IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ ナミックス株式会社の特許一覧

<>
  • 特許-金属層を有する金属部材の製造方法 図1
  • 特許-金属層を有する金属部材の製造方法 図2
  • 特許-金属層を有する金属部材の製造方法 図3
  • 特許-金属層を有する金属部材の製造方法 図4
< >
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-18
(45)【発行日】2024-03-27
(54)【発明の名称】金属層を有する金属部材の製造方法
(51)【国際特許分類】
   C25D 5/34 20060101AFI20240319BHJP
   C23C 28/00 20060101ALI20240319BHJP
   C25D 11/00 20060101ALI20240319BHJP
   H05K 3/38 20060101ALI20240319BHJP
【FI】
C25D5/34
C23C28/00 C
C25D11/00 304
H05K3/38 B
【請求項の数】 13
(21)【出願番号】P 2019089119
(22)【出願日】2019-05-09
(65)【公開番号】P2020183572
(43)【公開日】2020-11-12
【審査請求日】2022-01-04
【前置審査】
(73)【特許権者】
【識別番号】591252862
【氏名又は名称】ナミックス株式会社
(74)【代理人】
【識別番号】110002239
【氏名又は名称】弁理士法人G-chemical
(72)【発明者】
【氏名】小鍛冶 快允
(72)【発明者】
【氏名】佐藤 牧子
【審査官】萩原 周治
(56)【参考文献】
【文献】特表2013-534054(JP,A)
【文献】特開2013-161925(JP,A)
【文献】特開昭52-071348(JP,A)
【文献】特開2002-368365(JP,A)
【文献】特開2013-001993(JP,A)
【文献】特開昭61-094756(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
C25D 5/00-7/12
C23C 24/00-30/00
C25D 11/00-11/38
H05K 3/10-3/26
H05K 3/38
(57)【特許請求の範囲】
【請求項1】
金属層を有する金属部材の製造方法であって、
酸化処理により、金属部材の少なくとも一部の表面に、厚さが平均400nm以下で、微細凹凸形状を有する酸化物層(オキシ水酸化ニッケルを含有する層を除く)を形成する第一の工程と、
前記酸化物層の上に、電解めっき処理により前記金属層を形成する第二の工程を含み、
前記金属部材が銅部材であり、前記金属層が銅以外の金属の層であり、
前記第二の工程における電解めっき処理の電流密度が5A/dm 2 以下である、製造方法。
【請求項2】
前記銅以外の金属が、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属である、請求項に記載の製造方法。
【請求項3】
第一の工程後の前記酸化物層が形成された表面のRaが0.035以上0.115以下である、請求項1又は2に記載の製造方法。
【請求項4】
第一の工程後の前記酸化物層が形成された表面のRzが0.25以上1.00以下である、請求項1~のいずれか一項に記載の製造方法。
【請求項5】
前記金属層の垂直方向の平均の厚さが20nm以上80nm以下である、請求項1~のいずれか一項に記載の製造方法。
【請求項6】
第二の工程後の前記金属層が形成された表面のRaが0.02μm以上0.20μm以下である、請求項1~のいずれか一項に記載の製造方法。
【請求項7】
第二の工程後の前記金属層が形成された表面のRzが0.2μm以上1.4μm以下である、請求項1~のいずれか一項に記載の製造方法。
【請求項8】
第二の工程後の前記金属層が形成された表面の耐熱変色ΔE*abが15以下である、請求項1~のいずれか一項に記載の製造方法。
【請求項9】
前記酸化物層(オキシ水酸化ニッケルを含有する層を除く)の厚さが20nm以上である、請求項1~のいずれか一項に記載の製造方法。
【請求項10】
前記酸化物層(オキシ水酸化ニッケルを含有する層を除く)の厚さが30nm以上である、請求項1~のいずれか一項に記載の製造方法。
【請求項11】
前記酸化物層(オキシ水酸化ニッケルを含有する層を除く)の厚さが40nm以上である、請求項1~のいずれか一項に記載の製造方法。
【請求項12】
請求項1~11のいずれか一項に記載の製造方法により、金属層を有する金属部材を製造する工程と、
前記金属部材に樹脂基材を積層して積層体を製造する工程と、
を含む、耐熱劣化率が45%以下である積層体の製造方法。
【請求項13】
請求項1~11のいずれか一項に記載の製造方法により、金属層を有する金属部材を製造する工程と、
前記金属部材を使用して、電子部品を製造する工程と、
を含む、電子部品の製造方法。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は金属層を有する金属部材の製造方法に関する。
【背景技術】
【0002】
プリント配線板に使用される銅箔は、樹脂との密着性が要求される。この密着性を向上させるため、エッチングなどで銅箔の表面を粗面化し、いわゆるアンカー効果による機械的接着力を上げる方法が用いられてきた。しかし、プリント配線板の高密度化や高周波帯域での伝送損失の観点から、銅箔表面の平坦化が要求されるようになってきた。それらの相反する要求を満たすため、酸化工程と還元工程を行うなどの銅表面処理方法が開発されている(特許文献1)。それによると、銅箔をプリコンディショニングし、酸化剤を含有する薬液に浸漬することで銅箔表面を酸化させて酸化銅(CuO)の凹凸を形成した後、還元剤を含有する薬液に浸漬し、酸化銅を還元して一部亜酸化銅(CuO)にすることで表面の凹凸を調整する。さらに、酸化及び/又は還元を利用した銅箔の処理における密着性の改善方法として、酸化工程において表面活性分子を添加する方法(特許文献2)や、還元工程の後にアミノチアゾール系化合物等を用いて銅箔の表面に保護皮膜を形成する方法(特許文献3)が開発されている。
【0003】
一般に金属の酸化物は酸化されていない金属と比べると電気抵抗が大きい。例えば、純銅の比抵抗値が1.7×10-8(Ωm)なのに対して、酸化銅は1~10(Ωm)、亜酸化銅は1×10~1×10(Ωm)であり、酸化銅、亜酸化銅ともに純銅に比べて通電性が劣る。従って、銅箔表面を粗化するために酸化処理を用いた場合、そのめっき方法は、電解めっきではなく、通電性が劣っても処理可能な化学めっき(無電解めっきとも呼ばれる)が用いられていた(特許文献4)。一方、銅箔に電解めっきで銅粒子を付着させることによって銅箔表面を粗面化した場合には、銅箔表面に酸化物が存在しないため、再度電解めっきすることにより、銅箔の粗化処置面に他の金属をめっきすることができる(特許文献5及び6)。
【0004】
めっき皮膜はその使用や環境に耐え、実用上支障がないレベルの密着性を有することが求められている。その手法として金属表面の酸化物層の除去することで金属結合を強め、且つ表面粗化することで応力を分散させ密着性を確保することが知られている(非特許文献1)。
【先行技術文献】
【特許文献】
【0005】
【文献】国際公開2014/126193号公報
【文献】特表2013-534054号公報
【文献】特開平8-97559号公報
【文献】特開2000-151096号公報
【文献】特許5764700号公報
【文献】特許4948579号公報
【非特許文献】
【0006】
【文献】森河務、中出卓男、横井昌幸著「めっき被膜の密着性とその改善方法」
【発明の概要】
【発明が解決しようとする課題】
【0007】
本発明は、新規な金属層を有する金属部材の製造方法を提供することを目的とする。
【課題を解決するための手段】
【0008】
一般的に金属部材とめっき金属層の密着性は、金属結合によって密着性を確保することが知られている。金属部材の界面に酸化物層が存在すると、金属部材とめっき金属の金属結合を阻害し密着性が得られにくくなる。それ故、通常、金属部材表面に酸化物層が存在する場合、通電性が劣ることや金属部材とめっき金属層の密着性が得られにくいなどの理由から、直接電解めっきを行う事はなく、酸処理等で取り除いてから行う。
また、金属部材が平滑であると金属部材とめっき金属の界面に応力が集中するように伝搬し、界面剥離が起こりやすい。
一方、凹凸のある界面においては、平滑な表面とは異なり、応力を伝達する明瞭な面は存在しない。エネルギーの伝搬にあたって、その一部がめっき金属あるいは金属を変形するように働くことが考えられ、それにエネルギーが消費され密着力は高くなる。
本願発明者らは鋭意研究の結果、酸化物層を400nm以下にすることで通電性の劣りや、金属結合の阻害の影響を最小限に抑え、且つ微細凹凸形状を有することでアンカー効果によって金属部材とめっき金属の密着力を高められることを新たに見出し、酸化物層表面に電解めっきで金属を被膜することに成功した。
【0009】
従って、本発明の主な態様は以下の通りである:
[1]金属層を有する金属部材の製造方法であって、
酸化処理により、前記金属部材の少なくとも一部の表面に、厚さが平均400nm以下で、微細凹凸形状を有する酸化物層を形成する第一の工程と、
前記酸化物層の上に、電解めっき処理により前記金属層を形成する第二の工程を含む、製造方法。
[2]前記第二の工程における電解めっき処理の電流密度が5A/dm以下であることを特徴とする[1]に記載の製造方法。
[3]前記金属部材が銅部材であり、前記金属層が銅以外の金属の層である、[1]又は[2]に記載の製造方法。
[4]前記銅以外の金属が、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属である、[3]に記載の製造方法。
[5]第一の工程後の前記酸化物層が形成された表面のRaが0.035以上0.115以下である、[1]~[4]のいずれか一項に記載の製造方法。
[6]第一の工程後の前記酸化物層が形成された表面のRzが0.25以上1.00以下である、[1]~[5]のいずれか一項に記載の製造方法。
[7]前記金属層の垂直方向の平均の厚さが20nm以上80nm以下である、[1]~[6]のいずれか一項に記載の製造方法。
[8]第二の工程後の前記金属層が形成された表面のRaが0.02μm以上0.20μm以下である、[1]~[7]のいずれか一項に記載の製造方法。
[9]第二の工程後の前記金属層が形成された表面のRzが0.2μm以上1.4μm以下である、[1]~[8]のいずれか一項に記載の製造方法。
[10]第二の工程後の前記金属層が形成された表面の耐熱変色ΔEabが15以下である、[1]~[9]のいずれか一項に記載の製造方法。
[11][1]~[10]のいずれか一項に記載の製造方法により製造された金属層を有する金属部材に樹脂基材を積層した積層体であって、耐熱劣化率が45%以下である積層体。
[12][1]~[10]のいずれか一項に記載の製造方法により製造された金属層を有する金属部材を使用して作製された電子部品。
【図面の簡単な説明】
【0010】
図1図1は、酸化処理後の実施例1と比較例1の、走査型電子顕微鏡(SEM)観察による断面画像(倍率50000倍)を示す。
図2図2は実施例(〇)及び比較例(◆)における、酸化物層の厚さとピール強度の関係を示す
図3図3は、実施例(〇)及び比較例(◆)における、酸化物層の厚さと耐熱劣化率の関係を示す。
図4図4は、実施例(〇)及び比較例(◆)における、酸化物層の厚さと耐熱変色ΔEabの関係を示す。
【発明を実施するための形態】
【0011】
以下、本発明の好ましい実施の形態につき、添付図面を用いて詳細に説明するが、必ずしもこれに限定するわけではない。なお、本発明の目的、特徴、利点、及びそのアイデアは、本明細書の記載により、当業者には明らかであり、本明細書の記載から、当業者であれば、容易に本発明を再現できる。以下に記載された発明の実施の形態及び具体的な実施例などは、本発明の好ましい実施態様を示すものであり、例示又は説明のために示されているのであって、本発明をそれらに限定するものではない。本明細書で開示されている本発明の意図並びに範囲内で、本明細書の記載に基づき、様々な改変並びに修飾ができることは、当業者にとって明らかである。
【0012】
==金属層を有する金属部材の製造方法==
本発明の一実施態様は、金属層を有する金属部材の製造方法であって、酸化処理により、金属部材表面に厚さが400nm以下の微細凹凸形状を有する酸化物層を形成する第一の工程と、前記酸化物層の上に、電解めっき処理により金属層を形成する第二の工程を含む製造方法である。
金属部材とは、構造の一部となる、金属を含む材料であり、含まれる金属としては、特に限定しないが、チタン、ニオブ、ステンレス、タンタル、ニッケル、亜鉛、アルミニウム、銅、銀、金、白金などが挙げられる。金属部材は、銅からなる部材でもよく、銅以外の物からなるものでもよく、銅以外の物からなる部材の表面に、銅の層を設けたものでもよく、銅めっきを施したものでもよい。この部材の形状は特に限定されないが、例えば、箔状でも、粒子状でも、粉状でもよく、金属部材には銅を主成分とした、電解銅箔、圧延銅箔、キャリア付きの銅箔等の銅箔、銅粒子、銅粒、銅線、銅板、銅製リードフレームなどが含まれるが、これに限定されない。
金属部材の厚さは特に限定しないが、電解めっきが可能な厚さであることが好ましく、0.1μm以上100μm以下が好ましく、0.5μm以上50μm以下がより好ましい。
【0013】
まず、第一の工程において、金属部材を酸化処理することにより、金属部材表面に酸化物層を形成する。形成方法は特に限定されないが、酸化剤を用いて形成してもよく、加熱処理や陽極酸化によって形成してもよい。この酸化工程以前に、エッチングなどの粗面化処理工程は必要ないが、行ってもよい。脱脂洗浄または酸化工程への酸の持ち込みを防止するためのアルカリ処理は行ってもよい。アルカリ処理の方法は特に限定されないが、好ましくは0.1~10g/L、より好ましくは1~2g/Lのアルカリ水溶液、例えば水酸化ナトリウム水溶液で、30~50℃、0.5~2分間程度処理すればよい。
【0014】
酸化剤は特に限定されず、例えば、亜塩素酸ナトリウム、次亜塩素酸ナトリウム、塩素酸カリウム、過塩素酸カリウム等の水溶液を用いることができる。酸化剤には、各種添加剤(たとえば、リン酸三ナトリウム十二水和物のようなリン酸塩)や表面活性分子を添加してもよい。表面活性分子としては、ポルフィリン、ポルフィリン大員環、拡張ポルフィリン、環縮小ポルフィリン、直鎖ポルフィリンポリマー、ポルフィリンサンドイッチ配位錯体、ポルフィリン配列、シラン、テトラオルガノ‐シラン、アミノエチル‐アミノプロ
ピルートリメトキシシラン、(3‐アミノプロピル)トリメトキシシラン、(1‐[3‐(トリメトキシシリル)プロピル]ウレア)((l-[3-(Trimethoxysilyl)propyl]urea))、(3‐アミノプロピル)トリエトキシシラン、((3‐グリシジルオキシプロピル)トリメトキシシラン)、(3‐クロロプロピル)トリメトキシシラン、(3‐グリシジルオキシプロピル)トリメトキシシラン、ジメチルジクロロシラン、3‐(トリメトキシシリル)プロピルメタクリレート、エチルトリアセトキシシラン、トリエトキシ(イソブチル)シラン、トリエトキシ(オクチル)シラン、トリス(2‐メトキシエトキシ)(ビニル)シラン、クロロトリメチルシラン、メチルトリクロロシラン、四塩化ケイ素、テトラエトキシシラン、フェニルトリメトキシシラン、クロロトリエトキシシラン、エチレン‐トリメトキシシラン、アミン、糖などを例示できる。
酸化処理液の一例として、亜塩素酸ナトリウムを30g/L以上~200g/L以下含み、水酸化ナトリウムを40g/L以下含み、水酸化カリウムを8g/L以上~40g/L以下含み、3-グリシジルオキシプロピルトリメトキシシランを10g/L以下含む水溶液を用いることができる。
【0015】
酸化反応条件は特に限定されないが、酸化剤の液温は40~95℃であることが好ましく、45~80℃であることがより好ましい。反応時間は0.5~30分であることが好
ましく、1~10分であることがより好ましい。
【0016】
第一の工程において、酸化処理によって形成された酸化物層を溶解剤で溶解して、酸化物層表面の凹凸部を調整してもよい。
【0017】
本工程で用いる溶解剤は特に限定されないが、キレート剤、特に生分解性キレート剤であることが好ましく、エチレンジアミン四酢酸、ジエタノールグリシン、L-グルタミン酸二酢酸・四ナトリウム、エチレンジアミン-N,N’-ジコハク酸、3-ヒドロキシ-2、2’-イミノジコハク酸ナトリウム、メチルグリシン2酢酸3ナトリウム、アスパラギン酸ジ酢酸4ナトリウム、N-(2-ヒドロキシエチル)イミノ二酢酸ジナトリウム、グルコン酸ナトリウムなどが例示できる。
【0018】
溶解剤のpHは特に限定されないが、アルカリ性であることが好ましく、pH8~10.5であることがより好ましく、pH9.0~10.5であることがさらに好ましく、pH9.8~10.2であることがさらに好ましい。
【0019】
第一工程において、酸化物層の厚さを平均400nm以下にする。好ましくは平均200nm以下にし、より好ましくは平均160nm以下、或いは平均90nm以下にする。さらに酸化物層の厚さは、好ましくは平均20nm以上にし、より好ましくは平均30nm以上にし、さらに好ましくは平均40nm以上にする。なお、酸化物層の厚さが400nm以下である領域の割合は特に限定されないが、50%以上が400nm以下であることが好ましく、70%以上が400nm以下であることがより好ましく、90%以上が400nm以下であることがさらに好ましく、95%以上が400nm以下であることがさらに好ましく、ほぼ100%が400nm以下であることがさらに好ましい。
酸化物層の厚さの割合は、例えば、10×10cmの面積中の10測定点における連続電気化学還元法(SERA)により算出することができる。
【0020】
酸化物層の算術平均粗さ(Ra)は0.01μm以上が好ましく、0.04μm以上がより好ましく、また、0.20μm以下であることが好ましく、0.060μm以下であることがより好ましい。
酸化物層の最大高さ粗さ(Rz)は0.2μm以上が好ましく、0.4μm以上がより好ましく、また、1.0μm以下であることが好ましく、0.50μm以下であることがより好ましい。
ここで、最大高さ粗さ(Rz)とは基準長さlにおいて、輪郭曲線(y=Z(x))の山高さZpの最大値と谷深さZvの最大値の和を表す。
算術平均粗さ(Ra)とは基準長さlにおいて、以下の式で表される輪郭曲線(y=Z(x))におけるZ(x)(すなわち山の高さと谷の深さ)の絶対値の平均を表す。
[数1]

表面粗さRa、RzはJIS B 0601:2001(国際基準ISO4287-1997準拠)に定められた方法により算出できる。
【0021】
次に、第二の工程において、第一の工程で形成された酸化物層に対し、電解めっき処理をし、金属層を形成する。電解めっきに用いる金属は、金属部材の金属と異なるものであれば特に限定されないが、Sn、Ag、Zn、Al、Ti、Bi、Cr、Fe、Co、Ni、Pd、AuおよびPtからなる群から選ばれた少なくとも一種の金属あるいはその合金であることが好ましい。特に、金属部材が銅の場合、耐熱性を有するためには銅よりも耐熱性の高い金属、例えばNi、Pd、AuおよびPtあるいはその合金が好ましい。
【0022】
電解めっきで形成される金属層の垂直方向の平均の厚さは特に限定されないが、10nm以上であることが好ましく、15nm以上であることがより好ましく、20nm以上であることがさらに好ましい。そして、100nm以下であることが好ましく、70nm以下であることがより好ましく、50nm以下であることがさらに好ましい。
あるいは、電解めっきで形成される金属層の金属量を単位面積あたりの金属の重量として表した場合、15μg/cm以上であることが好ましく、18μg/cmであることがより好ましく、20μg/cm以上であることがさらに好ましい。また、100μg/cm以下であることが好ましく、80μg/cm以下であることがより好ましく、50μg/cm以下であることがさらに好ましい。
金属層の垂直方向の平均の厚さは、金属層を形成する金属を、酸性溶液で溶解し、ICP分析によって金属量を測定し、その測定量を金属部材の面積で除して算出できる。あるいは、金属層を有する金属部材そのものを溶解し、金属層を形成する金属の量のみを検出測定することにより、算出できる。
【0023】
電解めっきは、酸化物層の酸化物を一部還元するのにも電荷が必要であるため、例えばニッケルめっきを銅箔に施す場合、その厚さを好ましい範囲に収めるためには電解めっき処理する金属部材の面積あたり、15C/dm以上~90C/dm以下の電荷を与え
ることが好ましい。
また、電流密度は5A/dm以下が好ましい。電流密度が高すぎると、凸部にめっき
が集中するなど、均一めっきが困難である。なお、酸化物層の酸化物を一部還元するまでと、めっきを被覆中の電流を変えてもよい。また、被覆する金属により所定の厚さになるよう適宜調整する。
ニッケルめっき及びニッケル合金めっきは、純ニッケル、Ni-Cu合金、Ni-Cr合金、Ni-Co合金 、Ni-Zn合金、Ni-Mn合金、Ni-Pb合金、Ni-P
合金等が挙げられる。
めっきイオンの供給剤として、例えば、硫酸ニッケル、スルファミン酸ニッケル、塩化ニッケル、臭化ニッケル、酸化亜鉛、塩化亜鉛、ジアンミンジクロロパラジウム、硫酸鉄、塩化鉄、無水クロム酸、塩化クロム、硫酸クロムナトリウム、硫酸銅、ピロリン酸銅、硫酸コバルト、硫酸マンガン、次亜リン酸ナトリウム、などが用いることができる。
pH緩衝剤や光沢剤などを含むその他添加剤として、例えば、ほう酸、酢酸ニッケル、クエン酸、クエン酸ナトリウム、クエン酸アンモニウム、ギ酸カリウム、リンゴ酸、リンゴ酸ナトリウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、塩化アンモニウ
ム、シアン化ナトリウム、酒石酸カリウムナトリウム、チオシアン酸カリウム、硫酸、塩酸、塩化カリウム、硫酸アンモニウム、塩化アンモニウム、硫酸カリウム、硫酸ナトリウム、チオシアンナトリウム、チオ硫酸ナトリウム、臭酸カリウム、ピロリン酸カリウム、エチレンジアミン、硫酸ニッケルアンモニウム、チオ硫酸ナトリウム、ケイフッ酸、ケイフッ化ナトリウム、硫酸ストロンチウム、クレゾールスルホン酸、β-ナフトール、サッカリン、1,3,6-ナフタレントリスルホン酸、ナフタレン(ジ、トリ)、スルホン酸ナトリウム、スルホンアミド、スルフィン酸など1-4ブチンジオール、クマリン、ラウリル硫酸ナトリウムが使用される。
ニッケルめっきにおいて、その浴組成は、例えば、硫酸ニッケル(100g/L以上~350g/L以下)、スルファミンニッケル(100g/L以上~600g/L以下)、塩化ニッケル(0g/L以上~300g/L以下)及びこれらの混合物を含むものが好ましいが、添加剤としてクエン酸ナトリウム(0g/L以上~100g/L以下)やホウ酸(0g/L以上~60g/L以下)が含まれていてもよい。
【0024】
電解めっき処理後の表面の算術平均粗さ(Ra)は0.02μm以上が好ましく、0.04μm以上がより好ましく、また、0.20μm以下であることが好ましく、0.060μm以下であることがより好ましい。
電解めっき処理後の表面の最大高さ粗さ(Rz)は0.2μm以上が好ましく、0.4μm以上がより好ましく、また、1.4μm以下であることが好ましく、0.50μm以下であることがより好ましい。
また、酸化処理後のRaと金属めっき処理後のRaの比(酸化処理後のRa/金属めっき及びカップリング処理後のRa)である表される表面粗さの変化は0.7以上~1.3以下が好ましく、酸化処理後のRzと金属めっき処理後のRzの比(酸化処理後のRz/金属めっき及びカップリング処理後のRz)は0.8以上~1.2以下が好ましい。この比の値が1に近いほど、電解めっきで形成された金属層の厚さの均一性と一様性を示している。
【0025】
このように、金属部材に対して、第一工程及び第二工程を行うことによって、金属層を有する金属部材を製造することができるが、この製造方法で製造された金属層を有する金属部材は、樹脂との密着性並びに耐熱性に優れている。
【0026】
本発明の一態様において、この製造方法で製造した金属層を有する金属部材の耐熱性を色変化ΔEabで評価した場合、15以下でよいが、10以下が好ましい。色変化ΔEabは公知の方法で測定することが出来る。たとえば熱処理前の金属部材の色差(L、a、b)を測定後、225℃のオーブンに30分投入し、熱処理後の金属部材の色差を測定し、ΔEabを算出することができる。
【0027】
なお、この製造方法で製造した金属層を有する金属部材に、シランカップリング剤などを用いたカップリング処理やベンゾトリアゾール類などを用いた防錆処理を行ってもよい。
【0028】
また、この製造方法で製造した金属層を有する金属部材に樹脂基材を積層し、積層体を作製することができる。本発明の一態様において、作製された積層体の耐熱試験における劣化率は、45%以下でよいが、30%以下、20%以下又は10%以下が好ましい。耐熱試験における劣化率は公知の方法で測定することが出来る。たとえば、耐熱試験前後のピール強度を測定し、そのピール強度の差を耐熱試験前のピール強度で除した割合として表すことができる。
【0029】
==金属層を有する金属部材の利用方法==
本発明の製造方法で製造された金属層を有する金属部材は、金属部材が銅部材の場合、
プリント配線板に使用される銅箔、基板に配線される銅線、LIB負極集電体用の銅箔などに用いることができる。
例えば、プリント配線板に使用される銅箔の表面を、本発明に係る製造方法で粗面化処理し、樹脂と層状に接着させることによって積層板を作製し、プリント配線板を製造するのに用いることができる。この場合の樹脂の種類は特に限定されないが、ポリフェニレンエーテル、エポキシ、PPO、PBO、PTFE、LCP、またはTPPIであることが好ましい。
また、例えばLIB負極集電体用に使用される銅箔の表面を、本発明に係る製造方法で粗化することで、銅箔と負極材料の密着性が向上し、容量劣化の小さい良好なリチウムイオン電池を得ることができる。リチウムイオン電池用の負極集電体は公知の方法に従って製造することができる。例えば、カーボン系活物質を含有する負極材料を調製し、溶剤もしくは水に分散させて活物質スラリーとする。この活物質スラリーを本発明に係る製造方法で粗化した銅箔に塗布した後、溶剤や水を蒸発させるため乾燥させる。その後、プレスし、再度乾燥した後に所望の形になるよう負極集電体を成形する。なお、負極材料には、カーボン系活物質よりも理論容量の大きいシリコンやシリコン化合物、ゲルマニウム、スズ、鉛などを含んでもよい。また、電解質として有機溶媒にリチウム塩を溶解させた有機電解液だけでなく、ポリエチレンオキシドやポリフッ化ビニリデンなどからなるポリマーを用いたものであってもよい。本発明に係る製造方法で表面を粗化した銅箔は、リチウムイオン電池だけでなく、リチウムイオンポリマー電池にも適用できる。
【実施例
【0030】
<1.金属層を有する金属部材の製造>
実施例1~9及び比較例1~4は、DR-WS(古河電工株式会社製、厚さ:18μm)の銅箔を用いた。なお、実施例及び比較例について、各々同じ条件で複数の試験片を作製した。
【0031】
(1)前処理
[アルカリ脱脂処理]
銅箔を、液温50℃、40g/Lの水酸化ナトリウム水溶液に1分間浸漬した後、水洗を行った。
[酸洗浄処理]
アルカリ脱脂処理を行った銅箔を、液温25℃、10重量%の硫酸水溶液に2分間浸漬した後、水洗を行った。
[プレディップ処理]
酸洗浄処理を行った銅箔を、液温40℃、水酸化ナトリウム(NaOH)1.2g/Lのプレディップ用薬液に1分間浸漬した。
【0032】
(2)酸化処理(第一の工程)
アルカリ処理を行った銅箔を、表1に記載の条件に基づき、酸化処理用水溶液を用いて酸化処理を行った。これらの処理後、銅箔を水洗した。評価方法は<2.酸化処理後の試料の評価>で後述するが、図1に示すように、酸化銅層の厚さにより、その表面の凹凸の形状や大きさが大きく変化する。
【0033】
(3)電解めっき処理(第二の工程)
酸化処理を行った銅箔に対し、表1に記載の条件に基づき、電解めっき処理を行った。比較例2及び3は、3分間電解めっきを行ってもニッケルは析出しなかった。
【0034】
(4)カップリング処理
電解めっき処理を行った銅箔に対し、表1に記載の条件に基づき、カップリング処理を行った。
【0035】
<2.酸化処理後の試料の評価>
(1)酸化銅の厚さの測定
銅箔表面の酸化銅の厚さを、QC-100(ECI製)を用い、以下の電解液を用いて連続電気
化学還元法(SERA)法により測定を行った。
電解液(pH=8.4)
ほう酸 6.18g/L;四ほう酸ナトリウム 9.55g/L
具体的には、ガスケット径:0.32cmを用いて電流密度:90μA/cmにて上
記電解液を用いたとき、電位が-0.85V以上から-0.6Vまでを酸化銅(CuO)のピークと判断した。
【0036】
(2)Ra及びRzの算出
酸化処理後の銅箔を、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて銅箔の表面形状を測定し、JIS B 0601:2001に定められた方法によりRa及びRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、それらの平均値を各実施例及び比較例のRa、Rzとした。実施例6及び比較例1~3は算出できなかったため、表1にはN.D.と記載した。
【0037】
<3.電解めっき及びカップリング処理後の試料の評価>
(1)ニッケル量の算出
ニッケルの垂直方向の平均の厚さの測定方法としては、例えば、12%硝酸に銅部材を溶解させ、得た液をICP発光分析装置5100 SVDV ICP-OES(アジレント・テクノロジー社製)を用いて金属成分の濃度を測定し、金属の密度、金属層の表面積を考慮することで層状としての金属層の厚さを算出した。
【0038】
(2)Ra及びRzの算出
電解めっき及びカップリング処理後の銅箔を、共焦点走査電子顕微鏡 OPTELICS H1200(レーザーテック株式会社製)を用いて銅箔の表面形状を測定し、JIS
B 0601:2001に定められた方法によりRa及びRzを算出した。測定条件として、スキャン幅は100μm、スキャンタイプはエリアとし、Light sourceはBlue、カットオフ値は1/5とした。オブジェクトレンズはx100、コンタクトレンズはx14、デジタルズームはx1、Zピッチは10nmの設定とし、3箇所のデータを取得し、Ra、Rzは3箇所の平均値とした。
【0039】
(3)積層体の熱処理前後のピール強度の測定
電解めっき及びカップリング処理後の銅箔について、積層体を作製し熱処理前後のピール強度を測定した。また、ピール強度測定時に剥離面を目視で確認し、めっき層の剥離の有無を確認した。まず、各銅箔に対し、PPEを樹脂として含むMEGTRON6(パナソニック社製)を真空中でプレス圧2.9MPa、温度210℃、プレス時間120分の条件で加熱圧着して積層し、各々2つの測定試料を得た。各々1つの測定試料に対し、熱に対する耐性を調べるため、耐熱処理(177℃10日)を行った。その後、各々熱処理を行った試料と行っていない試料に対して90°剥離試験(日本工業規格(JIS)C5016)を行い、ピール強度(kgf/cm)を求めた。耐熱劣化率は測定された耐熱試験前後のピール強度の差を耐熱試験前のピール強度で除した割合として算出された。
MEGTRON6をプリプレグとして用いたが、MEGTRON4など、その他市販プリプレグにおいても銅箔起因の劣化はほとんどなく、同様な熱処理前後の密着性が得られる。
(4)銅箔の熱処理前後の色変化の算出
電解めっき及びカップリング処理後の銅箔の耐熱性は色変化でも評価した。具体的には225℃のオーブンで30分熱処理を行い、前後の色変化をΔEabにて評価した。熱処理前の銅箔の色差(L、a、b)を測定後、225℃のオーブンに30分投入し、熱処理後の銅箔の色差を測定し、以下の式に従い、ΔEabを算出した。
[数2]
ΔEab = [(ΔL + (Δa + (Δb1/2
【0040】
【表1】
【0041】
このように、酸化銅の厚さが502nm以上の場合、電解めっきをすることができない(比較例2,比較例3)。また、電解めっきが可能な酸化銅の厚さであっても、酸化銅の厚さが400nmより厚い場合、めっき層と金属部材の密着性が得られずに剥離が発生する(比較例1)。それに対して、酸化銅の厚さが400nm以下である実施例1~9では、めっき層と金属部材の密着性が得られており、且つ、樹脂との密着性並びに耐熱性が優れている。
また、電流密度が5A/dmより大きい場合、耐熱性が低い(比較例4)のに対して電流密度が5A/dm以下である実施例1~9では樹脂との密着性並びに耐熱性が優れている。
【産業上の利用可能性】
【0042】
本発明によって、新規な金属層を有する金属部材の製造方法を提供することができるようになった。

図1
図2
図3
図4