IP Force 特許公報掲載プロジェクト 2022.1.31 β版

知財求人 - 知財ポータルサイト「IP Force」

▶ 長江存儲科技有限責任公司の特許一覧

特許7462614三次元メモリデバイスおよびその製作方法
(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-03-28
(45)【発行日】2024-04-05
(54)【発明の名称】三次元メモリデバイスおよびその製作方法
(51)【国際特許分類】
   H10B 43/27 20230101AFI20240329BHJP
   H01L 21/3065 20060101ALI20240329BHJP
   H01L 21/336 20060101ALI20240329BHJP
   H01L 29/788 20060101ALI20240329BHJP
   H01L 29/792 20060101ALI20240329BHJP
   H10B 41/27 20230101ALI20240329BHJP
【FI】
H10B43/27
H01L21/302 105A
H01L29/78 371
H10B41/27
【請求項の数】 19
(21)【出願番号】P 2021512744
(86)(22)【出願日】2018-11-22
(65)【公表番号】
(43)【公表日】2022-01-06
(86)【国際出願番号】 CN2018116935
(87)【国際公開番号】W WO2020103081
(87)【国際公開日】2020-05-28
【審査請求日】2021-03-05
【審判番号】
【審判請求日】2023-03-14
(73)【特許権者】
【識別番号】519237948
【氏名又は名称】長江存儲科技有限責任公司
【氏名又は名称原語表記】Yangtze Memory Technologies Co.,Ltd.
【住所又は居所原語表記】No.88 Weilai 3rd Road,East Lake High-tech Development Zone,Wuhan,Hubei,China
(74)【代理人】
【識別番号】100108453
【弁理士】
【氏名又は名称】村山 靖彦
(74)【代理人】
【識別番号】100110364
【弁理士】
【氏名又は名称】実広 信哉
(74)【代理人】
【識別番号】100133400
【弁理士】
【氏名又は名称】阿部 達彦
(72)【発明者】
【氏名】ジュン・リュウ
(72)【発明者】
【氏名】リ・ホン・シャオ
(72)【発明者】
【氏名】ユ・ティン・ジョウ
【合議体】
【審判長】河本 充雄
【審判官】市川 武宜
【審判官】棚田 一也
(56)【参考文献】
【文献】国際公開第2018/144538(WO,A1)
【文献】米国特許第9419012(US,B1)
【文献】特開2007-027791(JP,A)
(58)【調査した分野】(Int.Cl.,DB名)
H01L 21/3065
H01L 21/336
H01L 29/788
H01L 29/792
H10B 41/27
H10B 43/27
(57)【特許請求の範囲】
【請求項1】
三次元(3D)メモリデバイスを形成するための方法であって、
基板にわたって交互に配置される複数の第1の層および複数の第2の層の構造に初期チャネルホールを形成するステップであって、前記第1の層は、多結晶シリコンまたは炭素のうちの少なくとも1つを含む、ステップと、
チャネルホールを形成するために、前記初期チャネルホールの側壁において、前記複数の第1の層の各々1つの側面と前記複数の第2の層の各々1つの側面との間にオフセットを形成するステップと、
前記チャネルホールにおいて、前記第1の層に接触するブロッキング層と、メモリ層とを含む半導体チャネルを形成するステップと、
前記複数の第2の層複数のゲート電極で置き換えるステップと、
前記複数の第1の層を除去するステップと、
前記ブロッキング層の一部を除去し、連結解除されたブロッキング層を形成するステップと、
前記複数のゲート電極を互いから絶縁し、前記半導体チャネルを覆う、封止構造を形成するステップと
を含み、
前記封止構造を形成することは、前記複数のゲート電極を覆い、隣接するゲート電極同士の間に、かつ前記半導体チャネルから離れた位置で空隙を形成する誘電材料を堆積させることを含む方法。
【請求項2】
前記構造に初期チャネルホールを形成することは、
前記初期チャネルホールの場所に対応する開口を露出させるために前記構造にわたってパターン形成フォトレジスト層を形成することと、
前記基板を露出させるために前記開口によって露出させられる前記構造の一部分を除去することと
を含む、請求項1に記載の方法。
【請求項3】
前記オフセットを形成することは、前記初期チャネルホールの前記側壁において前記複数の第1の層の各々1つの前記側面の一部分を除去することを含む、請求項2に記載の方法。
【請求項4】
前記複数の第1の層の各々1つの前記側面の前記一部分を除去することは、前記複数の第1の層を前記複数の第2の層に対して選択的にエッチングするリセスエッチング工程を実施することを含む、請求項3に記載の方法。
【請求項5】
前記初期チャネルホールを形成するステップは、
前記基板にわたってスタック構造を形成するために複数の第1の材料層と複数の第2の材料層とを交互に堆積させることと、
前記複数の第1の層と前記複数の第2の層とをそれぞれ形成するために、前記複数の第1の材料層と前記複数の第2の材料層とを、前記基板の上面に対して垂直な方向に沿って繰り返しエッチングするステップと
を含む、請求項4に記載の方法。
【請求項6】
前記複数の第1の材料層と前記複数の第2の材料層とを交互に堆積させることは、複数の第1の犠牲材料層と複数の第2の犠牲材料層とを交互に堆積させることを含み、前記複数の第1の犠牲材料層は前記複数の第2の犠牲材料層と異なる材料を含む、請求項5に記載の方法。
【請求項7】
前記複数の第1の犠牲材料層を堆積させることは、多結晶シリコンまたは炭素のうちの少なくとも1つを堆積させることを含み、前記複数の第2の犠牲材料層を堆積させることはSiNを堆積させることを含む、請求項6に記載の方法。
【請求項8】
第1の初期ゲート線スリットの場所に対応する他の開口を露出させるために前記構造にわたって他のパターン形成フォトレジスト層を形成することと、
前記基板を露出させるために前記他の開口によって露出させられる前記構造の他の一部分を除去して前記第1の初期ゲート線スリットを形成することと
をさらに含む、請求項7に記載の方法。
【請求項9】
数のゲート形成トンネルを形成するために前記複数の第2の層を除去するステップと、
記複数のゲート形成トンネルの各々1つの側壁にわたって絶縁スペーサ層を形成するステップと、
記複数のゲート形成トンネルを満たして前記複数のゲート電極を形成するために前記絶縁スペーサ層にわたって導体層を形成するステップと
をさらに含む、請求項8に記載の方法。
【請求項10】
前記基板を露出させる第2の初期ゲート線スリットを形成するために、前記複数の第1の層、前記複数のゲート電極、および前記基板にわたって前記絶縁スペーサ層および前記導体層の過剰な材料を除去するステップをさらに含む、請求項9に記載の方法。
【請求項11】
記方法は、前記メモリ層を露出させ、他のゲート線スリットを形成するために、前記ブロッキング層を前記メモリ層まで選択的にエッチングして前記複数の第1の層および前記ブロッキング層の一部分を除去するステップをさらに含む、請求項10に記載の方法。
【請求項12】
前記半導体チャネルは、前記メモリ層にわたって形成されたトンネル層をさらに含み、
前記方法は、前記複数の第1の層を除去し、前記メモリ層を露出させるために前記ブロッキング層の一部分を除去するステップの後、前記メモリ層を連結解除し、前記トンネル層を露出させるために、および、第3のゲート線スリットを形成するために前記メモリ層の一部分を除去するステップをさらに含む、請求項11に記載の方法。
【請求項13】
前記封止構造に初期ソーストレンチを形成するステップをさらに含み、
前記封止構造を形成することは、
露出させられた前記ブロッキング層、露出させられた前記メモリ層、露出させられた前記トンネル層、前記複数のゲート電極を覆い、隣接するゲート電極同士の間に空隙を形成する初期封止構造を形成することと、
前記封止構造を形成するために前記基板を露出させるソーストレンチを形成するために前記初期封止構造をパターン形成することと
を含む、請求項12に記載の方法。
【請求項14】
前記初期封止構造を形成することは急速熱化学的蒸着工程を実施することを含み、前記初期封止構造は酸化ケイ素を含む、請求項13に記載の方法。
【請求項15】
三次元(3D)メモリデバイスを形成するための方法であって、
基板にわたって交互に配置される複数の第1の層および複数の第2の層の構造に初期チャネルホールを形成するステップであって、前記第1の層は、多結晶シリコンまたは炭素のうちの少なくとも1つを含む、ステップと、
チャネルホールを形成するために、前記初期チャネルホールの側壁において、前記複数の第1の層の各々1つの側面と前記複数の第2の層の各々1つの側面との間にオフセットを形成するステップと、
前記チャネルホールにおいて、前記第1の層に接触するブロッキング層と、メモリ層とを含む半導体チャネルを形成するステップと、
前記複数の第2の層を複数のゲート電極で置き換えるステップと、
前記複数の第1の層を除去するステップと、
前記ブロッキング層の一部を除去し、連結解除されたブロッキング層を形成するステップと、
前記複数のゲート電極を互いから絶縁、前記半導体チャネルを覆う封止構造を形成するステップと、
前記封止構造にソース構造を形成するステップであって、前記ソース構造は前記構造の上面から前記基板へと延びる、ステップと
を含み、
前記封止構造を形成することは、前記複数のゲート電極を覆い、隣接するゲート電極同士の間に、かつ前記半導体チャネルから離れた位置で空隙を形成する誘電材料を堆積させることを含む方法。
【請求項16】
前記誘電材料を堆積させることは急速熱化学的蒸着工程を実施することを含み、前記封止構造は酸化ケイ素を含む、請求項15に記載の方法。
【請求項17】
前記オフセットを形成することは、前記第1の層と接触する前記第2の層の間にオープンスペースが存在するように、垂直方向に沿って隣接する第2の層の間の前記第1の層のそれぞれにおいて凹んだ領域を作り出すことを含む、請求項1に記載の方法。
【請求項18】
基板にわたる封止構造によって絶縁される複数のゲート電極の構造であって、前記封止構造は、前記複数のゲート電極を覆い、前記基板の上面に対して垂直な方向に沿って、隣接するゲート電極の間に、かつ半導体チャネルから離れた位置で空隙を備える、構造と、
前記構造の上面から前記基板へと延びる半導体チャネルであって、鉛直部分および2つの水平部分を備えるメモリ層を備え、前記封止構造で覆われている、半導体チャネルと、
前記構造の前記上面から前記基板へと、前記基板の前記上面と平行な方向に沿って隣接するゲート電極同士の間で延びるソース構造と
を備える三次元(3D)メモリデバイス。
【請求項19】
記メモリ層は、それぞれのゲート電極を各々1つが部分的に包囲する連結解除部分を備える、請求項18に記載の3Dメモリデバイス。
【発明の詳細な説明】
【技術分野】
【0001】
本願は、2018年11月22日に出願された「THREE-DIMENSIONAL MEMORY DEVICES AND FABRICATION METHODS THEREOF」と題された国際出願番号PCT/CN2018/116935号の続きであり、これは参照によりその全体が本明細書に組み込まれる。
本開示の実施形態は、三次元(3D)メモリデバイスおよびその製作方法に関する。
【背景技術】
【0002】
平面状のメモリセルは、工程技術、回路設計、プログラムアルゴリズム、および製作工程を改善することでより小さい大きさへと縮小される。しかしながら、メモリセルの形状寸法が下限に近付くにつれて、平面の工程および製作技術は困難になり、コストが掛かるようになる。結果として、平面状のメモリセルについての記憶密度は上限に近付いていく。
【0003】
3Dメモリ構造は、平面状のメモリセルにおける密度の限界に対処することができる。3Dメモリ構造は、メモリ配列と、メモリ配列と往来する信号を制御するための周辺デバイスとを含む。
【発明の概要】
【課題を解決するための手段】
【0004】
3Dメモリデバイスの実施形態、および、3Dメモリデバイスを製作するための製作方法の実施形態が、本明細書において開示されている。
【0005】
一例では、3Dメモリデバイスを形成するための方法が開示されている。方法は以下の作業を含み得る。始めに、初期チャネルホールが構造に形成され得る。構造は、内部にメモリセルを形成するための任意の適切な構造を含み得る。例えば、構造は、複数の層の階段構造および/またはスタック構造を含み得る。実施形態では、構造は、基板にわたって交互に配置される複数の第1の層および複数の第2の層を備え得る。オフセットが、チャネルホールを形成するために、初期チャネルホールの側壁において、複数の第1の層の各々1つの側面と複数の第2の層の各々1つの側面との間に形成され得る。次に、半導体チャネルがチャネルホールに基づいて形成され得る。さらに、複数のゲート電極が複数の第2の層に基づいて形成され得る。
【0006】
他の例では、3Dメモリデバイスを形成するための方法が開示されている。方法は以下の作業を含み得る。始めに、複数の第1の層および複数の第2の層の構造が、基板にわたって交互に配置するように形成され得る。半導体チャネルが基板に形成され得る。半導体チャネルは構造の上面から基板へと延び得る。次に、複数の第2の層は複数のゲート電極で置き換えでき、複数の第1の層は除去され得る。次に、封止構造が複数のゲート電極を互いから絶縁するために形成され得る。さらに、ソース構造が封止構造に形成され得る。ソース構造は構造の上面から基板へと延び得る。
【0007】
なおも他の例では、3Dメモリデバイスが開示されている。3Dメモリデバイスは、基板にわたる封止構造によって絶縁される複数のゲート電極の構造を備え得る。封止構造は、基板の上面に対して垂直な方向に沿って、隣接するゲート電極の間に空隙を備え得る。3Dメモリデバイスは、構造の上面から基板へと延びる半導体チャネルも備え得る。半導体チャネルは、異なる方向に沿って延びる2つの部分を有するメモリ層を備え得る。3Dメモリデバイスは、構造の上面から基板へと、基板の上面と平行な方向に沿って、隣接するゲート電極同士の間で延びるソース構造をさらに備え得る。
【0008】
本明細書に組み込まれており、本明細書の一部を形成する添付の図面は、本開示の実施形態を図示しており、本記載と共に、本開示の原理を説明するように、および、当業者に本開示を実施および使用させることができるようにさらに供する。
【図面の簡単な説明】
【0009】
図1】3Dメモリデバイスの一部分の断面図である。
図2A】本開示の一部の実施形態による例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図2B】本開示の一部の実施形態による例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図2C】本開示の一部の実施形態による例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図2D】本開示の一部の実施形態による例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3A】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3B】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3C】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3D】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3E】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3F】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3G】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図3H】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図4A】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図4B】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図4C】本開示の一部の実施形態による他の例示の製作工程の様々な段階における3Dメモリデバイスの構造を示す図である。
図5A】本開示の一部の実施形態による3Dメモリデバイスを形成するための例示の方法の流れ図である。
図5B】本開示の一部の実施形態による3Dメモリデバイスを形成するための例示の方法の流れ図である。
図5C】本開示の一部の実施形態による3Dメモリデバイスを形成するための例示の方法の流れ図である。
【発明を実施するための形態】
【0010】
本開示の実施形態が添付の図面を参照して説明される。
【0011】
特定の構成および配置が検討されているが、これは例示の目的だけのために行われていることは理解されるべきである。当業者は、他の構成および配置が本開示の精神および範囲から逸脱することなく使用できることを認識するものである。本開示が様々な他の用途においても採用できることは、当業者には明らかとなる。
【0012】
本明細書において、「一実施形態」、「実施形態」、「例の実施形態」、「一部の実施形態」などへの言及は、記載されている実施形態が具体的な特徴、構造、または特性を含み得るが、すべての実施形態が具体的な特徴、構造、または特性を必ずしも含まない可能性があることを意味していることは、留意されるものである。さらに、このような文言は、必ずしも同じ実施形態に言及しているのではない。さらに、具体的な特徴、構造、または特性が実施形態との関連で記載されている場合、明示的に記載されていようがなかろうが、このような特徴、構造、または特性を他の実施形態との関連でもたらすことは当業者の知識の範囲内である。
【0013】
概して、専門用語は、文脈における使用から少なくとも一部で理解され得る。例えば、本明細書で使用されているような「1つまたは複数」という用語は、少なくとも一部で文脈に依存して、単数での意味で任意の特徴、構造、もしくは特性を記載するために使用され得る、または、複数での意味で特徴、構造、もしくは特性の組み合わせを記載するために使用され得る。同様に、「1つ」または「その」などは、少なくとも一部で文脈に依存して、単数での使用を伝えると、または、複数での使用を伝えると理解できる。また、「基づいて」という用語は、因子の排他的なセットを伝えるように必ずしも意図されていないとして理解でき、代わりに、ここでも少なくとも一部で文脈に依存して、必ずしも明示的に記載されていない追加の因子の存在を許容できる。
【0014】
本開示における「~の上に」、「~の上方に」、および「~にわたって」の意味は、「~の上に」が何かの「直接的に上に」を意味するだけでなく、それらの間に中間の特徴または層を伴って何かの「上に」あるという意味も含むように、および、「~の上方に」または「~にわたって」は、何か「の上方に」または「にわたって」の意味を意味するだけでなく、それらの間に中間の特徴または層を伴わずに何か「の上方に」または「にわたって」あるという意味も含むように、幅広い形で解釈されるべきである。
【0015】
さらに、「~の下に」、「~の下方に」、「下方」、「~の上方に」、「上方」などの空間的に相対的な用語は、他の要素または特徴に対する1つの要素または特徴の関係を、図において示されているように説明するために、説明の容易性のために本明細書において用いられ得る。空間的に相対的な用語は、図に描写されている配向に加えて、使用中または動作中に装置の異なる配向を網羅するように意図されている。装置は他に配向されてもよく(90度または他の配向で回転させられてもよい)、本明細書で使用されている空間的に相対的な記載はそれに応じて同様に解釈され得る。
【0016】
本明細書で使用されるとき、「基板」という用語は、後続の材料層が追加される材料を指す。基板自体はパターン形成され得る。基板の上に追加される材料は、パターン形成できる、または、パターン形成されないままとできる。さらに、基板は、シリコン、ゲルマニウム、ガリウムヒ素、リン化インジウムなどの幅広い半導体材料を含み得る。代替で、基板は、ガラス、プラスチック、またはサファイアのウェーハなど、非導電性材料から作ることができる。
【0017】
本明細書で使用されるとき、「層」という用語は、厚さを伴う領域を含む材料部分を指す。層は、下にある構造もしくは上にある構造の全体にわたって延びることができる、または、下にある構造もしくは上にある構造の延在未満の延在を有し得る。さらに、層は、連続的な構造の厚さより小さい厚さを有する均一または不均一な連続構造の領域であり得る。例えば、層は、任意の対の水平な平面の間に、連続的な構造の上面と下面との間に、または、そのような上面および下面に位置させられ得る。層は、横方向に、鉛直に、および/または、先細りとされた表面に沿って延び得る。基板は、層であり得る、1つもしくは複数の層を含み得る、ならびに/または、その上、その上方、および/もしくはその下方に1つもしくは複数の層を有し得る。層は複数の層を含み得る。例えば、相互連結層は、1つまたは複数の導体および接触の層(相互接触線および/またはビアコンタクトが形成される)と、1つまたは複数の誘電層とを含み得る。
【0018】
本明細書で使用されるとき、「名目上の/名目上は」は、製品の設計の局面の間または工程の間に、所望の値より上の値および/または下の値の範囲と一緒に設定される、構成要素または工程作業についての特性またはパラメータの所望の値または目標値を指す。値の範囲は、製造工程における若干の変化または公差によるものであり得る。本明細書で使用されるとき、「約」という用語は、主題の半導体デバイスと関連する具体的な技術ノードに基づいて変化し得る所与の量の値を指示している。具体的な技術ノードに基づいて、「約」という用語は、例えば値の10~30%(例えば、値の±10%、±20%、または±30%)内で変化する所与の量の値を指示できる。
【0019】
本明細書で使用されるとき、「3Dメモリデバイス」という用語は、メモリストリングが基板に対して鉛直方向に延びるように、横に配向された基板においてメモリセルトランジスタの鉛直に配向されるストリング(NANDメモリストリングなどの「メモリストリング」と本明細書では称される)を伴う半導体デバイスを指す。本明細書で使用されるとき、「鉛直の/鉛直に」という用語は、基板の側面に対して名目上は垂直であることを意味する。
【0020】
本明細書で使用されるとき、「階段」、「段」、および「レベル」が置き換え可能に使用され得る。本明細書で使用されるとき、階段構造は、少なくとも2つの水平な表面と少なくとも2つの鉛直な表面とを、各々の水平な表面が、水平な表面の第1の縁から上向きに延びる第1の鉛直な表面に隣接させられ、水平な表面の第2の縁から下向きに延びる第2の鉛直な表面に隣接させられるように含む表面のセットを指す。「階段」は、隣接された表面のセットの高さにおける鉛直でのオフセットを指す。
【0021】
本明細書で使用されるとき、x軸およびy軸(x-z平面に対して垂直である)が水平に延び、水平面を形成する。水平面は基板の上面と実質的に平行である。本明細書で使用されるとき、z軸は鉛直に延び、つまり、水平面に対して垂直の方向に沿って延びる。「x軸」および「y軸」の用語は「水平方向」と置き換え可能に使用でき、「x-y平面」の用語は「水平面」と置き換え可能に使用でき、「z軸」の用語は「鉛直方向」と置き換え可能に使用できる。
【0022】
一部の3Dメモリデバイスでは、半導体チャネルがチャネル形成構造で形成でき、チャネル形成構造は、ブロッキング層と、メモリ層と、トンネル層と、半導体チャネル層と、誘電コアとを備える。しばしば、ブロッキング層、メモリ層、トンネル層、および半導体チャネル層はゲート電極と誘電コアとの間に連続的に配置される。ブロッキング層、メモリ層、およびトンネル層の各々1つは単層構造または多層構造を含み得る。ブロッキング層は電荷の漏れを低減することができる。メモリ層は電荷を捕らえることができ、その電荷は半導体チャネル層へとトンネルすることができ、半導体層へと輸送され得る。
【0023】
しかしながら、より多くのゲート電極がより大きなメモリ容量のために基板にわたって(例えば、半導体チャネルに沿って)積み重ねられるため、電荷損失がより顕著になる。例えば、メモリ層は、ゲート電極の数が増加するにつれて電荷損失をより受けやすくなる。メモリ層に捕らえられた電荷は、メモリ層において(例えば、その延在方向に沿って)より拡がりやすくなることができる。結果として、メモリ層におけるデータ保持が損なわる可能性があり、メモリセルにおける動作(例えば、読取り、書出し、および/または保持)が正確性を低下させる可能性がある。
【0024】
3Dメモリデバイス100が、限定されることはないが、1つまたは複数のBEOL相互連結層における他の局所的な接触および相互連結を含め、図1に示されていない追加の構成要素および構造を含み得ることは、理解されるものである。
【0025】
図1は、3Dメモリデバイス100の一部分の断面図を示している。図1に示されているように、ゲート電極101が半導体チャネルとの接触を形成している。簡単に見せるために、半導体チャネルの一部分が、要素106として示されて描写されている。半導体チャネル106が、ブロッキング層102、メモリ層103、トンネル層104、およびpチャネル105を、pチャネル105(例えば、または半導体チャネル106)が延びる方向(例えば、z方向または鉛直方向)に対して実質的に垂直な方向(例えば、x方向または水平方向)に沿って連続的に積み重ねられた状態で有する。pチャネル105は半導体チャネル層と誘電コアとを備えることができ、半導体チャネル層はトンネル層104と誘電コアとの間に位置決めされる。
【0026】
ゲート電極101は、タングステン(W)などの任意の適切な導電性材料を備え得る。ブロッキング層102、メモリ層103、およびトンネル層104の各々1つは単層構造または多層構造を含み得る。例えば、ブロッキング層102は、電荷の漏れを低下させるために水平方向に沿って連続的に積み重ねられたhigh-k酸化アルミニウム(AlOまたはAl)層、酸化ケイ素(SiO)層、および/または酸窒化ケイ素(SiON)層を含み得る。メモリ層103は、電荷を捕らえるために水平方向に沿って連続的に積み重ねられたSiN層、SiON層、SiN層、SiON層、および/またはSiN層を含み得る。トンネル層104は、メモリ層103からpチャネル105へと電荷がトンネルするのを容易にするために水平方向に沿って連続的に積み重ねられたSiO層、1つもしくは複数のSiON層(例えば、SiON_1、SiON_2、およびSiON_3)、および/またはSiO層を含み得る。半導体チャネル層は、電荷輸送を容易にするために多結晶シリコンなどの半導体層を含み得る。誘電コアは、各々のメモリセルを互いから絶縁するために酸化ケイ素などの誘電材料を含み得る。
【0027】
図1に示されているように、ゲート電極101の数が鉛直方向に沿って増加するにつれて、メモリ層103に捕らえられる電荷は、矢印によって指示されているように、鉛直方向に沿ってより拡がりやすくなる。特に、電荷はSiN層においてより拡がりやすくなり、3Dメモリデバイスのデータ保持を損なってしまう。損なわれたデータ保持は、3Dメモリデバイスの動作(例えば、読取り、書出し、および/または保持)の正確性を低下させ得る。
【0028】
本開示による様々な実施形態が3Dメモリデバイスの構造および製作方法を提供しており、これは、電荷損失と関連する上記の問題を解決する。例えば、メモリ層の構造を変えることで、メモリ層でその延在方向に沿って拡がる電荷は抑えられ、メモリ層における電荷閉じ込めを向上させることができる。したがって、3Dメモリデバイスのデータ保持が向上させられ得る。一部の実施形態では、メモリ層は、その延在方向と並べられる部分と、その延在方向と並べられない部分(例えば、水平および鉛直に延在する部分)とを有し得る。例えば、メモリ層は千鳥状の構造を有し得る。この構成は、メモリセルにおいて捕らえられる電荷がメモリセルでその延在方向に沿って拡がるのを抑制し、3Dメモリデバイスにおけるデータ保持を増加させることができる。
【0029】
一部の実施形態では、ブロッキング層の一部分は縮小または除去される。一部の実施形態では、ブロッキング層の一部分は、メモリ層の一部分を露出させるために移動させられ、隣接するゲート電極は、空隙による絶縁スペーサによって絶縁される。一部の実施形態では、メモリ層の一部分はメモリ層の他の部分を連結解除するために除去される。メモリセルの各々の連結解除部分はゲート電極とトンネル層との間に位置決めされ、各々のメモリセルの適切な機能を容易にすることができる。メモリセルの連結解除部分は、空隙による絶縁スペーサによって3Dメモリデバイスの他の部分から絶縁できる。したがって、開示されている方法を用いて形成された3Dメモリデバイスは、向上したデータ保持と、延いてはより良好な動作の正確性とを得ることができる。
【0030】
図2A図2Dは、本開示の実施形態による例示の製作工程の様々な段階における例示の3Dメモリデバイスの構造200~230を示している。図5Aは、図2A図2Dに示された3Dメモリデバイスを形成するための例示の製作工程500を示している。図3A図3Hは、本開示の実施形態による例示の製作工程の様々な段階における例示の3Dメモリデバイスの構造300~370を示している。図4A図4Cは、本開示の実施形態による例示の製作工程の様々な段階における例示の3Dメモリデバイスの構造400~420を示している。図5Bおよび図5Cは、図3A図3Hおよび図4A図4Cに示された3Dメモリデバイスを形成するための例示の製作工程を各々示している。
【0031】
図5Aを参照すると、製作工程の開始において、初期チャネルホールが、複数の交互に配置された絶縁層および犠牲層の階段構造に形成され得る(作業5001)。図2Aは、対応する構造200の断面図を示している。
【0032】
図2Aに示されているように、初期チャネルホール203が、基板201にわたって形成されている階段構造202に形成され得る。基板201は、シリコン(例えば、単結晶シリコン)、シリコンゲルマニウム(SiGe)、ガリウムヒ素(GaAs)、ゲルマニウム(Ge)、シリコンオンインシュレータ(SOI)、または任意の他の適切な材料を含み得る。一部の実施形態では、基板201はシリコンを含む。
【0033】
階段構造202は、積み重ねられたメモリ構造の形成に製作の基礎を提供できる。メモリストリング(例えば、NANDメモリストリング)が階段構造202に続いて形成され得る。一部の実施形態では、階段構造202は、基板201にわたって鉛直に積み重ねられた絶縁層2021/犠牲層2022の複数の対を備える。各々の絶縁層2021/犠牲層2022の対は絶縁層2021と犠牲層2022とを備え得る。つまり、階段構造202は、鉛直方向に沿って積み重ねられた交互配置の絶縁層2021および犠牲層2022を備え得る。階段構造202における絶縁層2021/犠牲層2022の対の数(例えば、32、64、96、または128)は、3Dメモリデバイスにおけるメモリセルの数を設定できる。
【0034】
絶縁層2021の各々は同じ厚さまたは異なる厚さを有し得る。同様に、犠牲層2022の各々は同じ厚さまたは異なる厚さを有し得る。犠牲層2022は、絶縁層2021の材料と異なる任意の適切な材料を含み得る。一部の実施形態では、絶縁層2021はSiOなどの適切な誘電材料を含み、犠牲層2022はSiNを含む。一部の実施形態では、各々の段またはステップは絶縁層2021および対応する犠牲層2022を備える。
【0035】
階段構造202は、例えば、絶縁材料層/犠牲材料層の複数の対の誘電体スタックを鉛直に繰り返しエッチングすることで形成できる。絶縁材料層/犠牲材料層の対のエッチングは、エッチングされる絶縁材料層/犠牲材料層の対の部分を露出させるために、誘電体スタックにわたってエッチングマスク(例えば、フォトレジスト層)を繰り返しエッチング/トリミングすることと、適切なエッチング工程を用いて露出させられた部分をエッチング/除去することとを含み得る。エッチングマスクおよび絶縁材料層/犠牲材料層の対のエッチングは、湿式エッチングおよび/または乾式エッチングなどの任意の適切なエッチング工程を用いて実施できる。一部の実施形態では、エッチングは、例えば誘導結合プラズマエッチング(ICP)および/または反応性イオンエッチング(RIE)といった乾式エッチングを含む。
【0036】
初期チャネルホール203は階段構造202に形成され得る。一部の実施形態では、初期チャネルホール203は階段構造202の上面から基板201へと延びる。一部の実施形態では、初期チャネルホール203の下部が基板201を露出している。初期チャネルホール203は任意の適切な製作工程によって形成され得る。例えば、パターン形成フォトレジスト層が階段構造202にわたって形成され得る。パターン形成フォトレジスト層は、初期チャネルホール203を形成するために階段構造202の一部分を露出させることができる。適切なエッチング工程が、基板201が露出させられるまで階段構造202の一部分を除去するために実施され得る。エッチング工程は、ICPなど、乾式エッチングおよび/または湿式エッチングを含み得る。
【0037】
図5Aを参照すると、初期チャネルホールの形成の後、初期チャネルホールの側壁における各々の絶縁層の一部分が、絶縁層と隣接の犠牲層との間にオフセットを形成してチャネルホールを形成するために除去され得る(作業5002)。図2Bは、対応する構造210の断面図を示している。
【0038】
図2Bに示されているように、初期チャネルホール203の側壁における各々の絶縁層2021の一部分は、チャネルホール213を形成するために除去され得る。説明の容易性のために、初期チャネルホール203またはチャネルホール213を向く絶縁層2021(または犠牲層2022)の表面は、絶縁層2021(または犠牲層2022)の側面と称されている。実施形態では、凹んだ領域が絶縁層2021の側面に形成され得る。リセスエッチングの後の絶縁層2021は凹んだ絶縁層2121と称され得る。絶縁層2021の除去された部分(例えば、水平方向に沿って)の寸法または厚さは、犠牲層2022の側面と凹んだ絶縁層2121の側面との間にオフセットを形成させる任意の適切な値であり得る。一部の実施形態では、犠牲層2022の側面は鉛直方向(またはチャネルホール213の側壁)に沿って突起を形成する。任意の適切で選択的なエッチング工程(例えば、リセスエッチング)が、凹んだ絶縁層2121を形成するために実施され得る。一部の実施形態では、選択的なエッチング工程は、犠牲層2022にわたる凹んだ絶縁層2121に大きなエッチングの選択性を有し、犠牲層2022にほとんどまたはまったく損傷をもたらさない。湿式エッチングおよび/または乾式エッチングが選択的なエッチング工程として実施され得る。一部の実施形態では、RIEが選択的なエッチング工程として実施される。
【0039】
一部の実施形態では、各々の絶縁層2021の側面の一部分を移動させる代わりに、各々の犠牲層2022の側面の一部分が、凹んだ犠牲層と隣接の絶縁層2021との間にオフセットを形成するために除去される。したがって、絶縁層2021の側面の突起は鉛直方向に沿って延び得る。
【0040】
図5Aを参照すると、チャネルホールの形成の後、チャネルホールを満たすためにチャネル形成構造が形成され、半導体チャネルが形成される(作業5003)。図2Cは、対応する構造220の断面図を示している。
【0041】
図2Cに示されているように、半導体チャネル22が、チャネルホール213をチャネル形成構造で満たすことで形成できる。チャネル形成構造は、チャネルホール213の側壁表面からチャネルホール213の中心へと連続的に位置決めされるブロッキング層221、メモリ層222、トンネル層223、半導体層224、および誘電コア225を備え得る。
【0042】
ブロッキング層221は、続いて形成されるゲート電極へと電荷が逃れるのを低減または防止することができる。ブロッキング層221は単層構造または多層構造を備え得る。例えば、ブロッキング層221は第1のブロッキング層と第2のブロッキング層とを備え得る。第1のブロッキング層は、任意の適切な共形の堆積方法によってチャネルホール213の表面にわたって形成できる。第1のブロッキング層は誘電材料(例えば、誘電金属酸化物)を含み得る。例えば、第1のブロッキング層は、十分に大きな誘電率(例えば、7.9より大きい)を有する誘電金属酸化物を含み得る。第1のブロッキング層の例は、AlO、酸化ハフニウム(HfO)、酸化ランタン(LaO)、酸化イットリウム(Y)、酸化タンタル(Ta)、それらのケイ酸塩、それらの窒素ドーピング化合物、および/またはそれらの合金を含む。第1のブロッキング層は、化学的蒸着(CVD)、原子層堆積(ALD)、パルスレーザー堆積(PLD)、および/または液体ミスト化学堆積などの適切な堆積方法によって形成され得る。一部の実施形態では、第1のブロッキング層はAlOを含む。
【0043】
第2のブロッキング層は、第1のブロッキング層にわたって形成でき、第1のブロッキング層と異なる誘電材料を含み得る。例えば、第2のブロッキング層は、酸化ケイ素、酸窒化ケイ素、および/または窒化ケイ素を含み得る。一部の実施形態では、第2のブロッキング層は酸化ケイ素を含み、低圧CVD(LPCVD)および/またはALDなどの任意の適切な共形の堆積方法によって形成できる。
【0044】
メモリ層222は、電荷トラップ材料を含むことができ、ブロッキング層221にわたって形成され得る。メモリ層222は単層構造または多層構造を備え得る。例えば、メモリ層222は、タングステン、モリブデン、タンタル、チタン、白金、ルテニウム、それらの合金、それらのナノ粒子、それらのケイ化物、および/または、多結晶もしくは非晶質の半導体材料(例えば、多結晶シリコンおよび非晶質シリコン)などの導電性材料および/または半導体を含み得る。メモリ層222は、SiNおよび/またはSiONなどの1つまたは複数の絶縁材料も含み得る。一部の実施形態では、メモリ層222は、SiON層によって挟まれるSiN層を含み、SiON層はさらにSiN層によって挟まれる。メモリ層222は、CVD、ALD、および物理的蒸着(PVD)などの任意の適切な堆積方法によって形成され得る。
【0045】
トンネル層223は、適切なバイアスの下で貫かれてトンネル効果が起こり得る誘電材料を備え得る。トンネル層223は、メモリ層222にわたって形成でき、単層構造または多層構造を含むことができ、SiO、SiN、SiON、誘電金属酸化物、誘電金属酸窒化物、誘電金属ケイ酸塩、および/またはそれらの合金を含み得る。トンネル層223は、CVD、ALD、および/またはPVDなどの適切な堆積方法によって形成され得る。一部の実施形態では、トンネル層223は複数のSiON層とSiO層とを備え、SiON層はメモリ層222とSiO層との間に位置決めされる。
【0046】
半導体層224は、電荷の輸送を容易にすることができ、トンネル層223にわたって形成できる。半導体層224は、一元素の半導体材料、III-V族化合物半導体材料、II-VI族化合物半導体材料、および/または有機半導体材料など、1つまたは複数の半導体材料を含み得る。半導体層224は、LPCVD、ALD、および/または金属-有機化学的蒸着(MOCVD)などの任意の適切な堆積方法によって形成され得る。一部の実施形態では、半導体層224はポリシリコン層を含む。
【0047】
誘電コア225は、適切な誘電材料を含むことができ、半導体層224によって包囲された空間を満たすことができる。一部の実施形態では、誘電コア225は、SiO(例えば、十分に高い純度のSiO)を含み、CVD、LPCVD、ALD、および/またはPVDなどの任意の適切な堆積方法によって形成され得る。
【0048】
凹んだ絶縁層2121の側面と犠牲層2022の側面との間のオフセットのため、メモリ層222は、鉛直方向以外の方向に沿って並べられる部分を含み得る。一部の実施形態では、メモリ層222は、互いと連結される鉛直部分2221(例えば、鉛直方向に沿って実質的に並べられる)のうちの1つまたは複数と、1つまたは複数の非鉛直部分2222(例えば、水平方向に沿って実質的に並べられる水平部分)とを備える。後で形成された3Dメモリデバイス(つまり、メモリ層222と形成された)が動作中であるとき、バイアスをゲート電極に加えることができ、電荷がメモリ層222に捕らえられ得る。メモリ層222の非鉛直部分2222のため、鉛直方向に沿ってのメモリ層222における電荷の拡がりは低減または排除され得る。メモリ層222における電荷の低減は向上させられ得る。
【0049】
図5Aを参照すると、半導体チャネルが形成された後、ゲート電極が形成され得る(作業5004)。図2Dは、対応する構造230の断面図を示している。
【0050】
図2Dに示されているように、犠牲層2022は除去でき、ゲート電極232が形成できる。一部の実施形態では、ゲート電極232の各々は、絶縁スペーサ層2323(例えば、ゲート誘電層)によって包囲された導体層2322を備え得る。導体層2322は、限定されることはないが、タングステン(W)、コバルト(Co)、銅(Cu)、アルミニウム(Al)、ポリシリコン(多結晶シリコン)、ドープシリコン、ケイ化物、またはそれらの組み合わせを含む導電性材料を含み得る。絶縁スペーサ層2323は、限定されることはないが、SiO、SiN、および/またはSiONを含む誘電材料を含み得る。一部の実施形態では、導体層2322はWなどの金属を含み、絶縁スペーサ層2323はSiOを含む。導体層2322およびSiOの各々は、CVDおよび/またはALDなどの任意の適切な堆積方法によって形成され得る。
【0051】
一部の実施形態では、犠牲層2022は、ゲート形成トンネルを形成するために、湿式エッチングおよび/または乾式エッチングなどの任意の適切なエッチング工程によって除去される。エッチング工程は、十分に大きなエッチングの選択性を有することができ、凹んだ絶縁層2121にほとんどまたはまったく損傷を引き起こさない。一部の実施形態では、RIE工程が犠牲層2022を除去するために実施される。さらに、絶縁スペーサ層2323は、例えば、CVD、ALD、および/またはインサイチュでの蒸気発生(ISSG: In-Situ Steam Generation)によって、ゲート形成トンネルの側壁にわたって堆積させられ得る。一部の実施形態では、絶縁スペーサ層2323の形成は、ゲート形成トンネルの側壁にわたるhigh-k誘電材料(AlO、HfO、および/またはTaなど)の堆積と、high-k誘電材料にわたる接着層(窒化チタン(TiN)など)の堆積とを含む。次に、導電性材料が、ゲート形成トンネルを満たし、導体層2322を形成するために、絶縁スペーサ層2323にわたって堆積させられ得る。これによりゲート電極232が形成できる。
【0052】
一部の実施形態では、階段構造202は、基板201に交互に配置される複数の絶縁層2021および導電層を備え得る。例えば、導電性材料は犠牲層2022と同じ位置を有し得る。導電性材料は例えばドープ多結晶シリコンを含み得る。同様の製作工程が、階段構造202において複数の半導体チャネル22を形成するために、図2A図2Cに示されているように、実施され得る。導電層はゲート電極として機能できる。
【0053】
一部の実施形態では、要素2021および2022は絶縁材料層および犠牲材料層を表し、階段構造202は誘電体スタックを表す。この場合、誘電体スタック202は、階段を形成するために繰り返しエッチング/パターン形成でき、各々の段は絶縁層/犠牲層の対を備え得る。絶縁層および犠牲層の各々は、誘電体スタック202のエッチング/パターン形成によって形成され得る。絶縁層/犠牲層の対の形成は、ゲート電極の形成の前に、任意の適切な段において形成され得る。階段を形成するための特定の順番、半導体チャネル、およびゲート電極は、本開示の実施形態によって限定されるべきではない。
【0054】
図5Bは、一部の実施形態による他の3Dメモリデバイスを形成するための例示の製作工程510を示している。図3A図3Hは、製作工程の異なる段階での3Dメモリデバイスの断面図を示している。
【0055】
図5Bを参照すると、製作工程の開始において、初期チャネルホールが階段構造に形成され得る(作業5101)。図3Aは、対応する構造300の断面図を示している。
【0056】
図3Aに示されているように、初期チャネルホール303が、基板301にわたって形成されている階段構造302に形成され得る。基板301は基板201と同様または同じであり得る。一部の実施形態では、基板201はシリコンを含む。
【0057】
階段構造302は、積み重ねられたメモリ構造の形成に製作の基礎を提供できる。メモリストリング(例えば、NANDメモリストリング)が階段構造302に続いて形成され得る。一部の実施形態では、階段構造302は、基板301にわたって鉛直に積み重ねられた第1の犠牲層3021/第2の犠牲層3022の複数の対を備える。第1の犠牲層3021/第2の犠牲層3022の各々の対は第1の犠牲層3021と第2の犠牲層3022とを備え得る。つまり、階段構造302は、鉛直方向に沿って積み重ねられた交互配置の第1の犠牲層3021および第2の犠牲層3022を備え得る。階段構造302における第1の犠牲層3021/第2の犠牲層3022の対の数(例えば、32、64、96、または128)は、3Dメモリデバイスにおけるメモリセルの数を設定できる。
【0058】
第1の犠牲層3021の各々は同じ厚さまたは異なる厚さを有し得る。同様に、第2の犠牲層3022の各々は同じ厚さまたは異なる厚さを有し得る。第2の犠牲層3022は、第1の犠牲層3021の材料と異なる任意の適切な材料を含み得る。一部の実施形態では、第1の犠牲層3021は多結晶シリコンおよび炭素の1つまたは複数を含む。一部の実施形態では、第2の犠牲層3022はSiNを含む。一部の実施形態では、各々の段またはステップは第1の犠牲層3021および対応する第2の犠牲層3022を備える。
【0059】
第1の犠牲層3021/第2の犠牲層3022の形成は、スタックにわたってエッチングマスク(例えば、フォトレジスト層)を使用して、第1の犠牲材料層/第2の犠牲材料層の対のスタックの繰り返しのエッチングによって形成できる。エッチングマスクは、露出させられた部分が適切なエッチング工程を用いてエッチングされ得るように、エッチングされる第1の犠牲材料層3021/第2の犠牲層3022の対の一部分を露出させることができる。エッチングマスクおよびスタックのエッチングは、湿式エッチングおよび/または乾式エッチングなどの任意の適切なエッチング工程を用いて実施できる。一部の実施形態では、エッチングは、例えば誘導結合プラズマエッチング(ICP)および/または反応性イオンエッチング(RIE)といった乾式エッチングを含む。
【0060】
初期チャネルホール303は階段構造302に形成され得る。一部の実施形態では、初期チャネルホール303は階段構造302の上面から基板301へと延びる。一部の実施形態では、初期チャネルホール303の下部が基板301を露出している。初期チャネルホール303は任意の適切な製作工程によって形成され得る。例えば、パターン形成フォトレジスト層が階段構造302にわたって形成され得る。パターン形成フォトレジスト層は、初期チャネルホール303を形成するために階段構造302の一部分を露出させることができる。適切なエッチング工程が、基板301が露出されるまで階段構造302の一部分を除去するために実施され得る。エッチング工程は、ICPなど、乾式エッチングおよび/または湿式エッチングを含み得る。
【0061】
図5Bを参照すると、初期チャネルホールの形成の後、初期チャネルホールの側壁における各々の第1の犠牲層の一部分が、第1の犠牲層と隣接の第2の犠牲層との間にオフセットを形成してチャネルホールを形成するために除去され得る(作業5102)。図3Bは、対応する構造310の断面図を示している。
【0062】
図3Bに示されているように、初期チャネルホール303の側壁における各々の第1の犠牲層3021の一部分は、チャネルホール313を形成するために除去され得る。説明の容易性のために、初期チャネルホール303またはチャネルホール313を向く第1の犠牲層3021(または第2の犠牲層3022)の表面は、第1の犠牲層3021(または第2の犠牲層3022)の側面と称されている。実施形態では、凹んだ領域が第1の犠牲層3021の側面に形成され得る。リセスエッチングの後の第1の犠牲層3021は凹んだ第1の犠牲層3121と称され得る。第1の犠牲層3021の除去された部分(例えば、水平方向に沿って)の寸法または厚さは、第2の犠牲層3022の側面と凹んだ第1の犠牲層3121の側面との間にオフセットを形成させる任意の適切な値であり得る。一部の実施形態では、第2の犠牲層3022の側面は鉛直方向(またはチャネルホール313の側壁)に沿って突起を形成する。任意の適切で選択的なエッチング工程(例えば、リセスエッチング)が、凹んだ第1の犠牲層3121を形成するために実施され得る。一部の実施形態では、選択的なエッチング工程は、第2の犠牲層3022にわたる凹んだ第1の犠牲層3121に大きなエッチングの選択性を有し、第2の犠牲層3022にほとんどまたはまったく損傷をもたらさない。湿式エッチングおよび/または乾式エッチングが選択的なエッチング工程として実施され得る。一部の実施形態では、RIEが選択的なエッチング工程として実施される。
【0063】
一部の実施形態では、各々の第1の犠牲層3021の側面の一部分を移動させる代わりに、各々の第2の犠牲層3022の側面の一部分が、凹んだ第2の犠牲層と隣接の第1の犠牲層3021との間にオフセットを形成するために除去される。したがって、第1の犠牲層3021の側面の突起は鉛直方向に沿って延び得る。
【0064】
図5Bを参照すると、チャネルホールの形成の後、チャネルホールを満たすためにチャネル形成構造が形成され、半導体チャネルが形成される(作業5103)。図3Cは、対応する構造320の断面図を示している。
【0065】
図3Cに示されているように、チャネル形成構造が、半導体チャネル32を形成するためにチャネルホール313に形成され得る。図2Cに示されている半導体チャネル22と同様に、チャネル形成構造は、ブロッキング層321と、メモリ層322と、トンネル層323と、半導体層324と、誘電コア325とを備える。一部の実施形態では、ブロッキング層321、メモリ層322、トンネル層323、半導体層324、および誘電コア325は、ブロッキング層221、メモリ層222、トンネル層223、半導体層224、および誘電コア225とそれぞれ同様または同じであり得る。チャネル形成構造の構造および製作方法の詳細は図2Cの記載を参照できる。
【0066】
図5Bを参照すると、半導体チャネルの形成の後、第1の初期ゲート線スリットが階段構造に形成され得る(作業5104)。図3Dは、対応する構造330の断面図を示している。
【0067】
図3Dに示されているように、第1の初期ゲート線スリット336が階段構造302に形成され得る。一部の実施形態では、第1の初期ゲート線スリット336は、x-z平面(例えば、y軸)に対して垂直な方向に沿って延び、半導体チャネル32をy軸に沿ってブロックへと分割する。第1の初期ゲート線スリット336が階段構造302の上面から基板301へと延び得る。一部の実施形態では、第1の初期ゲート線スリット336は基板301を露出させる。第1の初期ゲート線スリット336は任意の適切な方法によって形成できる。例えば、第1の初期ゲート線スリット336は、エッチングマスク(例えば、パターン形成フォトレジスト層)を使用して階段構造302のエッチングによって形成できる。エッチングマスクは、第1の初期ゲート線スリット336の場所に対応する階段構造302の一部分を露出させることができる。適切なエッチング工程(例えば、乾式エッチングおよび/または湿式エッチング)が、基板301が露出されるまで階段構造302の露出された一部分を除去するために実施され得る。一部の実施形態では、ICPエッチングが第1の初期ゲート線スリット336を形成するために実施される。
【0068】
図5Bを参照すると、第1の初期ゲート線スリットの形成の後、ゲート電極および第2の初期ゲート線スリットが形成され得る(作業5105)。図3Eは、対応する構造340の断面図を示している。
【0069】
図3Eに示されているように、第2の犠牲層3022は除去でき、ゲート電極342が形成できる。ゲート電極342は、絶縁スペーサ層3423によって包囲された導体層3422を備え得る。第2の犠牲層3022は、任意の適切なエッチング工程(例えば、湿式エッチング/乾式エッチング)によって除去され得る。一部の実施形態では、第2の犠牲層3022は、ゲート形成トンネルを形成するために湿式エッチング工程によって除去される。次に、絶縁スペーサ層3423がゲート形成トンネルの側壁に堆積させられ得る。一部の実施形態では、絶縁スペーサ層3423の形成は、ゲート形成トンネルの側壁にわたるhigh-k誘電材料(AlO、HfO、および/またはTaなど)の堆積と、high-k誘電材料にわたる接着層(窒化チタン(TiN)など)の堆積とを含む。次に、導電性材料が、ゲート形成トンネルを満たし、導体層3422を形成するために、絶縁スペーサ層3423にわたって堆積させられ得る。導体層3422は導体層2322と同様または同じであり得る。導体層3422の構造および形成は図2Dの導体層2322の記載を参照できる。これによりゲート電極342が形成できる。
【0070】
リセスエッチングが、第1の初期ゲート線スリット336において絶縁スペーサ層3423および導体層3422を形成する過剰な材料を除去するために実施できる。例えば、絶縁スペーサ層3423の過剰な材料および導電性材料は、第1の初期ゲート線スリット336の底において凹んだ第1の犠牲層3121および基板301から除去できる。基板301を露出させる第2の初期ゲート線スリット346が形成され得る。一部の実施形態では、絶縁スペーサ層3423の一部分は、第2の初期ゲート線スリット346の側壁に導体層3422を露出させるために除去され得る。リセスエッチングは、任意の適切なエッチング工程(例えば、湿式エッチング/乾式エッチング)を含み得る。一部の実施形態では、リセスエッチングは湿式エッチング工程を含む。
【0071】
図5Bを参照すると、ゲート電極および第2の初期ゲート線スリットの形成の後、第1の犠牲層およびブロッキング層の一部分がメモリ層を露出させるために除去され、ゲート線スリットが形成され得る(作業5106)。図3Fは、対応する構造350の断面図を示している。
【0072】
図3Fに示されているように、凹んだ第1の犠牲層3121およびブロッキング層321の一部分はメモリ層322および基板301を露出させるために除去され、ゲート線スリット356が形成され得る。一部の実施形態では、ブロッキング層321の一部分がメモリ層322の一部分を露出させるために除去され得る。ブロッキング層321の残っている部分は、図3Fにおいて、連結解除されたブロッキング層351として描写されている。そのため、ゲート線スリット356は、ゲート電極342、メモリ層322の鉛直部分、および基板301を露出させることができる。
【0073】
1つまたは複数のエッチング工程が、凹んだ第1の犠牲層3121およびブロッキング層321の一部分を除去するために実施され得る。エッチング工程は、メモリ層322にわたる凹んだ第1の犠牲層3121および/またはブロッキング層321の十分に大きなエッチングの選択性を有することができる。例えば、メモリ層322は、半導体チャネル32の側壁がゲート線スリット356の形成にほとんどまたはまったく損傷のないように、エッチング停止層として機能できる。一部の実施形態では、連結解除されたブロッキング層351は、ゲート電極342を包囲し、ゲート電極342をメモリ層322から絶縁するのに十分な厚さを有する。1つまたは複数のエッチング工程は、乾式エッチングおよび/または湿式エッチングなどの任意の適切なエッチング工程を含み得る。
【0074】
図5Bを参照すると、ゲート線スリットの形成の後、封止工程が、ゲート電極同士を互いから絶縁する初期封止構造を形成するために実施され得る(作業5107)。図3Gは、対応する構造360の断面図を示している。
【0075】
図3Gに示されているように、ゲート電極同士が互いから絶縁されるように、初期封止構造364が各々のゲート電極を包囲するために形成され得る。各々のゲート電極を包囲する初期封止構造364の一部分は、包囲されたゲート電極342(例えば、水平方向および鉛直方向に沿って)が他の構造(例えば、他のゲート電極342)から絶縁されるのを確保するのに十分な厚さであり得る。一部の実施形態では、初期封止構造364は、隣接するゲート電極342同士を互いからさらに絶縁するために、隣接するゲート電極342同士の間に形成された空隙363を含む。一部の実施形態では、空隙363は、初期封止構造364において、隣接するゲート電極342同士の間に埋め込まれ得る。一部の実施形態では、初期封止構造364は、露出された連結解除されたブロッキング層351、メモリ層322、および半導体チャネル32の上面も覆う。
【0076】
初期ソーストレンチ366が、初期封止構造の形成の後に形成された(例えば、ゲート線スリット356における)空間によって形成され得る。一部の実施形態では、初期ソーストレンチ366は、後で形成されるソース構造がゲート電極342から絶縁されるように初期封止構造364の十分な部分によって(例えば、水平方向に沿って)包囲される。一部の実施形態では、初期ソーストレンチ366は、x-z平面(例えば、y軸)に対して垂直な方向に沿って延びる。
【0077】
初期封止構造364および初期ソーストレンチ366は次の工程によって形成され得る。封止工程が、ゲート電極342同士が互いから絶縁され得るように十分な厚さで各々のゲート電極を包囲する/覆う初期封止構造364を形成するために実施され得る。空気がゲート電極342同士の間で初期封止構造によって捕らえられ得る。初期封止構造は、露出された連結解除されたブロッキング層351、メモリ層322、および半導体チャネル32の上面も覆うことができる。したがって、初期ソーストレンチ366は、初期封止構造364の形成の後に形成された(例えば、ゲート線スリット356における)空間によって形成され得る。
【0078】
初期封止構造364は、ゲート電極342にわたって絶縁材料を形成し、隣接するゲート電極342同士の間に空隙363を形成する任意の適切な堆積方法によって形成され得る。絶縁材料は、隣接するゲート電極342同士の間に、および、ゲート電極342と後で形成されたソース構造との間に、電気的な絶縁を提供する任意の適切な材料を含み得る。一部の実施形態では、初期封止構造364は急速熱CVDによって形成され、初期封止構造は酸化ケイ素を含む。様々な用途において、急速熱CVDは「急速封止」工程と称することもできる。一部の実施形態では、空隙363は、隣接するゲート電極342同士の間に形成されない。つまり、隣接するゲート電極342同士の間の空間も絶縁材料で満たされ得る。任意選択で、平坦化/リセスエッチング工程が実施され得る、または、半導体チャネル32および/またはゲート電極342にわたる初期封止構造の過剰な一部分を除去できる。
【0079】
図5Bを参照すると、初期封止構造および初期ソーストレンチが形成された後、封止構造が初期封止構造に基づいて形成され、ソース構造が封止構造に形成される(作業5108)。図3Hは、対応する構造370の断面図を示している。
【0080】
図3Hに示されているように、ソース構造376が封止構造374に(例えば、隣接するゲート電極342同士の間に)形成でき、x-z平面に対して垂直な方向(例えば、y軸)に沿って延び得る。ソース構造376は導体部分376-1とドープ半導体部分376-2とを備え得る。ドープ半導体部分376-2は基板301に形成でき、導体部分376-1と接触する。ソース構造376は、初期封止構造364によって、隣り合うゲート電極342から絶縁され得る。導体部分376-1は、ソース電極として使用できる任意の適切な導電性材料を含むことができ、ドープ半導体部分376-2は、基板301に形成された適切なドープ(例えば、P型またはN型)半導体領域を含むことができ、基板301の極性と反対である。一部の実施形態では、導体部分376-1は、ドープ多結晶シリコン、銅、アルミニウム、コバルト、ドープシリコン、ケイ化物、およびタングステンのうちの1つまたは複数を含む。一部の実施形態では、ドープ半導体部分376-2はドープシリコンを含む。
【0081】
ソース構造376は、ソーストレンチを初期封止構造364に満たすことで形成され得る。ソーストレンチは、初期封止構造364においてパターン形成/エッチング工程を実施することで形成され得る。例では、パターン形成フォトレジスト層が初期封止構造364にわたって形成され得る。パターン形成フォトレジスト層は、ソーストレンチが後で形成される領域を露出させる開口を有し得る。エッチング工程(例えば、リセスエッチング工程)が、基板301を露出させるために開口によって露出される初期封止構造364の部分を除去するために実施され得る(例えば、パターン形成フォトレジスト層をエッチングマスクとして使用して)。したがって、ソーストレンチおよび封止構造374が形成され得る。エッチング工程は、「ボトムパンチスルー」工程とも称することができ、初期封止構造364を除去することができる任意のエッチング工程を含み得る一部の実施形態では、エッチング工程は異方性乾式エッチング工程を含む。
【0082】
ソース構造376は次の工程によって形成できる。ソーストレンチが形成された後、イオン注入が、ソーストレンチの底において露出された基板301の一部分へとイオン/ドーパントを注入するために実施され得る。イオン注入工程によってドーピングされた基板301の一部分は、ドープ半導体部分376-2を形成できる。一部の実施形態では、基板301はシリコンを含み、ドープ半導体部分376-2はドープシリコンを含む。次に、導体部分376-1は、CVD、ALD、PVDなどの適切な堆積工程によって、ドープ多結晶シリコン、銅、アルミニウム、および/またはタングステンなどの適切な導体材料でソーストレンチを満たすことで形成できる。任意選択で、平坦化/リセスエッチング工程が、半導体チャネル32および/またはゲート電極342にわたる導体材料の過剰な一部分を除去するために、実施され得る。一部の実施形態では、ソース構造376は配列共通ソース(「ACS」)と称される。
【0083】
図5Cは、一部の実施形態による他の3Dメモリデバイスを形成するための例示の製作工程520を示している。図4A図4Cは、製作工程の異なる段階での3Dメモリデバイスの断面図を示している。3Dメモリデバイスは、構造350(図3Fに示されている)に基づいて形成でき、構造400を形成するための製作工程は、構造350を形成するための製作工程と同様または同じであり得る。基板301、階段構造302、半導体チャネル32、トンネル層323、半導体層324、誘電コア325、連結解除されたブロッキング層351、ゲート電極342、導体層3422、および絶縁スペーサ層3423の構造および形成工程は、基板401、階段構造402、半導体チャネル42、トンネル層423、半導体層424、誘電コア425、連結解除されたブロッキング層451、ゲート電極442、導体層4422、および絶縁スペーサ層4423とそれぞれ同様または同じであり得る。図4A図4Cにおいて記載されたメモリ層は、図3Fのメモリ層322と同様または同じであり得る。構造400を形成するための製作工程(作業5201~5206)は、作業5101~5106と同じまたは同様とでき、図3A図3Fの記載を参照できる。一部の実施形態では、ゲート線スリット356は第3の初期ゲート線スリットと称することができ、ゲート線スリットは、作業5207が形成された後に形成される。
【0084】
図5Cを参照すると、メモリ層が露出させられた後、メモリ層の一部分が、トンネル層を露出させるために除去され、ゲート線スリットが形成される(作業5207)。図4Aは、対応する構造400の断面図を示している。
【0085】
図4Aに示されているように、メモリ層の一部分(例えば、トンネル層にわたる一部分)がトンネル層を露出させるために除去できる。ゲート線スリット456が形成され得る。一部の実施形態では、トンネル層423の一部分および/または連結解除されたブロッキング層451の一部分が、ゲート線スリット456の側壁においてリセス上面を有するためにエッチング工程によって除去される。メモリ層の残りの部分は、連結解除されたメモリ層422と称される。連結解除されたブロッキング層451の上面と、連結解除されたメモリ層422の上面と、トンネル層423の上面とは、ゲート線スリット456の側壁に沿って互いと同一平面上にあってもなくてもよい。一部の実施形態では、連結解除されたメモリ層422の形成の後、連結解除されたブロッキング層451はゲート電極442を一部で包囲し、ゲート電極442を連結解除されたメモリ層422から絶縁する。
【0086】
任意の適切なエッチング工程が、連結解除されたメモリ層422を形成するために実施され得る。一部の実施形態では、エッチング工程は等方性エッチング(例えば、乾式エッチングおよび/または湿式エッチング)を含む。一部の実施形態では、エッチング工程は、他の構造/層(例えば、絶縁スペーサ層4423、連結解除されたブロッキング層451、およびトンネル層423)よりメモリ層のエッチングの選択性が大きい。一部の実施形態では、連結解除されたブロッキング層451の十分な部分が、連結解除されたメモリ層422とゲート電極442との間に絶縁を提供するために残ることができることを確保するために、メモリ層のエッチング時間が制御される。
【0087】
図5Cを参照すると、ゲート線スリットおよび連結解除されたメモリ層の形成の後、封止工程が、ゲート電極同士を互いから絶縁する初期封止構造を形成するために実施され得る(作業5208)。図4Bは、対応する構造410の断面図を示している。
【0088】
図4Bに示されているように、初期封止構造464が、隣接するゲート電極442を覆って絶縁し、空隙463を形成するために形成でき、初期ソーストレンチ466が、初期封止構造の形成の後に形成される空間(例えば、ゲート線スリット456における空間)によって初期封止構造464に形成できる。初期封止構造464および初期ソーストレンチ466の製作工程および構造は、初期封止構造364および初期ソーストレンチ366の製作工程および構造と同じまたは同様であり得る。初期封止構造464および初期ソーストレンチ466の詳細な記載は、図3Gにおける初期封止構造364および初期ソーストレンチ366の記載を参照できる。
【0089】
図5Cを参照すると、初期ソーストレンチおよび初期封止構造の形成の後、封止構造が初期封止構造に基づいて形成され、ソース構造が封止構造に形成される(作業5209)。図4Cは、対応する構造420の断面図を示している。
【0090】
図4Cに示されているように、ソース構造476が封止構造474に形成できる。ソース構造476は隣接するゲート電極442同士の間に位置決めでき、x-z平面に対して垂直な方向(例えば、y軸)に沿って延び得る。ソース構造476は導体部分476-1とドープ半導体部分476-2とを備え得る。ソース構造476および封止構造474の製作工程および構造は、ソース構造376および封止構造374の製作工程および構造とそれぞれ同じまたは同様であり得る。ソース構造476および封止構造474の詳細な記載は、図3Hの記載を参照できる。
【0091】
一部の実施形態では、開示されている3Dメモリデバイスは、構成要素(例えば、メモリセルおよび周辺デバイス)が単一の基板(例えば、基板201、301、または401)に形成されるモノリシック3Dメモリデバイスの一部である。開示されている3Dメモリデバイスの動作を容易にするために使用される任意の適切なデジタル周辺回路、アナログ周辺回路、および/または混合信号周辺回路などの周辺デバイスは、メモリスタック(例えば、階段構造202、302、または402に形成されるメモリスタック)の外部で、基板において同様に形成され得る。周辺デバイスは基板「において」形成でき、その場合、周辺デバイスの全体または一部が基板に(例えば、基板の上面の下に)形成される、および/または、基板において直接的に形成される。周辺デバイスは、ページバッファ、デコーダ(例えば、行デコーダ、列デコーダ)、センスアンプ、ドライバ、チャージポンプ、電流基準、電圧基準、または回路の任意の能動的もしくは受動的な構成要素(例えば、トランジスタ、ダイオード、抵抗、もしくはコンデンサ)のうちの1つまたは複数を備え得る。絶縁領域(例えば、シャロートレンチアイソレーション(STI))およびドープ領域(例えば、トランジスタのソース領域およびドレイン領域)が、メモリスタックの外部で、基板に同様に形成され得る。
【0092】
一部の実施形態では、3Dメモリデバイスを形成するための方法は以下の作業を含む。始めに、初期チャネルホールが階段構造に形成され得る。階段構造は、基板にわたって交互に配置される複数の第1の層および複数の第2の層を備え得る。オフセットが、チャネルホールを形成するために、初期チャネルホールの側壁において、複数の第1の層の各々1つの側面と複数の第2の層の各々1つの側面との間に形成され得る。次に、半導体チャネルがチャネルホールに基づいて形成され得る。さらに、複数のゲート電極が複数の第2の層に基づいて形成され得る。
【0093】
一部の実施形態では、初期チャネルホールを階段構造に形成することは以下の作業を含む。始めに、パターン形成フォトレジスト層が、初期チャネルホールの場所に対応する開口を露出させるために階段構造にわたって形成され得る。次に、階段構造の一部分が、基板を露出させるために開口によって露出させられ得る。
【0094】
一部の実施形態では、オフセットを形成することは、初期チャネルホールの側壁において複数の第1の層の各々1つの側面の一部分を除去することを含む。
【0095】
一部の実施形態では、複数の第1の層の各々1つの側面の一部分を除去することは、複数の第1の層を複数の第2の層まで選択的にエッチングするリセスエッチング工程を実施することを含む。
【0096】
一部の実施形態では、半導体チャネルを形成することは、階段構造の上面から基板へと延びるチャネル形成構造でチャネルホールを満たすことを含む。
【0097】
一部の実施形態では、チャネル形成構造でチャネルホールを満たすことは以下の作業を含む。始めに、ブロッキング層がチャネルホールの側壁にわたって形成される。メモリ層が絶縁材料層にわたって形成され得る。トンネル層がメモリ層にわたって形成され得る。次に、半導体材料層がトンネル層にわたって形成され得る。さらに、チャネルホールを満たすために半導体層にわたって誘電コアが形成され得る。
【0098】
一部の実施形態では、ブロッキング層を形成することは、第1のブロッキング層と第2のブロッキング層との少なくとも一方を堆積させることを含む。第1のブロッキング層は、AlO、酸化ハフニウム(HfO)、酸化ランタン(LaO)、酸化イットリウム(Y)、酸化タンタル(Ta)、それらのケイ酸塩、それらの窒素ドーピング化合物、およびそれらの合金のうちの1つまたは複数を含み得る。第2のブロッキング層は、酸化ケイ素、酸窒化ケイ素、および窒化ケイ素のうちの1つまたは複数を含み得る。一部の実施形態では、メモリ層を形成することは、タングステン、モリブデン、タンタル、チタン、白金、ルテニウム、それらの合金、それらのナノ粒子、それらのケイ化物、多結晶シリコン、アモルファスシリコン、SiN、およびSiONのうちの少なくとも1つを含む電荷トラップ材料を堆積させることを含み得る。一部の実施形態では、トンネル層を形成することは、SiO、SiN、SiON、誘電金属酸化物、誘電金属酸窒化物、誘電金属ケイ酸塩、およびそれらの合金のうちの少なくとも1つを堆積させることを含む。一部の実施形態では、半導体層を形成することは、一元素の半導体材料、III-V族化合物半導体材料、II-VI族化合物半導体材料、および/または有機半導体材料を堆積させることを含む。一部の実施形態では、誘電コアを形成することはSiOを堆積させることを含む。
【0099】
一部の実施形態では、方法は、基板にわたってスタック構造を形成するために複数の第1の材料層と複数の第2の材料層とを交互に堆積させることと、複数の第1の層と複数の第2の層とをそれぞれ形成するために、複数の第1の材料層と複数の第2の材料層とを、基板の上面に対して垂直な方向に沿って繰り返しエッチングすることとをさらに含む。
【0100】
一部の実施形態では、複数の第1の材料層と複数の第2の材料層とを交互に堆積させることは、複数の絶縁材料層と複数の犠牲材料層とを交互に堆積させることを含む。複数の絶縁材料層は複数の犠牲材料層と異なる材料を含み得る。
【0101】
一部の実施形態では、複数の絶縁材料層を堆積させることは、複数のSiO層を堆積させることを含み、複数の犠牲材料層を堆積させることは、複数のSiN層を堆積させることを含む。
【0102】
一部の実施形態では、複数のゲート電極を形成することは、複数のゲート形成トンネルを形成するために複数の第2の層を除去することと、複数のゲート形成トンネルの各々1つの側壁にわたって絶縁スペーサ層を形成することと、複数のゲート形成トンネルを満たして複数のゲート電極を形成するために絶縁スペーサ層にわたって導体層を形成することとを含む。
【0103】
一部の実施形態では、絶縁スペーサ層を形成することは、AlO、HfO、およびTaのうちの1つまたは複数を含むhigh-k誘電材料の層を堆積させることを含み、導体層を形成することは、タングステン、コバルト、銅、アルミニウム、多結晶シリコン、ドープシリコン、ケイ化物、およびそれらの組み合わせのうちの1つまたは複数の層を堆積させることを含む。
【0104】
一部の実施形態では、複数の第1の材料層と複数の第2の材料層とを交互に堆積させることは、複数の第1の犠牲材料層と複数の第2の犠牲材料層とを交互に堆積させることを含む。複数の第1の犠牲材料層は複数の第2の犠牲材料層と異なる材料を含み得る。
【0105】
一部の実施形態では、複数の第1の犠牲材料層を堆積させることは、多結晶シリコン層および炭素層のうちの1つまたは複数を複数堆積させることを含み、複数の第2の犠牲材料層を堆積させることは複数のSiN層を堆積させることを含む。
【0106】
一部の実施形態では、方法は、半導体チャネルに隣り合う階段構造に第1の初期ゲート線スリットを形成することをさらに含む。
【0107】
一部の実施形態では、第1の初期ゲート線スリットを形成することは、第1の初期ゲート線スリットの場所に対応する他の開口を露出させるために階段構造にわたって他のパターン形成フォトレジスト層を形成することと、基板を露出させるために他の開口によって露出させられる階段構造の他の一部分を除去することとを含む。
【0108】
一部の実施形態では、方法は、他の複数のゲート形成トンネルを形成するために複数の第2の層を除去することと、他の複数のゲート形成トンネルの各々1つの側壁にわたって他の絶縁スペーサ層を形成することと、他の複数のゲート形成トンネルを満たして複数のゲート電極を形成するために他の絶縁スペーサ層にわたって他の導体層を形成することとをさらに含む。
【0109】
一部の実施形態では、複数の第2の層を除去することは湿式エッチング工程を実施することを含む。
【0110】
一部の実施形態では、他の絶縁スペーサ層を形成することは、AlO、HfO、およびTaのうちの1つまたは複数を有するhigh-k誘電材料の他の層を堆積させることを含み、他の導体層を形成することは、W、Co、Cu、Al、多結晶シリコン、ドープシリコン、ケイ化物、およびそれらの組み合わせのうちの1つまたは複数の他の層を堆積させることを含む。
【0111】
一部の実施形態では、方法は、基板を露出させる第2の初期ゲート線スリットを形成するために、複数の第1の層、複数のゲート電極、および基板にわたって他の絶縁スペーサ層および他の導体層の過剰な材料を除去することをさらに含む。
【0112】
一部の実施形態では、方法は、メモリ層を露出させ、他のゲート線スリットを形成するために、複数の第1の層およびブロッキング層の一部分を除去することをさらに含む。
【0113】
一部の実施形態では、メモリ層を露出させるためにブロッキング層の一部分を除去することは、ブロッキング層をメモリ層まで選択的にエッチングするエッチング工程を実施することを含む。
【0114】
一部の実施形態では、方法は、複数の第1の層を除去し、メモリ層を露出させるためにブロッキング層の一部分を除去し、メモリ層を連結解除し、トンネル層を露出させるために、および、第3のゲート線スリットを形成するためにメモリ層の一部分を除去することをさらに含む。
【0115】
一部の実施形態では、メモリ層の一部分を除去することは等方性エッチング工程を含む。
【0116】
一部の実施形態では、方法は、複数のゲート電極を互いから絶縁する封止構造を形成することと、封止構造に初期ソーストレンチを形成することとをさらに含む。
【0117】
一部の実施形態では、露出させられたブロッキング層、露出させられたメモリ層、露出させられたトンネル層、複数のゲート電極を覆い、隣接するゲート電極同士の間に空隙を形成する初期封止構造を形成することを含む。一部の実施形態では、封止構造を形成することは、封止構造を形成するために基板を露出させるソーストレンチを形成するために初期封止構造をパターン形成することも含む。
【0118】
一部の実施形態では、初期封止構造を形成することは急速熱化学的蒸着工程を実施することを含み、初期封止構造は酸化ケイ素を含む。
【0119】
一部の実施形態では、方法は、基板にドープ領域を形成するためにソーストレンチにイオン注入工程を実施することと、ソーストレンチを導体材料で満たすこととをさらに含む。
【0120】
一部の実施形態では、導体材料は、タングステン、ドープ多結晶シリコン、銅、アルミニウム、コバルト、ドープシリコン、およびケイ化物のうちの1つまたは複数を含む。
【0121】
一部の実施形態では、3Dメモリデバイスを形成するための方法は以下の作業を含む。始めに、複数の第1の層および複数の第2の層の階段構造が、基板にわたって交互に配置されて形成され得る。半導体チャネルが階段構造に形成でき、半導体チャネルは階段構造の上面から基板へと延びる。次に、複数の第2の層は複数のゲート電極で置き換えでき、複数の第1の層は除去され得る。封止構造が複数のゲート電極を互いから絶縁するために形成され得る。さらに、ソース構造が封止構造に形成でき、ソース構造は階段構造の上面から基板へと延びる。
【0122】
一部の実施形態では、封止構造を形成することは、複数のゲート電極を覆い、隣接するゲート電極同士の間に空隙を形成する誘電材料を堆積させることを含む。
【0123】
一部の実施形態では、誘電材料を堆積させることは急速熱化学的蒸着工程を実施することを含み、封止構造は酸化ケイ素を含む。
【0124】
一部の実施形態では、階段構造を形成することは、基板にわたってスタック構造を形成するために複数の第1の材料層と複数の第2の材料層とを交互に堆積させることと、複数の第1の層と複数の第2の層とをそれぞれ形成するために、複数の第1の材料層と複数の第2の材料層とを、基板の上面に対して垂直な方向に沿って繰り返しエッチングすることとを含む。
【0125】
一部の実施形態では、階段構造に半導体チャネルを形成することは、階段構造の上面から基板へと延びるチャネルホールを形成するために階段構造をパターン形成することと、チャネルホールを、ブロッキング層、ブロッキング層にわたるメモリ層、メモリ層にわたるトンネル層、メモリ層にわたる半導体層、および誘電コアで満たすこととを含む。
【0126】
一部の実施形態では、複数の第2の層を複数のゲート電極で置き換えることは以下の作業を含む。始めに、複数の第2の層が、複数のゲート形成トンネルを形成するために除去され得る。絶縁スペーサ層が、複数のゲート形成トンネルの側壁にわたって形成され得る。導体層が、複数のゲート形成トンネルを満たすために絶縁スペーサ層にわたって堆積させられ得る。
【0127】
一部の実施形態では、ソース構造を封止構造に形成することは、ソーストレンチを封止構造に形成することを含む。ソーストレンチは階段構造の上面から基板へと延び得る。ソース構造を封止構造に形成することは、ドープ領域を基板においてソーストレンチの底に形成するためにイオン注入工程を実施することと、ソーストレンチを満たすために導体層を堆積させることとを加えて含む。
【0128】
一部の実施形態では、3Dメモリデバイスは、基板にわたる封止構造によって絶縁される複数のゲート電極の階段構造を備える。封止構造は、基板の上面に対して垂直な方向に沿って、隣接するゲート電極の間に空隙を備え得る。3Dメモリデバイスは、階段構造の上面から基板へと延びる半導体チャネルも備え得る。半導体チャネルは、異なる方向に沿って延びる少なくとも2つの部分を有するメモリ層を備え得る。3Dメモリデバイスは、階段構造の上面から基板へと、基板の上面と平行な方向に沿って、隣接するゲート電極同士の間で延びるソース構造も備え得る。
【0129】
一部の実施形態では、封止構造は複数のゲート電極を覆い、酸化ケイ素を含む。
【0130】
一部の実施形態では、メモリ層は、基板の上面に対して垂直な方向と、基板の上面と平行な方向とに少なくとも沿って延びる。
【0131】
一部の実施形態では、メモリ層は、鉛直部分および少なくとも1つの水平部分を各々1つが備え、それぞれのゲート電極を各々1つが部分的に包囲する連結解除部分を備える。
【0132】
特定の実施形態の前述の記載は、本開示の大まかな性質を明らかにするようになっているため、他者が、本開示の大まかな概念から逸脱することなく、当業者の知識を適用することによって、必要以上の実験をすることなく、このような特定の実施形態を様々な用途に向けて容易に変更および/または適合させることができる。そのため、このような適合および変更は、本明細書において提示された教示および案内に基づいて、開示されている実施形態の等価の意味および範囲内にあると意図されている。本明細書の用語および表現が教示および案内に鑑みて当業者によって解釈されるものであるように、本明細書における表現および用語が説明の目的のためであって、限定のものではないことは、理解されるものである。
【0133】
本開示の実施形態は、明示された機能の実施およびそれらの関係を示す機能的な構成要素の助けで先に記載されている。これらの機能的な構成要素の境界は、記載の利便性のために本明細書では任意に定められている。明示された機能およびそれらの関係が適切に実施される限り、代替の境界が定められてもよい。
【0134】
概要および要約は、1つまたは複数の例示の実施形態を述べることができるが、発明者によって考えられているような本開示のすべての例示の実施形態を述べていない可能性があり、したがって、本開示および添付の特許請求の範囲を何らかの方法で限定するようには意図されていない。
【0135】
本開示の広がりおよび範囲は、前述の例示の実施形態のいずれによっても限定されるべきでなく、以下の特許請求の範囲およびその等価に従ってのみ定められるべきである。
【符号の説明】
【0136】
100 3Dメモリデバイス
101 ゲート電極
102 ブロッキング層
103 メモリ層
104 トンネル層
105 pチャネル
106 半導体チャネル
200、210、220、230 構造
201 基板
202 階段構造、誘電体スタック
2021 絶縁材料層
2121 凹んだ絶縁層
2022 犠牲材料層
203 初期チャネルホール
22 半導体チャネル
221 ブロッキング層
222 メモリ層
2221 鉛直部分
2222 非鉛直部分
223 トンネル層
224 半導体層
225 誘電コア
232 ゲート電極
2322 導体層
2323 絶縁スペーサ層
300、310、320、330、340、350、360、370 構造
301 基板
302 階段構造
3021 第1の犠牲層
3121 凹んだ第1の犠牲層
3022 第2の犠牲層
303 初期チャネルホール
313 チャネルホール
32 半導体チャネル
321 ブロッキング層
322 メモリ層
336 第1の初期ゲート線スリット
342 ゲート電極
3422 導体層
3423 絶縁スペーサ層
346 第2の初期ゲート線スリット
351 連結解除されたブロッキング層
356 ゲート線スリット
363 空隙
364 初期封止構造
366 初期ソーストレンチ
374 封止構造
376 ソース構造
376-1 導体部分
376-2 ドープ半導体部分
400、410、420 構造
401 基板
402 階段構造
42 半導体チャネル
422 連結解除されたメモリ層
423 トンネル層
424 半導体層
425 誘電コア
442 ゲート電極
4422 導体層
4423 絶縁スペーサ層
451 連結解除されたブロッキング層
456 ゲート線スリット
463 空隙
464 初期封止構造
466 初期ソーストレンチ
474 封止構造
476 ソース構造
476-1 導体部分
476-2 ドープ半導体部分
図1
図2A
図2B
図2C
図2D
図3A
図3B
図3C
図3D
図3E
図3F
図3G
図3H
図4A
図4B
図4C
図5A
図5B
図5C