IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ケーエルエー−テンカー コーポレイションの特許一覧

特許7446314EUV光学系用硼素ベースキャッピング層
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-02-29
(45)【発行日】2024-03-08
(54)【発明の名称】EUV光学系用硼素ベースキャッピング層
(51)【国際特許分類】
   G03F 7/20 20060101AFI20240301BHJP
   G03F 1/84 20120101ALI20240301BHJP
【FI】
G03F7/20 503
G03F1/84
【請求項の数】 19
(21)【出願番号】P 2021538808
(86)(22)【出願日】2019-12-23
(65)【公表番号】
(43)【公表日】2022-02-25
(86)【国際出願番号】 US2019068220
(87)【国際公開番号】W WO2020142302
(87)【国際公開日】2020-07-09
【審査請求日】2022-12-14
(31)【優先権主張番号】62/788,330
(32)【優先日】2019-01-04
(33)【優先権主張国・地域又は機関】US
(31)【優先権主張番号】16/413,740
(32)【優先日】2019-05-16
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】500049141
【氏名又は名称】ケーエルエー コーポレイション
(74)【代理人】
【識別番号】110001210
【氏名又は名称】弁理士法人YKI国際特許事務所
(72)【発明者】
【氏名】デルガド ギルダルド
(72)【発明者】
【氏名】ヒル シャノン ビー
(72)【発明者】
【氏名】マークス ゼフラム
【審査官】植木 隆和
(56)【参考文献】
【文献】特開2001-059901(JP,A)
【文献】特表2005-516182(JP,A)
【文献】特開2009-109193(JP,A)
【文献】特表2016-514279(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/027
G03F 7/20
G02B 5/08
(57)【特許請求の範囲】
【請求項1】
基板上に配置された第1層と、
第1層上に配置された第2層と、
第2層上に配置された終端層と、
終端層上に配置されたキャッピング層と、
を備え、前記キャッピング層が炭化硼素キャッピング層、硼素キャッピング層及び窒化硼素キャッピング層を構成する光学素子。
【請求項2】
請求項1に記載の光学素子であって、更に、その光学素子を有する極端紫外リソシステム又はその光学素子を有する検査システムが構成される光学素子。
【請求項3】
請求項1に記載の光学素子であって、前記キャッピング層が5nm~30nm以内の厚みを有する光学素子。
【請求項4】
請求項1に記載の光学素子であって、前記キャッピング層が2nm~10nm以内の厚みを有する光学素子。
【請求項5】
請求項1に記載の光学素子であって、前記キャッピング層が2nm~25nm以内の厚みを有する光学素子。
【請求項6】
請求項1に記載の光学素子であって、更に、前記終端層上に配置された拡散障壁を備え、その拡散障壁上に前記キャッピング層が配置されている光学素子。
【請求項7】
請求項6に記載の光学素子であって、前記拡散障壁に炭素が含まれる光学素子。
【請求項8】
請求項1に記載の光学素子であって、更に、前記キャッピング層上に配置された終端キャッピング層を備える光学素子。
【請求項9】
請求項8に記載の光学素子であって、前記終端キャッピング層にルテニウム、二酸化チタン、二酸化ジルコニウム又は酸化ニオブが含まれる光学素子。
【請求項10】
光学素子を作成する方法であって、
第1層が基板上に配置されるよう気相堆積を用い第1層を堆積させ、
第2層が第1層上に配置されるよう気相堆積を用い第2層を堆積させ、
終端層が第2層上に配置されるよう気相堆積を用い終端層を堆積させ、
キャッピング層が終端層上に配置されるよう、気相堆積を用い前記キャッピング層を堆積させ、前記キャッピング層が炭化硼素キャッピング層、硼素キャッピング層及び窒化硼素キャッピング層を構成する方法。
【請求項11】
請求項10に記載の方法であって、前記キャッピング層が5nm~30nm以内の厚みまで堆積される方法。
【請求項12】
請求項10に記載の方法であって、前記キャッピング層が2nm~10nm以内の厚みまで堆積される方法。
【請求項13】
請求項10に記載の方法であって、前記キャッピング層が2nm~25nm以内の厚みまで堆積される方法。
【請求項14】
請求項10に記載の方法であって、前記キャッピング層を、マグネトロンスパッタリングを用い堆積させる方法。
【請求項15】
請求項10に記載の方法であって、更に、その拡散障壁が前記終端層上に配置され且つ前記キャッピング層がその拡散障壁上に配置されるよう、気相堆積を用い拡散障壁を堆積させる方法。
【請求項16】
請求項15に記載の方法であって、前記拡散障壁に炭素が含まれる方法。
【請求項17】
請求項10に記載の方法であって、更に、その終端キャッピング層が前記キャッピング層上に配置されるよう、気相堆積を用い終端キャッピング層を堆積させる方法。
【請求項18】
請求項17に記載の方法であって、前記終端キャッピング層にルテニウム、二酸化チタン、二酸化ジルコニウム又は酸化ニオブが含まれる方法。
【請求項19】
請求項1に記載の光学素子であって、前記終端層と反対側の前記キャッピング層の外表面は、前記基板から最も遠い点である、光学素子。
【発明の詳細な説明】
【技術分野】
【0001】
本件開示は総じて半導体リソグラフィに関する。より具体的には、本件開示は総じてEUV光学系用キャッピング層に関する。
【背景技術】
【0002】
(関連出願への相互参照)
本願では、2019年1月4日付米国仮特許出願第62/788330号に基づき優先権を主張するので、その開示内容全体を参照により本願に繰り入れることとする。
【0003】
半導体製造業界の発展につれ歩留まり管理、とりわけ計量及び検査システムへの要請が強まっている。限界寸法が縮まり続けているだけでなく、業界では高歩留まり高付加価値生産達成所要時間の短縮が求められている。歩留まり問題を察知してからそれを正すまでの合計時間を縮めることが、半導体製造業者にとり投資収益率の決め手となっている。
【0004】
半導体デバイス、例えば論理デバイス及び記憶デバイスを製造する際には、通常、多数の製造プロセスを用い半導体ウェハを処理することで、それら半導体デバイスに備わる様々なフィーチャ(外形特徴)及び複数の階層が形成される。例えばリソグラフィなる半導体製造プロセスにおいては、半導体ウェハ上に配置されたフォトレジストへとレティクルからパターンが転写される。半導体製造プロセスの更なる例としては、これに限られるものではないが化学機械研磨(CMP)、エッチング、堆積及びイオンインプランテーションがある。単一の半導体ウェハ上にある配列をなして複数個の半導体デバイスを作成した後、それらを個別の半導体デバイスに分けるようにするとよい。
【0005】
極端紫外リソグラフィ(EUV)は半導体製造における新興リソグラフィ技術である。EUVシステムは概ねレーザプラズマ光源及び反射光学系を有しており、それらは一般に被制御周囲環境内のモリブデン(Mo)シリコン(Si)多層(Mo:Si)により構成されている。
【先行技術文献】
【特許文献】
【0006】
【文献】米国特許第7300724号
【文献】国際公開第2012/136420号
【発明の概要】
【発明が解決しようとする課題】
【0007】
EUV輻射用光学系は、一般にモリブデン及びシリコンの多層スタックを有しており、通常はそれらが数ナノメートル厚とされている。その光学性能は、動作中におけるシリコン層及びモリブデン層の酸化、並びに最上面上での炭素のビルドアップによりひどく劣化する。シリコン酸化を防ぐため及び炭素汚染の清掃を可能とするため、キャッピング層(又は複数個のキャッピング層)が付加される。硼素は、シリコンとの安定界面を形成し、酸化に抗い、EUV吸収率が低い点でこの目的によく適しており、低温スパッタリングプロセス及びより高温での化学気相堆積を用い不断層の態で堆積させることができる。
【0008】
既存のルテニウムベースキャッピング層は、紫外線オゾン(UVO)法やプラズマ法等の酸化清掃法に耐えうるほど頑丈ではない。その清掃には水素原子(H)の使用が必須であり、水素(H)の大規模流が必要になる。これにより、その光学システムの費用、設計複雑度及び安全性リスクが顕著に増加する。
【0009】
既存の酸化金属キャッピング層、例えば二酸化チタン(TiO)、酸化ジルコニウム(ZrO)、五酸化ニオブ(Nb)等の層は、酸化清掃に耐えうる程度に頑丈であるが、硼素に比べ多くのEUV光を吸収する。そのため、約3nm未満の厚みにしなければならない。これでは、その下地をなすシリコンをEUV露出中の酸化から十分に保護することができない。
【0010】
そのため、EUV光学系用キャッピング層の改善が必要である。
【課題を解決するための手段】
【0011】
本願にて開示するのは、EUV光学系用硼素ベースキャッピング層、並びにその作成方法である。
【0012】
ある実施形態によれば、光学素子を、基板上に配置された第1層と、第1層上に配置された第2層と、第2層上に配置された終端層と、終端層上に配置されたキャッピング層とを、備えるものとすることができる。単一の第1層及び単一の第2層を設けるのでもよいし、複数個の第1層又は複数個の第2層を設けるのでもよい。
【0013】
別の実施形態では光学素子作成方法が提供される。本方法によれば、第1層を堆積させ、第2層を堆積させ、終端層を堆積させ、キャッピング層を堆積させることができる。第1層は、気相堆積を用い堆積させればよく、また基板上に配置されるよう堆積させればよい。第2層は、気相堆積を用い堆積させればよく、また第1層上に配置されるよう堆積させればよい。終端層は、気相堆積を用い堆積させればよく、また第2層上に配置されるよう堆積させればよい。単一の第1層及び単一の第2層を設けるのでもよいし、複数個の第1層又は複数個の第2層を設けるのでもよい。キャッピング層は、気相堆積を用い堆積させればよく、また終端層上に配置されるよう堆積させればよい。
【0014】
本方法にて、更に、拡散障壁を堆積させてもよい。拡散障壁は、気相堆積を用い堆積させればよく、また終端層上に拡散障壁が配置されその拡散障壁上にキャッピング層が配置されるよう堆積させればよい。
【0015】
本方法にて、更に、気相堆積を用い終端キャッピング層を堆積させてもよい。終端キャッピング層は、キャッピング層上に終端キャッピング層が配置されるよう堆積させればよい。
【0016】
キャッピング層が、硼素、窒化硼素若しくは炭化硼素又はそれらの何らかの組合せを含んでいてもよい。
【0017】
キャッピング層を、マグネトロンスパッタリングを用い堆積させてもよい。
【0018】
本光学素子により、その光学素子を有する極端紫外線リソシステムを構成してもよい。或いは、本光学素子により、その光学素子を有する検査システムを構成してもよい。
【0019】
キャッピング層が硼素を含んでいてもよい。そのキャッピング層を、5nm~30nm以内の厚みにしても、即ちその厚みまで堆積させてもよい。
【0020】
キャッピング層が窒化硼素を含んでいてもよい。そのキャッピング層を、2nm~10nm以内の厚みにしても、即ちその厚みまで堆積させてもよい。
【0021】
キャッピング層が炭化硼素を含んでいてもよい。そのキャッピング層を、2nm~25nm以内の厚みにしても、即ちその厚みまで堆積させてもよい。
【0022】
本光学素子に、更に拡散障壁を設けてもよい。拡散障壁を終端層上に配置してもよく、また前記キャッピング層がその拡散障壁上に配置されるようにしてもよい。
【0023】
拡散障壁が炭素を含んでいてもよい。
【0024】
本光学素子に終端キャッピング層を設けてもよい。終端キャッピング層をキャッピング層上に配置してもよい。
【0025】
終端キャッピング層が、ルテニウム、二酸化チタン、二酸化ジルコニウム若しくは酸化ニオブ又はそれらの何らかの組合せを含んでいてもよい。
【0026】
本件開示の性質及び目的についてのより遺漏なき理解のためには、後掲の詳細記述と併せ、以下の添付図面を参照すべきである。
【図面の簡単な説明】
【0027】
図1A】保護キャッピング層を有する光学素子を描いた図である。
図1B】保護キャッピング層を有する光学素子を描いた図である。
図1C】保護キャッピング層を有する光学素子を描いた図である。
図1D】保護キャッピング層を有する光学素子を描いた図である。
図2A】保護キャッピング層を有する光学素子の形成方法を描いた図である。
図2B】保護キャッピング層を有する光学素子の形成方法を描いた図である。
図2C】保護キャッピング層を有する光学素子の形成方法を描いた図である。
図2D】保護キャッピング層を有する光学素子の形成方法を描いた図である。
図3】典型的な光学素子の反射率をキャッピング層厚の関数としてプロットした図である。
図4】ある例証的光学システムの透過率計算値を描いた図である。
図5】本件開示の諸実施形態に係る光学システムを描いた図である。
【発明を実施するための形態】
【0028】
特定の諸実施形態により特許請求の範囲記載の主題につき記述するが、本件開示の技術的範囲内には、本願中で説明される諸利益及び諸特徴が全ては提供されない諸実施形態を含め、他の諸実施形態も収まる。本件開示の技術的範囲から離隔することなく様々な構造的、論理的、処理ステップ的及び電子的変更を施すことができる。従って、本件開示の技術的範囲は専ら別項の特許請求の範囲への参照によって定まる。
【0029】
本願では諸値域が開示されている。それら値域が下限値及び上限値により規定されている。別様に宣明しない限り、それら値域には、最小値(下限値又は上限値)の大きさに至る全ての値、並びに宣明した値域を構成する値間の諸値域が包含される。
【0030】
別様に指示しない限り、本願にて提示される何れの値域にも、小数点以下10桁の精度でその値域内に収まる全ての値が包含される。
【0031】
EUV光学系は、構成要素たるシリコン層及びモリブデン層の酸化や、炭素(C)のビルドアップによって、ひどく劣化することがある。硼素(B)ベース素材、例えば純粋な硼素(B)、窒化硼素(BN)及び炭化硼素(BC)を濃密な厚手層の態に堆積させ、シリコンとの強い結合を形成することで、EUV露出中の酸化に抗うこと及び炭素汚染の清掃を行えるようにすることができる。炭化硼素は、以前から、拡散を妨げるべく他素材間の薄い(2nm未満の)バッファ層として用いられてきた。そこで、EUV光学系用の硼素含有保護層即ちキャッピング層であり、約2~4nm超の厚みにしうるものを、本願にて開示する。
【0032】
硼素ベース保護層は酸化耐性に富んでおり、それをキャッピング又はバッファ層として用いてシリコンの酸化を防ぐことができ、またそれによりパッシベーション用炭化硼素層を表面上に形成して炭素汚染を更に減らすことができる。水素分子、水素プラズマ、UVOその他の紫外(UV)活性化酸素清掃、真空紫外(VUV)活性化酸素清掃又はEUV活性化酸素清掃、酸素プラズマその他のプラズマにより、それらを原子レベルまで清掃することができる。それらのEUV吸収率は他の大抵のキャッピング素材より低い。そのため厚手の保護層にすることができる。硼素に備わるユニークな光学特性とEUV光学系での強め合い干渉とが相俟ち、8~12nmの硼素層厚にて秀逸な反射率を提供することができる。硼素ベース保護層を分布型スペクトル純度フィルタとして用いることで、約130~430nm域における帯域外反射率を抑え、ルテニウム(Ru)キャッピング付光学系での13.5nm反射率に比肩するそれとすることができる。
【0033】
硼素に備わるユニークな光学特性とEUV光学系での強め合い干渉とが相俟ち、反射率が、約7~10nm間での硼素厚増大につれ上昇する。約9~10nmにてもたらされる極大反射率は、絶対最大値に比べ3.5%しか低くない。酸化金属又はルテニウムキャッピング素材では、この類の共鳴効果が発生しないか、かなり低い極大反射率となる。
【0034】
約200~400nmの帯域における、典型的なルテニウムキャッピング付モリブデン・シリコン多層の帯域外反射率は、13.5nmにおける帯域内反射率と比肩しうるものである。5nm超の硼素で以てキャッピングすることで、この帯域外対帯域内反射率比が10倍超も低減され、検出器に到達する不要光が減少する。
【0035】
本願開示の諸実施形態には、EUV光学系用硼素ベース保護キャッピング層及びその作成方法が包含される。それら硼素ベース保護キャッピング層を、その光学素子を含むEUVリソシステムの構成部材とすることができる。
【0036】
図1Aに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子110であろう。光学素子110は、第1層101及びその第1層101上に配置された第2層102からなり基板100上に配置されているシーケンス103を、備えるものとすることができる。シーケンス103内に第1層101及び第2層102がそれぞれ1個しかなくてもよいし、シーケンス103内にn個の第1層101及びn個の第2層102があってもよい。シーケンス103上、即ち第2層102が1個しかない場合はその第2層102上、第2層102がn個ある場合はn番目の第2層102上には、終端層104を配置することができる。終端層104上にはキャッピング層106を配置することができる。この例における光学素子110の基板上での層順は、(i)1個又は複数個の第1層101及び第2層102、(ii)終端層104、そして(iii)キャッピング層106となろう。
【0037】
図1Bに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子120であろう。光学素子120は光学素子110に似ているが、それに加え拡散障壁105を有するものとすることができる。即ち、光学素子120は、第1層101及びその第1層101上に配置された第2層102からなり基板100上に配置されているシーケンス103を、備えるものとすることができる。シーケンス103内に第1層101及び第2層102がそれぞれ1個しかなくてもよいし、シーケンス103内にn個の第1層101及びn個の第2層102があってもよい。シーケンス103上、即ち第2層102が1個しかない場合はその第2層102上、第2層102がn個ある場合はn番目の第2層102上には、終端層104を配置することができる。終端層104上にキャッピング層106を配置しつつも、終端層104・キャッピング層106間に拡散障壁105を設けることで、終端層104上に拡散障壁105が配置され拡散障壁105上にキャッピング層106が配置された態とすることができる。言い換えれば、光学素子120を、終端層104上に配置された拡散障壁105を有し、キャッピング層106が拡散障壁105上に配置されたものとすることができる。この例における光学素子120の基板上での層順は、(i)1個又は複数個の第1層101及び第2層102、(ii)終端層104、(iii)拡散障壁105、そして(iv)キャッピング層106となろう。
【0038】
図1Cに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子130であろう。光学素子130は光学素子110に似ているが、それに加え終端キャッピング層107を有するものとすることができる。即ち、光学素子130は、第1層101及びその第1層101上に配置された第2層102からなり基板100上に配置されているシーケンス103を、備えるものとすることができる。シーケンス103内に第1層101及び第2層102がそれぞれ1個しかなくてもよいし、シーケンス103内にn個の第1層101及びn個の第2層102があってもよい。シーケンス103上、即ち第2層102が1個しかない場合はその第2層102上、第2層102がn個ある場合はn番目の第2層102上には、終端層104を配置することができる。終端層104上にはキャッピング層106を配置することができる。キャッピング層106上には終端キャッピング層107を配置することができる。この例における光学素子130の基板上での層順は、(i)1個又は複数個の第1層101及び第2層102、(ii)終端層104、(iii)キャッピング層106、そして(iv)終端キャッピング層107となろう。
【0039】
図1Dに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子140であろう。光学素子140は光学素子110に似ているが、それに加え拡散障壁105及び終端キャッピング層107を有するものとすることができる。即ち、光学素子140は、第1層101及びその第1層101上に配置された第2層102からなり基板100上に配置されているシーケンス103を、備えるものとすることができる。シーケンス103内に第1層101及び第2層102がそれぞれ1個しかなくてもよいし、シーケンス103内にn個の第1層101及びn個の第2層102があってもよい。シーケンス103上、即ち第2層102が1個しかない場合はその第2層102上、第2層102がn個ある場合はn番目の第2層102上には、終端層104を配置することができる。終端層104上にキャッピング層106を配置しつつも、終端層104・キャッピング層106間に拡散障壁105を設けることで、終端層104上に拡散障壁105が配置され拡散障壁105上にキャッピング層106が配置された態とすることができる。言い換えれば、光学素子140を、終端層104上に配置された拡散障壁105を有し、拡散障壁105上にキャッピング層106が配置された態とすることができる。キャッピング層106上には終端キャッピング層107を配置することができる。この例における光学素子140の基板上での層順は、(i)1個又は複数個の第1層101及び第2層102、(ii)終端層104、(iii)拡散障壁105、(iv)キャッピング層106、そして(v)終端キャッピング層107となろう。
【0040】
本件開示の他の諸実施形態には、EUVリソグラフィ用光学素子作成方法がある。
【0041】
図2Aに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子作成方法210であろう。方法210を用い例えば光学素子110を作成することができる。方法210では、第1層が基板上に配置されるよう第1層を堆積させる堆積工程201を、例えば気相堆積を用い遂行することができる。次に、第2層が第1層上に配置されるよう第2層を堆積させる堆積工程202を、例えば気相堆積を用い遂行することができる。必須ではないが、付加的な第1層及び第2層を堆積させることで、第1層をn個、第2層をn個にすることができる。即ち、第1層をn個、第2層をn個にしたい場合は、第1層及び第2層の堆積の反復203をm回行えばよい;但しm=n-1である。こうすることで、最初の第1層を堆積させた後、先行するm-1個の第2層上に付加的な第1層を1個ずつm個堆積させることで、都合n個の第1層及びn個の第2層とすることができる。次の堆積工程204では、終端層が第2層上に配置されるよう終端層を堆積させることができる。注記すべきことに、第2層が1個しかない場合は、その第2層上に配置されるよう終端層を堆積させればよく、第2層がn個ある場合は、n番目の第2層上に配置されるよう終端層を堆積させればよい。次の堆積工程206では、キャッピング層が終端層上に配置されるようキャッピング層を堆積させることができる。この例の方法210に従い基板上に作成される諸層の順序は、完遂時には、(i)1個又は複数個の第1層及び第2層、(ii)終端層、そして(iii)キャッピング層となろう。
【0042】
図2Bに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子作成方法220であろう。方法220は方法210に似ているが、それに加え、拡散障壁を堆積させる堆積工程205を含めることができる。方法220を用い例えば光学素子120を作成することができる。方法220では、第1層が基板上に配置されるよう第1層を堆積させる堆積工程201を、例えば気相堆積を用い遂行することができる。次に、第2層が第1層上に配置されるよう第2層を堆積させる堆積工程202を、例えば気相堆積を用い遂行することができる。必須ではないが、付加的な第1層及び第2層を堆積させることで、第1層をn個、第2層をn個にすることができる。即ち、第1層をn個、第2層をn個にしたい場合は、第1層及び第2層の堆積の反復203をm回行えばよい;但しm=n-1である。このように、最初の第1層を堆積させた後、先行するm-1個の第2層上に付加的な第1層を1個ずつm個堆積させることで、都合n個の第1層及びn個の第2層とすることができる。次の堆積工程204では、終端層が第2層上に配置されるよう終端層を堆積させることができる。注記すべきことに、第2層が1個しかない場合は、その第2層上に配置されることとなるよう終端層を堆積させればよく、第2層がn個ある場合は、n番目の第2層上に配置されることとなるよう終端層を堆積させればよい。次の堆積工程206では、キャッピング層が終端層上に配置されるようキャッピング層を堆積させることができ、また堆積工程206に先立ち堆積工程205を実行することができる。堆積工程205では、拡散障壁が終端層上に配置されるよう拡散障壁を堆積させることができ、堆積工程206を経てその拡散障壁上にキャッピング層を配置させることができる。この例の方法220に従い基板上に作成される諸層の順序は、完遂時には、(i)1個又は複数個の第1層及び第2層、(ii)終端層、(iii)拡散障壁、そして(iv)キャッピング層となろう。
【0043】
図2Cに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子作成方法230であろう。方法230は方法210に似ているが、それに加え、終端キャッピング層を堆積させる堆積工程207を含めることができる。方法230を用い例えば光学素子130を作成することができる。方法230では、第1層が基板上に配置されるよう第1層を堆積させる堆積工程201を、例えば気相堆積を用い遂行することができる。次に、第2層が第1層上に配置されるよう第2層を堆積させる堆積工程202を、例えば気相堆積を用い遂行することができる。必須ではないが、付加的な第1層及び第2層を堆積させることで、第1層をn個、第2層をn個にすることができる。即ち、第1層をn個、第2層をn個にしたい場合は、第1層及び第2層の堆積の反復203をm回行えばよい;但しm=n-1である。このように、最初の第1層を堆積させた後、先行するm-1個の第2層上に付加的な第1層を1個ずつm個堆積させることで、都合n個の第1層及びn個の第2層とすることができる。その次の堆積工程204では、終端層が第2層上に配置されるよう終端層を堆積させることができる。注記すべきことに、第2層が1個しかない場合は、その第2層上に配置されるよう終端層を堆積させればよく、第2層がn個ある場合は、n番目の第2層上に配置されるよう終端層を堆積させればよい。次の堆積工程206では、キャッピング層が終端層上に配置されるようキャッピング層を堆積させることができる。次の堆積工程207では、終端キャッピング層がキャッピング層上に配置されるよう終端キャッピング層を堆積させることができる。この例の方法230に従い基板上に作成される諸層の順序は、完遂時には、(i)1個又は複数個の第1層及び第2層、(ii)終端層、(iii)キャッピング層、そして(iv)終端キャッピング層となろう。
【0044】
図2Dに描かれている通り、本件開示の一実施形態はEUVリソグラフィ用光学素子作成方法240であろう。方法240は方法210に似ているが、それに加え、拡散障壁を堆積させる堆積工程205及び終端キャッピング層を堆積させる堆積工程207を含めることができる。方法240を用い例えば光学素子140を作成することができる。方法240では、第1層が基板上に配置されるよう第1層を堆積させる堆積工程201を、それが例えば気相堆積を用い遂行することができる。次に、第2層が第1層上に配置されるよう第2層を堆積させる堆積工程202を、例えば気相堆積を用い遂行することができる。必須ではないが、付加的な第1層及び第2層を堆積させることで、第1層をn個、第2層をn個にすることができる。即ち、第1層をn個、第2層をn個にしたい場合は、第1層及び第2層の堆積の反復203をm回行えばよい;但しm=n-1である。このように、最初の第1層を堆積させた後、先行するm-1個の第2層上に付加的な第1層を1個ずつm個堆積させることで、都合n個の第1層及びn個の第2層とすることができる。次の堆積工程204では、終端層が第2層上に配置されるよう終端層を堆積させることができる。注記すべきことに、第2層が1個しかない場合は、その第2層上に配置されるよう終端層を堆積させればよく、第2層がn個ある場合は、n番目の第2層上に配置されるよう終端層を堆積させればよい。次の堆積工程206では、キャッピング層が終端層上に配置されるようキャッピング層を堆積させることができ、また堆積工程206に先立ち堆積工程205を実行することができる。堆積工程205では、拡散障壁が終端層上に配置されるよう拡散障壁を堆積させることができ、堆積工程206を経てその拡散障壁上にキャッピング層を配置させることができる。次の堆積工程207では、終端キャッピング層がキャッピング層上に配置されるよう終端キャッピング層を堆積させることができる。この例の方法240に従い基板上に作成される諸層の順序は、完遂時には、(i)1個又は複数個の第1層及び第2層、(ii)終端層、(iii)拡散障壁、(iv)キャッピング層、そして(v)終端キャッピング層となろう。
【0045】
堆積工程201にて、例えば、図1A図1Dに描かれている第1層101を堆積させることができる。堆積工程202にて、例えば、図1A図1Dに描かれている第2層102を堆積させることができる。反復203により、例えば、図1A図1Dに描かれているシーケンス103を形成することができる。堆積工程204にて、例えば、図1A図1Dに描かれている終端層104を堆積させることができる。堆積工程205にて、例えば、図1B及び図1Dに描かれている拡散障壁105を堆積させることができる。堆積工程206にて、例えば、図1A図1Dに描かれているキャッピング層106を堆積させることができる。堆積工程207にて、例えば、図1C及び図1Dに描かれている終端キャッピング層107を堆積させることができる。
【0046】
本願記載の何れの方法に係る堆積も、就中、気相堆積、物理気相堆積、化学気相堆積、スパッタリング又はマグネトロンスパッタリングとすることができる。
【0047】
第1層101、言い換えれば堆積工程201を用い堆積される1個又は複数個の第1層は、例えばシリコン(Si)を含むそれとすればよい。
【0048】
第2層102、言い換えれば堆積工程202を用い堆積される1個又は複数個の第2層は、例えばモリブデン(Mo)を含むそれとすればよい。
【0049】
終端層104、言い換えれば堆積工程204を用い堆積される終端層は、例えばシリコン(Si)を含むそれとすればよい。
【0050】
拡散障壁105、言い換えれば堆積工程205を用い堆積される拡散障壁は、例えば炭素その他、好適な素材又は素材組合せを含むそれとすればよい。
【0051】
キャッピング層106、言い換えれば堆積工程206を用い堆積されるキャッピング層は、硼素、窒化硼素(BN)又は炭化硼素(BC)を含むそれとすればよい。キャッピング層106が硼素を含んでいる場合は、その厚みを5nm~30nm以内にするとよい。キャッピング層106が窒化硼素を含んでいる場合は、その厚みを2nm~10nm以内にするとよい。キャッピング層106が窒化硼素を含んでいる場合に、これに代え、その厚みを4nm~10nm以内としてもよい。キャッピング層106が炭化硼素を含んでいる場合は、その厚みを2nm~25nm以内にするとよい。キャッピング層106が炭化硼素を含んでいる場合に、これに代え、その厚みを4nm~25nm以内としてもよい。これらの厚み範囲のことを、キャッピング層106全体に亘る最終堆積厚と呼ぶことができ、またキャッピング層106に係る目標厚又は厚み公差と呼ぶこともできる。ある実施形態によれば、いわゆる目標厚について、実厚が変動するキャッピング層106につき仕上がり目標厚を設けつつ、キャッピング層106の組成素材に係る所与範囲内にその素材の平均又は目標厚が収まるようにすることができる。このやり方では、キャッピング層106上の任意所与点における実厚が、その平均又は目標厚より高くも低くもなりうる。別の実施形態によれば、いわゆる厚み公差について、実厚が変動するキャッピング層106につき仕上がり厚を設けつつ、キャッピング層106の公差レベル或いは最小厚及び最大厚とし本願所与の範囲によりその限界を定めることができる。このやり方により、キャッピング層106上の任意所与点における実厚を、その所与厚み範囲内に収めることができる。更なる諸実施形態では、キャッピング層106の目標厚が、その組成素材に関し指定されている範囲内に収まることが求められ、所定の最小値及び最大値によりその範囲が規定されよう。
【0052】
これに代え、キャッピング層106を、硼素、炭化硼素及び窒化硼素の何らかの組合せを含むそれとしてもよい。ある例によれば、キャッピング層を、炭化硼素キャッピング層、硼素キャッピング層及び窒化硼素キャッピング層として構成することができる。
【0053】
終端キャッピング層107、言い換えれば堆積工程207を用い堆積される終端キャッピング層は、例えばルテニウム(Ru)、二酸化チタン(TiO)、二酸化ジルコニウム(ZrO)又は酸化ニオブを含むそれとすればよい。酸化ニオブとは様々な酸化状態のニオブのことであり、就中、一酸化ニオブ(NbO)、二酸化ニオブ(NbO)又は五酸化ニオブ(Nb)がそれに含まれる。
【0054】
第1層101、第2層102、終端層104、拡散障壁105、キャッピング層106及び終端キャッピング層107は、その用途を踏まえつつ、様々な物理特性を有する素材を含むそれとすることができる。例えば、それら素材にて、その用途及び用いられる堆積プロセスを踏まえポロシティ、密度及び均一度を様々に変えることができる。ある種の実施形態ではポロシティ、密度及び均一度が最適化され、他種実施形態ではポロシティ、密度又は均一度のうち一種類又は複数種類が優先されよう。また、その用途及び検査ニーズに基づき不純物許容度を指定してもよい。そうした不純物許容度は、就中、素材に基づき決定することや製造業者が設定することができる。
【0055】
キャッピング層としての硼素の潜在力を示すため、IMDソフトウェア及び13.5nmでの光学定数を用いそのシミュレーションを実行した;光学定数は、硼素、シリコン、モリブデン及び炭化硼素に関しては計測し、二酸化チタン、ルテニウム及び窒化硼素に関しては計算で求めた。図3に記すプロット300は、典型的なMo:Si多層光学系の反射率Rを、様々なキャッピング素材、即ちルテニウム(曲線301)、二酸化チタン(曲線302)及び硼素(曲線303)に係るキャッピング層厚の関数として示したものである。キャッピング厚に対するRの非単調依存性は、多層光学系に固有な強め合い干渉によるものである。
【0056】
選択するキャッピング層は、標準的な2.2nmルテニウムキャッピング付多層鏡での反射率を、ある臨界量ΔRCritを超えて割り込まないものとすべきである。図3に示したシミュレーションにて用いられている(下RCrit(304)・上RCrit(305)間の)ΔRCrit=3.5%は、許容損失の面で典型的なものである。ルテニウムキャッピング及び二酸化チタンキャッピングの厚みはこれにより制限され、それぞれ4.5nm,2.2nmとなる。この厚みの二酸化チタンでは、何年にも及ぶEUV露出中に、下地をなすシリコンを酸化に抗い保護するのに不十分たりうる。
【0057】
硼素の限界厚は4.2nmであるので、Siベース検出器上における既存の5nm被覆の性能を踏まえれば、酸化に対する十分な保護を提供することができる。反射率損失が5%と大きめであるが、キャッピング層厚を2倍超とする妥協を受け入れることができるのであれば、9.8nm硼素層を用いることができようし、それにより図3に示す硼素曲線303の極大を活用することができる。
【0058】
同様の計算により示される通り、純粋な窒化硼素及び炭化硼素の4~5nm層でも反射率損失が許容値になる。炭化硼素は既知の通り有効な拡散障壁であり、窒化硼素は既知の通り酸化及び酸素拡散への耐性に富んでいるので、(下から上への順で)シリコン/炭化硼素/硼素/窒化硼素が備わる構造で以て、経時安定性、耐酸化性及び反射率の最良平衡を得ることができる。
【0059】
分布型スペクトル純度フィルタとしての硼素キャッピング層の有効性を示すため、図4に、硼素被覆及びルテニウム被覆、即ち2.2nmルテニウム(プロットライン401により記述)、9.8nm硼素(プロットライン402により記述)及び4.4nm硼素(プロットライン403により記述)を有する例証的4鏡システムに付き、透過率計算値のプロット400を記す。2.2nmのルテニウムによる典型的なキャッピングでは、200~400nm域におけるシステム透過率が、13.5nmでの帯域内反射率と比肩しうるものとなっている。硼素キャッピング層を用いることで、130~430nm域に亘る透過率が10~100分の1に低減され、硼素を厚めにすることで、抑圧量が多めとなる。この対厚みトレンドは、50~130nm域では反転しているので、これら2帯域での抑圧量の間で妥協を図らねばならない。
【0060】
システム500の一実施形態を図5に示す。本システム500は光学ベースサブシステム501を有している。大略、光学ベースサブシステム501は、試料502に光を差し向け(或いはその上を光で走査し)そこからの光を検出することで、試料502に関し光学ベース出力を生成するよう、構成されている。一実施形態に係る試料502はウェハである。そのウェハには、本件技術分野で既知なあらゆるウェハが含まれうる。別の実施形態に係る試料はレティクルである。そのレティクルには、本件技術分野で既知なあらゆるレティクルが含まれうる。
【0061】
図5に示す実施形態のシステム500では、光学ベースサブシステム501が、試料502に光を差し向けるよう構成された照明サブシステムを有している。照明サブシステムは少なくとも1個の光源を有するものである。例えば、図5に示す照明サブシステムは光源503を有している。実施形態に係る照明サブシステムは、一通り又は複数通りの入射角、例えば一通り又は複数通りの斜め角及び/又は一通り又は複数通りの直交角を含むそれにて試料502に光を差し向けるよう、構成される。例えば、図5に示すように、光源503からの光を、光学素子504、次いでレンズ505を介し、ある斜め入射角にて試料502に差し向ける。この斜め入射角は、好適であればどのような斜め入射角でもよく、例えばその試料502の特性を踏まえ変化させてもよい。
【0062】
光学ベースサブシステム501を、別々の時点では別々の入射角にて試料502に光を差し向けるよう、構成してもよい。例えば、照明サブシステムに備わる1個又は複数個の素子の一通り又は複数通りの特性を変化させることで、図5に示したそれとは異なる入射角にて試料502に光を差し向けることができるよう、光学ベースサブシステム501を構成してもよい。そうした例にあっては、光源503、光学素子504及びレンズ505を動かし別の斜め入射角又は直交(又は近直交)入射角にて試料502に光を差し向けるよう、光学ベースサブシステム501を構成することができる。
【0063】
ある種の例では、同時に複数通りの入射角にて試料502に光を差し向けるよう、光学ベースサブシステム501が構成されよう。例えば照明サブシステムに複数個の照明チャネルを設け、それら照明チャネルのうち1個には図5に示す如く光源503、光学素子504及びレンズ505を設け、別の照明チャネル(図示せず)にはそれに類似する素子群を設ければよい;後者は、前者と別様に構成しても同様に構成してもよく、また少なくとも1個の光源及び恐らくは1個又は複数個の他部材、例えば本願詳述のそれを有するものと、することができる。その光と他の光とを同時に試料に差し向ける際に、別々の入射角にて試料502に差し向けられる光に備わる一通り又は複数通りの特性(例.波長、偏向等々)に違いを付けることで、それら別々の入射角での試料502の照明によりもたらされる光を、検出器(群)にて互いに弁別することが可能となる。
【0064】
別の例では、照明サブシステムに光源が1個(例.図5に示した光源503)だけ設けられ、その光源からの光が、その照明サブシステムに備わる1個又は複数個の光学素子(図示せず)により(例.波長、偏向等々に基づき)別々の光路へと振り分けられよう。そして、別々の光路上の光をそれぞれ試料502へと差し向ければよい。複数個の照明チャネルを、光を試料502に同時に差し向けるよう構成してもよいし、別々の時点で差し向けるよう構成してもよい(例.別々の照明チャネルを用い試料を順次照明する際)。別の例では、別々の時点にて別々の特性で以て試料502に光を差し向けるよう、同一の照明チャネルが構成されよう。例えばある種の例によれば、光学素子504を分光フィルタとして構成し、その分光フィルタの特性を様々なやり方にて(例.その分光フィルタの交換により)変化させることで、別々の時点にて別々の波長の光が試料502に向かうようにすることができる。照明サブシステムは、別々又は同一の特性を有する光を別々又は同一の入射角にて順次又は同時に試料502に差し向けるのに適し本件技術分野で既知な、他のあらゆる構成をとることができる。
【0065】
ある実施形態では、光源503が、広帯域プラズマ(BBP)光源又は極端紫外リソグラフィ(EUV)光源を有するものとされよう。こうすることで、光源503により生成され試料502に差し向けられる光を、広帯域光又は紫外光を含むものとすることができる。とはいえ、光源には他のあらゆる好適な光源例えばレーザが含まれうる。そのレーザには本件技術分野にて既知で好適なあらゆるレーザが含まれうるし、本件技術分野にて既知で好適な何れの波長又は波長群にて光を生成するようにも構成されうる。加えて、そのレーザを、単色又は近単色の光を生成するよう構成してもよい。即ち、そのレーザを狭帯域レーザとしてもよい。光源503を、複数通りのとびとびな波長又は波帯にて光を生成する多色光源を有するものとしてもよい。
【0066】
光学素子504からの光をレンズ505により試料502上に集束させてもよい。図5にはレンズ505が単一の屈折性光学素子として示されているが、ご理解頂けるように、実際には、レンズ505を複数個の屈折性及び/又は反射性光学素子で構成し、それらの組合せにより光学素子からの光を試料上に集束させるようにしてもよい。図5に示され本願にて記述されている照明サブシステム内に、他の何れの好適な光学素子(図示せず)を設けてもよい。そうした光学素子の例としては、これに限られるものではないが、偏向部材(群)、分光フィルタ(群)、空間フィルタ(群)、反射性光学素子(群)、アポダイザ(群)、ビームスプリッタ(群)(例えばビームスプリッタ513)、アパーチャ(群)等があり、本件技術分野にて既知で好適なその種のあらゆる光学素子を例に含めることができる。加えて、照明サブシステムに備わる素子のうち1個又は複数個を、光学ベース出力の生成に用いられる照明の種類に基づき変更するよう、光学ベースサブシステム501を構成してもよい。その光学素子が、本願にて記述され例えば図1Aに示されている通り、第1層、第2層、終端層及びキャッピング層を有していてもよい。その光学素子が、本願にて記述され例えば図1B図1Dに示されている通り、拡散障壁、終端キャッピング層又はその双方を付加的に有していてもよい。ここで述べた諸層及び障壁を、例えば、本願にて記述され図2A図2Dに示されている諸方法のうち一つを適宜用い形成してもよい。
【0067】
光学ベースサブシステム501内に、その光で試料502上を走査させるよう構成された走査サブシステムを設けてもよい。例えば、光学ベース出力生成中に試料502が載置されるステージ506を、光学ベースサブシステム501に設けてもよい。その走査サブシステムが、その試料502上を光で走査しうるよう試料502を動かせる構成としうる、何れの好適な機械及び/又はロボットアセンブリ(ステージ506を有するもの)を有していてもよい。これに加え又は代え、その光学ベースサブシステム501に備わる1個又は複数個の光学素子により光での試料502上の走査を幾ばくか実行しうるよう、光学ベースサブシステム501を構成してもよい。光による試料502上の走査は、例えば蛇状路沿い或いは螺旋路沿い等、何れの好適な様式で行ってもよい。
【0068】
光学ベースサブシステム501は、更に、1個又は複数個の検出チャネルを有している。当該1個又は複数個の検出チャネルのうち少なくとも1個が検出器を有しており、そのサブシステムによる試料502の照明に起因しその試料502からもたらされる光を検出するよう、またその検出光に応じ出力を生成するよう、その検出器が構成されている。例えば、図5に示す光学ベースサブシステム501は2個の検出チャネルを有しており、そのうち1個が集光器507、素子508及び検出器509により、もう1個が集光器510、素子511及び検出器512により形成されている。図5に示すものでは、これら2個の検出チャネルが、別々の集光角にて光を集め検出するよう構成されている。ある種の例では、散乱光を検出するよう両検出チャネルが構成され、また試料502から別々の角度で散乱されてきた光を検出するようそれら検出チャネルが構成される。とはいえ、試料502から別種の光(例.反射光)を検出するよう、それら検出チャネルのうち1個又は複数個を構成してもよい。
【0069】
これも図5に示されている通り、図上では両検出チャネルが紙面内に位置しており、また図上では照明サブシステムも紙面内に位置している。即ち、本実施形態では、どちらの検出チャネルも入射面内に配置(例.芯決め)されている。とはいえ、検出チャネルのうち1個又は複数個を入射面外に配置してもよい。例えば、集光器510、素子511及び検出器512により形成される検出チャネルを、入射面外に散乱された光を集め検出するよう構成してもよい。ここに、そうした検出チャネルのことを「サイド」チャネルと通称することができ、そうしたサイドチャネルを、入射面に対し略垂直な平面内に芯決めすることができる。
【0070】
図5には、光学ベースサブシステム501の実施形態であり2個の検出チャネルを有するものを示したが、これとは異なる個数の検出チャネル(例.単一の検出チャネル又は2個以上の検出チャネル)が光学ベースサブシステム501に備わっていてもよい。こうした例にて、集光器510、素子511及び検出器512で形成される検出チャネルにより、上述の如く1個のサイドチャネルを形成してもよく、その光学ベースサブシステム501内に付加的な検出チャネル(図示せず)を設け、それを入射面の逆側に位置する別のサイドチャネルとして形成してもよい。即ち、集光器507、素子508及び検出器509を有する検出チャネルを光学ベースサブシステム501内に設け、その検出チャネルを、入射面内で芯決めすると共に、試料502の表面法線又はそれに近い(複数の)散乱角にて光を集め検出するよう構成してもよい。この検出チャネルは、従って「トップ」チャネルと通称することができ、またその光学ベースサブシステム501内に、上述の如く構成されたサイドチャネルを2個以上設けることができる。即ち、光学ベースサブシステム501内に少なくとも3個のチャネル(即ち1個のトップチャネル及び2個のサイドチャネル)を設けてもよく、それら少なくとも3個のチャネルそれぞれに自身の集光器を持たせ、それらをそれぞれ、他の集光器の何れとも異なる散乱角の光を集めるよう構成してもよい。
【0071】
これも上述の通り、光学ベースサブシステム501内の検出チャネルそれぞれを、散乱光を検出するよう構成してもよい。従って、図5に示した光学ベースサブシステム501を、試料502に係る暗視野(DF)出力の生成向けに構成してもよい。他方、これに加え又は代え、試料502に係る明視野(BF)出力の生成向けに構成された検出チャネル(群)を、光学ベースサブシステム501内に設けてもよい。言い換えれば、試料502から鏡面反射されてきた光を検出するよう構成された少なくとも1個の検出チャネルを、光学ベースサブシステム501内に設けてもよい。従って、本願記載の光学ベースサブシステム501は、DF専用にも、BF専用にも、或いはDF及びBF撮像両用にも構成することができる。図5では各集光器を単一の屈折性光学素子として示したが、ご理解頂けるように、各集光器が、1個又は複数個の屈折性光学ダイ及び/又は1個又は複数個の反射性光学素子を有していてもよい。
【0072】
前記1個又は複数個の検出チャネルには、本件技術分野にて既知で好適なあらゆる検出器を設けることができる。例えば、それら検出器には、光電子増倍管(PMT)、電荷結合デバイス(CCD)、時間遅延積分(TDI)カメラその他、本件技術分野にて既知で好適なあらゆる検出器が含まれうる。それら検出器には非撮像型検出器も撮像型検出器も含まれうる。然るに、検出器が非撮像型検出器である場合は、ある種の散乱光特性例えば強度を検出するよう各検出器が構成されるものの、その特性を像面内位置の関数として検出するようには構成されえない。そのため、光学ベースサブシステムの各検出チャネル内の検出器それぞれにより生成される出力は、信号やデータとはなりうるものの、画像信号や画像データとはなりえない。この種の例では、プロセッサ例えばプロセッサ514を、その検出器の非撮像出力から試料502の画像を生成するよう構成すればよい。これに対し、他種の例では、撮像信号又は画像データを生成する構成の撮像型検出器として検出器が構成されうる。このように、光学ベースサブシステムは、光学画像その他、本願記載の光学ベース出力を多様なやり方で生成するよう構成されうる。
【0073】
なお、本願に図5を設けたのは、本願記載の諸システム実施形態に組み込むことができ或いは本願記載の諸システム実施形態にて用いられる光学ベース出力を生成することができる光学ベースサブシステム501の構成を、大まかに描出するためである。商用の出力獲得システムを設計する際に通常行われている通り、本願記載の構成を有する光学ベースサブシステム501を改変することで、その光学ベースサブシステム501の性能を最適化することができる。加えて、本願記載の諸システムを、既存システムを用い(例.既存システムに本願記載の機能を付加することで)実施してもよい。そうした類のシステムにて、本願記載の諸方法を、(例.そのシステムの他の機能に加え)そのシステムのオプション的機能として提供してもよい。これに代え、本願記載のシステムを、完全に新規なシステムとして設計してもよい。
【0074】
プロセッサ514は、自プロセッサ514にて出力を受け取れるよう、何らかの好適な要領にて(例.1個又は複数個の伝送媒体、例えば有線及び/又は無線伝送媒体を含むそれを介し)システム500の諸構成部材に結合させればよい。プロセッサ514を、その出力を用い多数の機能を実行するよう構成してもよい。本システム500は、そのプロセッサ514から命令その他の情報を受け取ることができる。プロセッサ514及び/又は電子データ格納ユニット515は、必須ではないが、ウェハ検査ツール、ウェハ計量ツール又はウェハレビューツール(図示せず)と電子通信することで、付加的な情報を受け取り又は命令を送るようにしてもよい。例えば、プロセッサ514及び/又は電子データ格納ユニット515をSEMと電子通信させてもよい。
【0075】
プロセッサ514、その他のシステム(群)又はその他のサブシステム(群)であり本願記載のものを、パーソナルコンピュータシステム、イメージコンピュータ、メインフレームコンピュータシステム、ワークステーション、ネットワーク機器、インターネット機器その他のデバイスを初め、様々なシステムの一部分としてもよい。その又はそれらのサブシステム又はシステムが、本件技術分野にて既知で好適な何れのプロセッサ、例えば並列プロセッサを有していてもよい。加えて、その又はそれらのサブシステム又はシステムを、スタンドアロンかネットワーク接続ツールかを問わず、高速処理プラットフォーム及びソフトウェアを有するものとしてもよい。
【0076】
プロセッサ514及び電子データ格納ユニット515を、その内部に配置する等、システム500その他のデバイスの一部分としてもよい。例えば、プロセッサ514及び電子データ格納ユニット515を、スタンドアロン制御ユニットの一部としてもよいし、集中品質制御ユニット内に設けてもよい。複数個のプロセッサ514又は電子データ格納ユニット515を用いてもよい。
【0077】
プロセッサ514は、ハードウェア、ソフトウェア及びファームウェアのどのような組合せで実施してもよい。また、それらの機能であり本願記載のものを、単一ユニットで実行しても様々な部材間で分かち合ってもよいし、翻ってそれら部材それぞれを、ハードウェア、ソフトウェア及びファームウェアのどのような組合せで実施してもよい。プロセッサ514に様々な方法及び機能を実行・実施させるためのプログラムコード又は命令は、可読格納媒体内、例えば電子データ格納ユニット515内にあるメモリその他のメモリ内に格納すればよい。
【0078】
本システム500に複数個のプロセッサ514を設ける場合、それらサブシステム間で画像、データ、情報、命令等々を送れるよう、別々のサブシステム同士を結合させてもよい。例えば、あるサブシステムを別のサブシステム(群)に対し、好適な何れの伝送媒体により結合させてもよく、その媒体のなかに、本件技術分野にて既知で好適な何れの有線及び/又は無線伝送媒体を含めてもよい。そうしたサブシステムのうち2個以上を、共有型コンピュータ可読格納媒体(図示せず)により実質結合させてもよい。
【0079】
プロセッサ514は、システム500の出力その他の出力を用い多数の機能を実行するよう構成すればよい。例えば、その出力を電子データ格納ユニット515その他の格納媒体に送るようプロセッサ514を構成すればよい。プロセッサ514は、本願記載の如く更に構成されうる。
【0080】
本システムに複数個のサブシステムを設ける場合、それらサブシステム間で画像、データ、情報、命令等々を送れるよう、別々のサブシステム同士を結合させてもよい。例えば、あるサブシステムを別のサブシステム(群)に対し、好適な何れの伝送媒体により結合させてもよく、その媒体のなかに、本件技術分野にて既知で好適な何れの有線及び/又は無線伝送媒体を含めてもよい。そうしたサブシステムのうち2個以上を、共有型コンピュータ可読格納媒体(図示せず)により実質結合させてもよい。
【0081】
プロセッサ514を、本願記載の諸実施形態のうち何れに従い構成してもよい。プロセッサ514を、本システム500の出力を用い或いは他の源泉からの画像又はデータを用い他の諸機能又は付加的ステップ群を実行するよう構成してもよい。
【0082】
本願開示のシステム500及び諸方法の様々なステップ、機能及び/又は及び動作は、電子回路、論理ゲート、マルチプレクサ、プログラマブル論理デバイス、ASIC、アナログ若しくはディジタルコントローラ/スイッチ、マイクロコントローラ又は情報処理システムのうち、1個又は複数個により実行される。諸方法例えば本願記載のそれを実施するプログラム命令群を、キャリア媒体上で伝送させ又はそれに格納することができる。キャリア媒体には、リードオンリメモリ、ランダムアクセスメモリ、磁気若しくは光ディスク、不揮発性メモリ、固体メモリ、磁気テープ等の格納媒体が含まれうる。キャリア媒体には、ワイヤ、ケーブル又は無線伝送リンク等の伝送媒体が含まれうる。例えば、本件開示の随所に記載の諸ステップを、単一のプロセッサ514により実行してもよいし、それに代え複数個のプロセッサ514により実行してもよい。更に、本システム500の様々なサブシステムに1個又は複数個の情報処理又は論理システムを組み込んでもよい。このように、上掲の記述は、本件開示に対する限定事項としてではなく、単なる例証として解されるべきである。
【0083】
本件開示の諸実施形態により様々な利点がもたらされる。これら実施形態にはEUV光学系用硼素ベース保護キャッピング層が備わっており、(5~30nmの)厚手硼素層を用いEUV光学系を保護し、5nm以上の厚みを有しその多層鏡の極大反射率に所在するよう最適化されている硼素層を用いEUV光学系を保護し、(約2~25nmの)厚手炭化硼素層を用いEUV光学系を保護し、(約2~10nmの)厚手窒化硼素層を用いEUV光学系を保護し、(下から上への順で)シリコン/炭化硼素/硼素/窒化硼素からなすスタックを用いEUV光学系を保護し、また硼素キャッピング層を分布型スペクトル純度フィルタとして用いている。これら実施形態により、就中、EUVリソグラフィ機器の設計、製造及び動作に関わるコスト及びリスクの低減を初めとする、諸利点を提供することができる。加えて、硼素ベースキャッピング層の働きで清掃が容易になり、複数サイクルに亘る耐久性が高まる。こうした清掃容易性が、ルテニウムベースキャッピング層ではなく本願開示の硼素ベースキャッピング層の諸実施形態にて実現される理由は、結晶構造及び寸法の差異やその他の化学的差異にある。
【0084】
本願開示の様々な実施形態及び例に記載されている方法の諸ステップで、十分に、本発明の方法を実行することができる。即ち、ある実施形態に係る方法は、本質的に、本願開示の諸方法の諸ステップの組合せで構成される。別の実施形態に係る方法はそうした諸ステップで構成される。
【0085】
1個又は複数個の具体的実施形態を基準にして本件開示につき記述してきたが、ご理解頂けるように、本件開示の技術的範囲から離隔することなく本件開示の他の諸実施形態をなすこともできる。
図1A
図1B
図1C
図1D
図2A
図2B
図2C
図2D
図3
図4
図5