の評価(うねりの頂点高さの平均値)について、以下の基準に沿ってランク付けした。高低差の平均(頂点高さの平均-谷高さの平均)が1.00以上1.25mm以下を◎、高低差の平均が0.75mm以上1.00mm未満を○、高低差の平均が0.25mm以上0.75mm未満を△、高低差の平均が上記以外を×とした。
【0068】
また、うねりの頂点の高さの標準偏差について、以下の基準に沿ってランク付けした。うねりの頂点の高さの標準偏差が0.1mm以下を◎、うねりの頂点の高さの標準偏差が0.1超0.2mm以下を○、うねりの頂点の高さの標準偏差が0.2mm超を×とした。
【0069】
パンチ先端Rの評価およびうねりの頂点高さの平均値の評価のどちらも×がないものを合格とし、これら評価のうちの少なくとも1つが×であるものを不合格とする。
【0070】
【0071】
表1~3に示すように、実施例1~23では、Cr含有率、β-fiberの方位密度の平均値、引張強さ、導電率がそれぞれ所定範囲内に制御されていたため、絞り加工性、機械的強度および導電率がいずれも良好であった。
【0072】
そのなかでも、実施例1~4、6、8~9、11は、平均KAM値が低く、パンチ先端Rの評価が特に良好であった。ただし、実施例11~12では、冷間圧延[工程8]の加工率がこれら実施例よりも低く、強度を加味した平均KAM値の好ましい範囲(0.5°以上)より低く、強度はやや低めになった。
【0073】
また、実施例3~8、10、12~23は、β-fiberの方位密度の平均値が特に好ましく、絞り加工部品に対するうねりの頂点高さの平均値および標準偏差の評価がどちらも良好であった。また、実施例9は、温間圧延[工程4]後に行われた冷却[工程5]の冷却開始温度が他の実施例よりも低く、(100)面の板面への集積が高めになり、これら実施例に比べて、うねりの頂点高さの平均値および標準偏差の評価がいずれもやや低下した。
【0074】
実施例12では、実施例のなかでもCr含有量が少なく、強度は低めであったが、導電率が最も高かった。一方、実施例21では、Cr含有量および副成分量が多く、強度は最も高かったが、導電率が低めであった。
【0075】
一方、比較例1では、温間圧延[工程4]の加工率が低く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例2では、冷却[工程5]の冷却開始温度が高く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例3では、冷間圧延[工程6]の加工率が低く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例4では、時効熱処理[工程7]における第一段階の熱処理温度が低く、導電率が低かった。また、比較例5では、時効熱処理[工程7]における第一段階の熱処理温度が高く、強度が低かった。また、比較例6では、時効熱処理[工程7]における第二段階の熱処理温度が高く、強度が低かった。また、比較例7では、冷間圧延[工程6]における各パス加工率の平均加工率が低く、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例8では、冷間圧延[工程8]の加工率が低く、強度が低かった。また、比較例9では、Cr含有量が少なく、強度が低かった。また、比較例10では、温間圧延[工程4]を行わず、β-fiberの方位密度の平均値が低く、うねりの頂点高さの平均値の評価が悪かった。また、比較例11では、Cr含有量が多く、導電率が低く、絞り加工もできず、パンチ先端Rの評価が悪かった。そのため、絞り加工部品の形状に関する評価は未実施であった。
【要約】
銅合金板材は、Crを0.10質量%以上1.00質量%以下含有し、残部がCuおよび不可避不純物である合金組成を有し、EBSD法により測定されるβ-fiber(Φ2=45°~90°)の方位密度の平均値は6.0以上10.0以下であり、圧延平行方向の引張強さは420MPa以上700MPa以下であり、導電率は65%IACS以上90%IACS以下である。