IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 長江存儲科技有限責任公司の特許一覧

特許7451567三次元メモリデバイス、および三次元メモリデバイスを形成するための方法
<>
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図1
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図2
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図3A
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図3B
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図4A
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図4B
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図5
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図6A
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図6B
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図6C
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図6D
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図7
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図8
  • 特許-三次元メモリデバイス、および三次元メモリデバイスを形成するための方法 図9
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-08
(45)【発行日】2024-03-18
(54)【発明の名称】三次元メモリデバイス、および三次元メモリデバイスを形成するための方法
(51)【国際特許分類】
   H10B 43/50 20230101AFI20240311BHJP
   H10B 43/27 20230101ALI20240311BHJP
   H01L 21/336 20060101ALI20240311BHJP
   H01L 29/788 20060101ALI20240311BHJP
   H01L 29/792 20060101ALI20240311BHJP
【FI】
H10B43/50
H10B43/27
H01L29/78 371
【請求項の数】 17
(21)【出願番号】P 2021570985
(86)(22)【出願日】2020-01-28
(65)【公表番号】
(43)【公表日】2022-07-29
(86)【国際出願番号】 CN2020074057
(87)【国際公開番号】W WO2021151220
(87)【国際公開日】2021-08-05
【審査請求日】2021-11-29
(73)【特許権者】
【識別番号】519237948
【氏名又は名称】長江存儲科技有限責任公司
【氏名又は名称原語表記】Yangtze Memory Technologies Co.,Ltd.
【住所又は居所原語表記】No.88 Weilai 3rd Road,East Lake High-tech Development Zone,Wuhan,Hubei,China
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ジン・ヨン・オ
【審査官】柴山 将隆
(56)【参考文献】
【文献】中国特許出願公開第110246846(CN,A)
【文献】米国特許出願公開第2019/0013326(US,A1)
【文献】中国特許出願公開第109860197(CN,A)
【文献】中国特許出願公開第109690775(CN,A)
(58)【調査した分野】(Int.Cl.,DB名)
H10B 43/50
H10B 43/27
H01L 29/788
H01L 29/792
H01L 21/336
(57)【特許請求の範囲】
【請求項1】
第1の側面、および前記第1の側面と反対の第2の側面を有する基板と、
前記基板の前記第1の側面に交互の導電層および誘電層を備えるメモリスタックと、
前記メモリスタックを通じて各々が垂直に延びる複数のチャネル構造と、
前記メモリスタックを通じて垂直に延び、前記複数のチャネル構造を複数のブロックへと分離するために横に延びるスリット構造と、
前記基板における、前記スリット構造と接触する第1のドープ領域と、
前記基板の前記第2の側面から前記第1のドープ領域へと垂直に延びる絶縁構造と、
前記基板における、前記絶縁構造によって分離される複数の第2のドープ領域であって、前記第1のドープ領域とは異なる型のドーパントを有し、前記第1のドープ領域と接触している、第2のドープ領域と、
前記第1のドープ領域に電気的に接続されるソースコンタクトと、
対応する前記第2のドープ領域の電圧を制御するための、前記第2のドープ領域のそれぞれ1つと各々が接触する複数のコンタクトと
を備え
前記第2のドープ領域は、前記絶縁構造および前記第1のドープ領域によって前記ブロックへと分離される三次元(3D)メモリデバイス。
【請求項2】
前記絶縁構造はトレンチアイソレーションを備える、請求項1に記載の3Dメモリデバイス。
【請求項3】
前記ブロックの各々における1つまたは複数の前記チャネル構造は、前記ブロックにおける前記第2のドープ領域のそれぞれ1つと接触する、請求項に記載の3Dメモリデバイス。
【請求項4】
前記コンタクトは前記基板の前記第1の側面へと延びる、請求項1に記載の3Dメモリデバイス。
【請求項5】
前記コンタクトは前記基板の前記第2の側面へと延びる、請求項1に記載の3Dメモリデバイス。
【請求項6】
前記第1のドープ領域はNウェルを備え、前記第2のドープ領域の各々はPウェルを備える、請求項1に記載の3Dメモリデバイス。
【請求項7】
前記ソースコンタクトは、前記絶縁構造によって包囲され、前記第1のドープ領域と接触するように前記基板の前記第2の側面から垂直に延びる、請求項1に記載の3Dメモリデバイス。
【請求項8】
前記スリット構造は1つまたは複数の誘電性材料で満たされる、請求項1に記載の3Dメモリデバイス。
【請求項9】
周辺回路を備える第1の半導体構造と、
交互の導電層および誘電層を備えるメモリスタック、
前記メモリスタックを通じて各々が垂直に延び、前記周辺回路に電気的に連結される複数のチャネル構造、
前記メモリスタックを通じて各々が垂直に延び、前記複数のチャネル構造を複数のブロックへと分離するために横に延びる複数のスリット構造、
前記複数のスリット構造のそれぞれ1つと各々が接触し、同じ型のドーパントを有する複数の第1のドープ領域、および、前記複数の第1のドープ領域と接触し、前記複数の第1のドープ領域とは異なる型のドーパントを有する複数の第2のドープ領域を備える半導体層、
前記複数の第2のドープ領域を前記ブロックへと分離するために、前記半導体層の後側から前記複数の第1のドープ領域のそれぞれ1つへと各々が垂直に延びる複数の絶縁構造、
前記複数の第1のドープ領域に電気的に接続されるソースコンタクト、ならびに、
対応する前記第2のドープ領域の電圧を制御するための、前記第2のドープ領域のそれぞれ1つと各々が接触する複数のコンタクト、
を備える第2の半導体構造と、
前記第1の半導体構造と前記第2の半導体構造との間の接合境界面であって、ハイブリッド結合の結果として、前記第1の半導体構造の基板とは反対側の前記周辺回路の側に形成された結合層と前記第2の半導体構造の前記半導体層とは反対側の前記メモリスタックの側に形成された結合層との間に配置される結合境界面である、接合境界面と
を備える三次元(3D)メモリデバイス。
【請求項10】
前記絶縁構造の各々はトレンチアイソレーションを備える、請求項に記載の3Dメモリデバイス。
【請求項11】
前記ブロックの各々における1つまたは複数の前記チャネル構造は、前記ブロックにおける前記第2のドープ領域のそれぞれ1つと接触する、請求項に記載の3Dメモリデバイス。
【請求項12】
前記コンタクトは前記半導体層の前側へと延びる、請求項に記載の3Dメモリデバイス。
【請求項13】
前記コンタクトは前記半導体層の前記後側へと延びる、請求項に記載の3Dメモリデバイス。
【請求項14】
前記第1のドープ領域はNウェルを備え、前記第2のドープ領域の各々はPウェルを備える、請求項に記載の3Dメモリデバイス。
【請求項15】
三次元(3D)メモリデバイスを形成するための方法であって、
基板の第1の側面から、前記基板にドープ領域を形成するステップと、
前記基板の前記第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造を形成するステップと、
前記基板において、前記ドープ領域と接触する第1のドープ領域を、前記メモリスタックを通じて前記基板へと垂直に延びるスリット開口を通じてドーピングすることにより形成するステップと、
前記メモリスタックを通じて前記第1のドープ領域へと垂直に延び、前記複数のチャネル構造を複数のブロックへと分離するために横に延びるスリット構造を形成するステップであって、前記スリット構造は、前記スリット開口内に、1つまたは複数の誘電性材料、または、1つまたは複数の誘電性材料および1つまたは複数の導電性材料を満たすことによって形成される、ステップと、
前記ドープ領域を複数の第2のドープ領域へと分離するために、前記基板の第2の側面から前記第1のドープ領域へと垂直に延びる絶縁構造を形成するステップであって、前記第2のドープ領域は、前記第1のドープ領域とは異なる型のドーパントを有し、前記第1のドープ領域と接触しており、前記第2のドープ領域は、前記絶縁構造および前記第1のドープ領域によって前記ブロックへと分離される、ステップと、
前記第1のドープ領域に電気的に接続されるソースコンタクトを形成するステップと、
対応する前記第2のドープ領域の電圧を制御するための、前記第2のドープ領域のそれぞれ1つと各々が接触する複数のコンタクトを形成するステップと、
を含む方法。
【請求項16】
基板の第1の側面から、前記基板にドープ領域を形成する前記ステップと、前記基板の前記第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造を形成する前記ステップと、の間に、
前記基板の前記第1の側面に交互の犠牲層および誘電層を備える誘電体スタックを形成するステップと、
前記誘電体スタックを通じて前記基板へと垂直に延びるスリット開口を形成するステップと、
前記スリット開口を通じて前記犠牲層を導電層で置き換えることで、交互の導電層および前記誘電層を備える前記メモリスタックを形成するステップと
をさらに含む、請求項15に記載の方法。
【請求項17】
前記絶縁構造を形成するステップは、
前記基板の前記第2の側面から、前記第1のドープ領域までトレンチをエッチングするステップと、
前記トレンチを1つまたは複数の誘電性材料で満たすステップと
を含む、請求項15に記載の方法。
【発明の詳細な説明】
【技術分野】
【0001】
本開示の実施形態は、三次元(3D)メモリデバイスおよびその製作方法に関する。
【背景技術】
【0002】
平面型メモリセルが、プロセス技術、回路設計、プログラミングアルゴリズム、および製作プロセスを改良することで、より小さい大きさへと縮小されている。しかしながら、メモリセルの形体寸法が下限に近付くにつれて、平面のプロセスおよび製作の技術は困難になり、コストが掛かるようになる。結果として、平面型メモリセルについての記憶密度が上限に近付いている。
【0003】
3Dメモリアーキテクチャは、平面型メモリセルにおける密度の限度に対処することができる。3Dメモリアーキテクチャは、メモリアレイと、メモリアレイと行き来する信号を制御するための周辺装置とを含む。
【発明の概要】
【発明が解決しようとする課題】
【0004】
3Dメモリデバイス、および3Dメモリデバイスを形成するための方法の実施形態が、本明細書において開示されている。
【課題を解決するための手段】
【0005】
例では、3Dメモリデバイスは、第1の側面、および第1の側面と反対の第2の側面を有する基板を備える。3Dメモリデバイスは、基板の第1の側面に交互の導電層および誘電層を備えるメモリスタックも備える。3Dメモリデバイスは、メモリスタックを通じて各々が垂直に延びる複数のチャネル構造も備える。3Dメモリデバイスは、メモリスタックを通じて垂直に延び、複数のチャネル構造を複数のブロックへと分離するために横に延びるスリット構造も備える。3Dメモリデバイスは、基板における、スリット構造と接触する第1のドープ領域をさらに備える。3Dメモリデバイスは、基板の第2の側面から第1のドープ領域へと垂直に延びる絶縁構造をさらに備える。3Dメモリデバイスは、基板における、絶縁構造によって分離される複数の第2のドープ領域をさらに備える。
【0006】
他の例では、3Dメモリデバイスは、周辺回路を備える第1の半導体構造と、第2の半導体構造と、第1の半導体構造と第2の半導体構造との間の接合境界面とを備える。第2の半導体構造は、交互の導電層および誘電層を備えるメモリスタックを備える。第2の半導体構造は、メモリスタックを通じて各々が垂直に延び、周辺回路に電気的に連結される複数のチャネル構造も備える。第2の半導体構造は、メモリスタックを通じて各々が垂直に延び、複数のチャネル構造を複数のブロックへと分離するために横に延びる複数のスリット構造を備える。第2の半導体構造は、複数のスリット構造のそれぞれ1つと各々が接触する複数の第1のドープ領域、および、複数の第1のドープ領域と接触する複数の第2のドープ領域を備える半導体層をさらに備える。第2の半導体構造は、複数の第2のドープ領域をブロックへと分離するために、半導体層の後側から複数の第1のドープ領域のそれぞれ1つへと各々が垂直に延びる複数の絶縁構造をさらに備える。
【0007】
なおも他の例では、3Dメモリデバイスを形成するための方法が開示されている。ドープ領域が基板において基板の第1の側面から形成される。基板の第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造が形成される。第1のドープ領域が、基板において、ドープ領域と接触して形成される。メモリスタックを通じて第1のドープ領域へと垂直に延び、複数のチャネル構造を複数のブロックへと分離するために横に延びるスリット構造が形成される。基板の第2の側面から第1のドープ領域へと垂直に延びる絶縁構造が、ドープ領域を複数の第2のドープ領域へと分離するために形成される。
【0008】
本明細書において組み込まれており、本明細書の一部を形成する添付の図面は、本開示の実施形態を示しており、本記載と共に、本開示の原理を説明するように、および、当業者に本開示を構成および使用させることができるように、さらに供する。
【図面の簡単な説明】
【0009】
図1】3Dメモリデバイスの断面図である。
図2】本開示の一部の実施形態による例示の3Dメモリデバイスの断面図である。
図3A】本開示の一部の実施形態による他の例示の3Dメモリデバイスの断面図である。
図3B】本開示の一部の実施形態によるなおも他の例示の3Dメモリデバイスの断面図である。
図4A】本開示の一部の実施形態によるさらに他の例示の3Dメモリデバイスの断面図である。
図4B】本開示の一部の実施形態によるさらに他の例示の3Dメモリデバイスの断面図である。
図5】本開示の一部の実施形態による例示の結合された3Dメモリデバイスの断面図である。
図6A】本開示の一部の実施形態による、3Dメモリデバイスを形成するための例示の製作プロセスの図である。
図6B】本開示の一部の実施形態による、3Dメモリデバイスを形成するための例示の製作プロセスの図である。
図6C】本開示の一部の実施形態による、3Dメモリデバイスを形成するための例示の製作プロセスの図である。
図6D】本開示の一部の実施形態による、3Dメモリデバイスを形成するための例示の製作プロセスの図である。
図7】本開示の一部の実施形態による、3Dメモリデバイスを形成するための例示の方法の流れ図である。
図8】本開示の一部の実施形態による、3Dメモリデバイスを形成するための他の例示の方法の流れ図である。
図9】本開示の一部の実施形態による、3Dメモリデバイスを形成するためのさらなる例示の方法の流れ図である。
【発明を実施するための形態】
【0010】
本開示の実施形態が添付の図面を参照して説明される。
【0011】
特定の構成および配置が検討されているが、これは例示の目的だけのために行われていることは理解されるべきである。当業者は、他の構成および配置が、本開示の精神および範囲から逸脱することなく使用できることを認識するものである。本開示が様々な他の用途においても採用できることが、当業者には明らかとなる。
【0012】
本明細書において、「一実施形態」、「実施形態」、「例の実施形態」、「一部の実施形態」などへの言及は、記載されている実施形態が具体的な特徴、構造、または特性を含み得るが、必ずしもすべての実施形態が具体的な特徴、構造、または特性を含むとは限らない可能性があることを意味していることは、留意されている。さらに、このような文言は必ずしも同じ実施形態を指すわけではない。さらに、具体的な特徴、構造、または特性が実施形態との関連で記載されている場合、明示的に記載されていようがなかろうが、このような特徴、構造、または特性に他の実施形態との関連で影響を与えることは、当業者の知識の範囲内である。
【0013】
概して、専門用語は、文脈における使用から少なくとも一部で理解され得る。例えば、本明細書で使用されているような「1つまたは複数」という用語は、少なくとも一部で文脈に依存して、単数の意味で任意の特徴、構造、もしくは特性を記載するために使用され得るか、または、複数の意味で特徴、構造、もしくは特性の組み合わせを記載するために使用され得る。同様に、「1つ」または「その」などは、少なくとも一部で文脈に依存して、単数での使用を伝えるためと、または、複数での使用を伝えるためと理解できる。また、「~に基づいて」という用語は、因子の排他的な集まりを伝えるように必ずしも意図されていないとして理解でき、代わりに、ここでも少なくとも一部で文脈に依存して、必ずしも明示的に記載されていない追加の因子の存在を許容してもよい。
【0014】
本開示における「~の上に」、「~の上方に」、および「~にわたって」の意味が、「~の上に」が何か「に直接的に」だけを意味するのではなく、それらの間に中間の特徴または層を伴って何か「に」あるという意味も含むような最も幅広い様態で解釈されるべきであることと、「~の上方に」または「~にわたって」が、何か「の上方に」または何か「にわたって」だけを意味するのではなく、それらの間に中間の特徴または層を伴わずに何か「の上方に」または何か「にわたって」であるという意味も含む可能性もあることとは、容易に理解されるべきである。
【0015】
さらに、「~の下に」、「~の下方に」、「下方の」、「~の上方に」、「上方の」などの空間的に相対的な用語は、本明細書において、図に示されているようなある要素または特徴の他の要素または特徴への関係を記載するために、記載の容易性のために本明細書において使用され得る。空間的に相対的な用語は、図で描写された配向に加えて、使用または動作における装置の異なる配向を網羅するように意図されている。装置は他に配向されてもよく(90度または他の配向に回転させられる)、本明細書で使用される空間的に相対的な記載は、それに応じて同様に解釈され得る。
【0016】
本明細書で使用されているように、「基板」という用語は、それに続く材料層が加えられる材料を指す。基板自体がパターン形成されてもよい。基板の上に追加される材料は、パターン形成されてもよいし、パターン形成されないままであってもよい。さらに、基板は、シリコン、ゲルマニウム、ガリウムヒ素、リン化インジウムなど、幅広い半導体材料を含み得る。代替で、基板は、ガラス、プラスチック、またはサファイアのウェハなどの非導電性材料から形成されてもよい。
【0017】
本明細書で使用されているように、「層」という用語は、厚さの領域を含む材料部分を指す。層は、下もしくは上にある構造の全体にわたって広がり得る、または、下もしくは上にある構造の広がり未満の広がりを有し得る。さらに、層は、連続的な構造の厚さ未満の厚さを有する同質または非同質の連続的な構造の領域であり得る。例えば、層は、連続的な構造の上面と下面との間における、またはそれら上面および下面における、水平面の任意の対の間に位置させられ得る。層は、水平に、垂直に、および/または、先細りの表面に沿って、延びることができる。基板は、層であり得る、1つもしくは複数の層を含み得る、ならびに/または、1つまたは複数の層を上、上方、および/もしくは下方に有し得る。層は複数の層を含んでもよい。例えば、インターコネクト層は、1つまたは複数の導体層およびコンタクト層(インターコネクト線、および/または垂直インターコネクトアクセス(VIA)コンタクトが形成される)、ならびに、1つまたは複数の誘電層を含み得る。
【0018】
本明細書で使用されているように、「名目上の/名目上は」は、製品の設計の局面の間またはプロセスの間に、所望の値より上の値および/または下の値の範囲と一緒に設定される、構成要素またはプロセス工程についての特性またはパラメータの所望の値または目標値を指す。値の範囲は、製造プロセスにおける若干の変化または公差によるものであり得る。本明細書で使用されているように、「約」という用語は、主題の半導体装置と関連付けられる具体的な技術ノードに基づいて変化する可能性がある所与の量の値を指示している。具体的な技術ノードに基づいて、「約」という用語は、例えば値の10~30%(例えば、値の±10%、±20%、または±30%)内で変化する所与の量の値を指示することができる。
【0019】
本明細書で使用されているように、「3Dメモリデバイス」という用語は、メモリストリングが基板に対して垂直方向に延びるように、横に配向された基板において、メモリセルトランジスタの垂直に配向されたストリング(本明細書では、NANDメモリストリングなど、「メモリストリング」と称される)を伴う半導体装置を指す。「垂直の/垂直に」という用語は、基板の横表面に対する名目上直角を成すことを意味する。
【0020】
一部の3D NANDメモリデバイスでは、メモリアレイセルのソース側は、ワード線方向における壁形線コンタクトによって接触させられる。アレイ共通ソース(ACS: Array Common Source)コンタクトとしても知られているこれらの壁形コンタクトは、ビット線方向に沿って、2つ以上のメモリストリングごとに形成される。しかしながら、メモリスタックに埋め込まれるACSコンタクトは、メモリスタックにおけるワード線への大きな結合容量を保持する。さらに、例えばPウェル/Nウェルを備えるといったソース選択ゲートのソース側は、平面におけるメモリブロックのすべてを横切って広がり、すべてのメモリブロックを電気的に連結し、したがって大きな容量負荷を保持する。従来の壁の形式のACSコンタクトからの寄生容量と、大きなPウェル/Nウェルの負荷は、メモリ削除およびプログラム動作における遅いランピングおよび大きな電流消費に起因すると考えられる。
【0021】
例えば、図1は、3Dメモリデバイス100の断面図を示している。3Dメモリデバイス100は、複数のNウェル104と、Nウェル104の各々と接触するPウェル106と、Pウェル106と接触するNウェル108とを有するP型基板102を備える。3Dメモリデバイス100は、基板102の前側において、交互の導電層112(ゲート線/ワード線として機能する)および誘電層114を有するメモリスタック110も備える。x軸、y軸、およびz軸が、3Dメモリデバイス100における構成要素同士に空間的な関係を示すために、図1に含まれている。基板102は、x-y平面において横に延びる2つの横表面、すなわち、ウェハの前側における前表面と、ウェハの前側と反対の後側における後表面とを備える。x方向およびy方向は、ウェハ平面における2つの直交する方向であり、x方向はワード線方向であり、y方向はビット線方向である。z軸は、x方向とy方向との両方に対して直角である。本明細書で使用されているように、半導体装置(例えば、3Dメモリデバイス100)のある構成要素(例えば、層または装置)が他の構成要素(例えば、層または装置)の「上にある」、「上方にある」、または「下方にある」かは、基板がz方向において半導体装置の最も下の平面に位置決めされるとき、z方向(x-y平面に対して直角の垂直方向)において半導体装置(例えば、基板102)の基板に対して決定される。空間的な関係を記載するための同じ観念が、本開示を通じて適用されている。
【0022】
図1に示されているように、3Dメモリデバイス100は、チャネル構造116(NANDメモリストリングとして機能する)のアレイと、複数の平行なスリット構造118とをさらに備え、スリット構造118の各々は、メモリスタック110の交互の導電層112および誘電層114を通じて垂直(z方向)に延びている。各々のチャネル構造116は、ビット線120のうちの1つに電気的に連結されている。ゲート線スリット(GLS)としても知られている各々のスリット構造118は、チャネル構造116のアレイを複数のメモリブロックへと分離するためにビット線方向(y方向)に沿って横にも延びている。ACSコンタクトとして機能するため、各々のスリット構造118は、ACSのそれぞれのPウェル/Nウェルをソース線124に電気的に連結するために、Nウェル104のそれぞれ1つと接触する壁形コンタクト122を備える。各々の壁形コンタクト122は、スリット構造118における誘電性材料から作られたスペーサ126によって包囲され、導電層(ワード線)112から絶縁される。
【0023】
結果として、メモリスタック110を通じて垂直に延びる壁形コンタクト122は、導電層(ワード線)112に対して大きな結合容量を形成し、これは、メモリセルが垂直に拡大するときにワード線112の数が増加するにつれて増加し続ける。さらに、異なるメモリブロックにおけるチャネル構造116は、それらのACSと同じPウェル106/Nウェル108を共有する。したがって、単一のコンタクト128が、共通ソース電圧をPウェル106に適用するために、Pウェル106と接触して形成され、メモリ平面におけるすべてのメモリブロックを横切って広がる。Pウェル106/Nウェル108は大きな容量負荷も保持し、メモリ削除およびプログラム動作における遅いランピングおよび大きな電流消費に起因すると考えられる。
【0024】
本開示による様々な実施形態は、例えば図1に関して、前述した様々な種類の寄生容量を低下させ、それによってワード線バイアスランピング速度を増加させ、3Dメモリデバイスの電力消費を低減するために、改良された3Dメモリデバイスアーキテクチャおよびその製作方法を提供する。一部の実施形態では、従来の前側の壁の形式のACSコンタクトが、後側のソース線コンタクトで置き換えられる。結果として、ワード線に対する結合容量を回避するために、メモリスタックに埋め込まれたスリット構造が誘電性材料で完全に満たされ、つまり、絶縁構造になり得る。一部の実施形態では、ACSの単一のPウェル/Nウェルが、例えばトレンチアイソレーションといった、メモリブロックごとに基板の後側から絶縁構造を形成し、それによって大きなPウェル/Nウェルの静電容量をブロックの数で分割することで分けられる。さらに、複数のPウェルが、Pウェルの負荷を低減して装置性能をさらに向上させるために、例えばブロックごとにより小さいPウェル電圧を適用することなどで、複数のブロック選択スイッチを用いるブロックレベルにおいて個別に制御され得る。一部の実施形態では、後側のソース線コンタクトが、トレンチアイソレーションを通じて形成され、トレンチアイソレーションによって包囲される。
【0025】
図2は、本開示の一部の実施形態による例示の3Dメモリデバイス200の断面図を示している。3Dメモリデバイス200は、シリコン(例:単結晶シリコン)、シリコンゲルマニウム(SiGe)、ガリウムヒ素(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)、ゲルマニウムオンインシュレータ(GOI)、または任意の他の適切な材料を含み得る基板202を備え得る。一部の実施形態では、基板202は、通常の厚さを伴うウェハから薄化された半導体層であり、つまり、薄化された基板である。基板202は、メモリセルなどの半導体装置が形成され得る前側と、前側と反対の後側とを有し得る。
【0026】
図2に示されているように、基板202は、一部の実施形態によれば、同じ種類のドーパント(P型ドーパントまたはN型ドーパント)を有する複数の第1のドープ領域204と、第1のドープ領域204と異なる種類のドーパントを有する第2のドープ領域206と、第2のドープ領域206と異なる種類のドーパントを有する第3のドープ領域208とを含む様々なドープ領域を含む。つまり、単一の第2のドープ領域206は、複数のPN接合を形成するために複数の第1のドープ領域204と接触することができ、単一の第3のドープ領域208は、他のPN接合を形成するために単一の第2のドープ領域206と接触することができる。一部の実施形態では、基板202はP型基板であり、各々の第1のドープ領域204はNウェルを備え、第2のドープ領域206はPウェルを備え、第3のドープ領域208はNウェルを備える。つまり、単一の第2のドープ領域206は複数の第1のドープ領域204を横切って広がることができる。一部の実施形態では、第1のドープ領域204および第2のドープ領域206は基板202の前側からドーピングされる。
【0027】
一部の実施形態では、3Dメモリデバイス200は、メモリセルがNANDメモリストリングのアレイの形態で提供されるNANDフラッシュメモリデバイスである。各々のメモリストリングは、導電層212および誘電層214を各々が含む複数の対(本明細書では「導電層/誘電層の対」と称される)を通じて垂直に延びるチャネル構造210を備え得る。積み重ねられた導電層/誘電層の対は、本明細書では、基板202の前側におけるメモリスタック216とも称される。メモリスタック216における導電層/誘電層の対の数(例えば、32個、64個、96個、または128個)は3Dメモリデバイス200におけるメモリセルの数を決定する。メモリスタック216は交互の導電層212および誘電層214を備え得る。メモリスタック216における導電層212および誘電層214は、垂直方向において交互になり得る。導電層212は、限定されることはないが、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、ポリシリコン、ドープシリコン、ケイ化物、またはそれらの任意の組み合わせを含む導電性材料を含み得る。誘電層214は、限定されることはないが、酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの任意の組み合わせを含む誘電性材料を含み得る。一部の実施形態では、メモリスタック216の各々の導電層212は、タングステンなどの金属を含み、各々の誘電層214は酸化シリコンを含む。
【0028】
チャネル構造210は、半導体材料(例えば、半導体チャネルとして)および誘電性材料(例えば、メモリ膜として)で満たされるチャネルホールを備え得る。一部の実施形態では、半導体チャネルは、アモルファスシリコン、ポリシリコン、または単結晶シリコンなどのシリコンを含む。一部の実施形態では、メモリ膜は、トンネル層、記憶層(「電荷捕獲層」としても知られている)、およびブロック層を含む複合層である。チャネル構造210のチャネルホールの残りの空間は、酸化シリコンなどの誘電性材料を含むキャッピング層で一部または全部満たされ得る。チャネル構造210は円筒形(例えば、柱の形)を有し得る。キャッピング層、半導体チャネル、トンネル層、記憶層、およびブロック層は、一部の実施形態によれば、柱の中心から外面に向けて径方向にこの順番で配置される。トンネル層は、酸化シリコン、酸窒化シリコン、またはそれらの任意の組み合わせを含み得る。記憶層は、窒化シリコン、酸窒化シリコン、シリコン、またはそれらの任意の組み合わせを含み得る。ブロック層は、酸化シリコン、酸窒化シリコン、高誘電率(高k)誘電体、またはそれらの任意の組み合わせを含み得る。
【0029】
一部の実施形態では、メモリスタック216における導電層212は、NANDメモリストリングにおけるメモリセルのゲート導体/ゲート線として機能する。導電層212は、複数のNANDメモリセルの複数の制御ゲートを備えることができ、(例えば、3Dメモリデバイス200の階段構造における)メモリスタック216の縁において途切れるワード線として横に(例えば、図2に示されているようなx方向に)延びることができる。一部の実施形態では、各々のチャネル構造210の一端は、ワード線212に対して直角に横に(例えば、図2に示されているようなy方向に)延びるビット線218のそれぞれ1つに電気的に連結される。一部の実施形態では、各々のチャネル構造210の他端は、各々のチャネル構造210を第2のドープ領域206に電気的に連結するために、例えばPウェルといった第2のドープ領域206と接触する。
【0030】
図2に示されているように、3Dメモリデバイス200は、メモリスタック216の交互の導電層212および誘電層214を通じて垂直に各々が延びる複数の絶縁構造220をさらに備える。各々の絶縁構造220は、チャネル構造210を複数のブロックへと分離するために横に(図2に示されているようなy方向に)も延び得る。つまり、メモリスタック216は、チャネル構造210のアレイが各々のメモリブロックへと分離され得るように、絶縁構造220によって複数のメモリブロックへと分割され得る。一部の実施形態では、各々の絶縁構造220は、例えば基板202におけるNウェルといった、第1のドープ領域204のそれぞれ1つと接触する。壁形コンタクト122を基板102の前側におけるACSコンタクトとして備える図1での3Dメモリデバイス100における対応するスリット構造118と異なり、図2での絶縁構造220は、それ自体にコンタクトを備えず(つまり、ソースコンタクトとして機能しない)、そのため、スリット構造118ように導電層(ワード線)212に対して寄生容量を導入しない。一部の実施形態では、各々の絶縁構造220は、限定されることはないが、酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの組み合わせを含む、1つまたは複数の誘電性材料で満たされるスリット開口(例えば、トレンチ)を備える。一例では、各々の絶縁構造220は酸化シリコンで完全に満たされ得る。
【0031】
前側のソースコンタクト(例えば、図1における3Dメモリデバイス100のスリット構造118における壁形コンタクト122)の代わりに、3Dメモリデバイス200は、図2に示されているように、第1のドープ領域204のそれぞれ1つと接触するように、基板202の第2のドープ領域206を通じて各々が垂直に延びる複数の後側のソースコンタクト222を備え得る。つまり、ソースコンタクト222は、例えばNウェルといった、基板202におけるそれぞれの第1のドープ領域204と接触するように、基板202の後側から垂直に延びる。ソースコンタクト222は任意の適切な種類のコンタクトを備え得る。一部の実施形態では、ソースコンタクト222はVIAコンタクトを備える。一部の実施形態では、ソースコンタクト222は、例えば図2においてy方向において横に延びるといった壁形コンタクトを備える。後側のソースコンタクト222は、基板202の後側において1つまたは複数のソース線またはソース線メッシュ(図示されていない)に電気的に連結され得る。
【0032】
一部の実施形態では、3Dメモリデバイス200は、例えばPウェルといった第2のドープ領域206と接触するコンタクト224をさらに備える。コンタクト224は、第2のドープ領域206を、例えばトランジスタといった選択スイッチに、および/または、第2のドープ領域206に適用される電圧を制御するための3Dメモリデバイス200の周辺回路(図示されていない)に、電気的に連結することができる。図2に示されているように、コンタクト224は基板202の前側へと延びることができ、例えば、基板202の第2のドープ領域206からメモリスタック216を通じて垂直に延びる。一部の実施形態では、コンタクト224が基板202の後側へと延び得ることは理解されており、例えば、第2のドープ領域206から基板202を通じて垂直に延びる。
【0033】
図3Aは、本開示の一部の実施形態による他の例示の3Dメモリデバイス300の断面図を示している。3Dメモリデバイス300は、シリコン(例:単結晶シリコン)、SiGe、GaAs、Ge、SOI、GOI、または任意の他の適切な材料を含み得る基板302を備え得る。一部の実施形態では、基板302は、通常の厚さを伴うウェハから薄化された半導体層であり、つまり、薄化された基板である。基板302は、メモリセルなどの半導体装置が形成され得る前側と、前側と反対の後側とを有し得る。
【0034】
図3Aに示されているように、基板302は、一部の実施形態によれば、同じ種類のドーパント(P型ドーパントまたはN型ドーパント)を有する複数の第1のドープ領域304と、同じ種類のドーパント(P型ドーパントまたはN型ドーパント)を有するが第1のドープ領域304と異なる複数の第2のドープ領域306と、同じ種類のドーパント(P型ドーパントまたはN型ドーパント)を有するが第2のドープ領域306と異なる複数の第3のドープ領域308とを含む様々なドープ領域を含む。一部の実施形態では、第1のドープ領域304および第2のドープ領域306は基板302の前側からドーピングされる。単一のPウェル106が複数のNウェル104を横切って広がる図1における3Dメモリデバイス100の基板102と異なり、図3Aにおける3Dメモリデバイス300の基板302は、複数の第1のドープ領域304と接触する複数の別々の第2のドープ領域306を備える。
【0035】
図3Aに示されているように、3Dメモリデバイス300は、第2のドープ領域306と第3のドープ領域308とを分離するために、基板302の後側から第1のドープ領域304のそれぞれ1つへと各々が垂直に延びる複数の後側の絶縁構造310を備え得る。各々の後側の絶縁構造310は、トレンチアイソレーション、つまり、限定されることはないが、酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの任意の組み合わせを含む、1つまたは複数の誘電性材料で満たされるトレンチを備え得る。一部の実施形態では、第2のドープ領域306は、第1のドープ領域304と接触しており、後側の絶縁構造310に加えて第1のドープ領域304によっても分離されている。つまり、隣接する第2のドープ領域306同士は互いと電気的に連結されておらず、そのため、一部の実施形態によれば、個別に駆動させる必要があり、別々の電圧信号が適用される。一部の実施形態では、第3のドープ領域308は、第2のドープ領域306とそれぞれ接触しており、後側の絶縁構造310によって分離もされている。つまり、隣接する第3のドープ領域308同士は、一部の実施形態によれば、互いと電気的に連結されていない。一部の実施形態では、基板302はP型基板であり、各々の第1のドープ領域304はNウェルを備え、各々の第2のドープ領域306はPウェルを備え、各々の第3のドープ領域308はNウェルを備える。結果として、各々の第2のドープ領域306のPウェル/Nウェルの静電容量は、図1における単一のPウェル106のPウェル/Nウェルの静電容量と比較して低減でき、それによって3Dメモリデバイス300の電力消費を節約することができる。
【0036】
一部の実施形態では、3Dメモリデバイス300は、メモリセルがNANDメモリストリングのアレイの形態で提供されるNANDフラッシュメモリデバイスである。各々のメモリストリングは、導電層314および誘電層316を各々が含む複数の対(本明細書では「導電層/誘電層の対」と称される)を通じて垂直に延びるチャネル構造312を備え得る。積み重ねられた導電層/誘電層の対は、本明細書では、基板302の前側におけるメモリスタック318とも称される。メモリスタック318における導電層/誘電層の対の数(例えば、32個、64個、96個、または128個)は3Dメモリデバイス300におけるメモリセルの数を決定する。メモリスタック318は交互の導電層314および誘電層316を備え得る。メモリスタック318における導電層314および誘電層316は、垂直方向において交互になり得る。導電層314は、限定されることはないが、W、Co、Cu、Al、ポリシリコン、ドープシリコン、ケイ化物、またはそれらの任意の組み合わせを含む導電性材料を含み得る。誘電層316は、限定されることはないが、酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの任意の組み合わせを含む誘電性材料を含み得る。一部の実施形態では、メモリスタック318の各々の導電層314は、タングステンなどの金属を含み、各々の誘電層316は酸化シリコンを含む。
【0037】
チャネル構造312は、半導体材料(例えば、半導体チャネルとして)および誘電性材料(例えば、メモリ膜として)で満たされるチャネルホールを備え得る。一部の実施形態では、半導体チャネルは、アモルファスシリコン、ポリシリコン、または単結晶シリコンなどのシリコンを含む。一部の実施形態では、メモリ膜は、トンネル層、記憶層(「電荷捕獲層」としても知られている)、およびブロック層を含む複合層である。チャネル構造312のチャネルホールの残りの空間は、酸化シリコンなどの誘電性材料を含むキャッピング層で一部または全部満たされ得る。チャネル構造312は円筒形(例えば、柱の形)を有し得る。キャッピング層、半導体チャネル、トンネル層、記憶層、およびブロック層は、一部の実施形態によれば、柱の中心から外面に向けて径方向にこの順番で配置される。トンネル層は、酸化シリコン、酸窒化シリコン、またはそれらの任意の組み合わせを含み得る。記憶層は、窒化シリコン、酸窒化シリコン、シリコン、またはそれらの任意の組み合わせを含み得る。ブロック層は、酸化シリコン、酸窒化シリコン、高k誘電体、またはそれらの任意の組み合わせを含み得る。
【0038】
一部の実施形態では、メモリスタック318における導電層314は、NANDメモリストリングにおけるメモリセルのゲート導体/ゲート線として機能する。導電層314は、複数のNANDメモリセルの複数の制御ゲートを備えることができ、(例えば、3Dメモリデバイス300の階段構造における)メモリスタック318の縁において途切れるワード線として横に(例えば、図3Aに示されているようなx方向に)延びることができる。一部の実施形態では、各々のチャネル構造312の一端は、ワード線314に対して直角に横に(例えば、図3Aに示されているようなy方向に)延びるビット線320のそれぞれ1つに電気的に連結される。一部の実施形態では、各々のチャネル構造312の他端は、各々のチャネル構造312を第2のドープ領域306のうちの1つに電気的に連結するために、例えばPウェルといった第2のドープ領域306のうちの1つと接触する。
【0039】
図3Aに示されているように、3Dメモリデバイス300は、メモリスタック318の交互の導電層314および誘電層316を通じて垂直に各々が延びる複数のスリット構造322をさらに備える。各々のスリット構造322は、チャネル構造312を複数のブロックへと分離するために横に(図3Aに示されているようなy方向に)も延び得る。つまり、メモリスタック318は、チャネル構造312のアレイが各々のメモリブロックへと分離され得るように、スリット構造322によって複数のメモリブロックへと分割され得る。一部の実施形態では、各々のスリット構造322は、例えば基板302におけるNウェルといった、第1のドープ領域304のそれぞれ1つと接触する。一部の実施形態によれば、各々の後側の絶縁構造310が、第2のドープ領域306を分離する他の側面から第1のドープ領域304のそれぞれ1つとも接触するため、第2のドープ領域306もメモリブロックへと分離される。別の言い方をすれば、例えばNウェルといった第2のドープ領域306は、メモリブロックごとに分割され得る。同様に、例えばPウェルといった第3のドープ領域308は、メモリブロックごとに分割され得る。一部の実施形態では、各々の第2のドープ領域306は、それぞれのメモリブロックにおけるチャネル構造312が、同じメモリブロックに対応する第2のドープ領域306と接触するように、メモリブロックのそれぞれ1つに対応する。
【0040】
一部の実施形態では、各々のスリット構造322は、前側のソースコンタクト324と、ソースコンタクト324を包囲するスペーサ326とで満たされるスリット開口(例えば、トレンチ)を備える。ソースコンタクト324は、限定されることはないが、W、Co、Cu、Al、ポリシリコン、ドープシリコン、ケイ化物、またはそれらの任意の組み合わせを含む1つまたは複数の導電性材料を含み得る。スペーサ326は、限定されることはないが、酸化シリコン、窒化シリコン、酸窒化シリコン、またはそれらの任意の組み合わせを含む1つまたは複数の誘電性材料を含み得る。スペーサ326は、ソースコンタクト324を、メモリスタック318における導電層314から電気的に絶縁し、メモリスタック318をブロックへと分離することができる。ソースコンタクト324は、それぞれの第1のドープ領域304をソース線(またはソースメッシュ)328に電気的に連結するために、ソース線328に電気的に連結され得る。一部の実施形態では、スリット構造322が前側のソースコンタクト324を含まなくてもよいことは理解されており、つまり、図2における絶縁構造220のように、1つまたは複数の誘電性材料で満たされてもよい。つまり、前側のソースコンタクト324は、図5に関連して後で記載されているような後側の絶縁構造310のそれぞれ1つを通じて延びる後側のソースコンタクトで置き換えられてもよい。
【0041】
図3Aに示されているように、3Dメモリデバイス300は、対応する第2のドープ領域306の電圧を制御するための例えばPウェルといった第2のドープ領域306のそれぞれ1つと各々が接触する複数のコンタクト330をさらに備える。単一のPウェル106と単一のコンタクト128とを備える図1における3Dメモリデバイス100と異なり、図3Aにおける3Dメモリデバイス300は、複数の別々の第2のドープ領域306を備え、第2のドープ領域306は、電圧信号を個々に適用するための複数のコンタクト330をさらに必要とする。各々のコンタクト330は、対応する第2のドープ領域306を、例えばトランジスタといった選択スイッチに、および/または、対応する第2のドープ領域306に適用される電圧を制御するための3Dメモリデバイス300の周辺回路(図示されていない)に、電気的に連結することができる。図3Aに示されているように、各々のコンタクト330は基板302の前側へと延びることができ、例えば、対応する第2のドープ領域306からメモリスタック318を通じて垂直に延びる。一部の実施形態では、コンタクト330は、第2のドープ領域306のように、メモリブロックごとに形成される。したがって、基板302におけるPウェルの電圧はブロックごとに個別に制御できる。一部の実施形態では、例えば、図3Bに示されているように、3Dメモリデバイス301の各々のコンタクト331が基板302の後側へと延び得ることは理解されており、例えば、対応する第2のドープ領域306から基板302を通じて垂直に延びる。第2のドープ領域306のブロックごとの配置(例えば、ブロックごとのPウェルをもたらす)と、したがって、ブロックごとの個々のPウェル制御は、ブロックの数によってPウェルの負荷を低減することができる。一部の実施形態では、第2のドープ領域306が後側の絶縁構造310で分離される場合、各々のメモリブロックに対応するPウェルの電圧は、メモリブロックのアドレスに応じて制御される。
【0042】
図4Aは、本開示の一部の実施形態によるさらに他の例示の3Dメモリデバイス400の断面図を示している。図2に関連して先に記載されているように、3Dメモリデバイス200は、スリット構造における前側のACSコンタクトを、前側の絶縁構造220および後側のソースコンタクト222で置き換えることで、前側のACSコンタクトとワード線との間での寄生容量を低減することができる。図3Aおよび図3Bに関して先に記載されているように、3Dメモリデバイス300は、後側の絶縁構造310を用いて単一のPウェルを複数のPウェル(第2のドープ領域306)へと分けることで、Pウェル/Nウェルの寄生容量を低減することができる。3Dメモリデバイス400は、ACSワード線とPウェル/Nウェルとの両方によって導入される寄生容量を低減するために、3Dメモリデバイス200と3Dメモリデバイス300との両方の構造的な改良を組み合わせることができる。説明の容易性のために、3Dメモリデバイス400は3Dメモリデバイス300に基づいて記載され、3Dメモリデバイス300と3Dメモリデバイス400との両方における同じ構成要素は復唱されない。
【0043】
図4に示されているように、3Dメモリデバイス400は、一部の実施形態によれば、チャネル構造312を複数のブロックへと分離するために、メモリスタック318を通じて垂直に延び、横に(図4Aにおけるy方向に)延びる複数の前側の絶縁構造402を備える。各々の絶縁構造402は第1のドープ領域304のそれぞれ1つと接触し得る。前側のソースコンタクト324およびスペーサ326を備えるスリット構造322の代わりに、3Dメモリデバイス400におけるメモリブロックは、導電層314に対する寄生容量を回避するために、導電性材料を含まない絶縁構造402によって分割されている。別の言い方をすれば、図3Aにおけるスリット構造322は、3Dメモリデバイス400では前側の絶縁構造402になるために誘電性材料で完全に満たされ得る。
【0044】
図4Aに示されているように、3Dメモリデバイス400は、第2のドープ領域306をブロックへと分離するために、基板302の後側から第1のドープ領域304のそれぞれ1つへと垂直に各々が延びる複数の後側の絶縁構造310も備える。図3Aに示されているような前側のソースコンタクト322の代わりに、3Dメモリデバイス400は、後側の絶縁構造310のそれぞれ1つによって各々が包囲され、第1のドープ領域304のそれぞれ1つと接触するように基板302から垂直に各々が延びる複数の後側のソースコンタクト404をさらに備える。つまり、各々の後側のソースコンタクト404は、例えばNウェルといった、対応する第1のドープ領域304に電気的に連結されるように、対応する後側の絶縁構造310を貫くことができる。ソースコンタクト404は任意の適切な種類のコンタクトを備え得る。一部の実施形態では、ソースコンタクト404はVIAコンタクトを備える。一部の実施形態では、ソースコンタクト404は、例えば図4Aにおいてy方向において横に延びるといった壁形コンタクトを備える。後側のソースコンタクト404は、基板302の後側において1つまたは複数のソース線またはソース線メッシュ(図示されていない)に電気的に連結され得る。
【0045】
図4Aに示されているように、3Dメモリデバイス400は、対応する第2のドープ領域306の電圧を制御するための例えばPウェルといった第2のドープ領域306のそれぞれ1つと各々が接触する複数のコンタクト330をさらに備える。各々のコンタクト330は、対応する第2のドープ領域306を、例えばトランジスタといった選択スイッチに、および/または、対応する第2のドープ領域306に適用される電圧を制御するための3Dメモリデバイス400の周辺回路(図示されていない)に、電気的に連結することができる。図4Aに示されているように、各々のコンタクト330は基板302の前側へと延びることができ、例えば、対応する第2のドープ領域306からメモリスタック318を通じて垂直に延びる。一部の実施形態では、コンタクト330は、第2のドープ領域306のように、メモリブロックごとに形成される。したがって、基板302におけるPウェル/Nウェルはブロックごとに個別に制御できる。一部の実施形態では、例えば、図4Bに示されているように、3Dメモリデバイス401の各々のコンタクト331が基板302の後側へと延び得ることは理解されており、例えば、対応する第2のドープ領域306から基板302を通じて垂直に延びる。第2のドープ領域306のブロックごとの配置(例えば、ブロックごとのPウェル/Nウェルをもたらす)と、したがって、ブロックごとの個々のPウェル/Nウェル制御は、ブロックの数によってPウェル/Nウェルの負荷を低減することができる。
【0046】
図5は、本開示の一部の実施形態による例示の結合された3Dメモリデバイス500の断面図を示している。3Dメモリデバイス500は結合されたチップの例を表している。3Dメモリデバイス500の構成要素(例えば、3D NANDメモリセルおよび周辺回路)は、異なる基板に別々に形成され、次に、結合されたチップを形成するために接合され得る。3Dメモリデバイス500は、第1の半導体構造502と、第1の半導体構造502にわたって積み重ねられた第2の半導体構造504とを備え得る。第1の半導体構造502と第2の半導体構造504とは、一部の実施形態によれば、結合境界面など、それらの間の接合境界面506において接合される。一部の実施形態では、第1の半導体構造502と第2の半導体構造504との相対的な位置が切り替えられてもよいことは理解されており、つまり、第1の半導体構造502が第2の半導体構造504にわたって積み重ねる。
【0047】
一部の実施形態では、第1の半導体構造502は周辺回路を備える。周辺回路は、高い速度を達成するために、高度な論理プロセス(例えば、90nm、65nm、45nm、32nm、28nm、20nm、16nm、14nm、10nm、7nm、5nm、3nmなどの技術ノード)で実施され得る。一部の実施形態では、第1の半導体構造502における周辺回路は相補型金属酸化物半導体(CMOS)技術を用いている。一部の実施形態では、周辺回路は、限定されることはないが、ページバッファ、デコーダ(例えば、行デコーダおよび列デコーダ)、センスアンプ、ドライバ、電荷ポンプ、電流または電圧の基準を含め、3Dメモリデバイス500の動作を容易にするために使用される任意の適切なデジタル、アナログ、および/または混合信号の周辺回路を形成する複数のトランジスタ508を備える。トランジスタ508は基板501に形成され得る。隔離領域(例えば、シャロートレンチアイソレーション(STI))およびドープ領域(例えば、トランジスタ508のソース領域およびドレイン領域)も基板501に形成され得る。
【0048】
一部の実施形態では、3Dメモリデバイス500の第1の半導体構造502は、電気信号を周辺回路とのやりとりで送るために、インターコネクト層510をさらに備える。インターコネクト層510は、横のインターコネクト線およびVIAコンタクトを含め、複数のインターコネクト(本明細書では「コンタクト」とも称される)を備え得る。本明細書で使用されているように、「インターコネクト」は、ミドルエンドオブライン(MEOL)インターコネクトおよびバックエンドオブライン(BEOL)インターコネクトなど、任意の適切な種類のインターコネクトを広く備え得る。インターコネクト層510は、インターコネクト線およびVIAコンタクトが形成できる1つまたは複数の層間誘電(ILD)層(「金属間誘電(IMD)層」としても知られている)をさらに備え得る。3Dメモリデバイス500の第1の半導体構造502は、結合境界面506(例えば、結合境界面)において接合層512をさらに備え得る。結合層512は、複数の結合コンタクトと、結合コンタクトを電気的に絶縁する誘電体とを備え得る。結合層512における結合コンタクトと包囲する誘電体とは、ハイブリッド結合のために使用され得る。
【0049】
同様に、3Dメモリデバイス500の第2の半導体構造504も、結合境界面506(例えば、結合境界面)において接合層514を備え得る。結合層514は、複数の結合コンタクトと、結合コンタクトを電気的に絶縁する誘電体とを備え得る。第2の半導体構造504は、境界面506において面同士の様態で第1の半導体構造502の上に結合され得る。一部の実施形態では、接合境界面506は、ハイブリッド結合(「金属/誘電体ハイブリッド結合」としても知られている)の結果として、結合層514と512との間に配置される結合境界面であり、ハイブリッド結合は、直接的な結合の技術(例えば、ハンダまたは接着剤などの中間層を用いることなく表面同士の間に結合を形成する)であり、金属同士の結合および誘電体同士の結合を同時に得られる。一部の実施形態では、結合境界面は、結合層514と512とが接触させられて結合される場所である。実用的には、結合境界面は、第1の半導体構造502の結合層512の上面と第2の半導体構造504の結合層514の下面とを含む特定の厚さを伴う層であり得る。
【0050】
一部の実施形態では、3Dメモリデバイス500の第2の半導体構造504は、電気信号を送るために、インターコネクト層516をさらに備える。インターコネクト層516は、MEOLインターコネクトおよびBEOLインターコネクトなどの複数のインターコネクトを備え得る。インターコネクト層516は、インターコネクト線およびVIAコンタクトが形成できる1つまたは複数のILD層をさらに備え得る。
【0051】
一部の実施形態では、3Dメモリデバイス500の第2の半導体構造504は、図4Aにおける3Dメモリデバイス400のアーキテクチャと実質的に同じアーキテクチャでの3D NANDメモリセルのアレイの形態でメモリセルが設けられるNANDフラッシュメモリデバイスを備える。3Dメモリデバイス400と第2の半導体構造504との両方における同様の構造、材料、機能などの詳細が以下では復唱されない可能性があることは、理解されている。
【0052】
第2の半導体構造504は、交互の導電層520(例えば、ゲート線およびワード線として)および誘電層522を備えるメモリスタック518を備え得る。一部の実施形態では、第2の半導体構造504は、メモリスタック518を通じて各々が垂直に延びる複数のチャネル構造524も備える。各々のチャネル構造524は、インターコネクト層516および510におけるビット線526などのインターコネクトと、結合層514および512における結合コンタクトとを通じて、第1の半導体構造502の周辺回路に電気的に連結され得る。第2の半導体構造504は、チャネル構造524を複数のブロックへと分離するために、メモリスタック518を通じて各々が垂直に延び、横に延びる複数の絶縁構造528も備え得る。一部の実施形態では、各々の絶縁構造528は、メモリスタック518における導電層520に対する寄生容量を回避するために、酸化シリコンなどの1つまたは複数の誘電性材料で満たされる。
【0053】
第2の半導体構造504は、薄化された基板など、半導体層530をさらに備え得る。一部の実施形態では、半導体層530は、絶縁構造528のそれぞれ1つと各々が接触する複数の第1のドープ領域532を備える。例えば、各々の第1のドープ領域532はNウェルを備え得る。一部の実施形態では、半導体層530は、第1のドープ領域532と接触する複数の第2のドープ領域534も備える。例えば、各々の第2のドープ領域534はPウェルを備え得る。各々のチャネル構造524は第2のドープ領域534と接触することができる。一部の実施形態では、ブロックの各々における1つまたは複数のチャネル構造524は、同じブロックにおける第2のドープ領域534のそれぞれ1つと接触する。半導体層530は、一部の実施形態によれば、第2のドープ領域534と接触する複数の第3のドープ領域536をさらに備える。例えば、各々の第3のドープ領域536はNウェルを備え得る。
【0054】
第2の半導体構造504は、第2のドープ領域534をブロックへと分離するために、半導体層530の後側から第1のドープ領域532のそれぞれ1つへと垂直に各々が延びる複数の絶縁構造538をさらに備え得る。一部の実施形態では、各々の絶縁構造538はトレンチアイソレーションを備える。第2の半導体構造504は、第1のドープ領域532のそれぞれ1つと接触するために、半導体層530の第2のドープ領域536を通じて各々が垂直に延びる複数のコンタクト540をさらに備え得る。したがって、各々のコンタクト540は後側のソースコンタクトとして機能することができる。一部の実施形態では、各々のコンタクト540は絶縁構造538のそれぞれ1つによって包囲される。コンタクト540はVIAコンタクトまたは壁形コンタクトを備え得る。後側の絶縁構造538を使用して単一のドープ領域を複数の別々の第2のドープ領域534へと分割することで、Pウェル/Nウェルの静電容量および各々の第2のドープ領域534と関連する負荷は低減され得る。
【0055】
第2の半導体構造504は、対応する第2のドープ領域534の電圧を制御するための第2のドープ領域534のそれぞれ1つと各々が接触する複数のコンタクト542をさらに備え得る。コンタクト542は、図5に示されているように、例えばメモリスタック518を通じて垂直に延びるといった、半導体層530の前側へと延び得る、または、例えば半導体層530を通じて垂直に延びるといった(図5Aに示されていない)、半導体層530の後側へと延び得る。一部の実施形態では、各々のコンタクト542は半導体層530の前側へと延び、対応する第2のドープ領域534を、インターコネクト層516および510におけるインターコネクトと、結合層514および512における結合コンタクトとを通じて、第1の半導体構造502の周辺回路へと電気的に連結する。
【0056】
図6A図6Dは、本開示の一部の実施形態による、3Dメモリデバイスを形成するための例示の製作プロセスを示している。図7は、本開示の一部の実施形態による、3Dメモリデバイス(例えば、図2に描写されている3Dメモリデバイス200)を形成するための例示の方法700の流れ図を示している。図8は、本開示の一部の実施形態による、3Dメモリデバイス(例えば、図3Aおよび図3Bに描写されている3Dメモリデバイス300および301)を形成するための他の例示の方法800の流れ図を示している。図9は、本開示の一部の実施形態による、3Dメモリデバイス(例えば、図4Aおよび図4Bに描写されている3Dメモリデバイス400および401)を形成するためのさらなる例示の方法900の流れ図を示している。図6A図6Dおよび図7図9は一緒に説明される。方法700、800、および900に示された工程が完全ではないことと、他の工程が、図示されている工程のいずれかの前、後、または工程同士の間に実施され得ることとは、理解されている。さらに、工程のうちの一部は、同時に、または、図7図9に示されたものと異なる順番で、実施されてもよい。
【0057】
図7は、本開示の一部の実施形態による、3Dメモリデバイス(例えば、図2に描写されている3Dメモリデバイス200)を形成するための例示の方法700の流れ図を示している。図7を参照すると、方法700は工程702において開始し、工程702では、基板の第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造が形成される。基板はシリコン基板とでき、第1の側面は基板の前側であり得る。一部の実施形態では、メモリスタックを形成するために、交互の犠牲層および誘電層を含む誘電体スタックが基板の第1の側面に形成され、誘電体スタックを通じて基板へと垂直に延びるスリット開口が形成され、交互の導電層および誘電層を含むメモリスタックが、スリット開口を通じて、犠牲層を導電層で置き換えることによって形成される。一部の実施形態では、誘電体スタックを形成する前に、第2のドープ領域が基板に形成される。第2のドープ領域はPウェルを備え得る。一部の実施形態では、チャネル構造を形成するために、誘電体スタックを通って垂直に延びるチャネルホールがエッチングされ、続いて、メモリ膜および半導体チャネルがチャネルホールの側壁および底面にわたって堆積させられる。チャネル構造の各々が第2のドープ領域と接触し得る。
【0058】
図6Aを参照すると、Pウェルなどのドープ領域604が、フォトリソグラフィを用いてパターン形成され、イオン注入、熱拡散、またはそれらの組み合わせを用いてシリコン基板602に形成される。複数のチャネル構造606がシリコン基板602の前側に形成でき、ドープ領域604と接触する。図6Aには示されていないが、交互の導電層および誘電層を含むメモリスタックが、メモリスタックを通じて各々のチャネル構造606がシリコン基板602におけるドープ領域604へと垂直に延びるように、シリコン基板602の前側に形成され得る。
【0059】
メモリスタックを形成するために、一部の実施形態では、交互の第1の誘電層(「犠牲層」としても知られている)および第2の誘電層(本明細書において、一緒になって「誘電層の対」と称される)を含む誘電体スタックが、シリコン基板602の上方に形成される。誘電層および犠牲層は、限定されることはないが、化学気相成長法(CVD)、物理的気相成長法(PVD)、原子層堆積法(ALD)、またはそれらの任意の組み合わせを含む1つまたは複数の薄膜堆積プロセスによって、シリコン基板602に交互に堆積させられ得る。
【0060】
チャネル構造606を形成するために、一部の実施形態では、複数のチャネルホールが、フォトリソグラフィ、発達、およびエッチングを用いて誘電体スタックを通じて同時に形成される。誘電体スタックは、フォトリソグラフィマスクおよびエッチングマスクによって定められるパターンでチャネルホールを同時に形成するために、パターン形成されたエッチングマスクを用いて、ディープ反応性イオンエッチング(DRIE)などの1つまたは複数のウェットエッチングおよび/またはドライエッチングのプロセスにより、貫くようにエッチングされる。一部の実施形態では、各々のチャネルホールは、さらにシリコン基板602のドープ領域604へと垂直に延びる。一部の実施形態では、続いて、メモリ膜(例えば、ブロック層、記憶層、およびトンネル層)と半導体チャネルとが、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、チャネルホールの側壁および底面にわたってこの順番で堆積させられる。一部の実施形態では、キャッピング層が、半導体チャネルの堆積の後に誘電性材料を堆積させることで、各々のチャネルホールの残りの空間において全部または一部で満たされる。それによって、一部の実施形態によれば、チャネル構造606が形成される。
【0061】
方法700は、図7に示されているように工程704へと進み、工程704では、第1のドープ領域が基板に形成される。一部の実施形態では、第1のドープ領域を形成するために、基板の一部がスリット開口を通じてドーピングされる。第1のドープ領域は、一部の実施形態によれば、第2のドープ領域と接触する。第1のドープ領域はNウェルを備え得る。
【0062】
図6Aに示されているように、Nウェルなどの複数のドープ領域610が、イオン注入、熱拡散、またはそれらの組み合わせを用いてシリコン基板602に形成される。ドープ領域610は、複数のPウェル/Nウェルを形成するために、ドープ領域604と接触して形成され得る。一部の実施形態では、複数のスリット開口が、シリコン基板602のドープ領域604に到達するために、DRIEなどの1つまたは複数のウェットエッチングおよび/またはドライエッチングを用いて、誘電体スタック(図示されていない)を通じてエッチングされる。一部の実施形態では、スリット開口は、さらにシリコン基板602の上方部分へと垂直に延びる。次に、ドープ領域610は、例えばN型ドーパントをPウェルに注入することで、スリット開口によって露出させられシリコン基板602のドーピング部分によって形成でき、続いて熱拡散させられる。
【0063】
方法700は、図7に示されているように工程706へと進み、工程706では、複数のチャネル構造を複数のブロックへと分離するために、メモリスタックを通じて第1のドープ領域へと垂直に延び、横に延びる第1の絶縁構造が形成される。一部の実施形態では、第1の絶縁構造を形成するために、スリット開口が1つまたは複数の誘電性材料で満たされる。
【0064】
図6Aに示されているように、それぞれがメモリスタック(図示されていない)を通じてドープ領域610へと垂直に延びる複数の絶縁構造608が形成される。絶縁構造608は、チャネル構造606をメモリブロックへと分離するために横に(例えば、図6Aにおけるy方向に)も延び得る。絶縁構造608は、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、スリット開口を酸化シリコンなどの1つまたは複数の誘電性材料で満たすことで形成され得る。一部の実施形態では、導電性材料はスリット開口に充填されない。別の言い方をすれば、絶縁構造608は、コンタクトを含まないスリット構造である。
【0065】
一部の実施形態では、絶縁構造608を形成するためのスリット開口への誘電性材料の堆積の前に、ゲート置換プロセスが、誘電体スタックからメモリスタックを形成するために実施される。誘電体スタックにおける犠牲層は、誘電層に選択的にウェットエッチングおよび/またはドライエッチングを用いることで除去できる。犠牲層を除去するためのエッチング液は、スリット開口を通じて運ばれ得る。メモリスタックの導電層は、スリット開口を通じて、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、エッチングされた犠牲層によって残された横凹部を満たすことによって形成される。別の言い方をすれば、それによって、誘電体スタックをメモリスタックへと転換するために、導電層が犠牲層に置き換わる。
【0066】
方法700は、図7に示されているように工程708へと進み、工程708では、第1のドープ領域と接触するように、基板の第1の側面の反対の第2の側面から垂直に延びる第1のコンタクトが形成される。一部の実施形態では、第1のコンタクトを形成するために、VIAコンタクトが形成される。一部の実施形態では、第1のコンタクトを形成するために、壁形コンタクトが形成される。一部の実施形態では、第1のコンタクトを形成する前に、第2のドープ領域と接触する第2のコンタクトが基板の第1の側面から形成される。
【0067】
図6Bに示されているように、1つまたは複数のコンタクト612がシリコン基板602の前側に形成でき、ドープ領域604と接触する。先に詳細に記載されているように、コンタクト612の数は、製作プロセスが完了させられた後の最終的な3Dメモリデバイスにおけるドープ領域604の数に依存し得る。例えば、ドープ領域604が複数の領域へとさらに分割されない場合(単一のドープ領域604として残る場合)、単一のコンタクト612が形成され得る。そうでない場合、コンタクト612の数は、絶縁構造608によって分割されるメモリブロックの数など、分割されるドープ領域604の数と同じとされ得る。一部の実施形態では、コンタクト612は、コンタクトホールを形成するためにDRIEを用いてメモリスタック(図示されていない)を通じてエッチングし、次に、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、誘電性材料(スペーサとして)、および、1つまたは複数の導電性材料でコンタクトホールを満たすことによって形成される。図6Bに示されているように、チャネル構造606に電気的に連結されるビット線614などのインターコネクトが、限定されることはないが、CVD、PVD、ALD、電気メッキ、化学メッキ、またはそれらの任意の組み合わせを含む1つまたは複数の薄膜堆積プロセスによってさらに形成され得る。
【0068】
図6Dに示されているように、シリコン基板602の後側から垂直に各々が延びる複数のコンタクト618が形成される。各々のコンタクト618は、シリコン基板602におけるドープ領域610のそれぞれ1つと接触することができる。各々のコンタクト618は、横に(例えば、図6Dにおけるy方向に)延びるVIAコンタクトまたは壁式コンタクトであり得る。一部の実施形態では、コンタクト618を形成するために、シリコン基板602は、DRIEなどのウェットエッチングおよび/またはドライエッチングを用いてコンタクトホールまたはトレンチがシリコン基板602を通じてその後側からエッチングされ得るように、逆さまにひっくり返される。エッチングは、エッチングの速度および/または期間を制御することで、コンタクトホールまたはトレンチがドープ領域610に到達するときに停止させられ得る。1つまたは複数の導電性材料が、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、コンタクトホールまたはトレンチへと堆積させられ、それによってドープ領域610とそれぞれ接触するコンタクト618を形成する。図6Dは、ドープ領域604を分割する後側の絶縁構造616によってコンタクト618が包囲されることをさらに示されているが、コンタクト618は後側の絶縁構造616なしで形成されてもよいことは、理解されている。別の言い方をすれば、後側の絶縁構造616の形成なしで、ドープ領域604は、最終的な3Dメモリデバイス(例えば、図2における3Dメモリデバイス200)において複数のメモリブロックを横切って広がる単一のドープ領域を残すことができる。
【0069】
図8は、本開示の一部の実施形態による、3Dメモリデバイス(例えば、図3Aおよび図3Bに描写されている3Dメモリデバイス300および301)を形成するための他の例示の方法800の流れ図を示している。方法700および800が実質的に同様の一部の工程を共有するため、方法700と方法800との両方で同様のプロセスの詳細が以下において復唱されない可能性があることは、理解されている。図8を参照すると、方法800は工程802において開始し、工程802では、基板におけるドープ領域が基板の第1の側面から形成される。基板はシリコン基板とでき、第1の側面は基板の前側であり得る。ドープ領域は、一部の実施形態によれば、Pウェルを備える。図6Aを参照すると、Pウェルなどのドープ領域604が、フォトリソグラフィを用いてパターン形成され、イオン注入、熱拡散、またはそれらの組み合わせを用いてシリコン基板602に形成される。
【0070】
図8に示されているように、方法800は工程804へと進み、工程804では、基板の第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造が形成される。一部の実施形態では、メモリスタックを形成するために、交互の犠牲層および誘電層を含む誘電体スタックが基板の第1の側面に形成され、誘電体スタックを通じて基板へと垂直に延びるスリット開口が形成され、交互の導電層および誘電層を含むメモリスタックが、スリット開口を通じて、犠牲層を導電層で置き換えることによって形成される。
【0071】
図6Aを参照すると、チャネル構造606がシリコン基板602の前側に形成でき、ドープ領域604と接触する。図6Aには示されていないが、交互の導電層および誘電層を含むメモリスタックが、メモリスタックを通じて各々のチャネル構造606がシリコン基板602におけるドープ領域604へと垂直に延びるように、シリコン基板602の前側に形成され得る。
【0072】
方法800は、図8に示されているように工程806へと進み、工程806では、ドープ領域と接触する第1のドープ領域が基板に形成される。一部の実施形態では、第1のドープ領域を形成するために、基板の一部がスリット開口を通じてドーピングされる。第1のドープ領域はNウェルを備え得る。
【0073】
図6Aに示されているように、Nウェルなどのドープ領域610が、イオン注入、熱拡散、またはそれらの組み合わせを用いてシリコン基板602に形成される。ドープ領域610は、複数のPウェル/Nウェルを形成するために、ドープ領域604と接触して形成され得る。一部の実施形態では、複数のスリット開口が、シリコン基板602のドープ領域604に到達するために、DRIEなどの1つまたは複数のウェットエッチングおよび/またはドライエッチングを用いて、誘電体スタック(図示されていない)を通じてエッチングされる。一部の実施形態では、スリット開口は、さらにシリコン基板602の上方部分へと垂直に延びる。次に、ドープ領域610は、例えばN型ドーパントをPウェルに注入することを用いて、スリット開口によって露出させられシリコン基板602のドーピング部分によって形成でき、続いて熱拡散させられる。
【0074】
方法800は、図8に示されているように工程808へと進み、工程808では、複数のチャネル構造を複数のブロックへと分離するために、メモリスタックを通じて第1のドープ領域へと垂直に延び、横に延びるスリット構造が形成される。一部の実施形態では、スリット構造を形成するために、続いてスリット開口がスペーサおよび壁式コンタクトで堆積させられる。
【0075】
図6Aは、誘電性材料で満たされた絶縁構造608を示しているが、一部の実施形態では、スペーサおよび壁式コンタクトを各々が含む複数のスリット構造が、最終的な3Dメモリデバイスにおいて絶縁構造608を置き換えることができることは、理解されている。スリット構造は、メモリスタック(図示されていない)を通じてドープ領域610へとそれぞれ垂直に延びることができ、チャネル構造606をメモリブロックへと分離するために横に(例えば、図6Aにおけるy方向に)延びることもできる。スリット構造は、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、1つまたは複数の誘電性材料(スペーサとして)と、1つまたは複数の導電性材料(コンタクトとして)とを続けて堆積させることで形成され得る。
【0076】
方法800は、図8に示されているように工程812へと進み、工程812では、基板の第2の側面から第1のドープ領域へと垂直に延びる絶縁構造が、ドープ領域を複数の第2のドープ領域へと分離するために形成される。一部の実施形態によれば、絶縁構造を形成するために、トレンチが基板の第2の側面から第1のドープ領域までエッチングされ、トレンチは1つまたは複数の誘電性材料で満たされる。
【0077】
図6Cに示されているように、シリコン基板602は逆さまにひっくり返され、複数の絶縁構造616が、単一のドープ領域604を複数のドープ領域604へと分離するために、シリコン基板602の後側から形成される。各々の絶縁構造616がシリコン基板602の後側からドープ領域610のそれぞれ1つへと垂直に延び得る。一部の実施形態では、各々の絶縁構造616は横に(例えば、図6Cにおけるy方向に)も延びる。絶縁構造616を形成するために、複数のトレンチが、フォトリソグラフィを用いて、ドープ領域610とそれぞれ位置合わせされるようにシリコン基板602の後側からパターン形成され、続いて、DRIEなどのウェットエッチングおよび/またはドライエッチングがされる。エッチングの速度および/または期間は、トレンチがドープ領域610に到達するときにエッチングが停止するように制御され得る。酸化シリコンなどの1つまたは複数の誘電性材料が、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの組み合わせなど、1つまたは複数の薄膜堆積プロセスを用いてトレンチに堆積させられ得る。一部の実施形態では、導電性材料はトレンチに堆積されない。つまり、ソースコンタクトが、3Dメモリデバイス(例えば、図3Aにおける3Dメモリデバイス300、または図3Bにおける3Dメモリデバイス301)において、シリコン基板602の後側と反対に、スリット構造においてシリコン基板602の前側に形成され得る。
【0078】
方法800は、対応する第2のドープ領域の電圧を制御するための、第2のドープ領域のそれぞれ1つと各々が接触する複数のコンタクトを形成する工程をさらに含む。コンタクトの形成は、工程812の前の工程810、または、工程812の後の工程814において行われ得る。
【0079】
任意選択で、工程810において、ドープ領域と各々が接触する複数のコンタクトが基板の第1の側面から形成される。図6Bに示されているように、コンタクト612がシリコン基板602の前側に形成でき、ドープ領域604と接触する。先に詳細に記載されているように、コンタクト612の数は、絶縁構造616によって分割されるドープ領域604の数と同じであり得る(図6Cに示されている)。一部の実施形態では、コンタクト612は、コンタクトホールを形成するためにDRIEを用いてメモリスタック(図示されていない)を通じてエッチングし、次に、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、誘電性材料(スペーサとして)、および、1つまたは複数の導電性材料でコンタクトホールを満たすことによって形成される。
【0080】
任意選択で、工程814において、第2のドープ領域のそれぞれ1つと各々が接触する複数のコンタクトが基板の第2の側面から形成される。図6Cでは示されていないが、複数のコンタクトはシリコン基板602の後側に形成でき、ドープ領域604とそれぞれ接触する。先に詳細に記載されているように、コンタクトの数はドープ領域604の数と同じであり得る。一部の実施形態では、コンタクトは、コンタクトホールを形成するためにDRIEを用いてドープ領域604までシリコン基板602をエッチングし、次に、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、誘電性材料(スペーサとして)、および、1つまたは複数の導電性材料でコンタクトホールを満たすことによって形成される。
【0081】
図9は、本開示の一部の実施形態による、3Dメモリデバイス(例えば、図4Aおよび図4Bに描写されている3Dメモリデバイス400および401)を形成するための他の例示の方法900の流れ図を示している。方法700、方法800、および方法900における同じ工程が説明の容易さのために詳細に復唱されない可能性のあることは、理解されている。
【0082】
図9を参照すると、方法900は工程802において開始し、工程802では、基板におけるドープ領域が基板の第1の側面から形成される。図9に示されているように、方法900は工程804へと進み、工程804では、基板の第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造が形成される。方法900は、図9に示されているように工程806へと進み、工程806では、ドープ領域と接触する第1のドープ領域が基板に形成される。方法900は、図9に示されているように工程706へと進み、工程706では、複数のチャネル構造を複数のブロックへと分離するために、メモリスタックを通じて第1のドープ領域へと垂直に延び、横に延びる第1の絶縁構造が形成される。任意選択で、方法は、図9に示されているように工程810へと進み、工程810において、ドープ領域と各々が接触する複数の第1のコンタクトが基板の第1の側面から形成される。方法900は、図9に示されているように工程812へと進み、工程812では、基板の第2の側面から第1のドープ領域へと垂直に延びる第2の絶縁構造が、ドープ領域を複数の第2のドープ領域へと分離するために形成される。
【0083】
方法900は、図9に示されているように工程902へと進み、工程902では、第1のドープ領域と接触するように、基板の第2の側面から第2の絶縁構造を通じて垂直に延びる第2のコンタクトが形成される。一部の実施形態では、第2のコンタクトを形成するために、VIAコンタクトが形成される。一部の実施形態では、第2のコンタクトを形成するために、壁形コンタクトが形成される。
【0084】
図6Dに示されているように、シリコン基板602の後側から絶縁構造616のそれぞれ1つを通じて垂直に各々が延びる複数のコンタクト618が形成される。各々のコンタクト618は、シリコン基板602におけるドープ領域610のそれぞれ1つと接触することができる。各々のコンタクト618は、横に(例えば、図6Dにおけるy方向に)延びるVIAコンタクトまたは壁式コンタクトであり得る。一部の実施形態では、コンタクト618を形成するために、シリコン基板602は、DRIEなどのウェットエッチングおよび/またはドライエッチングを用いてコンタクトホールまたはトレンチがシリコン基板602の後側から絶縁構造616を通じてエッチングされ得るように、逆さまにひっくり返される。コンタクトまたはトレンチは、フォトリソグラフィを用いて、絶縁構造616とそれぞれ位置合わせされるように、シリコン基板602の後側からパターン形成され得る。エッチングは、エッチングの速度および/または期間を制御することで、コンタクトホールまたはトレンチがドープ領域610に到達するときに停止させられ得る。1つまたは複数の導電性材料が、ALD、CVD、PVD、任意の他の適切なプロセス、またはそれらの任意の組み合わせなどの1つまたは複数の薄膜堆積プロセスを用いて、コンタクトホールまたはトレンチへと堆積させられ、それによってドープ領域610とそれぞれ接触するコンタクト618を形成する。それによって、後側の絶縁構造616によって包囲される後側のソースコンタクト618が、最終的な3Dメモリデバイス(例えば、図4Aにおける3Dメモリデバイス400、または図4Bにおける3Dメモリデバイス401)に形成できる。
【0085】
任意選択で、方法は、図9に示されているように工程814へと進み、工程814において、基板の第2の側面から第2のドープ領域のそれぞれ1つと各々が接触する複数の第1のコンタクトが形成される。
【0086】
本開示の第1の態様によれば、3Dメモリデバイスは、第1の側面、および第1の側面と反対の第2の側面を有する基板を備える。3Dメモリデバイスは、基板の第1の側面に交互の導電層および誘電層を備えるメモリスタックも備える。3Dメモリデバイスは、メモリスタックを通じて各々が垂直に延びる複数のチャネル構造も備える。3Dメモリデバイスは、メモリスタックを通じて垂直に延び、複数のチャネル構造を複数のブロックへと分離するために横に延びるスリット構造も備える。3Dメモリデバイスは、基板における、スリット構造と接触する第1のドープ領域をさらに備える。3Dメモリデバイスは、基板の第2の側面から第1のドープ領域へと垂直に延びる絶縁構造をさらに備える。3Dメモリデバイスは、基板における、絶縁構造によって分離される複数の第2のドープ領域をさらに備える。
【0087】
一部の実施形態では、絶縁構造はトレンチアイソレーションを備える。
【0088】
一部の実施形態では、第2のドープ領域は、第1のドープ領域と接触しており、絶縁構造および第1のドープ領域によってブロックへと分離される。
【0089】
一部の実施形態では、ブロックの各々における1つまたは複数のチャネル構造は、ブロックにおける第2のドープ領域のそれぞれ1つと接触する。
【0090】
一部の実施形態では、3Dメモリデバイスは、対応する第2のドープ領域の電圧を制御するための、第2のドープ領域のそれぞれ1つと各々が接触する複数の第1のコンタクトをさらに備える。一部の実施形態では、第1のコンタクトは基板の第1の側面へと延びる。一部の実施形態では、第1のコンタクトは基板の第2の側面へと延びる。
【0091】
一部の実施形態では、第1のドープ領域はNウェルを備え、第2のドープ領域の各々はPウェルを備える。
【0092】
一部の実施形態では、3Dメモリデバイスは、絶縁構造によって包囲され、第1のドープ領域と接触するように基板の第2の側面から垂直に延びる第2のコンタクトをさらに備える。
【0093】
一部の実施形態では、スリット構造は1つまたは複数の誘電性材料で満たされる。
【0094】
本開示の他の態様によれば、3Dメモリデバイスは、周辺回路を備える第1の半導体構造と、第2の半導体構造と、第1の半導体構造と第2の半導体構造との間の接合境界面とを備える。第2の半導体構造は、交互の導電層および誘電層を備えるメモリスタックを備える。第2の半導体構造は、メモリスタックを通じて各々が垂直に延び、周辺回路に電気的に連結される複数のチャネル構造も備える。第2の半導体構造は、メモリスタックを通じて各々が垂直に延び、複数のチャネル構造を複数のブロックへと分離するために横に延びる複数のスリット構造を備える。第2の半導体構造は、複数のスリット構造のそれぞれ1つと各々が接触する複数の第1のドープ領域、および、複数の第1のドープ領域と接触する複数の第2のドープ領域を備える半導体層をさらに備える。第2の半導体構造は、複数の第2のドープ領域をブロックへと分離するために、半導体層の後側から複数の第1のドープ領域のそれぞれ1つへと各々が垂直に延びる複数の絶縁構造をさらに備える。
【0095】
一部の実施形態では、絶縁構造の各々はトレンチアイソレーションを備える。
【0096】
一部の実施形態では、ブロックの各々における1つまたは複数のチャネル構造は、ブロックにおける第2のドープ領域のそれぞれ1つと接触する。
【0097】
一部の実施形態では、3Dメモリデバイスは、対応する第2のドープ領域の電圧を制御するための、第2のドープ領域のそれぞれ1つと各々が接触する複数のコンタクトをさらに備える。一部の実施形態では、コンタクトは半導体層の前側へと延びる。一部の実施形態では、コンタクトは半導体層の後側へと延びる。
【0098】
一部の実施形態では、第1のドープ領域はNウェルを備え、第2のドープ領域の各々はPウェルを備える。
【0099】
本開示のなおも他の態様によれば、3Dメモリデバイスを形成するための方法が開示されている。ドープ領域が基板において基板の第1の側面から形成される。基板の第1の側面においてメモリスタックを通じて各々が垂直に延びる複数のチャネル構造が形成される。第1のドープ領域が、基板において、ドープ領域と接触して形成される。メモリスタックを通じて第1のドープ領域へと垂直に延び、複数のチャネル構造を複数のブロックへと分離するために横に延びるスリット構造が形成される。基板の第2の側面から第1のドープ領域へと垂直に延びる絶縁構造が、ドープ領域を複数の第2のドープ領域へと分離するために形成される。
【0100】
一部の実施形態では、交互の犠牲層および誘電層を含む誘電体スタックが基板の第1の側面に形成され、誘電体スタックを通じて基板へと垂直に延びるスリット開口が形成され、交互の導電層および誘電層を含むメモリスタックが、スリット開口を通じて、犠牲層を導電層で置き換えることによって形成される。
【0101】
一部の実施形態では、第1のドープ領域を形成するために、基板の一部がスリット開口を通じてドーピングされる。
【0102】
一部の実施形態では、絶縁構造を形成するために、トレンチが基板の第2の側面から第1のドープ領域までエッチングされ、トレンチは1つまたは複数の誘電性材料で満たされる。
【0103】
一部の実施形態では、対応する第2のドープ領域の電圧を制御するための、第2のドープ領域のそれぞれ1つと各々が接触する複数の第1のコンタクトが形成される。一部の実施形態では、第1のコンタクトを形成するために、第1のコンタクトが基板の第1の側面から形成される。一部の実施形態では、第1のコンタクトを形成するために、第1のコンタクトが基板の第2の側面から形成される。
【0104】
一部の実施形態では、第1のドープ領域はNウェルを備え、第2のドープ領域の各々はPウェルを備える。
【0105】
一部の実施形態では、第1のドープ領域と接触するように絶縁構造を通じて垂直に延びる第2のコンタクトが形成される。
【0106】
特定の実施形態の先の記載は、他の者が、当業者の知識を適用することで、過度の実験なしで、本開示の大まかな概念から逸脱することなく、このような実施形態を様々な用途に向けて変更および/または適合することができるように、本開示の概略的な性質を明らかにしている。そのため、このような適合および変更は、本明細書で提起されている教示および案内に基づいて、開示されている実施形態の均等の意味および範囲の中にあるように意図されている。本明細書の用語および表現が教示および案内に鑑みて当業者によって解釈されるものであるように、本明細書における表現および用語が説明の目的のためであって、限定のものではないことは、理解されるものである。
【0107】
本開示の実施形態は、明示された機能の実施およびそれらの関係を示す機能的な構成要素の助けで先に記載されている。これらの機能的な構成要素の境界は、記載の利便性のために本明細書では任意に定められている。明示された機能およびそれらの関係が適切に実施される限り、代替の境界が定められてもよい。
【0108】
概要および要約の部分は、本開示の1つまたは複数の例示の実施形態を述べることができるが、発明者によって考えられているような本開示のすべての例示の実施形態を述べていない可能性があり、したがって、本開示および添付の特許請求の範囲を何らかの形で限定するようには意図されていない。
【0109】
本開示の広がりおよび範囲は、前述の例示の実施形態のいずれによっても限定されるべきでなく、以下の特許請求の範囲およびその均等に従ってのみ定められるべきである。
【符号の説明】
【0110】
100 3Dメモリデバイス
102 P型基板
104 Nウェル
106 Pウェル
108 Nウェル
110 メモリスタック
112 導電層、ワード線
114 誘電層
116 チャネル構造
118 スリット構造
120 ビット線
122 壁形コンタクト
124 ソース線
200 3Dメモリデバイス
202 基板
204 第1のドープ領域
206 第2のドープ領域
208 第3のドープ領域
210 チャネル構造
212 導電層、ワード線
214 誘電層
216 メモリスタック
218 ビット線
220 絶縁構造
222 ソースコンタクト
300、301 3Dメモリデバイス
302 基板
304 第1のドープ領域
306 第2のドープ領域
308 第3のドープ領域
310 絶縁構造
312 チャネル構造
314 導電層、ワード線
316 誘電層
318 メモリスタック
320 ビット線
322 スリット構造
322 スリット構造
324 ソースコンタクト
326 スペーサ
328 ソース線、ソースメッシュ
330 コンタクト
400、401 3Dメモリデバイス
402 絶縁構造
404 ソースコンタクト
500 3Dメモリデバイス
501 基板
502 第1の半導体構造
504 第2の半導体構造
506 接合境界面、結合境界面
508 トランジスタ
510 インターコネクト層
512、514 接合層、結合層
516 インターコネクト層
518 メモリスタック
520 導電層
522 誘電層
524 チャネル構造
526 ビット線
528 絶縁構造
530 半導体層
532 第1のドープ領域
534 第2のドープ領域
536 第3のドープ領域
538 絶縁構造
540 コンタクト
542 コンタクト
602 シリコン基板
604 ドープ領域
606 チャネル構造
608 絶縁構造
610 ドープ領域
612 コンタクト
614 ビット線
616 絶縁構造
618 コンタクト
図1
図2
図3A
図3B
図4A
図4B
図5
図6A
図6B
図6C
図6D
図7
図8
図9