IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 浜松ホトニクス株式会社の特許一覧 ▶ 国立大学法人 東京大学の特許一覧

(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-25
(45)【発行日】2024-04-02
(54)【発明の名称】光変調器及び光変調器アレイ
(51)【国際特許分類】
   G02F 1/061 20060101AFI20240326BHJP
【FI】
G02F1/061 503
【請求項の数】 10
(21)【出願番号】P 2020175346
(22)【出願日】2020-10-19
(65)【公開番号】P2022066803
(43)【公開日】2022-05-02
【審査請求日】2023-04-07
(73)【特許権者】
【識別番号】000236436
【氏名又は名称】浜松ホトニクス株式会社
(73)【特許権者】
【識別番号】504137912
【氏名又は名称】国立大学法人 東京大学
(74)【代理人】
【識別番号】100088155
【弁理士】
【氏名又は名称】長谷川 芳樹
(74)【代理人】
【識別番号】100113435
【弁理士】
【氏名又は名称】黒木 義樹
(74)【代理人】
【識別番号】100140442
【弁理士】
【氏名又は名称】柴山 健一
(74)【代理人】
【識別番号】100124291
【弁理士】
【氏名又は名称】石田 悟
(72)【発明者】
【氏名】野本 佳朗
(72)【発明者】
【氏名】種村 拓夫
【審査官】林 祥恵
(56)【参考文献】
【文献】特開2020-106706(JP,A)
【文献】特開2019-201065(JP,A)
【文献】特開2005-227760(JP,A)
【文献】国際公開第2017/057700(WO,A1)
【文献】国際公開第2019/111333(WO,A1)
【文献】国際公開第2007/105679(WO,A1)
【文献】米国特許出願公開第2020/0116933(US,A1)
【文献】J. ZHANG et al.,"Fabrication and Demonstration of a Surface-Normal Metasurface Modulator with Electro-Optic Polymer",第66回応用物理学会春季学術講演会[講演予稿集],2019年02月25日,p.03-142
【文献】J. ZHANG et al.,“Experimental Demonstration of Surface-Normal MIM Modulator with Electro-Optic Polymer”,2018 Photonics in Switching and Computing (PSC),2018年09月,pp.1-3,DOI: 10.1109/PS.2018.8751332
(58)【調査した分野】(Int.Cl.,DB名)
G02F 1/00-1/125
G02F 1/21-1/39
JSTPlus/JST7580(JDream III)
(57)【特許請求の範囲】
【請求項1】
変調対象となる対象光に対して透過性を有する絶縁材料からなり、下面から前記対象光が入射する基体層と、
導電性材料からなり、前記基体層の厚さ方向に直交する第1方向に周期的に配列された複数のパターン部を含んで前記基体層の上面上に形成された導電パターン層と、
電気光学ポリマーからなり、前記複数のパターン部の間を充填するとともに前記導電パターン層の上面上に所定の厚さで形成され、前記導電パターン層を用いた電界の印加により屈折率が変化する変調層と、
前記変調層の上面上に形成され、前記基体層の前記下面から入射して前記変調層を通過した前記対象光を前記基体層へ向けて反射する反射層と
を備え、前記変調層を通過して位相が変調されるとともに前記反射層で反射された前記対象光を、変調光として前記基体層の前記下面から外部へと出射する、光変調器。
【請求項2】
前記導電パターン層における前記複数のパターン部の配列周期は、前記対象光の波長未満に設定されている、請求項1記載の光変調器。
【請求項3】
前記導電パターン層は、前記複数のパターン部として、前記厚さ方向及び前記第1方向に直交する第2方向に延び、第1電圧が印加される第1パターン部と、前記第2方向に延び、前記第1電圧とは異なる第2電圧が印加される第2パターン部とが前記第1方向に交互に配列されて構成されている、請求項1または2記載の光変調器。
【請求項4】
前記導電パターン層の前記上面と、前記変調層の前記上面との間の前記変調層の厚さdは、前記対象光の波長をλ、前記電気光学ポリマーの屈折率をnとして、λ/4nの偶数倍に設定されている、請求項1~3のいずれか一項記載の光変調器。
【請求項5】
前記導電パターン層の前記導電性材料は、半導体材料である、請求項1~4のいずれか一項記載の光変調器。
【請求項6】
前記反射層は、金属材料からなる、請求項1~5のいずれか一項記載の光変調器。
【請求項7】
前記基体層の前記下面上に、前記対象光に対する反射率を低減する反射防止膜が形成されている、請求項1~6のいずれか一項記載の光変調器。
【請求項8】
前記基体層の前記下面上に、前記下面から入射する前記対象光を集光するメタレンズが形成されている、請求項1~7のいずれか一項記載の光変調器。
【請求項9】
前記対象光の波長は、1μm以上15μm以下である、請求項1~8のいずれか一項記載の光変調器。
【請求項10】
請求項1~9のいずれか一項記載の光変調器を複数備え、
前記複数の光変調器が、1次元または2次元アレイ状に配列されて構成されている、光変調器アレイ。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は、変調対象光の位相を変調する光変調器、及び光変調器がアレイ状に配列された光変調器アレイに関するものである。
【背景技術】
【0002】
特許文献1、2には、入射光を変調する光変調器が開示されている。特許文献1に記載された光変調器は、下地層と、パターン部と、可変屈折率部とを備える。下地層は、第1屈折率材料により形成されている。パターン部は、下地層上に設けられ、導電性を有する第2屈折率材料により形成された複数の部分を有する。可変屈折率部は、電界下で屈折率が変化する第3屈折率材料により形成されるとともに、パターン部の複数の部分間を充填している。
【0003】
特許文献2に記載された光変調器は、非線形光学結晶を含み、所定方向に周期的に並ぶ複数の第1屈折率領域と、各第1屈折率領域の第1側面上に設けられた第1導電膜と、各第1屈折率領域の第2側面上に設けられた第2導電膜とを備える。また、この光変調器において、複数の第1屈折率領域は、第1屈折率領域よりも低い屈折率を有する領域によって囲まれている。
【先行技術文献】
【特許文献】
【0004】
【文献】国際公開第2017/057700号
【文献】特開2020-106706号公報
【発明の概要】
【発明が解決しようとする課題】
【0005】
光の変調に用いられる空間光変調器(Spatial LightModulator:SLM)として、例えば、液晶層を用いて光の位相を変調するLCOS(LiquidCrystal On Silicon)型のSLMが用いられている。このLCOS型SLMのように、光変調に液晶層を用いる構成では、その動作速度は液晶の応答速度に依存し、結果的に光変調器の応答速度は、例えば1kHz未満に制限される。
【0006】
一方、レーザ加工の分野において、レーザ光の掃引にガルバノミラー、MEMSミラー等のミラー素子が使用される場合があり、これらの素子の動作速度は例えば1kHz以上である。しかしながら、これらの素子の動作は機械的な変位によるものであり、LCOS型SLMのように光の位相を変調するものではない。したがって、このような素子では、高精度で波面制御を行うことは難しい。
【0007】
本発明は、変調対象光の位相の変調を高速で行うことが可能な光変調器、及び光変調器アレイを提供することを目的とする。
【課題を解決するための手段】
【0008】
本発明による光変調器は、(1)変調対象となる対象光に対して透過性を有する絶縁材料からなり、下面から対象光が入射する基体層と、(2)導電性材料からなり、基体層の厚さ方向に直交する第1方向に周期的に配列された複数のパターン部を含んで基体層の上面上に形成された導電パターン層と、(3)電気光学ポリマーからなり、複数のパターン部の間を充填するとともに導電パターン層の上面上に所定の厚さで形成され、導電パターン層を用いた電界の印加により屈折率が変化する変調層と、(4)変調層の上面上に形成され、基体層の下面から入射して変調層を通過した対象光を基体層へ向けて反射する反射層とを備え、(5)変調層を通過して位相が変調されるとともに反射層で反射された対象光を、変調光として基体層の下面から外部へと出射する。
【0009】
上記構成の光変調器では、光透過性を有する絶縁性の基体層の上面上に、複数のパターン部を含む導電パターン層と、電気光学(Electro-Optic:EO)ポリマーからなる変調層とを形成する。また、変調層のEOポリマー層が、複数のパターン部の間を充填するとともに、導電パターン層上に所定の厚さで形成される構成とする。そして、導電パターン層の複数のパターン部を用いて変調層のEOポリマーに電界を印加して、変調層の屈折率を変化させることで、対象光の位相の変調を行っている。このような構成によれば、変調層において、液晶よりも高速で応答するEOポリマーを用いることで、対象光の位相変調を高速で行うことができる。
【0010】
また、上記構成では、基体層の下面を対象光の入射面として用いるとともに、基体層上の導電パターン層及び変調層に対し、変調層の上面上に反射層を形成し、変調層で位相が変調された対象光を反射層で反射して、基体層の下面から変調光として出射する構成としている。このような構成では、変調層のEOポリマーの厚さ等の構成条件を適切に設定することにより、変調層を対象光に対する光共振器としても機能させることができる。これにより、EOポリマー層を用いた位相変調型で高速応答の光変調器を好適に構成することが可能となる。
【0011】
上記の光変調器において、導電パターン層における複数のパターン部の配列周期は、対象光の波長未満に設定されている構成としても良い。このように、基体層上に配列された導電パターン層の複数のパターン部、及び複数のパターン部の間を充填するEOポリマーの変調層において、その配列周期が対象波長よりも小さく設定されたサブ波長構造(メタサーフェス構造)を用いることにより、変調層のEOポリマーによる対象光の位相変調を好適に実現することができる。
【0012】
変調層への電界の印加に用いられる導電パターン層の構成については、具体的には例えば、導電パターン層は、複数のパターン部として、厚さ方向及び第1方向に直交する第2方向に延び、第1電圧が印加される第1パターン部と、第2方向に延び、第1電圧とは異なる第2電圧が印加される第2パターン部とが第1方向に交互に配列されて構成されていても良い。このような構成によれば、基体層上における導電パターン層及び変調層による周期的な配列構造を、好適に構成することができる。
【0013】
上記の光変調器において、導電パターン層の上面と、変調層の上面との間の変調層の厚さdは、対象光の波長をλ、電気光学ポリマーの屈折率をnとして、λ/4nの偶数倍に設定されている構成としても良い。これにより、変調層を対象光に対する光共振器として好適に機能させることができる。
【0014】
上記の光変調器を構成する各層の材料については、例えば、導電パターン層の導電性材料は、半導体材料である構成としても良い。また、反射層は、金属材料からなる金属層である構成としても良い。
【0015】
上記の光変調器において、基体層の下面上に、対象光に対する反射率を低減する反射防止膜が形成されている構成としても良い。また、基体層の下面上に、下面から入射する対象光を集光するメタレンズが形成されている構成としても良い。また、上記の光変調器において、対象光の波長は、1μm以上15μm以下である構成としても良い。
【0016】
本発明による光変調器アレイは、上記構成の光変調器を複数備え、複数の光変調器が、1次元または2次元アレイ状に配列されて構成されている。また、光変調器アレイは、具体的には例えば、Mを1以上の整数、Nを2以上の整数として、複数の光変調器が、M行N列に1次元または2次元アレイ状に配列されて構成されていても良い。このような構成によれば、上記構成の光変調器を変調セル(変調画素)として、1次元または2次元の変調パターンによる対象光の位相変調を好適に実現することができる。
【発明の効果】
【0017】
本発明の光変調器及び光変調器アレイによれば、変調対象光の位相の変調を高速で好適に行うことが可能となる。
【図面の簡単な説明】
【0018】
図1】光変調器を含む光変調装置の一実施形態の構成を示す平面図である。
図2図1に示した光変調器の構成を示す(a)A-A線に沿った側面断面図、及び(b)B-B線に沿った側面断面図である。
図3図2(a)に示した光変調器の構成を一部拡大して示す図である。
図4】(a)、(b)図1に示した構成の光変調器の作製例を示すSEM画像であり、図2(a)に示した断面での光変調器の構造を示している。
図5】特許文献1に記載された構成における光の反射率の波長依存性を示すグラフであり、(a)SiO層の厚さを500μmとしたときの反射率特性、及び(b)SiO層の厚さを2μmとしたときの反射率特性を示している。
図6図1に示した光変調器による光の位相変調における位相の波長依存性の測定例を示すグラフである。
図7】(a)、(b)図1に示した光変調器における光の反射率の波長依存性を示すグラフである。
図8図1に示した光変調器による光の位相変調における位相の波長依存性を示すグラフである。
図9図1に示した光変調器による光の位相変調における位相の屈折率依存性を示すグラフである。
図10図3に示した光変調器の構成の変形例を示す図である。
図11図10に示した光変調器による光の位相変調における位相の屈折率依存性を示すグラフである。
図12】(a)、(b)図10に示した光変調器における光の反射率の波長依存性を示すグラフである。
図13】(a)、(b)光変調器の内部における変調対象光の電場強度分布を示す図である。
図14】(a)、(b)光変調器の内部における変調対象光の電場強度分布を示す図である。
図15】(a)、(b)EOポリマーからなる変調層の厚さを変化させたときの変調対象光の電場強度分布の変化を示す図である。
図16】(a)、(b)EOポリマーからなる変調層の厚さを変化させたときの変調対象光の電場強度分布の変化を示す図である。
図17】光変調器の第1変形例の構成を示す側面断面図である。
図18図17に示した光変調器の反射防止膜における光の透過率の波長依存性を示すグラフである。
図19】光変調器の第2変形例の構成を示す側面断面図である。
図20】(a)、(b)図19に示した光変調器において基体層の下面上に形成されるメタレンズの設計例を示す図である。
図21】(a)、(b)図19に示した光変調器において基体層の下面上に形成されるメタレンズの設計例を示す図である。
図22図19に示した光変調器におけるメタレンズの作製例を示すSEM画像である。
図23図1に示した光変調器を用いた1次元光変調器アレイの構成を示す平面図である。
図24図1に示した光変調器を用いた2次元光変調器アレイの構成を示す平面図である。
図25図24に示した2次元光変調器アレイの構成を一部拡大して示す平面図である。
【発明を実施するための形態】
【0019】
以下、図面とともに、光変調器、及び光変調器アレイの実施形態について詳細に説明する。なお、図面の説明においては、同一要素には同一符号を付し、重複する説明を省略する。また、図面の寸法比率は、説明のものと必ずしも一致していない。
【0020】
図1は、光変調器を含む光変調装置の一実施形態の構成を示す平面図である。図2は、図1に示した光変調器の構成を示す図であり、図2(a)は、A-A線に沿った側面断面図を示し、図2(b)は、B-B線に沿った側面断面図を示している。また、図3は、図2(a)に示した光変調器の構成を一部拡大して示す図である。
【0021】
なお、以下の各図においては、説明の容易のため、xyz直交座標系を合わせて図示している。この座標系において、z軸は、光変調器の厚さ方向(光変調器を構成する基体層の厚さ方向)を示し、光変調器を構成する各層の積層方向を示している。また、x軸は、厚さ方向に直交する第1方向を示している。また、y軸は、厚さ方向及び第1方向に直交する第2方向を示している。
【0022】
本実施形態による光変調装置2Aは、光変調器1Aと、電圧印加部51と、制御部52とを備えている。また、光変調器1Aは、変調対象として入射した対象光L1に対して位相変調を行って変調光L2として外部へと出射するものであり、基体層10と、導電パターン層20と、変調層30と、反射層40とを備えて構成されている。なお、図1においては、変調層30及び反射層40が設けられている領域を破線で示している。
【0023】
基体層10は、対象光L1に対して透過性を有する絶縁材料からなる基板であり、その下面10bが、対象光L1が入射する入射面となっている。基体層10を構成する絶縁材料としては、例えば、導電パターン層20を構成する導電性材料よりも屈折率が低く、対象光L1に対して透過性を有する誘電体材料を用いることができ、好ましくは石英(SiO)ガラス材料が用いられる。また、基体層10の絶縁材料としては、SiO以外にも、例えば、TiO、Al、Nb、MgF、Ta等の誘電体材料を用いることができる。
【0024】
導電パターン層20は、導電性材料からなり、所定パターンを有して基体層10の上面10a上に形成されている。この導電パターン層20は、変調層30への電界の印加(電圧の印加)に用いられる。導電パターン層20を構成する導電性材料は、好ましくは半導体材料であり、例えばSiが用いられる。また、導電パターン層20の導電性材料としては、例えば、Si、Ge等の単元素半導体材料、GaAs、InP、InAs、GaP、AlP、GaN、AlN等のIII-V族化合物半導体材料(二元混晶半導体材料)、ZnS、ZnSe等のII-VI族化合物半導体材料、SiC、SiGe等のIV-IV族化合物半導体材料、InGaAs、InGaN、AlGaN等の三元混晶半導体材料、InGaAsP、GaInNAs等の四元混晶半導体材料、ITO、AZO、IZO、IGZO、GZO、ATO、NTO、TTO等の透明導電膜材料、等を用いることができる。また、導電パターン層20の導電性材料として、金属材料を用いても良い。
【0025】
導電パターン層20は、所定パターンとして、x軸方向に周期的に配列された複数のパターン部を含んで形成されている。図1図2に示した構成例では、導電パターン層20は、具体的には、複数のパターン部として、y軸方向に延びる複数本(図中では4本)の第1パターン部21と、y軸方向に延びる複数本(図中では4本)の第2パターン部26とがx軸方向に交互に配列されて、グレーティング状に構成されている。なお、導電パターン層20における複数のパターン部は、例えば、半導体製造で使用される微細加工プロセスによって形成することができる。
【0026】
第1パターン部21は、基体層10上でy軸方向の一方側(図中の下側)に形成された第1接続パターン部22を介して、第1電極パターン部23に電気的に接続されている。また、第1電極パターン部23上には、第1電極24が形成され、第1電極24には、ワイヤ14が接続されている。これにより、第1パターン部21には、ワイヤ14及び第1電極24を介して、第1電圧が印加される。
【0027】
第2パターン部26は、基体層10上でy軸方向の他方側(図中の上側)に形成された第2接続パターン部27を介して、第2電極パターン部28に電気的に接続されている。また、第2電極パターン部28上には、第2電極29が形成され、第2電極29には、ワイヤ19が接続されている。これにより、第2パターン部26には、ワイヤ19及び第2電極29を介して、第1電圧とは異なる第2電圧が印加される。第1、第2電極24、29の材料としては、金属材料を用いることができ、例えばCr/Auが用いられる。
【0028】
変調層30は、電気光学(Electro-Optic:EO)ポリマーからなるEOポリマー層として、基体層10及び導電パターン層20を覆うように形成されている。具体的には、変調層30は、図2に示すように、導電パターン層20のパターン部21、26の間を充填する充填部31と、導電パターン層20の上面20a上に所定の厚さで形成されたスペーサ部32とを含んで構成されている。
【0029】
変調層30、特に導電パターン層20の第1、第2パターン部21、26に挟まれた領域にある充填部31では、後述するように、導電パターン層20を用いた電界の印加(電圧の印加)により、EOポリマーの屈折率が変化する。本実施形態による光変調器1Aでは、この変調層30における屈折率の変化を利用して、対象光L1の位相の変調を行う。また、上記のように充填部31及びスペーサ部32を有する変調層30は、例えば、導電パターン層20のパターン部21、26が形成された基体層10上に、電気光学効果を有するEOポリマーをスピンコーティングにより所望の厚さとなるように塗布した後、ベーキングプロセスによりEOポリマー内の有機物を除去し固形化することで、形成することができる。
【0030】
反射層40は、変調層30の上面30a上に形成されている。反射層40の材料としては、金属材料を用いることができ、例えばAu(金)が用いられる。また、反射層40の材料としては、Au以外にも、例えば、Al(アルミ)、Ag(銀)、Pt(白金)、Ti(チタン)、Cr(クロム)等の金属材料を用いることができる。また、反射層40として、金属層ではなく、例えば、誘電体多層膜を用いても良い。
【0031】
反射層40は、基体層10の下面10bから入射してEOポリマーの変調層30を通過した対象光L1を基体層10へ向けて反射する。これにより、本実施形態の光変調器1Aは、変調層30を通過して位相が変調されるとともに反射層40で反射された変調対象光L1を、変調光L2として基体層10の下面10bから外部へと出射する反射型の光変調器として構成されている。また、光変調器1Aは、必要に応じて、対象光L1及び変調光L2が通過する開口または入射窓を有するマウント15上に載置される。
【0032】
光変調装置2Aでは、図1に示すように、上記構成の光変調器1Aに対して、電圧印加部51及び制御部52が設けられている。電圧印加部51の一方の端子は、ワイヤ14を介して第1電極24に電気的に接続され、他方の端子は、ワイヤ19を介して第2電極29に電気的に接続されている。これにより、光変調器1Aの導電パターン層20における第1、第2パターン部21、26に対して、電圧印加部51から第1、第2電圧が、それぞれ印加される。
【0033】
制御部52は、電圧印加部51による光変調器1Aに対する電圧印加動作(電界印加動作)を制御することにより、光変調器1Aにおける変調対象光L1の位相変調動作を制御する。このような構成において、電圧印加部51としては、例えば電源装置を用いることができる。また、制御部52としては、例えばCPU、記憶部、表示部、入力部等を含むコンピュータを用いることができる。
【0034】
光変調器1Aにおいて、導電パターン層20の第1、第2パターン部21、26が設けられている領域が、対象光L1の位相を変調する変調領域として機能する。図1の構成例において、変調領域のx軸方向の幅はlx、y軸方向の幅はlyである。このような変調領域は、後述のように光変調器アレイを構成する場合の単位変調セルとなるものであり、そのセルサイズは、例えばlx×ly=100μm×100μmである。
【0035】
また、図3に示すように、光変調器1Aにおいて、導電パターン層20の第1、第2パターン部21、26によるグレーティングパターンにおけるパターン部の幅をsとし、高さをtgとし、配列周期をΛとする。導電パターン層20における各パターン部の断面形状は、具体的な設計条件、作製条件により任意の形状として良いが、例えば矩形、台形、あるいは、矩形または台形で頂点が丸みを有するもの、等である。
【0036】
また、変調層30については、導電パターン層20の上面20aと、変調層30の上面30aとの間のスペーサ部32の厚さをdとし、充填部31及びスペーサ部32を含む変調層30のEOポリマーの全体の厚さをtpとする。また、反射層40を構成する金属層の厚さをtrとする。
【0037】
このような構成の光変調器1Aにおいて、導電パターン層20における第1、第2パターン部21、26の配列周期Λは、好ましくは位相変調の対象となる対象光L1の波長λ未満に設定される。このように、基体層10上に配列された導電パターン層20のパターン部21、26、及びパターン部21、26の間を充填する変調層30において、その配列周期Λが対象波長λよりも小さく設定されたサブ波長構造(メタサーフェス構造)を用いることにより、高次回折光の発生を抑制できるため、EOポリマーの変調層30を利用した対象光L1の位相変調を好適に実現することができる。また、サブ波長構造を用いた構成では、変調セルの小型化、及びその集積化が可能であり、また、液晶層を用いるLCOS型SLMよりも、変調画素のサイズを小さくすることが可能である。
【0038】
図4(a)及び(b)は、図1に示した構成の光変調器1Aの作製例を示すSEM画像であり、図2(a)に示したxz断面での光変調器の構造を示している。この作製例の光変調器は、設計上のパターン幅をs=440nm、高さをtg=570nm、配列周期をΛ=780nmとして作製したものである。また、図4(a)、(b)は、同一の光変調器の構造を異なる倍率で示している。図4に示すように、変調層30のEOポリマーは、導電パターン層20のパターン部の間に十分に充填されている。
【0039】
上記構成を有する光変調器1Aの動作、及び機能について説明する。光変調器1Aにおいて、変調層30は、内部分極構造を有するEOポリマーによって形成されている。EOポリマーの内部分極構造は、例えば、ポリマー中にEO色素分子を分散することによって得られ、EOポリマーに高温下で高電界を印加することで、EO色素分子等の内部分極構造を電界に沿って配向させることができる(ポーリング処理)。
【0040】
具体的には、例えば、基体層10及び導電パターン層20上に、上記したように変調層30を形成した後、変調層30のEOポリマーをガラス転移温度以上に加熱しながら、導電パターン層20のパターン部21、26を用いて電界を印加することにより、EOポリマー内部のEO色素分子などの内部分極構造を有する分子を電界に沿って配向させる。その後、EOポリマーを常温に戻すことで、内部分極構造の配向状態が固定される。すなわち、上記の処理を行うことで、EOポリマー内において、EO色素分子が強く分極または配向した状態で固定される。
【0041】
図1に示した構成例では、導電パターン層20において、第1、第2パターン部21、26がx軸方向に交互に配列されている。これにより、変調層30の充填部31では、EOポリマーは±x軸方向に交互に分極または配向されている。この状態で、図3に矢印Eによって示すように、変調層30のEOポリマーに対し、導電パターン層20を用いて内部分極構造の分極または配向の方向に沿って電界を印加することにより、EOポリマーの屈折率を、電気光学効果によって印加電界(印加電圧)の強度に応じて変化させることができる。
【0042】
本実施形態の光変調器1Aでは、このような変調層30における屈折率変化を制御することにより、基体層10の下面10bから入射する対象光L1の位相の変調を実現する。対象光L1は、導電パターン層20を用いた電界の印加によって屈折率が制御された変調層30を通過することで位相が変調されるとともに、変調層30の上部に形成された反射層40で反射され、基体層10の下面10bから変調光L2として出射される。
【0043】
上記実施形態による光変調器1A、及び光変調装置2Aの効果について説明する。
【0044】
図1図2に示した光変調器1Aでは、光透過性を有する絶縁性の基体層10の上面10a上に、パターン部21、26を含む導電パターン層20と、EOポリマーからなる変調層30とを形成する。また、変調層30のEOポリマー層が、充填部31及びスペーサ部32を有し、充填部31が、パターン部21、26の間を充填するとともに、スペーサ部32が、導電パターン層20上に所定の厚さで形成される構成とする。
【0045】
光変調器1Aでは、上記構成において、導電パターン層20のパターン部21、26を用いて変調層30のEOポリマーに電界を印加して、変調層30の屈折率を変化させることで、対象光L1の位相の変調を行っている。このような構成によれば、変調層30において、液晶よりも高速で応答するEOポリマーを用いることで、変調対象光L1の位相変調を、例えば1MHz以上の動作速度で高速に行うことができる。
【0046】
また、上記構成では、基体層10の下面10bを対象光L1の入射面として用いるとともに、基体層10上の導電パターン層20及び変調層30に対し、変調層30の上面30a上に反射層40を形成し、変調層30で位相が変調された対象光L1を反射層40で反射して、基体層10の下面10bから変調光L2として出射する構成としている。このような構成では、変調層30のEOポリマーの厚さ等の構成条件を適切に設定することにより、変調層30を対象光L1に対する光共振器としても機能させることができる。これにより、EOポリマー層を用いた位相変調型で高速応答の光変調器1Aを、好適に構成することが可能となる。
【0047】
光変調器1Aの変調層30における光共振器は、x軸方向(横方向)の共振器と、z軸方向(縦方向)の共振器との2つの共振器が組み合わされた構造になっている。これらのうち、x軸方向の共振器は、導電パターン層20の隣り合うパターン部21、26の間に挟まれた充填部31において構成されている。また、z軸方向の共振器は、変調層30の上面30a上の反射層40と、導電パターン層20の上面20aとの間に挟まれたスペーサ部32において、非平衡ファブリペロー共振器として構成されている。
【0048】
上記の光変調器1Aにおいて、このような光共振器の構造を考慮して、導電パターン層20の上面20aと、変調層30の上面30aとの間にある変調層30のスペーサ部32の厚さdは、対象光L1の波長をλ、EOポリマーの屈折率をnとして、λ/4nの偶数倍(λ/2nの整数倍)に設定されていることが好ましい。これにより、変調層30を対象光L1に対する光共振器として好適に機能させることができる。
【0049】
変調層30への電界の印加に用いられる導電パターン層20の構成については、上記の光変調器1Aでは、具体的に、y軸方向を長手方向とする第1、第2パターン部21、26を用い、第1電極24を介して第1電圧が印加される第1パターン部21と、第2電極29を介して第2電圧が印加される第2パターン部26とがx軸方向に交互に配列された構成としている。このような構成によれば、基体層10上における導電パターン層20及び変調層30による周期的な配列構造を、好適に構成することができる。
【0050】
また、上記の光変調器1Aにおいて、変調対象光L1の波長λについては、EOポリマーの特性等を考慮して、1μm以上とすることが好ましい。このように波長λを設定することにより、EOポリマーを用いた変調層30において、対象光L1の位相の変調を好適に実現することができる。また、対象光L1の波長λの上限については、波長λは、15μm以下であることが好ましい。
【0051】
上記構成の光変調器1Aによる効果について、さらに説明する。図1図2に示した光変調器1Aでは、例えば、SiOからなる基体層10上に、Siからなる導電パターン層20、及びEOポリマーからなる変調層30を形成する。このように、SiO基体層及びSi導電パターン層を有する構成は、例えば数100nm程度の厚さのサブ波長構造を有するSi層を自立させるために、例えば、石英基板上にシリコン薄膜が形成されたSOQ(Silicon on Quartz)基板を用いて作製することができる。
【0052】
ここで、SOQ基板におけるSiO層は、例えば625μmの厚さを有する。このようなSOQ基板を用い、例えば特許文献1の図5に示されている構成のように、SiO層の下面上に反射層を形成することで反射型の光変調器を構成した場合、厚さ625μm程度のSiO層が光共振器として機能することとなる。
【0053】
図5は、上記の特許文献1に記載の構成における光の反射率の波長依存性を示すグラフであり、図5(a)は、SiO層の厚さを500μmとしたときの反射率特性を示し、また、図5(b)は、SiO層の厚さを2μmとしたときの反射率特性を示している。図5(a)及び(b)のグラフにおいて、横軸は変調対象光の波長(μm)を示し、縦軸は反射率を示している。
【0054】
図5(a)に示すように、SiO層の厚さが500μmと厚い場合、それに起因するファブリペロー共振が多波長で生じる。この場合、対象光の位相変調において、所望の波長とは別の波長を有する光成分が混在することになる。一方、図5(b)に示すように、SiO層の厚さを例えば2μmと薄くした場合、上記のような多波長でのファブリペロー共振は生じない。しかしながら、SOQ基板において、SiO層が均一に薄くなるように加工するプロセスは難易度が高く、研磨工程に長時間を要し、また、SiO層を薄くすることで光変調器の自立化が難しくなる。
【0055】
これに対して、上記実施形態による光変調器1Aでは、上述したように、基体層10の下面10bから対象光L1が入射する構成とするとともに、EOポリマーからなる変調層30の上面30a上に反射層40を形成して、変調層30を光共振器として機能させる構成としている。これにより、光変調器1Aの作製プロセスを簡易化して、反射型の構造を有する位相変調型の光変調器を好適に構成することができる。
【0056】
上記実施形態による光変調器1Aの製造方法の一例について、簡単に説明する。まず、基体層10となるSiO層、及び導電パターン層20となるSi層を有するSOQ基板を用意し、一般的な有機洗浄によってSOQ基板を洗浄する。ここでは、例えば、アセトン、IPA、またはエタノール中にて、SOQ基板の超音波洗浄を行う。次に、スパッタ装置を使用して、SOQ基板のSi層上に約100nmの厚さのCr層を形成する。
【0057】
続いて、Cr層上にEBレジスト(例えば、ZEP520A-7)を塗布し、スピンコーティングにより約200nmの厚さとする。その後、EB描画装置を使用して描画し、現像を行うことにより、サブ波長構造のレジストパターンを形成する。次に、レジストパターンを保護膜にしてCr層のドライエッチングを行うことにより、Crマスクパターンを形成する。さらに、引き続いてSi層をドライエッチングした後、Oアッシングにより残ったレジストを除去し、Crをウエットエッチングで除去する事により、導電パターン層20となるSi層のサブ波長構造を形成する。ドライエッチング用のガスとしては、例えば、Crのエッチングには、Ar、O、及びClを用いることが出来る。Si層のエッチングには、Ar及びCFを用いることができる。続いて、フォトリソグラフィによってパターンを作製し、EB蒸着装置を使用してCr/Auを蒸着した後、リフトオフプロセスを行うことにより、Si層上のCr/Au電極を形成する。なお、Cr/Au電極の厚さについては、例えば、Cr(10nm)/Au(200nm)として形成することができる。
【0058】
次に、SiO層及びSiサブ波長構造上に、変調層30となるEOポリマー層を形成する。ここでは、例えば、20wt%のEOポリマー溶液を用い、Siサブ波長構造上にスピンコーティングを行う。この場合、スピンコートにおける回転数を2000rpmとすると、EOポリマー層の厚さは約2μmとなる。続いて、EOポリマー層から溶剤を除去するために、ベーキングを行う。ベーキングは、例えば2回に分けて行う。この場合、1回目のベーキングは、クリーンルーム内において120℃で60分間行い、2回目のベーキングは、真空チャンバー内において100℃で60分間行う。
【0059】
続いて、Cr電極の上部にあるEOポリマー層に対してフォトレジストでマスクを形成し、スパッタ装置を使用して、反射層40となるAu薄膜を、約100nmの厚さでEOポリマー層上に形成する。マスク部分、及びその下にあるEOポリマー層は、有機溶剤、またはOアッシング等によって除去する。
【0060】
次に、EOポリマー層のポーリング処理を行う。EOポリマーのガラス転移温度である約123℃に素子を徐々に加熱し、その状態で例えば30分間、電極間に所定の電界(例えば、100V/μm)を印加する。その後、素子を室温まで急冷することにより、EOポリマー内のEO色素分子の配向が固定され、これにより、EOポリマー層はポッケルス効果を示すようになる。
【0061】
続いて、開口を有するマウント上に素子を設置し、ワイヤボンディングによって素子とマウントとの間を電気的に接続する。以上により、図1図2に示した構成の光変調器が得られる。
【0062】
上記実施形態による光変調器1Aの特性について、具体的な構成例、測定データ、及び計算データとともに説明する。以下の測定例、及び計算例においては、基体層10をSiO層、導電パターン層20をSi層、反射層40をAu層としている。
【0063】
図6は、図1に示した光変調器1Aによる光の位相変調における位相の波長依存性の測定例を示すグラフである。この測定例では、導電パターン層20におけるパターン部の幅をs=420nm、高さをtg=570nm、配列周期をΛ=780nm、変調層30のEOポリマーの全体の厚さをtp=2006nmとして作製した光変調器についての測定データを示している。図6のグラフにおいて、横軸は変調対象光の波長(nm)を示し、縦軸は対象光の位相変調における位相(rad)を示している。
【0064】
また、図6において、グラフG1は、印加電圧を0Vとしたときの位相特性を示し、グラフG2は、印加電圧を+30Vとしたときの位相特性を示している。この測定例では、光変調器1Aに対して+30Vの外部電圧を印加することにより、波長λ=1527.8nmにおいて、5.26rad(301度)の動的な位相変調が実現されている。
【0065】
図7図9は、図3に示したように、導電パターン層20における各パターン部の断面形状を矩形(長方形)とした構成における光変調器1Aの特性の計算例を示している。この計算例では、対象光L1の波長をλ=1550.8nm、偏光方向をTEとし、導電パターン層20におけるパターン部の幅をs=378nm、高さをtg=553nm、配列周期をΛ=756nm、パターン部の角度をθg=90度、変調層30のEOポリマーの全体の厚さをtp=2006nm、反射層40の厚さをtr=100nmとした構成についての計算データを示している。この場合、導電パターン層20におけるグレーティングパターンのデューティ比は0.5である。
【0066】
図7(a)及び(b)は、光変調器における光の反射率の波長依存性を示すグラフであり、図7(b)のグラフは、図7(a)のグラフを一部拡大して示している。図7のグラフにおいて、横軸は変調対象光の波長(μm)を示し、縦軸は光の反射率を示している。また、図7(a)及び(b)において、グラフG3は、変調層30のEOポリマーの屈折率をn=1.600としたときの反射率特性を示し、グラフG4は、EOポリマーの屈折率をn=1.605としたときの反射率特性を示している。図7に示す反射率特性では、波長λ=1550.8nmを含む所望の波長帯域において、反射率90%以上の高い反射率が得られている。
【0067】
図8は、光変調器による光の位相変調における位相の波長依存性を示すグラフである。図8のグラフにおいて、横軸は変調対象光の波長(μm)を示し、縦軸は位相(deg)を示している。また、図8において、グラフG5は、変調層30のEOポリマーの屈折率をn=1.600としたときの位相特性を示し、グラフG6は、EOポリマーの屈折率をn=1.605としたときの位相特性を示している。図8に示す位相特性は、測定データに関して図6に示した位相特性に対応している。
【0068】
図9は、光変調器による光の位相変調における位相の屈折率依存性(印加電圧依存性)を示すグラフである。図9のグラフにおいて、横軸は変調層30のEOポリマーの屈折率を示し、縦軸は位相(deg)を示している。また、図9のグラフでは、対象光の波長をλ=1550.8nmに設定している。このグラフに示すように、導電パターン層20への印加電圧を変化させて、変調層30のEOポリマーの屈折率を制御することにより、対象光の位相を任意に変調することができる。
【0069】
ここで、導電パターン層20を用いて変調層30に電界(電圧)を印加したときのEOポリマーの屈折率の変化について説明する。ポッケルス効果による電気光学材料の屈折率の変化は、下記の(1)式によって見積もることができる。
【数1】

ここで、nはEOポリマーの屈折率で、上記の構成例ではn=1.600であり、r33はEOポリマーの電気光学定数で、想定しているEOポリマー材料ではr33=100pm/Vである。また、Vmは外部印加電圧であり、Wgは導電パターン層20のグレーティングパターンにおけるパターン間隔である。
【0070】
上記構成の光変調器1Aの適用例として、具体的に、導電パターン層20でのグレーティングの方向と、入射する変調対象光L1の電界の方向とが同じ方向を向くTE波の場合に動作する構成を想定すると、EOポリマーの電気光学定数は、
【数2】

となる。これらの値を、上記の(1)式に代入すると、電圧30Vを印加したときの屈折率変化Δnは、下記の(3)式のようになる。
【数3】

なお、上記の計算例では、少し余裕を見てΔn=0.005で計算を行っている。また、実際の光変調器では、例えば±40V程度まで電圧を印加することができる。
【0071】
上記の計算例では、導電パターン層20における各パターン部の断面形状を矩形と仮定したが、実際に作製する光変調器では、パターン部の断面形状が、例えば台形となる場合がある。図10は、図3に示した光変調器の構成の変形例を示す図である。この構成例では、導電パターン層20のグレーティングパターンにおけるパターン部の幅をsとし、高さをtgとし、配列周期をΛとしている点では図3と同様であるが、パターン部の断面形状が矩形ではなく、傾斜角度θgの台形となっている。
【0072】
図11は、図10に示した構成の光変調器による光の位相変調における位相の屈折率依存性を示すグラフである。この計算例では、対象光L1の波長をλ=1630.5nm、偏光方向をTEとし、導電パターン層20におけるパターン部の幅をs=440nm、高さをtg=570nm、配列周期をΛ=780nm、パターン部の角度をθg=87.5度、変調層30のEOポリマーの全体の厚さをtp=2μm、反射層40の厚さをtr=100nmとした構成についての計算データを示している。この場合、導電パターン層20におけるグレーティングパターンのデューティ比は0.564である。
【0073】
上記構成の光変調器1Aにおいて、導電パターン層20における各パターン部の断面形状、例えば、断面の台形形状における傾斜角度θgが変化すると、光変調器の反射特性、位相変調特性等が変化する。図12(a)及び(b)は、図10に示した構成の光変調器における光の反射率の波長依存性を示すグラフである。
【0074】
図12(a)は、パターン部の幅をs=360nm、高さをtg=570nm、配列周期をΛ=780nm、デューティ比を0.461とした場合の光変調器の反射率特性を示している。また、図12(b)は、パターン部の幅をs=440nm、高さをtg=570nm、配列周期をΛ=780nm、デューティ比を0.564とした場合の光変調器の反射率特性を示している。
【0075】
図12のグラフにおいて、横軸は変調対象光の波長(μm)を示し、縦軸は光の反射率を示している。また、図12(a)及び(b)において、グラフG11、G21は、パターン部の台形形状の角度をθg=83度としたときの反射率特性を示し、グラフG12、G22は、θg=85度としたときの反射率特性を示し、グラフG13、G23は、θg=87度としたときの反射率特性を示し、グラフG14、G24は、θg=90度として断面形状を矩形としたときの反射率特性を示している。
【0076】
図12(a)及び(b)に示すグラフでは、導電パターン層20におけるパターン部の傾斜角度θgが垂直(90度)から変化すると、共振位置の波長が短波長側へシフトする傾向にある。また、実際の素子では、パターン部の配列周期Λ等の他のパラメータによっても、共振位置の波長などの素子特性が変化する。したがって、光変調器の設計、作製、及びその特性の評価等においては、それらの構造パラメータの特性への影響を適切に考慮することが必要である。
【0077】
上記実施形態による光変調器1Aにおける変調層30の光共振器としての機能、及び変調層30での光の閉じ込めについて説明する。上記構成の光変調器1Aでは、導電パターン層20及び変調層30による基体層10上の微細構造、及び光共振器構造において変調対象光を閉じ込めることで、変調層30のEOポリマーによる対象光の位相変調を好適に実現することができる。なお、以下の計算例においては、パターン部の断面形状を、傾斜角度θg=90度の矩形形状としている。
【0078】
図13は、光変調器1Aの内部における変調対象光の電場強度分布を示す図である。この計算例では、対象光L1の波長をλ=1.55μm、偏光方向をTEとし、導電パターン層20におけるパターン部の幅をs=378nm、高さをtg=553nm、配列周期をΛ=756nm、変調層30のEOポリマーの全体の厚さをtp=2006nm、反射層40の厚さをtr=100nmとした構成についての計算データを示している。
【0079】
図13(a)は、xz断面(図2(a)参照)における電場強度分布を示している。図13(a)の分布図において、横軸はx(μm)を示し、縦軸はz(μm)を示し、図中の白線は、基体層10、導電パターン層20、変調層30、及び反射層40の各層の境界を示している。また、図13(b)は、図13(a)の分布図で、導電パターン層20の各パターン部の中心を通る線に沿った電場強度分布を示すグラフである。図13(b)のグラフにおいて、横軸はx(μm)を示し、縦軸は電場強度を示している。また、光変調器への対象光の入射については、SiO基体層10のz=-0.5μmの位置からの対象光の入射を想定して計算を行っている。
【0080】
図13(a)及び(b)の分布図及びグラフに示すように、上記構成の光変調器1Aでは、導電パターン層20の第1、第2パターン部21、26の間にある変調層30の充填部31において、対象光L1が閉じ込められている。これにより、EOポリマーからなる変調層30において、対象光L1を高効率で位相変調することができる。
【0081】
図14は、光変調器の内部における変調対象光の電場強度分布を示す図であり、図13と同様に、図14(a)は、xz断面における電場強度分布を示し、図14(b)は、導電パターン層20の各パターン部の中心を通る線に沿った電場強度分布のグラフを示している。また、この計算例では、変調層30上に反射層40が設けられていない構成についての計算データを示している。図13及び図14を比較すると、変調層30上に反射層40を形成することにより、変調層30における光共振器の機能、及び光の閉じ込め効果が大きく向上されている。
【0082】
上記構成の光変調器1Aでは、図13に示した光の閉じ込め効果を考慮して、導電パターン層20の上面20aと、変調層30の上面30aとの間にある変調層30のスペーサ部32の厚さd(図3参照)を、対象光L1の波長をλ、EOポリマーの屈折率をnとして、λ/4nの偶数倍に設定することが好ましい。ここで、対象光の波長をλ=1.55μm、EOポリマーの屈折率をn=1.60とすると、
【数4】

である。また、充填部31の厚さ(パターン部の高さ)tgを0.553μmとし、スペーサ部32の厚さdを、mを1以上の整数としてd=m×λ/4nとすると、スペーサ部32及び充填部31を含む変調層30の全体の厚さtpは、
【数5】

となる。
【0083】
図15(a)、(b)、図16(a)、(b)は、EOポリマーからなる変調層30の厚さを変化させたときの変調対象光の電場強度分布の変化を示す図である。図15(a)は、d=5×λ/4n、tp=1764nmとしたときの電場強度分布図を示している。図15(b)は、d=6×λ/4n、tp=2006nmとしたときの電場強度分布図を示している。図16(a)は、d=7×λ/4n、tp=2248nmとしたときの電場強度分布図を示している。図16(b)は、d=8×λ/4n、tp=2491nmとしたときの電場強度分布図を示している。
【0084】
これらの図15図16の電場強度分布図に示すように、変調層30におけるスペーサ部32の厚さdをλ/4nの偶数倍(λ/2nの整数倍)に設定することにより、変調層30における光の閉じ込め効果を向上することができる。また、これにより、変調層30による対象光の位相変調を、好適に実現することができる。
【0085】
光変調器の具体的な構成について、上記構成の変形例とともにさらに説明する。
【0086】
図17は、図1図2に示した光変調器の第1変形例の構成を示すxz側面断面図である。本構成例による光変調器1Bでは、光変調器1Aの構成に加えて、基体層10の下面10b上に、下面10bから入射する対象光L1に対する反射率を低減するための反射防止膜11が形成されている。これにより、光変調器1Bへの対象光L1の入射効率を向上することができる。
【0087】
反射防止膜11としては、具体的には例えば、誘電体多層膜を用いることができる。ここで、反射防止膜11の構成の一例として、厚さ364.46nmのNb層、厚さ167.36nmのSiO層、厚さ270.83nmのNb層、厚さ106.58nmのSiO層、厚さ34.5nmのNb層、及び厚さ9.62nmのSiO層の6層からなる誘電体多層膜を想定する。
【0088】
図18は、図17に示した光変調器1Bの反射防止膜11における光の透過率の波長依存性を示すグラフであり、反射防止膜として上記した構成の誘電体多層膜を用いた場合の透過率特性を示している。図18のグラフにおいて、横軸は変調対象光の波長(nm)を示し、縦軸は対象光の透過率(%)を示している。図18のグラフでは、対象光の波長が1400nm~1600nmの領域において、SiO基体層10における光の反射率が0.5%以下となっている。これにより、上記構成の光変調器を、例えばレーザ加工でのレーザ光の掃引、位相変調等に用いる場合に、光の利用効率を高めることができる。
【0089】
図19は、図1図2に示した光変調器の第2変形例の構成を示すxz側面断面図である。本構成例による光変調器1Cでは、光変調器1Aの構成に加えて、基体層10の下面10b上に、下面10bから入射する対象光L1を変調層30を含む変調領域へと集光するためのメタレンズ12が形成されている。このようなメタレンズ12は、例えば、SiO基体層10の下面10b上にSi層をスパッタにより蒸着し、そのSi層に微細加工を施してレンズ機能を持たせることで形成することができる。また、図19に示す構成例では、導電パターン層20、変調層30、及び反射層40を含む変調セルを、基体層10上に2個形成し、そのそれぞれに対してメタレンズ12を設けている。
【0090】
ここで、メタレンズについて簡単に説明する。メタレンズは、波長よりも小さい構造体を用いることにより、入射光の透過強度や位相を変調する静的光学素子であり、例えば、作製が容易なSiO基板上の波長サイズ以下の円柱形状のSi層を単位セルとし、複数の単位セルを配列することで構成される。例えば、ブレーズド回折格子のような位相分布となるように、各単位セルのSi円柱形状を構成、配置すると、得られるSi微細構造体は、回折格子として機能する。
【0091】
図20(a)、(b)、図21(a)、(b)は、図19に示した光変調器1Cにおいて、基体層10の下面10b上に形成されるメタレンズ12の設計例を示す図である。図20(b)は、図20(a)に示したメタレンズの設計例を拡大して示している。また、図21(a)は、図20に示したメタレンズの中心部の拡大図であり、図21(b)は、端部の拡大図である。
【0092】
また、図22は、メタレンズ12の作製例を示すSEM画像である。ここでは、基体層10となるSiO基板上に、厚さ750nmのSi層を形成し、微細加工プロセスによってSiを円柱形状に加工した単位セルを複数配列することで、メタレンズを形成している。具体的には、Si円柱形状の直径が異なる8種類の単位セルを使用し、位相分布が下記のフレネルレンズの(6)式
【数6】

となるように単位セルを配置することで、メタレンズを構成する。
【0093】
図20図22に示した例のメタレンズでは、対象光の波長をλ=1300nm、単位セルのサイズを350nmとし、8種類の単位セルにおけるSi円柱形状の直径を、それぞれ130nm、160nm、200nm、220nm、260nm、280nm、300nm、320nmとする。このような構成において、各単位セル(サブ波長要素)を通過した光の位相変化は、0π、π/4、π/2、3π/4、π、5π/4、3π/2、7π/4である。また、ここでは、メタレンズの焦点距離をf=650μm、レンズ半径をr=60μmとしている。
【0094】
図19に示すように、基体層10の上面10a上に設けられる導電パターン層20、変調層30、及び反射層40による変調セルに対し、基体層10の下面10b上にメタレンズ12を設けることにより、より微小化した変調セルに光を誘導することが可能となり、これにより、光変調器のさらなる集積化、高速化が可能となる。
【0095】
上記構成の光変調器を用いた光変調器アレイの構成について説明する。光変調器アレイは、単位変調セルとなる上記構成の光変調器を複数用い、複数の光変調器を1次元または2次元アレイ状に配列して、構成することができる。具体的には例えば、Mを1以上の整数、Nを2以上の整数として、複数の光変調器(複数の変調セル)をM行N列に1次元または2次元アレイ状に配列することで、光変調器アレイが構成される。このような構成によれば、上記構成の光変調器を変調画素として、1次元または2次元の変調パターンによる対象光の位相変調を好適に実現することができる。
【0096】
図23は、図1に示した光変調器を用いた1次元光変調器アレイの構成を示す平面図である。本構成例における光変調器アレイ3Aは、図1図2に示した構成を有し、基体層10、導電パターン層20、変調層30、及び反射層40をそれぞれ備える光変調器1AをN個の変調セルP~Pとして用い、x軸方向を配列方向として、1次元アレイ状に配列して構成されている。
【0097】
なお、本構成例では、変調層30及び反射層40は、図23中に破線で示すように、N個の変調セルP~Pの全体に対して一体に形成されている。また、基体層10については、N個の変調セルP~Pで個別に設けられていても良く、あるいは一体に設けられていても良い。
【0098】
図24は、図1に示した光変調器を用いた2次元光変調器アレイの構成を示す平面図であり、図25は、図24に示した2次元光変調器アレイの構成を一部拡大して示す平面図である。本構成例における光変調器アレイ3Bは、図1図2に示した構成を有し、基体層10、導電パターン層20、変調層30、及び反射層40をそれぞれ備える光変調器1Aを6×6個の変調セルP1,1~P6,6として用い、x軸方向及びy軸方向を配列方向として、2次元アレイ状に配列して構成されている。なお、図24においては、変調層30及び反射層40の図示を省略している。
【0099】
本構成例の光変調器アレイ3Bでは、第1、2行の変調セルP1,1~P1,6、P2,1~P2,6において、第1電極24が各列の変調セルP1,n、P2,nで共通に設けられ、それらの第1電極24に対して、共通のグランド線W10が接続されている。また、第1行の変調セルP1,1~P1,6において、各列の変調セルの第2電極29に対して、個別の変調信号線W11~W13、W14~W16が接続されている。また、第2行の変調セルP2,1~P2,6において、各列の変調セルの第2電極29に対して、個別の変調信号線W21~W23、W24~W26が接続されている。
【0100】
また、第3、4行の変調セルP3,1~P3,6、P4,1~P4,6において、第1電極24が各列の変調セルP3,n、P4,nで共通に設けられ、それらの第1電極24に対して、共通のグランド線W30が接続されている。また、第3行の変調セルP3,1~P3,6において、各列の変調セルの第2電極29に対して、個別の変調信号線W31~W33、W34~W36が接続されている。また、第4行の変調セルP4,1~P4,6において、各列の変調セルの第2電極29に対して、個別の変調信号線W41~W43、W44~W46が接続されている。
【0101】
また、第5、6行の変調セルP5,1~P5,6、P6,1~P6,6において、第1電極24が各列の変調セルP5,n、P6,nで共通に設けられ、それらの第1電極24に対して、共通のグランド線W50が接続されている。また、第5行の変調セルP5,1~P5,6において、各列の変調セルの第2電極29に対して、個別の変調信号線W51~W53、W54~W56が接続されている。また、第6行の変調セルP6,1~P6,6において、各列の変調セルの第2電極29に対して、個別の変調信号線W61~W63、W64~W66が接続されている。
【0102】
なお、本構成例では、変調層30及び反射層40は、図25中に破線で示すように、6×6個の変調セルP1,1~P6,6の全体に対して一体に形成されている。また、基体層10については、6×6個の変調セルP1,1~P6,6で個別に設けられていても良く、あるいは一体に設けられていても良い。
【0103】
光変調器、及び光変調器アレイは、上記実施形態及び構成例に限られるものではなく、様々な変形が可能である。例えば、導電パターン層20における複数のパターン部については、上記実施形態では、第1電圧が印加される第1パターン部と、第2電圧が印加される第2パターン部とが交互に配列された構成を示しているが、このような構成に限られるものではなく、具体的には様々なパターンを用いて良い。
【産業上の利用可能性】
【0104】
本発明は、変調対象光の位相の変調を高速で行うことが可能な光変調器、及び光変調器アレイとして利用可能である。
【符号の説明】
【0105】
1A、1B、1C…光変調器、2A…光変調装置、3A、3B…光変調器アレイ、
10…基体層、10a…上面、10b…下面、11…反射防止膜、12…メタレンズ、14、19…ワイヤ、15…マウント、
20…導電パターン層、20a…上面、21…第1パターン部、22…第1接続パターン部、23…第1電極パターン部、24…第1電極、26…第2パターン部、27…第2接続パターン部、28…第2電極パターン部、29…第2電極、
30…変調層、30a…上面、31…充填部、32…スペーサ部、40…反射層、
51…電圧印加部、52…制御部、P~P、P1,1~P6,6…変調セル、W10、W30、W50…グランド線、W11~W66…変調信号線、L1…対象光、L2…変調光。
図1
図2
図3
図4
図5
図6
図7
図8
図9
図10
図11
図12
図13
図14
図15
図16
図17
図18
図19
図20
図21
図22
図23
図24
図25