IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ アプライド マテリアルズ インコーポレイテッドの特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-01
(45)【発行日】2024-03-11
(54)【発明の名称】マルチゾーンプラテン温度制御
(51)【国際特許分類】
   H01J 37/20 20060101AFI20240304BHJP
   H01J 37/305 20060101ALI20240304BHJP
   H01L 21/302 20060101ALI20240304BHJP
【FI】
H01J37/20 A
H01J37/305 A
H01L21/302 201B
【請求項の数】 20
(21)【出願番号】P 2022566639
(86)(22)【出願日】2021-04-13
(65)【公表番号】
(43)【公表日】2023-06-19
(86)【国際出願番号】 US2021026991
(87)【国際公開番号】W WO2021225759
(87)【国際公開日】2021-11-11
【審査請求日】2023-01-16
(31)【優先権主張番号】16/865,860
(32)【優先日】2020-05-04
(33)【優先権主張国・地域又は機関】US
(73)【特許権者】
【識別番号】390040660
【氏名又は名称】アプライド マテリアルズ インコーポレイテッド
【氏名又は名称原語表記】APPLIED MATERIALS,INCORPORATED
【住所又は居所原語表記】3050 Bowers Avenue Santa Clara CA 95054 U.S.A.
(74)【代理人】
【識別番号】110002077
【氏名又は名称】園田・小林弁理士法人
(72)【発明者】
【氏名】アングリン, ケヴィン アール.
(72)【発明者】
【氏名】ラッフェル, サイモン
【審査官】中尾 太郎
(56)【参考文献】
【文献】特開平10-107134(JP,A)
【文献】特開2005-136025(JP,A)
【文献】特開2007-067037(JP,A)
【文献】特開2015-050382(JP,A)
【文献】米国特許出願公開第2010/0330787(US,A1)
【文献】米国特許出願公開第2014/0047705(US,A1)
【文献】国際公開第2009/058376(WO,A2)
(58)【調査した分野】(Int.Cl.,DB名)
H01J 37/20
H01J 37/305
H01L 21/302
(57)【特許請求の範囲】
【請求項1】
内側サーマルゾーンと、
前記内側サーマルゾーンを囲む少なくとも1つの同心リングであって、前記少なくとも1つの同心リングのうちの少なくとも1つが、該同心リングの円形内側境界に接する水平境界および垂直境界であって、互いに直角である水平境界および垂直境界により、複数の外側サーマルゾーンに分割されている、少なくとも1つの同心リングと
を備える、ワークピースホルダ。
【請求項2】
前記内側サーマルゾーンと前記複数の外側サーマルゾーンとが独立して制御され得る、請求項1に記載のワークピースホルダ。
【請求項3】
前記内側サーマルゾーンおよび前記外側サーマルゾーンの各々の中に加熱要素が埋め込まれた、請求項1に記載のワークピースホルダ。
【請求項4】
中央サーマルゾーンと、
前記中央サーマルゾーンの両側に配設された1つまたは複数の外側サーマルゾーンであって、前記外側サーマルゾーンの各々および前記中央サーマルゾーンの間の境界は直線状である、1つまたは複数の外側サーマルゾーンと
を備える、ワークピースホルダ。
【請求項5】
前記中央サーマルゾーンと前記外側サーマルゾーンの各々とが独立して制御され得る、請求項4に記載のワークピースホルダ。
【請求項6】
前記中央サーマルゾーンおよび前記外側サーマルゾーンの各々の中に加熱要素が埋め込まれた、請求項4に記載のワークピースホルダ。
【請求項7】
リボンイオンビームを生成するための半導体処理システムと、
ワークピースホルダと、
記ワークピースホルダを、前記リボンイオンビームの長い方の寸法に直角な方向に前記リボンイオンビームを通して移動させるための走査モーターと
を備え、
前記ワークピースホルダが、半径方向エッチング速度不均一性と直線エッチング速度不均一性の両方を補償するための複数のサーマルゾーンを備える、エッチングシステム。
【請求項8】
前記ワークピースホルダが、
内側サーマルゾーンと、
前記内側サーマルゾーンを囲む少なくとも1つの同心リングであって、前記少なくとも1つの同心リングのうちの少なくとも1つが複数の外側サーマルゾーンに分割されている、少なくとも1つの同心リングと
を備える、請求項7に記載のエッチングシステム。
【請求項9】
前記内側サーマルゾーンと前記複数の外側サーマルゾーンとが独立して制御され得る、請求項8に記載のエッチングシステム。
【請求項10】
前記内側サーマルゾーンおよび前記外側サーマルゾーンの各々の中に加熱要素が埋め込まれている、請求項8に記載のエッチングシステム。
【請求項11】
前記少なくとも1つの同心リングのうちの前記少なくとも1つが、放射状スポークを使用して分割されている、請求項8に記載のエッチングシステム。
【請求項12】
前記複数の外側サーマルゾーンが等しいサイズである、請求項11に記載のエッチングシステム。
【請求項13】
前記少なくとも1つの同心リングのうちの前記少なくとも1つが、水平境界と垂直境界とを使用して分割されている、請求項8に記載のエッチングシステム。
【請求項14】
前記ワークピースホルダが、中央サーマルゾーンと、前記中央サーマルゾーンの両側に配設された1つまたは複数の水平サーマルゾーンとを備える、請求項7に記載のエッチングシステム。
【請求項15】
前記複数のサーマルゾーンと連絡している複数の電源を備えるサーマルコントローラと、前記サーマルコントローラと連絡しているコントローラとをさらに備え、ワークピースタイプおよびエッチング核種が前記コントローラに入力され、前記サーマルコントローラが、所望の温度プロファイルを達成するために前記複数のサーマルゾーンに電力を供給する、請求項7に記載のエッチングシステム。
【請求項16】
リボンイオンビームを生成するための半導体処理システムと、
ワークピースホルダと、
記ワークピースホルダを、前記リボンイオンビームの長い方の寸法に直角な方向に前記リボンイオンビームを通して移動させるための走査モーターと
を備え、
前記ワークピースホルダが、直線エッチング速度不均一性を補償するための複数のサーマルゾーンを備える、エッチングシステム。
【請求項17】
前記ワークピースホルダが、中央サーマルゾーンと、前記中央サーマルゾーンの両側に配設された1つまたは複数の垂直サーマルゾーンとを備える、請求項16に記載のエッチングシステム。
【請求項18】
前記中央サーマルゾーンと前記1つまたは複数の垂直サーマルゾーンとが独立して制御され得る、請求項17に記載のエッチングシステム。
【請求項19】
前記中央サーマルゾーンおよび前記1つまたは複数の垂直サーマルゾーンの各々の中に加熱要素が埋め込まれている、請求項17に記載のエッチングシステム。
【請求項20】
前記複数のサーマルゾーンと連絡している複数の電源を備えるサーマルコントローラと、前記サーマルコントローラと連絡しているコントローラとをさらに備え、ワークピースタイプおよびエッチング核種が前記コントローラに入力され、前記サーマルコントローラが、所望の温度プロファイルを達成するために前記複数のサーマルゾーンに電力を供給する、請求項16に記載のエッチングシステム。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、エッチング速度均一性(etch rate uniformity)を改善するためのシステムおよび方法に関し、より詳細には、リボンイオンビームで走査されるワークピースのエッチング速度均一性を改善するためのシステムおよび方法に関する。
【背景技術】
【0002】
ドーパントを注入したり、材料をエッチングしたり、シリコン基板などのワークピースをアモルファス化したりするために、イオンビームが使用され得る。これらのイオンビームは、所望の核種のイオンを生成するイオン源を含む半導体処理システムを使用して生成され得る。いくつかの実施形態では、これらのイオンは、所望の核種を選択し、イオンをワークピースの方へ誘導する複数の構成要素によって抽出され、操作される。他の実施形態では、イオン源はワークピースに近接して位置し、イオンはイオン源からワークピースの方へ引きつけられる。
【0003】
いくつかの実装形態では、様々なパラメータの均一性は厳しく制御される必要があり得る。たとえば、いくつかの適用例において、ウエハ幅(WiW:Width in Wafer)エッチング速度が3~5%(3シグマ値)以内またはそれよりも良いことが望ましいことがある。しかしながら、その幅にわたるビーム電流の変動および他の現象により、これは、達成することが困難であり得る。
【0004】
たとえば、リボンイオンビームの場合、これらのリボンビームは、特にリボンビームの端部において、X方向における不均一なビーム電流を有することが一般的である。
【0005】
さらに、多くの核種についてのエッチング速度は温度依存性であることが知られている。例として、CFベースの化学的性質を用いて酸化物膜をエッチングすると、エッチング速度はプラテン温度と直接的関係を有することがわかる。CHFベースの化学的性質を用いて窒化物膜をエッチングすると、エッチング速度はプラテン温度と反比例関係を有することがわかる。ワークピースの外側エッジは一般にワークピースの中心部分よりもやや低温であるので、均一なワークピース温度を維持することには問題があり得る。さらに、ワークピースのエッジとワークピースホルダとの間の界面は、プラズマシース、エッチャント濃度、または他のパラメータに影響を及ぼし得る。
【0006】
したがって、走査されるリボンイオンビームを使用して所望のエッチング速度均一性を達成するためのシステムおよび方法があれば有益であろう。さらに、システムが、異なるエッチング核種に容易に適応可能であれば有益であろう。
【発明の概要】
【0007】
ワークピースを均一にエッチングするためのシステムおよび方法が開示される。本システムは、リボンイオンビームを生成する半導体処理システムと、リボンイオンビームでワークピースを走査するワークピースホルダとを含む。ワークピースホルダは、ワークピースの異なる領域の温度が別個に制御され得るように、複数の独立して制御されるサーマルゾーンを含む。いくつかの実施形態では、エッチング速度均一性は、半径方向不均一性とも呼ばれる、ワークピースの中心からの距離の関数であり得る。さらに、ワークピースが走査されるとき、直線不均一性と呼ばれる、並進方向におけるエッチング速度均一性の問題もあり得る。本ワークピースホルダは、半径方向エッチング速度不均一性と直線エッチング速度不均一性の両方を補償するための、複数の独立して制御されるサーマルゾーンを備える。
【0008】
一実施形態によれば、ワークピースホルダが開示される。ワークピースホルダは、内側サーマルゾーンと、内側サーマルゾーンを囲む少なくとも1つの同心リングとを備え、少なくとも1つの同心リングのうちの少なくとも1つが複数の外側サーマルゾーンに分割されている。いくつかの実施形態では、内側サーマルゾーンと複数の外側サーマルゾーンとは独立して制御され得る。いくつかの実施形態では、内側サーマルゾーンおよび各外側サーマルゾーン中に加熱要素が埋め込まれる。いくつかの実施形態では、少なくとも1つの同心リングのうちの1つは放射状スポークを使用して分割される。いくつかのさらなる実施形態では、複数の外側サーマルゾーンは等しいサイズである。いくつかの実施形態では、少なくとも1つの同心リングのうちの1つは水平境界と垂直境界とを使用して分割される。
【0009】
別の実施形態によれば、エッチングシステムが開示される。エッチングシステムは、リボンイオンビームを生成するための半導体処理システムと、ワークピースホルダと、リボンイオンビームを通してワークピースホルダを移動させるための走査モーターとを備え、ワークピースホルダは、半径方向エッチング速度不均一性と直線エッチング速度不均一性の両方を補償するための複数のサーマルゾーンを備える。いくつかの実施形態では、ワークピースホルダは、内側サーマルゾーンと、内側サーマルゾーンを囲む少なくとも1つの同心リングとを備え、少なくとも1つの同心リングのうちの少なくとも1つは複数の外側サーマルゾーンに分割されている。いくつかの実施形態では、内側サーマルゾーンと複数の外側サーマルゾーンとは独立して制御され得る。いくつかの実施形態では、内側サーマルゾーンおよび各外側サーマルゾーン中に加熱要素が埋め込まれる。いくつかの実施形態では、少なくとも1つの同心リングのうちの1つは放射状スポークを使用して分割される。いくつかのさらなる実施形態では、複数の外側サーマルゾーンは等しいサイズである。いくつかの実施形態では、少なくとも1つの同心リングのうちの1つは水平境界と垂直境界とを使用して分割される。いくつかの実施形態では、ワークピースホルダは、中央サーマルゾーンと、中央サーマルゾーンの両側に配設された1つまたは複数の水平サーマルゾーンとを備える。いくつかの実施形態では、エッチングシステムは、複数のサーマルゾーンと連絡している複数の電源を備えるサーマルコントローラと、サーマルコントローラと連絡しているコントローラとを備え、ワークピースタイプおよびエッチング核種がコントローラに入力され、サーマルコントローラは、所望の温度プロファイルを達成するために複数のサーマルゾーンに電力を供給する。
【0010】
別の実施形態によれば、エッチングシステムが開示される。エッチングシステムは、リボンイオンビームを生成するための半導体処理システムと、ワークピースホルダと、リボンイオンビームを通してワークピースホルダを移動させるための走査モーターとを備え、ワークピースホルダは、直線エッチング速度不均一性を補償するための複数のサーマルゾーンを備える。いくつかの実施形態では、ワークピースホルダは、中央サーマルゾーンと、中央サーマルゾーンの両側に配設された1つまたは複数の垂直サーマルゾーンとを備える。いくつかの実施形態では、中央サーマルゾーンと1つまたは複数の垂直サーマルゾーンとは独立して制御され得る。いくつかの実施形態では、中央サーマルゾーンおよび1つまたは複数の垂直サーマルゾーンの各々の中に加熱要素が埋め込まれる。いくつかの実施形態では、エッチングシステムは、複数のサーマルゾーンと連絡している複数の電源を備えるサーマルコントローラと、サーマルコントローラと連絡しているコントローラとを備え、ワークピースタイプおよびエッチング核種がコントローラに入力され、サーマルコントローラは、所望の温度プロファイルを達成するために複数のサーマルゾーンに電力を供給する。
【0011】
本開示のより良い理解のために、参照により本明細書に組み込まれる添付の図面を参照する。
【図面の簡単な説明】
【0012】
図1】一実施形態による半導体処理システムである。
図2】第2の実施形態による半導体処理システムである。
図3A-3E】様々なエッチング核種とワークピースタイプとについてのエッチング速度マップを示す図である。
図4】マルチゾーン被加熱ワークピースホルダの第1の実施形態である。
図5A-5E】様々なエッチング速度マップについての図4のワークピースホルダについての加熱パターンを示す図である。
図6】マルチゾーン被加熱ワークピースホルダの第2の実施形態である。
図7】マルチゾーン被加熱ワークピースホルダの第3の実施形態である。
図8A-8E】様々なエッチング速度マップについての図7のワークピースホルダについての加熱パターンを示す図である。
図9】マルチゾーン被加熱ワークピースホルダの第4の実施形態である。
図10】マルチゾーン被加熱ワークピースホルダの第5の実施形態である。
【発明を実施するための形態】
【0013】
上記のように、本システムは、リボンイオンビームで走査されるワークピースを採用するシステムにおけるエッチング速度均一性を改善するために使用され得る。
【0014】
半導体処理システム1は、複数のチャンバ壁101から構成されるイオン源チャンバ100を含むイオン源を備える。いくつかの実施形態では、これらのチャンバ壁101のうちの1つまたは複数は石英などの誘電体材料から構築され得る。RFアンテナ110が第1の誘電体壁102の外面上に配設され得る。RFアンテナ110はRF電源120によって電力供給され得る。RFアンテナ110に供給されるエネルギーは、ガス入口130を介して導入される供給ガスをイオン化するためにイオン源チャンバ100内で放射される。
【0015】
抽出プレート104と呼ばれる1つのチャンバ壁は、イオンビーム106が通ってイオン源チャンバ100から脱出し得る抽出開孔105を含む。イオンビーム106は、X方向とも呼ばれる水平方向において、高さ方向よりもはるかに広いことがある。これらの特性を有するイオンビームはリボンイオンビームと呼ばれることがある。抽出プレート104は、チタン、タンタルまたは別の金属など、導電性材料から構築され得る。抽出プレート104は、幅が300ミリメートルを超えることがある。さらに、抽出開孔105は、X方向においてワークピース10の直径よりも広いことがある。この抽出プレート104は抽出電圧でバイアスされ得る。他の実施形態では、抽出プレート104は接地され得る。
【0016】
半導体処理システム1に加えて、ワークピースホルダ155がある。ワークピースホルダ155は抽出開孔105に近接して配設され得る。ワークピースホルダ155上にワークピース10が配設され得る。ワークピースホルダ155は、垂直方向171に移動する走査モーター160を使用して走査される。この方向はY方向とも呼ばれる。したがって、ワークピースホルダ155は、イオンビーム106とワークピースホルダ155との間に相対垂直移動があるように構成される。
【0017】
ワークピース10を囲んでいるのは、ハロー(halo)と呼ばれることもあるシールド165である。シールド165は、ワークピース10を囲み、ワークピース10のロケーションに対応するその中心に開口を有する。シールド165は金属などの導電性材料から構築され得る。シールド165は、チタン、シリコン、炭化ケイ素または別の材料から製造され得る。シールド165はワークピースホルダ155の一部であると考えられ得る。
【0018】
シールド165およびワークピースホルダ155は、ワークピースバイアス電源170を使用してバイアスされ得る。いくつかの実施形態では、ワークピースバイアス電源170からの出力は、5kHzと50kHzとの間の周波数と、100~5000ボルトの振幅とを有するパルス化DC電圧である。
【0019】
上記の開示では、ワークピースバイアス電源170からの出力をパルス化DC電圧であるとして説明したが、抽出プレート104をバイアスする抽出電圧電源がパルス化DC出力を与える間、ワークピースバイアス電源170は一定であり得ることを理解されたい。
【0020】
パルス化されると、ワークピースホルダ155とシールド165とに印加される電圧は、抽出プレート104に印加される電圧よりも負である。言い換えれば、抽出プレート104が接地されている場合、ワークピースバイアス電源170は負パルスを生成する。これらの負パルス期間中に、正イオンがイオン源チャンバ100の内部からワークピース10に引きつけられる。抽出プレート104が正にバイアスされた場合、ワークピースバイアス電源170は、正イオンがこれらのパルス期間中にイオン源チャンバ100の内部からワークピース10に引きつけられるように、より少ない正パルスまたは負パルスを生成する。
【0021】
サーマルコントローラ190もワークピースホルダ155と連絡していてよい。サーマルコントローラは、以下でより詳細に説明するように、ワークピースホルダ155中の複数のサーマルゾーンの各々に電圧または電流を供給する複数の電源を備え得る。
【0022】
コントローラ180が、ワークピースバイアス電源170、ワークピースホルダ155、サーマルコントローラ190および他の構成要素と連絡していてよい。コントローラ180は、マイクロコントローラ、パーソナルコンピュータ、専用コントローラ、または別の好適な処理ユニットなど、処理ユニット181を含み得る。コントローラ180はまた、半導体メモリ、磁気メモリ、または別の好適なメモリなど、非一時的記憶要素182を含み得る。この非一時的記憶要素182は、命令183と、コントローラ180が本明細書で説明する機能を実行することを可能にする他のデータとを含み得る。コントローラ180は、それぞれ走査モーター160およびサーマルコントローラ190を介して、ワークピースホルダ155の動きを制御することと、ワークピースホルダ155の温度を制御することとが可能であり得る。
【0023】
もちろん、他の構成も採用され得る。たとえば、図2は、プラズマがその中で生成されるイオン源チャンバを画定する複数のチャンバ壁を備えるイオン源200を含む異なるタイプの半導体処理システム2を示す。いくつかの実施形態では、イオン源200はRFイオン源であり得る。この実施形態では、RFアンテナが誘電体窓に対して配設され得る。この誘電体窓はチャンバ壁のうちの1つの一部または全部を備え得る。RFアンテナは銅などの導電性材料を備え得る。RF電源がRFアンテナと電気的に連絡している。RF電源はRFアンテナにRF電圧を供給し得る。RF電源によって供給される電力は、0.1kWと10kWとの間であり得、1MHzと100MHzとの間など、任意の好適な周波数であり得る。さらに、RF電源によって供給される電力はパルス化され得る。
【0024】
別の実施形態では、イオン源チャンバ内にカソードが配設される。フィラメントがカソードの後ろに配設され、電子を放出するように通電される。これらの電子はカソードに引きつけられ、カソードは、イオン源チャンバ中に電子を放出する。カソードは、フィラメントから放出された電子によって間接的に加熱されるので、このカソードは傍熱型カソード(IHC:indirectly heated cathode)と呼ばれることがある。
【0025】
他の実施形態も可能である。たとえば、プラズマは、バーナス(Bernas)イオン源、容量結合プラズマ(CCP:capacitively coupled plasma)源、マイクロ波または電子サイクロトロン共鳴(ECR:electron-cyclotron-resonance)イオン源によってなど、異なる様式で生成され得る。プラズマが生成される様式は本開示によって限定されない。
【0026】
抽出プレートと呼ばれる1つのチャンバ壁は抽出開孔を含む。抽出開孔は、イオン源チャンバ中で生成されたイオン201が通って抽出され、質量分析器を通ってワークピース10の方に導かれる開口であり得る。抽出開孔は任意の好適な形状であり得る。いくつかの実施形態では、抽出開孔は、高さ(y寸法)と呼ばれる第2の寸法よりもはるかに大きいことがある、幅(x寸法)と呼ばれる1つの寸法を有する楕円形または長方形であり得る。
【0027】
イオン源200の抽出開孔の外側に、それに近接して、抽出オプティクス210が配設されている。いくつかの実施形態では、抽出オプティクス210は1つまたは複数の電極を備える。各電極は、その中に配設された開孔をもつ単一の導電性構成要素であり得る。代替的に、各電極は、2つの構成要素間に開孔を生成するように離間した2つの導電性構成要素から構成され得る。電極は、タングステン、モリブデンまたはチタンなど、金属であり得る。電極のうちの1つまたは複数は接地に電気的に接続され得る。いくつかの実施形態では、電極のうちの1つまたは複数は電極電源を使用してバイアスされ得る。電極電源は、抽出開孔を通してイオンを引きつけるように、イオン源に対して電極のうちの1つまたは複数をバイアスするために使用され得る。抽出開孔と抽出オプティクス中の開孔とは、イオン201が両方の開孔を通るように整合させられる。
【0028】
抽出オプティクス210から下流には質量分析器220が位置する。質量分析器220は、抽出されたイオン201の経路を案内するために磁界を使用する。磁界はイオンの質量と電荷とに応じてイオンの飛行経路に影響を及ぼす。分解開孔231を有する質量分解(mass resolving)デバイス230が質量分析器220の出力または遠位端に配設される。磁界の適切な選択によって、選択された質量と電荷とを有するそれらのイオン201のみが分解開孔231を通って導かれる。他のイオンは、質量分解デバイス230または質量分析器220の壁に当たり、システム中でそれ以上進行しない。
【0029】
いくつかの実施形態では、質量分析器220を通るイオンはスポットビームを形成し得る。
【0030】
スポットビームは、次いで、質量分解デバイス230から下流に配設されたスキャナ240に入り得る。スキャナ240はスポットビームを複数の発散ビームレット(divergent beamlet)にファンアウト(fan out)させる。スキャナ240は静電式または磁気式であり得る。
【0031】
他の実施形態では、質量分析器220を通るイオンはリボンイオンビームを形成し得、広いビームが半導体処理システム全体にわたって移送される。たとえば、リボンビームがイオン源200から抽出され得る。この実施形態では、スキャナ240は不要である。
【0032】
いくつかの実施形態では、コリメータ磁石250が、次いで、これらの発散ビームレットを、ワークピース10の方に導かれる複数の平行ビームレットに変換する。
【0033】
この半導体処理システムからの出力は、ワークピース10の方に導かれるリボンイオンビームである。
【0034】
ワークピース10は、コリメータ磁石250から下流に配設された可動ワークピースホルダ260上に配設される。ワークピースホルダ260は、リボンイオンビームの長い方の寸法に直角な方向に移動する走査モーター160を使用して走査される。
【0035】
いくつかの実施形態では、イオンビームの方向はZ方向と呼ばれ、この方向に直角で水平な方向はX方向と呼ばれることがあり、Z方向に直角で垂直な方向はY方向と呼ばれることがある。この例では、リボンイオンビームの広い方の寸法はX方向であり、可動ワークピースホルダ260は走査モーター160によってY方向に並進させられると仮定している。
【0036】
サーマルコントローラ190もワークピースホルダ260と連絡していてよい。サーマルコントローラ190は、以下でより詳細に説明するように、ワークピースホルダ260中の複数のサーマルゾーンの各々に電圧または電流を与える複数の電源を備え得る。
【0037】
システムを制御するために、上記で説明したものなど、コントローラ180が使用され得る。コントローラ180の実際の実装形態は本開示によって限定されない。
【0038】
コントローラ180は、以下でより詳細に説明するように、可動ワークピースホルダ260、サーマルコントローラ190および他の構成要素と連絡していてよい。
【0039】
したがって、本明細書で説明した可動ワークピースホルダを利用し得る様々な半導体処理システムがある。
【0040】
上記のように、2つのタイプのエッチング速度不均一性があり得る。半径方向不均一性と呼ばれる第1のエッチング速度不均一性はワークピースのエッジにおける不連続性の結果である。これらの不連続性は、化学的、熱的または電気的であり得る。たとえば、図1に関して説明したように、ワークピース10の周りにシールドがあり得る。シールドを構築するために使用される材料がワークピースよりも化学エッチングに対する耐性が高い場合、この界面において利用可能なエッチング核種が余ることがあり、これにより、ワークピースの外側エッジのエッチングがより速くなり得る。反対に、シールドを構築するために使用される材料がワークピースよりも化学エッチングに対する耐性が低い場合、シールドはシンクの働きをし得、この界面において利用可能なエッチング核種が不足することがあり、これによりワークピースの外側エッジのエッチングがより遅くなり得る。シールドの誘電率がワークピースと異なる場合、ワークピースのエッジにおいて電界のひずみがあることがある。このひずみは、抽出バイアスがパルス化された際に、ワークピース10のエッジからイオンを引きつけるか、またははね返し得る。さらに、シールドがワークピースよりも低温である場合、シールドは重合性ガスの化学反応からより速い速度で堆積を収集し得、そのことはワークピースのエッジにおけるエッチング速度に影響を及ぼすこともある。
【0041】
第2のタイプの不均一性は直線不均一性と呼ばれる。上述のように、ワークピース10はリボンイオンビームでY方向において走査される。しばしば、X方向におけるリボンイオンビームのビーム電流プロファイルは一定でない。むしろ、しばしば、リボンイオンビームの端部に近い電流プロファイルは、リボンイオンビームの中心に近い電流プロファイルよりも低いまたは大きいことがある。
【0042】
図3A図3Eは、エッチング核種とワークピースタイプとの5つの異なる組合せについてのエッチング速度マップを示す。これらのエッチング速度マップは、エッチング動作の前に複数のロケーションにおいてワークピースの厚さを測定し、エッチング動作の後にそれらの同じロケーションの厚さを測定することによって生成される。領域280は他の領域よりも大きい程度までエッチングされる。領域282は他の領域よりも小さい程度までエッチングされる。領域281は、エッチング速度がこれらの2つの極端間にあるエリアである。
【0043】
これらのエッチング速度マップの各々は、半径方向不均一性、直線不均一性、または2つのタイプの不均一性の重ね合わせを表示することに留意されたい。特に、図3Aおよび図3Cは主に直線不均一性を示す。図3Bおよび図3Dは主に半径方向不均一性を示す。図3Eは両方のタイプの不均一性を示す。詳細には、図3Eでは、外側エッジをワークピースの中心よりも多くエッチングさせる半径方向不均一性がある。さらに、リボンイオンビームの端部をイオンビームの中心よりも少なくエッチングさせる直線不均一性がある。これらの2つの不均一性が組み合わせられると、ワークピースの上部エッジおよび底部エッジのみがワークピースの残部よりも多くエッチングされる。
【0044】
図4は、一実施形態による、半径方向および/または直線不均一性を補償するために使用され得るワークピースホルダ300の正面図を示す。ワークピースホルダ300は、複数の独立して制御されるサーマルゾーンを備える。サーマルゾーンは、独立して制御され、選択された温度に維持される、ワークピースホルダのエリアとして画定される。
【0045】
図3A~図3Eでは、5つのサーマルゾーンが画定されている。内側サーマルゾーン301は、その中心がワークピースの中心に対応する円形エリアである。内側サーマルゾーン301の半径はワークピースの半径よりも小さい。同心リングが半径方向に内側サーマルゾーン301を越えて延びる。この同心リングは2つ以上のサーマルゾーンに分割され得る。たとえば、図4は、4つの外側サーマルゾーン302~305に分割された同心リングを示す。いくつかの実施形態では、外側サーマルゾーンの各々は等しいサイズである。たとえば、図4における外側サーマルゾーン間の境界は45°、135°、225°および315°にある。しかしながら、他のサイズも可能である。たとえば、2つの外側サーマルゾーン302、304は他の2つの外側サーマルゾーン303、305よりも大きいまたは小さいことがある。たとえば、2つの外側サーマルゾーン302、304が他の2つの外側サーマルゾーンよりも大きくなる場合、外側サーマルゾーン間の境界は60°、120°、240°および300°にあり得る。同様に、2つの外側サーマルゾーン302、304が他の2つの外側サーマルゾーンよりも小さくなる場合、外側サーマルゾーン間の境界は30°、150°、210°および330°にあり得る。
【0046】
いくつかの実施形態では、これらの外側サーマルゾーン302~305の各々は独立して制御され得る。他の実施形態では、2つ以上の外側サーマルゾーンが共通に制御され得る。たとえば、リボンイオンビームの端部がワークピースに当たるロケーションに対応する2つの外側サーマルゾーン302、304は共通に制御され得る。同様に、他の2つの外側サーマルゾーン303、305は共通に制御され得る。
【0047】
これらのサーマルゾーンはいくつかの方法で実装され得る。一実施形態では、各サーマルゾーン中に1つまたは複数の加熱要素が埋め込まれる。特定のサーマルゾーン中のすべての加熱要素は共通に制御され得る。たとえば、1つのサーマルゾーン中の加熱要素のすべてにサーマルコントローラ190によって同じ電流または電圧が供給され得る。動作中に、サーマルコントローラ190によって与えられる電力が、電線を通って、電気エネルギーを熱に変換する加熱要素に供給される。実際の温度を測定し、サーマルコントローラ190にフィードバックを与えるために、温度センサが各サーマルゾーン中に配設され得る。このようにして、各サーマルゾーンはその所望の温度に維持され得る。
【0048】
したがって、一実施形態では、コントローラ180は、使用されているエッチング核種ならびにワークピースのタイプについての情報を受信する。この情報は、キーボードまたはタッチスクリーンなど、入力デバイスを介して入力され得る。この情報に基づいて、コントローラ180は、ワークピースホルダ300中のサーマルゾーンの各々の所望の温度をサーマルコントローラ190に知らせる。サーマルコントローラ190は、次いで、所望の温度プロファイルを達成するために各サーマルゾーンに電力を供給する。
【0049】
たとえば、図5A図5Eは、それぞれ図3A図3Eのエッチング速度マップ、および各々についての対応する温度プロファイルを示す。図5Aおよび図5Cでは、左側エッジおよび右側エッジに沿ったエッチング速度はワークピース上の他のロケーションよりも小さいことに留意されたい。したがって、この状況では、外側サーマルゾーン302、304は他のサーマルゾーンとは異なる温度に設定される。多くのワークピースおよびエッチング核種について、エッチング速度は温度に正比例する。したがって、ワークピースの左側エッジおよび右側エッジに沿ったエッチング速度を上げるために、外側サーマルゾーン302、304は他のサーマルゾーンよりも高い温度に設定される。もちろん、いくつかのエッチング化学反応について、エッチング速度は温度と反比例関係を有する可能性がある。この場合、ワークピースの左側エッジおよび右側エッジに沿ったエッチング速度を上げるために、外側サーマルゾーン302、304は、他のサーマルゾーンよりも低い温度に設定される。
【0050】
図5Bおよび図5Dは半径方向不均一性を示し、外側エッジはワークピースの残部よりも低いエッチング速度を有する。これらの場合、外側サーマルゾーン302~305のすべてが内側サーマルゾーン301とは異なる温度に維持される。エッチング速度が温度に正比例する場合、外側サーマルゾーン302~305は内側サーマルゾーン301よりも高い温度に設定される。エッチング速度が温度に反比例する場合、外側サーマルゾーン302~305は内側サーマルゾーン301よりも低い温度に設定される。
【0051】
図5Eは、ワークピースの上部エッジおよび底部エッジがワークピースの残部よりも高いエッチング速度を有する例を示す。したがって、エッチング速度が温度に正比例する場合、外側サーマルゾーン303、305は、サーマルゾーンの残部よりも低い温度に設定される。エッチング速度が温度に反比例する場合、外側サーマルゾーン303、305は、サーマルゾーンの残部よりも高い温度に設定される。
【0052】
したがって、図のワークピースホルダ300は、半径方向不均一性と直線不均一性の両方を補償するために使用され得る。
【0053】
もちろん、他の設計が採用され得る。図6は、内側サーマルゾーン401と、4つの外側サーマルゾーン402~405と、4つの中間サーマルゾーン406~409とを含む、別のワークピースホルダ400を示す。この設計により、特に半径方向不均一性に対して、グラニュラリティ(granularity)の向上が可能になり得る。代替実施形態では、4つの中間サーマルゾーン406~409は単一の中間ゾーンと置き換えられる。
【0054】
言い換えれば、ワークピースホルダは、内側サーマルゾーンと、内側サーマルゾーンを囲む1つまたは複数の同心リングとを備え得、それらの同心リングのうちの1つまたは複数は複数のサーマルゾーンに分割される。同心リングの数は、本開示によって限定されず、1以上の任意の数であり得る。同様に、同心リングが分割される複数のサーマルゾーンは、本開示によって限定されず、1よりも大きい任意の数であり得る。さらに、特定の同心リング中のサーマルゾーンの数は、異なる同心リング中のサーマルゾーンの数と同じであるか、またはそれと異なり得る。上記で説明したように、この構成は、半径方向不均一性と直線不均一性の両方を補償するのに有効である。
【0055】
図7は、半径方向不均一性と直線不均一性の両方を補償するために使用され得る別の設計を示す。図4および図6と同様に、このワークピースホルダ500は、内側サーマルゾーンと1つまたは複数の同心円とを備え、それらの同心リングのうちの少なくとも1つは複数のサーマルゾーンに分割される。それらの実施形態では、同心リング中のサーマルゾーンの境界は放射状スポークを使用して生成された。この実施形態では、外側同心リング中のサーマルゾーンの境界は水平セグメントと垂直セグメントとを使用して生成される。したがって、この実施形態では、内側サーマルゾーンと、内側サーマルゾーンを囲む少なくとも1つの同心リングとがあり、同心リングのうちの少なくとも1つは垂直境界と水平境界とを使用して分割される。水平境界および垂直境界は、交差点において円形内側境界に接触し、接する、互いに直角である境界を指す。さらに、これらの境界は、交差点を通る半径に直角である。図7のワークピースホルダ500中には、内側サーマルゾーン501と、第1の中間同心サーマルゾーン502と、8つの外側サーマルゾーン503~510に分割された外側同心リングとがある。もちろん、外側同心リング中のサーマルゾーン間の境界は垂直および水平でないことがある。この図は1つの可能な実装形態を示す。図7のワークピースホルダ500は、半径方向不均一性と直線不均一性の両方を補償するために使用され得る。図8A~図8Eは、ワークピースホルダ500の対応する熱プロファイルとともに、図3A~図3Eに提示された5つのエッチング速度マップを示す。
【0056】
この設計は、前の設計よりも多いグラニュラリティを提供する。図8Aでは、エッチング速度が温度に正比例する場合、外側サーマルゾーン503、507は、サーマルゾーンの残部よりも高い温度に設定される。エッチング速度が温度に反比例する場合、外側サーマルゾーン503、507は、サーマルゾーンの残部よりも低い温度に設定される。
【0057】
図8Bでは、エッチング速度が温度に正比例する場合、外側サーマルゾーン503~510は、サーマルゾーンの残部よりも高い温度に設定され、第1の中間同心サーマルゾーン502は、内側サーマルゾーン501よりも高い温度に設定される。エッチング速度が温度に反比例する場合、外側サーマルゾーン503~510は、サーマルゾーンの残部よりも低い温度に設定され、第1の中間同心サーマルゾーン502は、内側サーマルゾーン501よりも低い温度に設定される。
【0058】
図8Dについてのパターンは図8Bについてのパターンと同様であるが、第1の中間同心サーマルゾーン502は内側サーマルゾーン501と同じ温度に維持され得る。
【0059】
図8Cでは、エッチング速度が温度に正比例する場合、外側サーマルゾーン503、504、506~508、510は、サーマルゾーンの残部よりも高い温度に設定され、外側サーマルゾーン505、509は、内側サーマルゾーン501よりも高い温度に設定される。エッチング速度が温度に反比例する場合、外側サーマルゾーン503、504、506~508、510は、サーマルゾーンの残部よりも低い温度に設定され、外側サーマルゾーン505、509は、内側サーマルゾーン501よりも低い温度に設定される。
【0060】
図8Eでは、エッチング速度が温度に正比例する場合、外側サーマルゾーン505、509は、サーマルゾーンの残部よりも低い温度に設定される。エッチング速度が温度に反比例する場合、外側サーマルゾーン505、509は、サーマルゾーンの残部よりも高い温度に設定され、外側サーマルゾーン505、509は、内側サーマルゾーン501よりも低い温度に設定される。
【0061】
上記のワークピースホルダは、半径方向不均一性と直線不均一性の両方に適応するように設計されているが、1つのタイプの不均一性のみを補正するために他のワークピースホルダが利用され得る。たとえば、図9は、直線不均一性を補正するために使用され得るワークピースホルダ600を示す。この実施形態では、ワークピースホルダ600は、中央サーマルゾーン601と、中央サーマルゾーン601の両側に配設された1つまたは複数の垂直サーマルゾーンとを有する。この実施形態では、中央サーマルゾーン601の両側に2つの垂直サーマルゾーンがある。もちろん、より多いまたはより少ない垂直サーマルゾーンがあり得る。最外垂直サーマルゾーン602、605はリボンイオンビームの端部の近くに配置される。中間垂直サーマルゾーン603、604は中央サーマルゾーン601と最外垂直サーマルゾーンとの間に配置される。
【0062】
このワークピースホルダ600は、図3Aおよび図3Cに示されたエッチング速度マップを補償するために使用され得る。さらに、ワークピースホルダ600が1/4回転された場合、ワークピースホルダ600は、図3Eに示されたエッチング速度マップを補償するために使用され得る。この場合、ワークピースホルダは、中央サーマルゾーンと、中央サーマルゾーンの両側に配設された1つまたは複数の水平サーマルゾーンとを備える。したがって、図9は、リボンイオンビームの直線不均一性を補償するために走査システム中で使用され得る、サーマルゾーンを有するワークピースホルダの一例を示す。
【0063】
図10は、半径方向不均一性を補償するために使用され得るワークピースホルダ700を示す。このワークピースホルダ700は、図4に示されたものと同様であるが、同心リングのうちのいずれも複数のサーマルゾーンに分割されない。言い換えれば、内側サーマルゾーン701と複数の同心サーマルゾーンとがある。各同心リング702~704は同心サーマルゾーンを表す。このワークピースホルダ700は、図3Bおよび図3Dに示されたエッチング速度マップを補償するために使用され得る。
【0064】
サーマルコントローラ190はいくつかの方法で実装され得る。一実施形態では、ワークピースホルダ中の各サーマルゾーンは、対応する専用の電源を有する。他の実施形態では、いくつかのサーマルゾーンが常に同じ温度に設定され得る。これらの実施形態では、2つ以上のサーマルゾーンに電力を供給するために単一の電源が使用され得る。
【0065】
別の実施形態では、サーマルコントローラ190は電力レベルごとに1つの電源を有し得る。これらの電源の出力は複数のスイッチまたはマルチプレクサへの入力として使用され、各スイッチは、各サーマルゾーンにどの出力が印加されるかを選択するために使用される。
【0066】
本出願において上記で説明した実施形態は多くの利点を有し得る。上記のように、いくつかのプロセスは、3%以下の3シグマ値など、ワークピース全体にわたるエッチング速度について極めて厳しい許容差を利用する。ワークピースの様々な領域の温度を操作することによって、各領域に関連付けられたエッチング速度は、ワークピース全体にわたってより均一な結果を達成するように変更され得る。たとえば、1つの実験では、エッチング不均一性は、図3Aに示されているように、均一なプラテン温度を使用して6%の3シグマ値を呈した。図5Aに示されたマルチゾーンプラテン温度制御を利用することによって、エッチング不均一性を低減し、3%以下の3シグマ値を達成することができる。言い換えれば、マルチゾーンプラテン温度制御は、均一なプラテン温度と比較して、エッチング不均一性の3シグマ値を2倍以上低減し得る。
【0067】
本開示は、本明細書で説明した特定の実施形態によって範囲が限定されるべきでない。実際、本明細書で説明したものに加えて、本開示の他の様々な実施形態および本開示への改変が上記の説明および添付の図面から当業者に明らかになろう。したがって、そのような他の実施形態および改変は本開示の範囲内に入るものである。さらに、本明細書では、本開示について、特定の目的のための特定の環境における特定の実装形態のコンテキストにおいて説明したが、当業者は、その有用性がそれに限定されず、本開示が任意の数の目的のために任意の数の環境において有益に実装され得ることを認識されよう。したがって、以下に記載する特許請求の範囲は、本明細書で説明した本開示の全範囲および趣旨に鑑みて解釈されるべきである。
図1
図2
図3A
図3B
図3C
図3D
図3E
図4
図5A
図5B
図5C
図5D
図5E
図6
図7
図8A-8E】
図9
図10