(19)【発行国】日本国特許庁(JP)
(12)【公報種別】特許公報(B2)
(11)【特許番号】
(24)【登録日】2024-04-05
(45)【発行日】2024-04-15
(54)【発明の名称】エポキシ樹脂組成物
(51)【国際特許分類】
C08G 59/40 20060101AFI20240408BHJP
C08L 63/00 20060101ALI20240408BHJP
C08K 3/013 20180101ALI20240408BHJP
C08G 61/02 20060101ALI20240408BHJP
C07F 7/08 20060101ALI20240408BHJP
H05K 1/03 20060101ALI20240408BHJP
H05K 3/46 20060101ALN20240408BHJP
【FI】
C08G59/40
C08L63/00 Z
C08K3/013
C08G61/02
C07F7/08
H05K1/03 610S
H05K3/46 T
(21)【出願番号】P 2021517594
(86)(22)【出願日】2019-09-26
(86)【国際出願番号】 EP2019076010
(87)【国際公開番号】W WO2020064916
(87)【国際公開日】2020-04-02
【審査請求日】2022-08-29
(32)【優先日】2018-09-27
(33)【優先権主張国・地域又は機関】EP
(73)【特許権者】
【識別番号】508020155
【氏名又は名称】ビーエーエスエフ ソシエタス・ヨーロピア
【氏名又は名称原語表記】BASF SE
【住所又は居所原語表記】Carl-Bosch-Strasse 38, 67056 Ludwigshafen am Rhein, Germany
(74)【代理人】
【識別番号】100100354
【氏名又は名称】江藤 聡明
(74)【代理人】
【識別番号】100167106
【氏名又は名称】倉脇 明子
(74)【代理人】
【識別番号】100194135
【氏名又は名称】山口 修
(74)【代理人】
【識別番号】100206069
【氏名又は名称】稲垣 謙司
(72)【発明者】
【氏名】リントナー,ヤン-ピーレ ベルカン
(72)【発明者】
【氏名】シオニー,シラルド
(72)【発明者】
【氏名】レッフラー,ダニエル
(72)【発明者】
【氏名】バーク,イェニ
(72)【発明者】
【氏名】ゲルケ,ビルギット
(72)【発明者】
【氏名】ピルンク,フランク
(72)【発明者】
【氏名】ヘンダーソン,ルーカス ベンジャミン
(72)【発明者】
【氏名】ボイコ,ヴォロディミール
(72)【発明者】
【氏名】ド オリヴェイラ,ルイ
(72)【発明者】
【氏名】ヘンニッヒ,インゴルフ
(72)【発明者】
【氏名】ユ,ミラン
【審査官】藤井 明子
(56)【参考文献】
【文献】特開2004-307655(JP,A)
【文献】特開平01-233288(JP,A)
【文献】特開平08-231685(JP,A)
【文献】特開2006-096838(JP,A)
【文献】国際公開第2012/002119(WO,A1)
【文献】米国特許出願公開第2013/0101857(US,A1)
(58)【調査した分野】(Int.Cl.,DB名)
C08G 59/00-59/72
C08L 1/00-101/14
C08K 3/00-13/08
C08G 61/00-61/12
C07F 7/00-7/30
H05K 1/03、3/46
(57)【特許請求の範囲】
【請求項1】
樹脂組成物であって、
(a)エポキシ樹脂、
(b)式C22のシロキサン型硬化剤
【化1】
[式中、
R
C1、R
C2、R
C3は、メチル、エチルおよび1-プロピルから独立して選択され;
X
C31は、式-X
C32-A
C1-[X
C32-A
C2]
p-X
C32-のC
10~C
30アルキル
アリーレンから選択される二価の基であり;
A
C1は、いずれも非置換でも、C
1~C
4アルキルにより置換されていてもよい、ビフェニレン基、ナフチレン基、アントラセニレン基、フェナントレニレン基、ピレニレン基、およびフルオレニレン基から選択され;
A
C2は、非置換でも、C
1~C
4アルキルにより置換されていてもよいフェニレン基から選択され;
pは、0、1または2であり;
X
C32は、化学結合またはC
1~C
4アルカンジイ
ルであり;
R
C31は、H、C
1~C
6アルキル、C
6~C
30アリールまたはアルキルアリール、および
【化2】
から選択され、
X
C22は、C
1~C
4アルカンジイル、およびC
6~C
30
アリーレンまたはアルキル
アリーレンから選択される二価の基であり;
mは、繰返し単位の平均数であり、1.05~20である]
を含み、
前記樹脂組成物のフッ化物または臭化物
の含有量が、1質量%以下である樹脂組成物。
【請求項2】
A
C1が、いずれも非置換でも、メチルもしくはエチルにより置換されていてもよい、ビフェニレン基およびナフチレン基から選択され;A
C2が、非置換でも、メチルもしくはエチルにより置換されていてもよいフェニレン基から選択される、請求項1に記載の樹脂組成物。
【請求項3】
pが1である、請求項1または2に記載の樹脂組成物。
【請求項4】
mが1.5~10である、請求項1または2に記載の樹脂組成物。
【請求項5】
シロキサン型硬化剤が式C22aまたはC22bの化合物
【化3】
[式中、R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピルから独立して選択され、mは2~1
0の平均数である]
である、請求項1に記載の樹脂組成物。
【請求項6】
R
C1、R
C2
がメチルである、請求項1から5のいずれか一項に記載の樹脂組成物。
【請求項7】
さらに無機充填材を含む、請求項1から6のいずれか一項に記載の樹脂組成物。
【請求項8】
絶縁膜を回路基板上に付着させるための
、請求項7に記載の樹脂組成物を使用する方法。
【請求項9】
請求項7に記載の樹脂組成物を硬化させて絶縁層を形成した後の前記樹脂組成物を含む絶縁層であって、
23℃及び10GHzで3以下の
誘電率D
kおよび0.02以
下の損失正接D
fを有する、絶縁層。
【請求項10】
式C22aもしくはC22b
【化4】
[式中、
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピ
ルから独立して選択され;
mは繰返し単位の平均数であり、1.05~2
0である]
の化合物。
【請求項11】
樹脂組成物であって、
(a)エポキシ樹脂、
(b)シロキサン型硬化剤
、
を含み
、且つ
前記シロキサン型硬化剤が式C14の化合物
【化9】
[式中、
A
C4
は非置換でも、直鎖状もしくは分岐状のC
1
~C
6
アルキルにより置換されていてもよいC
6
~C
20
アリールから選択され;
R
C1
、R
C2
、R
C3
はメチル、エチルおよび1-プロピルから独立して選択され;
X
C41
、X
C42
はC
1
~C
6
アルカンジイルから独立して選択され;
R
C4
はHおよび直鎖状または分岐状のC
1
~C
6
アルキルから選択される]
であり、且つ
前記樹脂組成物のフッ化物または臭化物
の含有量が、1質量%以下である、樹脂組成物。
【請求項12】
前記シロキサン型硬化剤が、二官能性のシロキサン型硬化剤であり、且つ
前記二官能性のシロキサン型硬化剤が式C14aのもの
【化10】
[式中、
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピ
ルから独立して選択され;
X
C41、X
C42はC
1~C
6アルカンジイ
ルから独立して選択され;
R
C4はHおよびC
1~C
4アルキ
ルから選択され;
R
CA1はHおよびC
1~C
4アルキ
ルから選択される]
である、請求項
11に記載の樹脂組成物。
【請求項13】
さらに無機充填材を含む、請求項11
又は12に記載の樹脂組成物。
【請求項14】
絶縁膜を回路基板上に付着させるため
の、請求項
13に記載の樹脂組成物を使用する方法。
【請求項15】
請求項
13に記載の樹脂組成物を硬化させて絶縁層を形成した後の前記樹脂組成物を含む絶縁層であって、
23℃及び10GHzで3以下の
誘電率D
kおよび0.0
2以下の損失正接D
fを有する、絶縁層。
【発明の詳細な説明】
【技術分野】
【0001】
本発明は樹脂組成物に関する。本発明はさらに、各々かかる樹脂組成物を含有する絶縁膜、プリプレグ、多層プリント配線板、および半導体素子に関する。
【背景技術】
【0002】
一般に、エポキシ樹脂の硬化は、エポキシを自身と反応させる(単独重合)ことにより、または多官能性の硬質化剤または硬化剤と共にコポリマーを形成することにより達成することができる。あるいは、反応性の水素を含有するいずれかの硬化剤をエポキシ樹脂のエポキシド基と反応させてもよい。エポキシ樹脂のための硬化剤の一般的なクラスはアミン、酸、酸無水物、フェノール、アルコールおよびチオールを含む。
【0003】
近年、電子計器の小型化および高機能化が進んでいる。多層プリント配線板において、ビルドアップ層は多層状になり、配線の微細加工および高密度化が必要とされている。
【0004】
要求を満たすために様々な試みがなされている。
【0005】
米国特許出願公開第2011/120761(特許文献1)号は、多層プリント配線板用の絶縁層の形成に使用することができる特定のエポキシ樹脂組成物を開示している。エポキシ樹脂組成物は硬化剤として作用する活性エステル化合物を含む。
【0006】
米国特許出願公開第2014/087152(特許文献2)号は、ガラス転移温度および熱膨張係数を維持しながら充分な剥離強度を有するメッキ導電層を形成することができる、湿式粗面化工程で低い算術平均粗さばかりでなく低い二乗平均平方根粗さももつ表面を有する絶縁層を構築するための、エポキシ樹脂、アルコキシオリゴマー、および無機充填材を含有するエポキシ樹脂組成物を開示している。
【0007】
しかしながら、これらの材料クラスの誘電特性は最新の包装用途には不充分であることが多い。殊に誘電損失係数(損失正接ともいわれる)Dfまたは誘電率Dkのような誘電特性はポリイミドまたはポリベンゾオキサゾールのような他の材料と比較して不充分であることが多い。
【0008】
アリールシリルエーテルによるエポキシドの開環は広く知られている。Tetr. Lett. 190、 31、 1723-1726(非特許文献1)はフッ化セシウムにより触媒されたアリールシリルエーテルによるビスフェノールAジグリシジルエーテルの開環を開示している。J. Therm. Anal. Cal. 2002、 70、 741(非特許文献2)は触媒としてテトラ-n-ブチルホスホニウムブロミドを用いたビスフェノールAジグリシジルエーテルのトリメチルシリルクレゾールノボラックとの反応を開示している。しかしながら、いずれの反応もフッ化物または臭化物による触媒作用を必要とし、そのため電子工学用途に使用するには魅力のないものになるか、または無効なものにすらなる。
【0009】
米国特許第5177157号(特許文献3)はシリコーン樹脂変性フェノール樹脂の製造のための2工程方法を開示している。この方法では、まずアルコキシシランをフェノール樹脂と反応させることによりアルコキシシラン変性フェノール樹脂を製造する。続く工程で、アルコキシシラン変性フェノール樹脂を水と共に加熱し撹拌することにより加水分解し縮合させる。得られるシリコーン樹脂変性フェノール樹脂は、ジオルガノポリシロキサン単位を含んでなく、優れた耐熱性と優れた電気絶縁特性を有する。米国特許第6441106号(特許文献4)は、フェノール樹脂と加水分解可能なアルコキシシランとの脱アルコール縮合反応により得られるシロキサン変性フェノール樹脂を含有するエポキシ樹脂に対する硬化剤を開示している。また、欧州特許出願公開第3093304号(特許文献5)はエポキシ樹脂、式-(CH2)m-SiR1R2R3または-CONH(CH2)m-SiR1R2R3[式中、R1、R2、およびR3は各々アルコキシ基である]のアルコキシシリル基を有するノボラック型樹脂硬化剤、および無機充填材を含む組成物を開示している。組成物は増大した熱安定性を示す。特開2003-012892号(特許文献6)は、(A)エポキシ樹脂、(B)100℃以上の軟化点の多官能性フェノール樹脂、(C)金属酸化物の水和物、および(D)アルコキシ-またはアリールオキシシリル基を含むケイ素官能性のシロキサンオリゴマーを含む樹脂組成物を開示する。これらのアルコキシシリル化した硬化剤はすべて不充分な誘電特性、特に比較的に高い誘電定数Dkおよび/または損失正接Dfを有する。
【0010】
特開2001-151783号(特許文献7)は硬化剤として
【化1】
のようなモノマー性のシリル化フェノール誘導体を含有する硬化性エポキシ樹脂組成物を開示している。
【0011】
Hari Singh Nalwa、 Handbook of Low and High Dielectric Constant Materials and their Application、 Vol. 1: Materials and Processing、 1999(非特許文献3)はシリル化ノボラック型硬化剤
【化2】
のエポキシをベースとする低-k誘電材料を製造するための使用を開示している。しかしながら、これらのシリル化ノボラック型硬化剤は電子産業の要求を満たさない不充分な誘電特性、特に誘電定数D
kおよび/または損失正接D
fを有する。
【先行技術文献】
【特許文献】
【0012】
【文献】米国特許出願公開第2011/120761号
【文献】米国特許出願公開第2014/087152号
【文献】米国特許第5177157号
【文献】米国特許第6441106号
【文献】欧州特許出願公開第3093304号
【文献】特開2003-012892号
【文献】特開2001-151783号
【非特許文献】
【0013】
【文献】Tetr. Lett. 190、 31、 1723-1726
【文献】J. Therm. Anal. Cal. 2002、 70、 741
【文献】Hari Singh Nalwa、 Handbook of Low and High Dielectric Constant Materials and their Application、 Vol. 1: Materials and Processing、 1999
【発明の概要】
【発明が解決しようとする課題】
【0014】
本発明の目的は、従来技術の組成物の欠点を示さないエポキシ樹脂組成物を提供することである。
【0015】
特に、本発明の化合物は改良された誘電特性、特に改良されたDfおよびDkを有するエポキシ樹脂組成物を提供する。また、本発明の化合物は電子工学用途において、特に包装用途向けの絶縁層として使用するのに適用可能である。
【課題を解決するための手段】
【0016】
本発明は、本明細書に記載されているシロキサン型硬化剤を使用することにより、従来技術の欠点をすべて完全に回避する。驚くべきことに、本発明のシロキサン型硬化剤(しばしば硬化剤といわれることもある)は、エポキシ樹脂と反応させて電子デバイスの絶縁層の誘電特性を改良することができることが判明した。
【0017】
したがって、本発明の第1の態様は、
(a)エポキシ樹脂、
(b)式C22またはC31のシロキサン型硬化剤
【化3】
[式中、
R
C1、R
C2、R
C3は、メチル、エチルおよび1-プロピルから独立して選択され;
X
C31は、式-X
C32-A
C1-[X
C32-A
C2]
p-X
C32-のC
10~C
30アルキルアリールから選択される二価の基であり;
A
C1は、いずれも非置換でも、C
1~C
4アルキルにより置換されていてもよい、ビフェニレン基、ナフチレン基、アントラセニレン基、フェナントレニレン基、ピレニレン基、およびフルオレニレン基、好ましくはビフェニレン基またはナフチレン基から選択され;
A
C2は、非置換でも、C
1~C
4アルキルにより置換されていてもよいフェニレン基から選択され;
pは、0、1または2であり;
X
C32は、化学結合またはC
1~C
4アルカンジイル、好ましくは化学結合またはメタンジイルであり;
R
C31は、H、C
1~C
6アルキル、C
6~C
30アリールまたはアルキルアリール、および
【化4】
から選択され、
X
C22は、C
1~C
4アルカンジイル、およびC
6~C
30アリールまたはアルキルアリールから選択される二価の基であり;
mは、繰返し単位の平均数であり、1.05~20であり、
A
C6は、非置換でも、C
1~C
4アルキルにより置換されていてもよい、C
6~C
30アリールまたはアルキルアリールから選択される二価の基から選択され;
X
C51、X
C52は、化学結合および直鎖状または分岐状のC
1~C
6アルカンジイルから独立して選択され;
nは、繰返し単位の平均数であり、1.05~1000、好ましくは1.5~500、最も好ましくは2~100である]
を含み、フッ化物または臭化物を本質的に含有しない、樹脂組成物に関する。
【0018】
本発明の別の態様は、絶縁膜を回路基板上に付着させるための、特にプリント配線板を製造するための、本明細書に記載されている樹脂組成物の使用である。
【0019】
本発明のさらに別の態様は、本明細書に記載されている樹脂組成物を硬化させて絶縁層を形成した後の前記樹脂組成物を含む絶縁層であって、3以下の誘電定数(絶縁抵抗ともいわれる)Dkおよび0.02以下、好ましくは0.01以下の損失正接Dfを有する、絶縁層に関する。
【0020】
本発明のさらに別の態様は、本明細書に記載されている絶縁層を含む多層プリント配線板に関する。
【0021】
本発明のさらに別の態様は、本明細書に記載されている多層プリント配線板を含む半導体素子に関する。
【0022】
本発明のさらに別の態様は、式C22aまたはC22b
【化5】
式C31a、C31b、およびC31c
【化6】
ならびに式C15:
【化7】
の化合物
[式中、
R
C1、R
C2、R
C3は、メチル、エチルおよび1-プロピル、最も好ましくはメチルから独立して選択され;
mは、1.05~20、特に2.5~5の平均数であり;
nは、繰返し単位の平均数であり、1.05~1000、好ましくは1.5~500、最も好ましくは2~100であり、
R
CA1、R
CA2は、HおよびC
1~C
4アルキル、好ましくはH、メチルおよびエチル、最も好ましくはHから独立して選択される]
に関する。
【0023】
本発明のさらなる実施形態は、
(a)エポキシ樹脂、
(b)式C11のシロキサン型硬化剤:
【化8】
[式中、
R
C1はメチルおよびエチルから選択され;
R
C2、R
C3は直鎖状または分岐状のC
1~C
3アルキルおよび直鎖状のC
4~C
6アルキル基、好ましくはメチルおよびエチルから独立して選択され;
X
C11は非置換でも、C
1~C
6アルキルにより置換されていてもよい、ナフチル基、ビピリジル基、-A
C1-X
C32-A
C2-基、または-X
C41-A
C3-X
C42-基を含むかまたはこれらからなるX
C11から選択される二価の基であり、A
C1、A
C2またはA
C3基は1以上の
【化9】
基により置換されていてもよく、
A
C1はいずれも非置換でも、C
1~C
4アルキルにより置換されていてもよい、フェニレン基、ビフェニレン基、ナフチレン基、アントラセニレン基、フェナントレニレン基、ピレニレン基、およびフルオレニレン基、好ましくはビフェニレン基またはナフチレン基から選択され;
A
C2は非置換でも、C
1~C
4アルキルにより置換されていてもよい、フェニレン基またはナフチレン基から選択され;
A
C3は非置換でも、C
1~C
4アルキルにより置換されていてもよい、C
6~C
20アリール基により置換されたメタンジイルから選択され;
X
C32は、化学結合またはC
1~C
4アルカンジイル、好ましくは化学結合またはメタンジイルであり、
X
C41、X
C42はC
1~C
6アルカンジイルから独立して選択される]
を含み、フッ化物または臭化物を本質的に含有しない、樹脂組成物である。
【発明を実施するための形態】
【0024】
本発明の樹脂組成物はエポキシ樹脂、シロキサン型硬化剤、および任意に無機充填材を含む。シロキサン型硬化剤の新しい合成経路のおかげで、組成物はフッ化物も臭化物も本質的に含まない。
【0025】
本明細書で使用されるとき、「a」または「an」および「少なくとも1つ」は同義で使用される。
【0026】
本発明の特定の実施形態において樹脂組成物は、
(a)エポキシ樹脂、
(b)シロキサン型硬化剤、
(c)任意に無機充填材、
(d)任意に非シロキサン型硬化剤、
(e)任意にアルコキシオリゴマー、
(f)任意に促進剤、
(g)任意に熱可塑性樹脂、
(h)任意にゴム粒子、および
(i)任意に難燃剤
から本質的になり、好ましくは以上のものからなる。
【0027】
本明細書において、から本質的になるとは、本発明の効果に不利に作用しない範囲内で他の成分が本発明の樹脂組成物に混合されてもよいことを意味する。かかる他の成分は熱硬化性樹脂、たとえばビニルベンジル化合物、アクリル化合物、マレイミド化合物、およびブロックイソシアネート化合物;有機充填材、たとえばケイ素粉末、ナイロン粉末、およびフッ素粉末;増粘剤、たとえばOrbenおよびBentone;シリコーンをベースとする、フッ素をベースとする、またはポリマーをベースとする消泡剤またはレベリング剤;粘着付与剤、たとえばイミダゾールをベースとする、チアゾールをベースとする、トリアゾールをベースとする、およびシランをベースとするカップリング剤;ならびに着色剤、たとえばフタロシアニンブルー、フタロシアニングリーン、ヨウ素グリーン、ジスアゾイエロー、およびカーボンブラックでよい。好ましくはかかる他の成分の含量は1質量%以下、特に0.1質量%以下である。
【0028】
エポキシ樹脂
本発明で使用されるエポキシ樹脂は、特に限定されることはないが、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビスフェノールAF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、tert-ブチル-カテコール型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、アントラセン型エポキシ樹脂、直鎖状の脂肪族エポキシ樹脂、ブタジエン構造を有するエポキシ樹脂、脂環式エポキシ樹脂、複素環式エポキシ樹脂、スピロ環を含有するエポキシ樹脂、シクロヘキサンジメタノール型エポキシ樹脂、トリメチロール型エポキシ樹脂、およびハロゲン化エポキシ樹脂でよい。これらは単独またはこれらの2種類以上の組合せで使用できる。
【0029】
これらのうちで、誘電特性、耐熱性および金属箔への接着を改良するという観点から、ビスフェノールA型エポキシ樹脂、ナフトール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ビフェニル型エポキシ樹脂、ナフチレンエーテル型エポキシ樹脂、アントラセン型エポキシ樹脂およびブタジエン構造を有するエポキシ樹脂が好ましい。その具体的な例として、ビスフェノールA型エポキシ樹脂(Mitsubishi Chemical Corporationから入手可能な「Epicoat 828EL」および「YL980」)、ビスフェノールF型エポキシ樹脂(Mitsubishi Chemical Corporationから入手可能な「jER806H」および「YL983U」)、ナフタレン型二官能性エポキシ樹脂(DIC Corporationから入手可能な「HP4032」、「HP4032D」、「HP4032SS」、および「XA4032SS」)、ナフタレン型四官能性エポキシ樹脂(DIC Corporationから入手可能な「HP4700」および「HP4710」)、ナフトール型エポキシ樹脂(Tohto Kasei Co., Ltd.から入手可能な「ESN-475V」)、ブタジエン構造を有するエポキシ樹脂(Daicel Chemical Industries, Ltd.から入手可能な「PB-3600」)、ビフェニル構造を有するエポキシ樹脂(NIPPON KAYAKU Co., Ltd.から入手可能な「NC3000H」、「NC3000L」、および「NC3100」、ならびにMitsubishi Chemical Corporationから入手可能な「YX4000」、「YX4000H」、「YX4000HK」、および「YL6121」)、アントラセン型エポキシ樹脂(Mitsubishi Chemical Corporationから入手可能な「YX8800」)、およびナフチレンエーテル型エポキシ樹脂(DIC Corporationから入手可能な「EXA -7310」、「EXA -7311」、「EXA -7311L」、および「EXA 7311-G3」)が挙げられる。
【0030】
エポキシ樹脂はその2種類以上の組合せで使用してもよい。エポキシ樹脂は分子内に2つ以上のエポキシ基を有するエポキシ樹脂を含有するのが好ましい。特に、エポキシ樹脂が、分子内に2つ以上のエポキシ基を有し、20℃の温度で液体である芳香族エポキシ樹脂(以後「液体エポキシ樹脂」という)および分子内に3つ以上エポキシ基を有し、20℃の温度で固体である芳香族エポキシ樹脂(以後「固体エポキシ樹脂」という)を含有するのがより好ましい。
【0031】
本発明で使用されるエポキシ樹脂は好ましくはその分子内に芳香環構造を有するエポキシ樹脂である。液体エポキシ樹脂および固体エポキシ樹脂をエポキシ樹脂として組み合わせて使用するとき、質量による混合比(液体エポキシ樹脂:固体エポキシ樹脂)は、樹脂組成物が接着膜の形態で使用されるとき適度に可撓性であり、樹脂組成物の硬化した生成物が適当な破壊強度を有するという観点から、好ましくは1:0.1~1:2の範囲内、より好ましくは1:0.3~1:1.8の範囲内、さらにより好ましくは1:0.6~1:1.5の範囲内に入る。
【0032】
オリゴマーを使用するならば低い重合度、好ましくは重合度10未満、より好ましくは重合度5未満、最も好ましくは重合度3未満で使用するのが好ましい。
【0033】
本質的に分子内にOH基がないエポキシ樹脂を使用するのが最も好ましく、エポキシ樹脂がモノマー単位のみからなれば理想的な場合である。したがって、エポキシ樹脂は少なくとも50質量%、より好ましくは80質量%、最も好ましくは90質量%のモノマー単位含量を有するのが好ましい。
【0034】
本明細書で使用されるとき、「重合度」は、オリゴマー性またはポリマー性のエポキシ樹脂中のモノマーの算術平均数を意味する。
【0035】
以下の二官能性エポキシ樹脂が特に好ましい:
BASFのMPPG
【化10】
およびDOW ChemicalsのDER332
【化11】
【0036】
3つ以上のエポキシ基をもつ以下の多官能性エポキシ樹脂が特に好ましい:
DICのEPICOLON HP 4710
【化12】
DOW ChemicalsのDEN438
【化13】
Nippon KayakuのEPPN-501 HY
【化14】
Nippon KayakuのNC3000L / NC3000H
【化15】
およびDICのEpiCOLON N673 80M / EPICOLON N680 75M
【化16】
【0037】
シロキサン型硬化剤
本発明の樹脂組成物はさらに、絶縁特性および機械的特性を改良するシロキサン化合物を含む硬化剤(「シロキサン型硬化剤」)を含む。
【0038】
本発明者は、Tetr. Lett. 190、 31、 1723-1726(非特許文献1)およびJ. Therm. Anal. Cal. 2002、 70、 741(非特許文献2)の開示と対照的に、エポキシ樹脂硬化方法においてエポキシドの開環を触媒するためにそれぞれフッ化セシウムのようなフッ化物または臭化物源を使用する必要がないことを見出した。フッ化物および臭化物は、有機または無機の足場に共有結合されていないといくつかの欠点があることが知られている。殊にフッ素は腐食を誘発し、コンピューターチップ製造において厳しい問題である。したがって、硬化したエポキシ樹脂のフッ化物および臭化物による汚染を回避することができれば極めて有利である。エポキシ樹脂は、精製されたとしても、そのエピクロロヒドリンを用いる製造のためいくらかの塩化物を含有する。にもかかわらず、シロキサン型硬化剤の製造に触媒を使用しなければ塩化物による付加的な汚染が回避され得る。したがって、シロキサン型硬化剤が塩化物またはその他のハロゲン化物を本質的に含まないことが好ましい。本明細書において、「本質的に含まない」とは、それぞれ塩化物またはハロゲン化物の含量が1質量%以下、好ましくは0.1質量%以下、最も好ましくは0.01質量%以下であることを意味する。
【0039】
エポキシ樹脂の硬化方法は、標準的な条件下、たとえば180℃で数時間以下に記載する促進剤を用いて行なうことができる。
【0040】
シロキサン型硬化剤は二官能性であってもよいし、または3つ以上のエポキシ基を有していて三もしくは多官能性の硬化剤を形成していてもよい。好ましくはシロキサン型硬化剤はフェノール性シロキサンであり、すなわちシロキサン基-O-SiRC1RC2RC3は芳香族環系に直接結合する。
【0041】
ポリマー性硬化剤
ポリマー性硬化剤は、ポリマー骨格に結合しているかまたはポリマー骨格中に組み込まれているシロキサン基を有し得る。
【0042】
第1の実施形態においてポリマー性のシロキサン型硬化剤は式C22の化合物
【化17】
[式中、
R
C1、R
C2、R
C3は、メチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
X
C31は、式-X
C32-A
C1-[X
C32-A
C2]
p-X
C32-のC
10~C
30アルキルアリールから選択される二価の基から選択され;
A
C1は、いずれも非置換でも、C
1~C
4アルキルにより置換されていてもよい、ビフェニレン基、ナフチレン基、アントラセニレン基、フェナントレニレン基、ピレニレン基、およびフルオレニレン基、好ましくはビフェニレン基またはナフチレン基から選択され;
A
C2は、非置換でも、C
1~C
4アルキルにより置換されていてもよいフェニレン基から選択され;
pは、0、1または2であり;
X
C32は、化学結合またはC
1~C
4アルカンジイル、好ましくは化学結合またはメタンジイルであり;
R
C31は、H、C
1~C
6アルキル、C
6~C
30アリールまたはアルキルアリール、および
【化18】
から選択され、
X
C22は、C
1~C
4アルカンジイル、およびC
6~C
30アリールまたはアルキルアリールから選択され;
mは、繰返し単位の平均数であり、1.05~20である]
である。
【0043】
この場合、ポリマー性硬化剤のシロキサン基はポリマー骨格に結合している。
【0044】
本明細書において、「繰返し単位の平均数」とは、ポリマー性硬化剤が単分散系ではなく、常にある分布のモル質量を有することを意味する(たとえば2-6の範囲の繰返し単位のオリゴマー)。繰返し単位の平均数は平均のポリマー-分子当たりの繰返し単位の平均の量である。分子量と同様に、平均数nおよびmは前駆体から公知であるかまたは硬化剤もしくはその前駆体のGPC分析により決定できる。
【0045】
本明細書で使用されるとき、「ポリマー性」とは、繰返し単位の平均数が1.05を超える、すなわち少なくとも顕著な含量のダイマー、トリマーまたは3つより多くの繰返し単位をもつポリマー性の化合物があることを意味する。
【0046】
好ましい実施形態においてAC1は、いずれも非置換でも、メチルもしくはエチルにより置換されていてもよく、好ましくは非置換である、ビフェニレン基およびナフチレン基から選択される。
【0047】
別の好ましい実施形態においてAC2は、非置換でも、メチルもしくはエチルにより置換されていてもよく、好ましくは非置換であるフェニレン基から選択される。
【0048】
もう1つ別の好ましい実施形態においてAC1は、いずれも非置換でも、メチルもしくはエチルにより置換されていてもよく、好ましくは非置換である、ビフェニレン基およびナフチレン基から選択され;AC2は、非置換でも、メチルもしくはエチルにより置換されていてもよく、好ましくは非置換であるフェニレン基から選択される。
【0049】
特に好ましくはポリマー性シロキサン型硬化剤は式C22aの化合物
【化19】
[式中、R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、最も好ましくはメチルから独立して選択され;mは1.5~10、好ましくは2~5の平均数である]である。R
C1、R
C2、R
C3=メチル、m=2であるこの硬化剤はSN485からNippon Steel Chemicalsによりシリル化によって製造できる。
【0050】
別の特に好ましいポリマー性シロキサン型硬化剤は式C22bの化合物
【化20】
[式中、R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、最も好ましくはメチルから独立して選択され;mは繰返し単位の平均数であり、1.5~5である]である。R
C1、R
C2、R
C3=メチル、m=~2であるこの硬化剤はKayahard GPH-65からNippon Kayakuにより製造できる。
【0051】
ポリマー骨格にシロキサン基を有するポリマー性硬化剤の代わりの実施形態は式C31の化合物
【化21】
[式中、
R
C1、R
C2は、メチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
A
C6は、非置換でも、C
1~C
4アルキルにより置換されていてもよいC
6~C
30アリールまたはアルキルアリールから選択される二価の基から選択され;
X
C51、X
C52は、化学結合および直鎖状または分岐状のC
1~C
6アルカンジイルから独立して選択され;
nは、繰返し単位の平均数であり、1.05~1000、好ましくは1.5~500、最も好ましくは2~100である]
である。
【0052】
本明細書で使用されるとき、「化学結合」とは、それぞれの部分は存在しないが、隣接した部分が橋架けされて隣接した部分間で直接の化学結合を形成することを意味する。例として、X-Y-Zで部分Yが化学結合であれば、それらの隣接した部分XおよびZが一緒になって基X-Zを形成する。
【0053】
好ましくは、AC6は非置換でも、メチルもしくはエチルにより置換されていてもよい、C6~C20アリールまたはアルキルアリールから選択される二価の基から選択される。
【0054】
好ましくは、X51、X52は化学結合および直鎖状または分岐状のC1~C4アルカンジイル、さらにより好ましくは化学結合、メタンジイルおよびエタンジイル、最も好ましくは化学結合から独立して選択される。
【0055】
特に好ましいポリマー性硬化剤は式C31a、C31b、およびC31cのもの
【化22】
[式中、
R
C1、R
C2はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
R
CA1、R
CA2はHおよび直鎖状または分岐状のC
1~C
4アルキル、好ましくはH、メチルおよびエチルから独立し選択され;
nは繰返し単位の平均数であり、1.05~1000、好ましくは1.5~500、最も好ましくは2~100である]
である。
【0056】
一般に少なくとも2つのフェノール性ヒドロキシ基を含む任意の化合物が本発明に従ってシロキサン型硬化剤に変換され得ることが強調されなければならない。
【0057】
最も好ましいポリマー性硬化剤は、nが2~100の平均数であるポリ(ビスフェノールAジメチルシロキサン)である。
【0058】
【0059】
1種以上のシロキサン型硬化剤がエポキシ樹脂組成物中にあってもよい。シロキサン型硬化剤は単独で、または他の従来技術の硬化剤と組み合わせて使用し得る。
【0060】
一般に、本発明によるシロキサン型硬化剤は、市場で入手可能なそれぞれのフェノール型硬化剤から酸性または塩基性条件下で
【化24】
に従ってシリル化により製造することができ、L
C1はC
1~C
6アルコキシおよびハロゲン化物、好ましくはメトキシ、エトキシおよびCl、最も好ましくはClから選択される。
【0061】
他の硬化剤と同様に、シロキサン型硬化剤の選択の前提条件はそのエポキシ樹脂との相溶性であり、エポキシ樹脂と共に均質な混合物を形成することができなければならず、相分離を起こしてはならない。
【0062】
モノマー性硬化剤
二官能性のエポキシモノマーと結合して二官能性の硬化剤は直鎖状の樹脂骨格(直鎖状の硬化エポキシ樹脂ともいう)を形成する。かかる直鎖状の硬化エポキシ樹脂は熱可塑性またデュロプラスチック(duroplastic)であり得る。
【0063】
1つの実施形態において、シロキサン型硬化剤は式C11の化合物:
【化25】
[式中、
R
C1はメチルおよびエチルから選択され;
R
C2、R
C3は直鎖状または分岐状のC
1~C
3アルキルおよび直鎖状のC
4~C
6アルキル基、好ましくはメチルおよびエチルから独立して選択され;
X
C11は非置換でも、C
1~C
6アルキルにより置換されていてもよい、ナフチル基、ビピリジル基、-A
C1-X
C32-A
C2-基、または-X
C41-A
C3-X
C42基から選択される二価の基であり、1以上の
【化26】
基により置換されていてもよく、
A
C1はいずれも非置換でも、C
1~C
4アルキルにより置換されていてもよい、フェニレン基、ビフェニレン基またはナフチレン基、アントラセニレン基、フェナントレニレン基、ピレニレン基、およびフルオレニレン基から、好ましくはビフェニレン基またはナフチレン基から選択され;
A
C2は非置換でも、C
1~C
4アルキルにより置換されていてもよい、フェニレン基またはナフチレン基から選択され、;
A
C3は非置換でも、C
1~C
4アルキルにより置換されていてもよいC
6~C
20アリール基により置換されたメタンジイルから選択され;
X
C32は化学結合またはC
1~C
4アルカンジイル、好ましくは化学結合またはメタンジイルであり、
X
C41、X
C42はC
1~C
6アルカンジイルから独立して選択される]
である。
【0064】
1つの実施形態においてモノマー性シロキサン型硬化剤はXC11がさらにシロキサン基を含んでいなければ二官能性である。この場合XC11は非置換でも、C1~C6アルキルにより置換されていてもよい、C6~C20アリールまたはアルキルアリールから選択される二価の基である。
【0065】
別の実施形態において、X
C11が1つ以上のさらなるシロキサン基を含んでいれば、限定されることはないが三または四官能性の硬化剤のようなモノマー性の多官能性硬化剤を使用してもよい。この場合X
C11はC
6~C
20アリールまたはアルキルアリールから選択される二価の基であり、1つ以上の基
【化27】
により置換されており、さらにC
1~C
6アルキルにより置換されていてもよい。
【0066】
好ましい二官能性のシロキサン型硬化剤は式C12aおよびC12bのビスフェノール誘導体
【化28】
[式中、
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
R
C11、R
C12はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
R
CA1、R
CA2はHおよび直鎖状または分岐状のC
1~C
4アルキルから、好ましくはH、メチルおよびエチルから独立して選択される]
である。
【0067】
さらに好ましい二官能性のシロキサン型硬化剤は式C13aおよびC13bのヒドロキシナフトール誘導体
【0068】
【化29】
[式中、
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
R
CA1、R
CA2はHおよび直鎖状または分岐状のC
1~C
4アルキル、好ましくはH、メチルおよびエチルから独立して選択される]
である。
【0069】
好ましい非フェノール性の二官能性シロキサン型硬化剤は式C14のもの
【化30】
[式中、
A
C4は非置換でも、直鎖状もしくは分岐状のC
1~C
6アルキルにより置換されていてもよいC
6~C
20アリールから、好ましくは非置換でも、直鎖状もしくは分岐状のC
1~C
4アルキルにより置換されていてもよいC
6~C
12アリールから選択され;
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
X
C41、X
C42はC
1~C
6アルカンジイルから、好ましくはC
1~C
4アルカンジイルから、最も好ましくはメタンジイルおよびエタンジイルから独立して選択され;
R
C4はHおよび直鎖状または分岐状のC
1~C
6アルキルから、好ましくはHおよびC
1~C
4アルキルから、最も好ましくはH、メチルおよびエチルから選択される]
である。
【0070】
特定の好ましい二官能性のシロキサン型硬化剤は式C14aのもの
【化31】
[式中、
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
X
C41、X
C42はC
1~C
6アルカンジイルから、好ましくはC
1~C
4アルカンジイルから、最も好ましくはメタンジイルおよびエタンジイルから独立して選択され;
R
C4はHおよびC
1~C
4アルキルから、好ましくはH、メチルまたはエチルから、最も好ましくはHまたはメチルから選択され;
R
CA1はHおよびC
1~C
4アルキルから、好ましくはH、メチルおよびエチル、最も好ましくはHから選択される]
である。
【0071】
限定することなく、最も好ましい二官能性のシロキサン型硬化剤は次のものである:
【化32】
【0072】
特に好ましいモノマー性の多官能性シロキサン型硬化剤は式C15のもの:
【化33】
[式中、
R
C1、R
C2、R
C3はメチル、エチルおよび1-プロピル、好ましくはメチルから独立して選択され;
R
CA1、R
CA2はHおよびC
1~C
4アルキルから、好ましくはH、メチルおよびエチル、最も好ましくはHから独立して選択される]
である。
【0073】
限定することなく、最も好ましいモノマー性の多官能性シロキサン型硬化剤は次のものである:
【化34】
【0074】
無機充填材
本発明で使用される無機充填材は特に限定されない。その例として、シリカ、アルミナ、硫酸バリウム、タルク、粘土、雲母粉末、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、およびジルコン酸カルシウムが挙げられる。これらのうち、シリカが好ましい。さらに、非晶質シリカ、微粉シリカ、ヒュームドシリカ、結晶シリカ、合成シリカおよび中空シリカのようなシリカが好ましく、ヒュームドシリカがより好ましい。球状シリカがシリカとして好ましい。これらは単独で使用しても、その2種類以上を組み合わせて使用してもよい。
【0075】
無機充填材の平均粒径は特に限定されない。絶縁層上に微細配線を形成するという観点から、無機充填材の平均粒径の上限は好ましくは5マイクロメートル以下、より好ましくは3マイクロメートル以下、さらにより好ましくは1マイクロメートル以下、なおさらにより好ましくは0.7マイクロメートル以下、特に好ましくは0.5マイクロメートル以下である。一方、無機充填材の平均粒径の下限は、エポキシ樹脂組成物から樹脂組成物ワニスを形成するときワニスの粘度の増大に起因する取扱いの容易さの低下を防ぐことができるという観点から、好ましくは0.01マイクロメートル以上、より好ましくは0.03マイクロメートル以上、さらにより好ましくは0.05マイクロメートル以上、なおさらにより好ましくは0.07マイクロメートル以上、特に好ましくは0.1マイクロメートル以上である。無機充填材の平均粒径は、Mie散乱理論に基づくレーザー回折および散乱方法により測定することができる。具体的には、無機充填材の粒度分布はレーザー回折粒度分布測定装置を用いて体積基準で製造され、その中位径を平均粒径として測定することができる。測定サンプルとして、好ましくは、無機充填材が超音波処理により水中に分散された分散液を使用することができる。レーザー回折粒度分布測定装置として、Horiba, Ltd.製のLA-500、750、および950、などを使用することができる。
【0076】
無機充填材の含量は樹脂組成物に必要とされる特性に応じて変化するが、樹脂組成物中の不揮発性成分の含量が100質量%と規定されるとき、好ましくは20~85質量%、より好ましくは30~80質量%、さらにより好ましくは40~75質量%、なおさらにより好ましくは50~70質量%である。無機充填材の含量が少な過ぎると、硬化した生成物の熱膨張係数が高い傾向がある。含量が大き過ぎると、硬化した生成物が脆性になり、剥離強度が低下する傾向がある。
【0077】
本発明の樹脂組成物を製造する方法は特に限定されることがなく、その例としては回転ミキサーなどを用いてブレンド成分を、必要ならば溶媒などと共に混合する方法が挙げられる。
【0078】
用途
本発明の樹脂組成物の用途は特に限定されない。樹脂組成物は樹脂組成物が必要とされる広範囲の用途で、たとえば絶縁樹脂シート、たとえば接着膜およびプリプレグ、回路基板(積層体、多層プリント配線板、等向けの用途)、ソルダーレジスト、アンダーフィル材料、ダイボンディング材料、半導体シーリング材料、ホールプラッギング樹脂、およびモジュール埋め込み樹脂に使用することができる。これらのうち、本発明の樹脂組成物は多層プリント配線板の製造における絶縁層を形成するための樹脂組成物(多層プリント配線板の絶縁層のための樹脂組成物)として適切に使用することができる。また、本発明の樹脂組成物は、多層プリント配線板の製造において導電層がメッキにより形成される絶縁層を形成するための樹脂組成物(導電層がメッキにより形成される多層プリント配線板の絶縁層のための樹脂組成物)として適切に使用することができる。本発明の樹脂組成物は絶縁層を形成するためにワニス状態で回路基板に塗布することができるが、一般に、シート形状の積層材料、たとえば接着膜およびプリプレグの形態で樹脂組成物を使用するのが工業的に好ましい。シート形状の積層材料の積層特性の観点から、樹脂組成物の軟化点は好ましくは40~150℃である。
【0079】
デジタル接続性および5Gテクノロジーに向かう傾向のため、5G用途に焦点を当てた5G材料仕様書に合わせるには、特に低い誘電率Dkおよび損失正接Dfを有する特別な誘電性ポリマーが必要である。特に、低い誘電定数および低損失のポリマーが、限定されることはないが:
・アンテナモジュール
・パーソナルコンピューター
・携帯電話
・電気部品およびアンテナ基材
・電熱回路(ETC)
に必要である。
【0080】
他の成分
以下に記載するように本発明に従う組成物にはさらなる添加剤が存在してもよい。
【0081】
追加の硬化剤
シロキサン化合物は他の公知の硬化剤と組み合わせて使用してもよい。1つの好ましい実施形態においては本発明に従うシロキサン型硬化剤を唯一の硬化剤として使用する。別の好ましい実施形態において本発明に従うシロキサン型硬化剤は、下記硬化剤の少なくとも1種と組み合わせて使用する。組み合わせて使用する場合シロキサン型硬化剤の量は20%~99質量%、好ましくは30~90質量%、最も好ましくは50~90質量%である。
【0082】
追加の硬化剤は、特に限定されることはないが、フェノールをベースとする硬化剤、ナフトールをベースとする硬化剤、活性エステルをベースとする硬化剤、ベンゾキサジンをベースとする硬化剤、シアネートエステルをベースとする硬化剤、および酸無水物をベースとする硬化剤でよい。損失正接Dfまたは誘電率Dkのような誘電特性を改良するという観点からフェノールをベースとする硬化剤、ナフトールをベースとする硬化剤、および活性エステルをベースとする硬化剤が好ましい。本発明に従うシロキサン型硬化剤に加えて、これらは単独で、またはこれらの2種類以上の組合せで使用することができる。
【0083】
フェノールをベースとする硬化剤およびナフトールベースの硬化剤としては、特に限定されることはないが、ノボラック構造を有するフェノールベースの硬化剤およびノボラック構造を有するナフトールベースの硬化剤が挙げられる。フェノールノボラック樹脂、トリアジン骨格を含有するフェノールノボラック樹脂、ナフトールノボラック樹脂、ナフトールアラルキル型樹脂、トリアジン骨格を含有するナフトール樹脂、およびビフェニルアラルキル型フェノール樹脂が好ましい。市販のビフェニルアラルキル型フェノール樹脂は「MEH-7700」、「MEH-7810」、「MEH-7851」、および「MEH7851-4H」(Meiwa Plastic Industries, Ltd.から入手可能) and 「GPH」(NIPPON KAYAKU Co., Ltd.から入手可能)でよく、市販のナフトールノボラック樹脂は「NHN」および「CBN」(NIPPON KAYAKU Co., Ltd.から入手可能)でよく、市販のナフトールアラルキル型樹脂は「SN170」、「SN180」、「SN190」、「SN475」、「SN485」、「SN495」、「SN395」、および「SN375」(Tohto Kasei Co., Ltd.から入手可能)でよく、市販のフェノールノボラック樹脂は「TD2090」(DIC Corporationから入手可能)でよく、市販のトリアジン骨格を含有するフェノールノボラック樹脂は「LA3018」、「LA7052」、「LA 7054」、および「LA1356」(DIC Corporationから入手可能)でよい。シロキサン型硬化剤に加えて、これらは単独で、またはこれらの2種類以上の組合せで使用することができる。
【0084】
活性エステルをベースとする硬化剤は特に限定されないが、分子内に2つ以上の高度に反応性のエステル基を有する化合物、たとえばフェノールエステル、チオフェノールエステル、N-ヒドロキシアミンエステル、および複素環式ヒドロキシ化合物のエステルが一般に好ましく使用される。活性エステルをベースとする硬化剤は好ましくはカルボン酸化合物および/またはチオカルボン酸化合物とヒドロキシ化合物および/またはチオール化合物との縮合反応により得られる。特に、耐熱性を改良する観点から、カルボン酸化合物とヒドロキシ化合物から得られる活性エステルをベースとする硬化剤が好ましく、カルボン酸化合物とフェノール化合物および/またはナフトール化合物から得られる活性エステルをベースとする硬化剤がより好ましい。カルボン酸化合物の例としては安息香酸、酢酸、コハク酸、マレイン酸、イタコン酸、フタル酸、イソフタル酸、テレフタル酸、およびピロメリト酸が挙げられる。フェノール化合物またはナフトール化合物の例としてはヒドロキノン、レゾルシノール、ビスフェノールA、ビスフェノールF、ビスフェノールS、フェノールフタリン、メチル化ビスフェノールA、メチル化ビスフェノールF、メチル化ビスフェノールS、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、カテコール、アルファ-ナフトール、ベータ-ナフトール、1,5-ジヒドロキシナフタレン、1,6-ジヒドロキシナフタレン、2,6-ジヒドロキシナフタレン、ジヒドロキシベンゾフェノン、トリヒドロキシベンゾフェノン、テトラヒドロキシベンゾフェノン、フロログルシン、ベンゼントリオール、ジシクロペンタジエニルジフェノール、およびフェノールノボラックが挙げられる。活性エステルをベースとする硬化剤は単独で、または2種類以上の組合せで使用することができる。活性エステルをベースとする硬化剤として、参照によりその全体が本明細書に組み込まれる特開2004-277460号に開示されている活性エステルをベースとする硬化剤が使用でき、または市販の活性エステルをベースとする硬化剤が使用できる。市販の活性エステルをベースとする硬化剤は好ましくはジシクロペンタジエニルジフェノール構造を含有する活性エステルをベースとする硬化剤、フェノールノボラックのアセチル化された物質、またはフェノールノボラックのベンゾイル化された物質である。これらのうち、ジシクロペンタジエニルジフェノール構造を含有する活性エステルベースの硬化剤がより好ましい。特に、ジシクロペンタジエニルジフェノール構造を含有する活性エステルベースの硬化剤はEXB9451、EXB9460、EXB9460S-65T、およびHPC-8000-65T(DIC Corporationから入手可能、活性基当量:約223)でよく、フェノールノボラックのアセチル化された物質はDC808(JER Co., Ltd.から入手可能、活性基当量:約149)でよく、フェノールノボラックのベンゾイル化された物質はYLH1026(JER Co., Ltd.から入手可能、活性基当量:約200)、YLH1030(JER Co., Ltd.から入手可能、活性基当量:約201)、およびYLH1048(JER Co., Ltd.から入手可能、活性基当量:約245)でよい。これらのうち、ワニスの貯蔵安定性および硬化した生成物の熱膨張係数の観点から、EXB9460Sが好ましい。
【0085】
より具体的には、ジシクロペンタジエニルジフェノール構造を含有する活性エステルをベースとする化合物は次式C61の化合物でよい。
【0086】
【0087】
式C61において、Rはフェニル基またはナフチル基であり、kは0または1を表わし、nは繰返し単位の平均数であり、0.05~2.5である。誘電特性を低下させ、耐熱性を改良するという観点から、Rは好ましくはナフチル基であり、kは好ましくは0であり、nは好ましくは0.25~1.5である。
【0088】
ベンゾキサジンをベースとする硬化剤の具体的な例としては、特に限定されることはないが、F-aおよびP-d(Shikoku Chemicals Corporationから入手可能)およびHFB2006M(Showa High Polymer Co., Ltd.から入手可能)が挙げられる。
【0089】
シアネートエステルをベースとする硬化剤の例としては、特に限定されることはないが、ノボラック型(フェノールノボラック型、アルキルフェノールノボラック型、等)のシアネートエステルをベースとする硬化剤、ジシクロペンタジエン型シアネートエステルをベースとする硬化剤、ビスフェノール型(ビスフェノールA型、ビスフェノールF型、およびビスフェノールS型、等)のシアネートエステルベースの硬化剤、およびこれらの硬化剤が部分的にトリアジン化されたプレポリマーが挙げられる。シアネートエステルをベースとする硬化剤の質量平均分子量は特に限定されないが、好ましくは500~4500、より好ましくは600~3000である。シアネートエステルをベースとする硬化剤の具体的な例としては:二官能性シアネート樹脂、たとえばビスフェノールAジシアネート、ポリフェノールシアネート(オリゴ(3-メチレン-1,5-フェニレンシアネート)、4,4’-メチレンビス-(2,6-ジメチルフェニルシアネート)、4,4’-エチリデンジフェニルジシアネート、ヘキサフルオロビスフェノールAジシアネート、2,2-ビス(4-シアネート)フェニルプロパン、1,1-ビス(4-シアネートフェニルメタン)、ビス(4-シアネート-3,5-ジメチルフェニル)メタン、1,3-ビス(4-シアネートフェニル-1-(メチルエチリデン))ベンゼン、ビス(4-シアネートフェニル)チオエーテル、およびビス(4-シアネートフェニル)エーテル;フェノールノボラック、クレゾールノボラック、またはジシクロペンタジエン構造を含有するフェノール樹脂などから誘導された多官能性シアネート樹脂;ならびにこれらのシアネートエステルが部分的にトリアジン化されたプレポリマーが挙げられる。これらは単独で、またはこれらの2種類以上の組合せで使用することができる。市販のシアネートエステル樹脂は次式(C62)により表わされるフェノールノボラック型多官能性シアネートエステル樹脂(Lonza Japan Ltd.から入手可能、PT30、シアネート当量:124)、ビスフェノールAジシアネートが部分的または全体的にトリアジン化されて次式(C63)により表わされるトリマーを形成しているプレポリマー(Lonza Japan Ltd.から入手可能、BA230、シアネート当量:232)、および次式(C64)により表わされるジシクロペンタジエン構造を含有するシアネートエステル樹脂(Lonza Japan Ltd.から入手可能、DT-4000およびDT-7000)でよい。
【0090】
【0091】
式C62で、nは平均値として任意の数(好ましくは0~20)を表わす。
【0092】
【0093】
式C64で、nは平均値として0~5の数を表わす。
【0094】
酸無水物をベースとする硬化剤は、特に限定されることはないが、無水フタル酸、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、メチルヘキサヒドロフタル酸無水物、メチルナド酸無水物、水素化メチルナド酸無水物、トリアルキルテトラヒドロフタル酸無水物、ドデセニルコハク酸無水物、5-(2,5-ジオキソテトラヒドロ-3-フラニル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、トリメリト酸無水物、ピロメリト酸無水物、ベンゾフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、オキシジフタル酸二無水物、3,3’-4,4’-ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b-ヘキサヒドロ-5-(テトラヒドロ-2,5-ジオキソ-3-フラニル)-ナフト[1,2-c]フラン-1,3-ジオン、エチレングリコールビス(アンヒドロトリメリテート)、およびポリマー型酸無水物、たとえばスチレンとマレイン酸の共重合により得られるスチレン-マレイン酸樹脂でよい。
【0095】
本発明の樹脂組成物において、樹脂組成物の硬化した生成物の機械的強度および耐水性を改良するという観点から、エポキシ樹脂中のエポキシ基の総数の硬化剤(E)中の反応性の基の総数に対する比は好ましくは1:0.2~1:2、より好ましくは1:0.3~1:1.5、さらにより好ましくは1:0.4~1:1である。樹脂組成物中のエポキシ樹脂のエポキシ基の総数は、各々のエポキシ樹脂内の固形分の質量をそれぞれのエポキシ当量で割り算し、計算された値をすべてのエポキシ樹脂に関して合計することにより得られる値である。硬化剤中の反応性の基の総数は、各々の硬化剤中の固形分の質量をそれぞれの反応性の基の当量で割り、計算された値をすべての硬化剤に関して合計することにより得られる値である。
【0096】
アルコキシオリゴマー
米国特許出願公開第2014/087152号に記載されているアルコキシオリゴマーは本発明に従う組成物に有利に使用できる。アルコキシオリゴマーとは、有機の基とアルコキシシリル基の両方を有する低分子量の樹脂をいい、特に限定されることなく、メチル基を含有するアルコキシシリル樹脂、フェニル基を含有するアルコキシシリル樹脂、エポキシ基を含有するアルコキシシリル樹脂、メルカプト基を含有するアルコキシシリル樹脂、アミノ基を含有するアルコキシシリル樹脂、アクリル基を含有するアルコキシシリル樹脂、メタクリル基を含有するアルコキシシリル樹脂、ウレイド基を含有するアルコキシシリル樹脂、イソシアネート基を含有するアルコキシシリル樹脂、およびビニル基を含有するアルコキシシリル樹脂でよい。これらのうち、エポキシ基を含有するアルコキシシリル樹脂、メルカプト基を含有するアルコキシシリル樹脂、およびアミノ基を含有するアルコキシシリル樹脂が好ましく、アミノ基を含有するアルコキシシリル樹脂がより好ましい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。アルコキシオリゴマーは1種類または2種類以上の有機の基を有し得る。
【0097】
具体的には、アルコキシオリゴマーはグリシドキシプロピル基を含有するアルコキシシリル樹脂、アミノプロピル基を含有するアルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基を含有するアルコキシシリル樹脂、N-フェニル-3-アミノプロピル基を含有するアルコキシシリル樹脂、メタクリルオキシプロピル基を含有するアルコキシシリル樹脂、アクリルオキシプロピル基を含有するアルコキシシリル樹脂、メルカプトプロピル基を含有するアルコキシシリル樹脂、ウレイドプロピル基を含有するアルコキシシリル樹脂、およびイソシアナトプロピル基を含有するアルコキシシリル樹脂でよい。これらのうち、グリシドキシプロピル基を含有するアルコキシシリル樹脂、アミノプロピル基を含有するアルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基を含有するアルコキシシリル樹脂、N-フェニル-3-アミノプロピル基を含有するアルコキシシリル樹脂、およびメルカプトプロピル基を含有するアルコキシシリル樹脂が好ましく、3-アミノプロピル基を含有するアルコキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基を含有するアルコキシシリル樹脂、およびN-フェニル-3-アミノプロピル基を含有するアルコキシシリル樹脂がより好ましく、N-フェニル-3-アミノプロピル基を含有するアルコキシシリル樹脂がさらにより一層好ましい。
【0098】
より具体的には、アルコキシオリゴマーはグリシドキシプロピル基を含有するメトキシシリル樹脂、アミノプロピル基を含有するメトキシシリル樹脂、アミノプロピル基を含有するエトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基を含有するメトキシシリル樹脂、N-フェニル-3-アミノプロピル基を含有するメトキシシリル樹脂、メタクリルオキシプロピル基を含有するメトキシシリル樹脂、アクリルオキシプロピル基を含有するメトキシシリル樹脂、メルカプトプロピル基を含有するメトキシシリル樹脂、ウレイドプロピル基を含有するエトキシシリル樹脂、およびイソシアナトプロピル基を含有するエトキシシリル樹脂でよい。これらのうちで、グリシドキシプロピル基を含有するメトキシシリル樹脂、アミノプロピル基を含有するメトキシシリル樹脂、アミノプロピル基を含有するエトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基を含有するメトキシシリル樹脂、N-フェニル-3-アミノプロピル基を含有するメトキシシリル樹脂、およびメルカプトプロピル基を含有するメトキシシリル樹脂が好ましく、3-アミノプロピル基を含有するメトキシシリル樹脂、3-アミノプロピル基を含有するエトキシシリル樹脂、N-2-(アミノエチル)-3-アミノプロピル基を含有するメトキシシリル樹脂、およびN-フェニル-3-アミノプロピル基を含有するメトキシシリル樹脂がより好ましく、N-フェニル-3-アミノプロピル基を含有するメトキシシリル樹脂がさらにより一層好ましい。
【0099】
より具体的には、アルコキシオリゴマーは次式(O1)の構造により表わすことができる。
【0100】
【0101】
式(O1)で、R1、R2およびR3は各々独立して1~10個の炭素原子を有する直鎖状または分岐状のアルキル基、好ましくは1~5個の炭素原子を有する直鎖状または分岐状のアルキル基、より好ましくは1~4個の炭素原子を有する直鎖状または分岐状のアルキル基、さらにより好ましくはメチル基、エチル基、プロピル基、イソプロピル基、1-メチルプロピル基、ブチル基、イソブチル基またはtert-ブチル基、なおさらにより好ましくはメチル基、エチル基、プロピル基またはイソプロピル基、特に好ましくはメチル基またはエチル基である。複数のR3は互いに同じでも異なってもよい。
【0102】
式(1)で、Xは低級アルキル基、グリシドキシアルキル基、アミノアルキル基、メルカプトアルキル基、アクリルオキシアルキル基、メタクリルオキシアルキル基、ウレイドアルキル基、イソシアナトアルキル基、またはビニルアルキル基である。Xは好ましくはグリシドキシプロピル基、アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-フェニル-3-アミノプロピル基、メタクリルオキシプロピル基、アクリルオキシプロピル基、メルカプトプロピル基、ウレイドプロピル基またはイソシアナトプロピル基、より好ましくはグリシドキシプロピル基、アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基、N-フェニル-3-アミノプロピル基またはメルカプトプロピル基、さらにより好ましくは3-アミノプロピル基、N-2-(アミノエチル)-3-アミノプロピル基またはN-フェニル-3-アミノプロピル基、なおさらにより好ましくはN-フェニル-3-アミノプロピル基である。Xは1種類でも2種類以上でもよい。したがって、複数のXは同じであっても、互いに異なってもよい。
【0103】
式(O1)で、nは2~10の整数、好ましくは2~Sの整数、より好ましくは2~6の整数、さらにより好ましくは3~5の整数である。
【0104】
促進剤
本発明の樹脂組成物がさらに促進剤(触媒ともいわれる)を含有すると、エポキシ樹脂および硬化剤は効率的に硬化することができる。促進剤は、特に限定されることはないが、アミンをベースとする促進剤、グアニジンをベースとする促進剤、イミダゾールをベースとする促進剤、ホスホニウムをベースとする促進剤、および金属をベースとする促進剤でよい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。
【0105】
アミンをベースとする促進剤は、特に限定されることはないが、トリアルキルアミン、たとえばトリエチルアミンおよびトリブチルアミン;ならびにアミン化合物、たとえば4-ジメチルアミノピリジン、ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、および1,8-ジアザビシクロ[S,4,0]ウンデカン(以下DBUと省略する)でよい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。
【0106】
グアニジンをベースとする促進剤は、特に限定されることはないが、ジシアンジアミド、1-メチルグアニジン、1-エチルグアニジン、1-シクロヘキシルグアニジン、1-フェニルグアニジン、1-(o-トリル)グアニジン、ジメチルグアニジン、ジフェニルグアニジン、トリメチルグアニジン、テトラメチルグアニジン、ペンタメチルグアニジン、1,5,7-トリアザビシクロ[4.4.0]デス-5-エン、7-メチル-1,5,7-トリアザビシクロ[4.4.0]デス-5-エン、1-メチルビグアニド、1-エチルビグアニド、1-n-ブチルビグアニド、1-n-オクタデシルビグアニド、1,1-ジメチルビグアニド、1,1-ジエチルビグアニド、1-シクロヘキシルビグアニド、1-アリルビグアニド、1-フェニルビグアニド、および1-(o-トリル)ビグアニドでよい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。
【0107】
イミダゾールをベースとする促進剤は、特に限定されることはないが、イミダゾール化合物、たとえば2-メチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、1,2-ジメチルイミダゾール、2-エチル-4-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、1-ベンジル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾリウムトリメリテート、1-シアノエチル-2-フェニルイミダゾリウムトリメリテート、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-ウンデシルイミダゾリル-(1’)]エチル-s-トリアジン、2,4-ジアミノ-6-[2’-エチル-4’-メチルイミダゾリル-(1’)]-エチル-s-トリアジン、2,4-ジアミノ-6-[2’-メチルイミダゾリル-(1’)]-エチル-s-トリアジンイソシアヌル酸付加物、2-フェニルイミダゾールイソシアヌル酸付加物、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2,3-ジヒドロ-1H-ピロロ[1,2-a]ベンズイミダゾール、1-ドデシル-2-メチル-3-ベンジルイミダゾリウムクロリド、2-メチルイミダゾリン、および2-フェニルイミダゾリン、ならびにイミダゾール化合物とエポキシ樹脂の付加物でよい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。
【0108】
ホスホニウムをベースとする促進剤は、特に限定されることはないが、トリフェニルホスフィン、ホスホニウムボレート化合物、テトラフェニルホスホニウムテトラフェニルボレート、n-ブチルホスホニウムテトラフェニルボレート、テトラブチルホスホニウムデカノエート、(4-メチルフェニル)トリフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムチオシアネート、およびブチルトリフェニルホスホニウムチオシアネートでよい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。
【0109】
本発明の樹脂組成物中の促進剤(金属をベースとする促進剤を除く)の含量は、樹脂組成物中の不揮発性成分の含量が100質量%と規定されるとき、好ましくは0.005~1質量%の範囲内、より好ましくは0.01~0.5質量%の範囲内である。促進剤の含量が0.005質量%未満であると、硬化が遅くなり、長い熱硬化時間が必要とされる傾向がある。促進剤の含量が1質量%を超えると、樹脂組成物の貯蔵安定性が低下する傾向がある。
【0110】
金属をベースとする促進剤は、特に限定されることはないが、コバルト、銅、亜鉛、鉄、ニッケル、マンガン、およびスズのような金属の有機金属錯体および有機金属塩でよい。有機金属錯体の具体的な例としては有機コバルト錯体、たとえばコバルト(II)アセチルアセトネートおよびコバルト(III)アセチルアセトネート、有機銅錯体、たとえば銅(II)アセチルアセトネート、有機亜鉛錯体、たとえば亜鉛(II)アセチルアセトネート、有機鉄錯体、たとえば鉄(III)アセチルアセトネート、有機ニッケル錯体、たとえばニッケル(II)アセチルアセトネート、ならびに有機マンガン錯体、たとえばマンガン(II)アセチルアセトネートが挙げられる。有機金属塩はオクタン酸亜鉛、オクタン酸スズ、ナフテン酸亜鉛、ナフテン酸コバルト、ステアリン酸スズ、およびステアリン酸亜鉛でよい。これらは単独で、またはこれらの2種類以上の組合せで使用できる。
【0111】
本発明の樹脂組成物中の金属をベースとする促進剤の添加量に関して、金属をベースとする硬化触媒に由来する金属の含量は、樹脂組成物の不揮発性成分の含量が100質量%と規定されるとき、好ましくは25~500ppmの範囲内、より好ましくは40~200ppmの範囲内である。金属の含量が25ppm未満であると、低い算術平均粗さの絶縁層表面に優れた接着特性を有する導電層を形成するのが困難になる傾向がある。金属の含量が500ppmを超えると、樹脂組成物の貯蔵安定性および絶縁特性が低下する傾向がある。
【0112】
特に好ましい促進剤はBASF SEから商品名Lupragen(商標) N700で入手可能な
【化39】
およびBASF SEから商品名Basionics(商標) VS 3で入手可能なEMIM DCA:
【化40】
である。
【0113】
熱可塑性樹脂
本発明の樹脂組成物がさらに熱可塑性樹脂を含有すると、硬化した生成物の機械的強度を改良することができる。また、樹脂組成物を接着膜の形態で使用する場合、膜成形性も改良することができる。かかる熱可塑性樹脂はフェノキシ樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、ポリスルホン樹脂、ポリエーテルスルホン樹脂、ポリフェニレンエーテル樹脂、ポリカーボネート樹脂、ポリエーテルエーテルケトン樹脂、およびポリエステル樹脂でよい。これらの熱可塑性樹脂は単独で、またはこれらの2種類以上の組合せで使用できる。熱可塑性樹脂の質量平均分子量は好ましくは5000~200000の範囲内である。質量平均分子量がこの範囲未満であると、膜成形性および機械的強度を改良する効果が充分に発揮されないようである。質量平均分子量がこの範囲を超えると、シアネートエステル樹脂およびナフトール型エポキシ樹脂との適合性が充分でなく、硬化後の表面のむらが増大し、高密度微細配線の形成が困難になる傾向がある。本発明において質量平均分子量は(ポリスチレンに対して)ゲルパーミエーションクロマトグラフィー(GPC)法によって測定される。具体的には、GPC法において、質量平均分子量は、測定装置としてShimadzu Corporationにより製造されたLC-9A1RID-6Aを、カラムとしてShowa Denko K.K.により製造されたShodex K-800P/K-804L1K-804Lを、移動相としてクロロホルムなどを用い、標準ポリスチレンの較正曲線を使用する計算を行なって、40℃のカラム温度で決定することができる。
【0114】
熱可塑性樹脂が本発明の樹脂組成物中に混合されるとき、樹脂組成物中の熱可塑性樹脂の含量は特に限定されず、好ましくは樹脂組成物中の不揮発性成分の100質量%に対して0.1~10質量%、より好ましくは1~5質量%である。熱可塑性樹脂の含量が少な過ぎると、膜成形性および機械的強度を改良する効果が発揮されそうもない。熱可塑性樹脂の含量が大き過ぎると、溶融粘度が増大し、湿式粗面化工程後の絶縁層の表面の算術平均粗さが増大する傾向がある。
【0115】
ゴム粒子
本発明の樹脂組成物がさらにゴム粒子を含有すると、メッキ剥離強度を改良することができ、ドリル加工特性を改良し、誘電損失係数を低下させ、かつ応力を緩和する効果を得ることができる。本発明で使用することができるゴム粒子は、たとえば、樹脂組成物のワニスの製造に使用される有機溶媒に不溶性で、必須成分としてのシアネートエステル樹脂およびエポキシ樹脂と不相溶性であるものである。したがって、ゴム粒子は本発明の樹脂組成物のワニス中に分散状態で存在する。一般に、かかるゴム粒子は、ゴム成分が有機溶媒および樹脂に不溶性になる程度までゴム成分の分子量を増大させ、それを顆粒状態に変換することにより製造することができる。
【0116】
本発明で使用することができるゴム粒子の好ましい例としてはコア-シェル型ゴム粒子、架橋したアクリロニトリル-ブタジエンゴム粒子、架橋したスチレン-ブタジエンゴム粒子、およびアクリルゴム粒子が挙げられる。コア-シェル型ゴム粒子はコア層およびシェル層を有するゴム粒子であり、その例としては、外層としてのシェル層がガラス状ポリマーで作成され、内層としてのコア層がゴム状ポリマーで作成された二層構造;および外層としてのシェル層がガラス状ポリマーで作成され、内層がゴム状ポリマーで作成され、コア層がガラス状ポリマーで作成された三層構造が挙げられる。ガラス状ポリマー層はたとえばメタクリル酸メチルのポリマーで作成され、ゴム状ポリマー層はたとえばブチルアクリレートポリマー(ブチルゴム)で作成される。ゴム粒子はこれらの2種類以上の組合せで使用してもよい。コア-シェル型ゴム粒子の具体的な例としてはStaphyloid AC3832、AC3816N、IM-401 Modified 1、およびIM-401 Modified 7-17(商品名、Ganz Chemical Co., Ltd.から入手可能)、ならびにMETABLEN KW-4426(商品名、MITSUBISHI RAYON CO., LTD.から入手可能)が挙げられる。架橋したアクリロニトリルブタジエンゴム(NBR)粒子の具体的な例としてはXER-91(平均粒径:0.5マイクロメートル、JSR Corporationから入手可能)が挙げられる。架橋したスチレンブタジエンゴム(SBR)粒子の具体的な例としてはXSK-500(平均粒径:0.5マイクロメートル、JSR Corporationから入手可能)が挙げられる。アクリルゴム粒子の具体的な例としてはMETABLEN W300A(平均粒径:0.1マイクロメートル)およびW450A(平均粒径:0.2マイクロメートル)(MITSUBISHI RAYON CO., LTD.から入手可能)が挙げられる。
【0117】
混合されるゴム粒子の平均粒径は好ましくは0.005~1マイクロメートルの範囲内、より好ましくは0.2~0.6マイクロメートルの範囲内である。本発明で使用されるゴム粒子の平均粒径は動的光散乱法により測定することができる。たとえば、測定は、ゴム粒子を適当な有機溶媒に超音波などにより均一に分散させ、集中方式粒径分析器(FPAR-1000、Otsuka Electronics Co., Ltd.製)を用いてゴム粒子の粒度分布を質量基準で作成し、その中位径を平均粒径として定義することによって行なうことができる。
【0118】
ゴム粒子の含量は樹脂組成物中の不揮発性成分の100質量%に対して好ましくは0.05~10質量%、より好ましくは0.5~5質量%である。
【0119】
難燃剤
本発明の樹脂組成物がさらに難燃剤を含有すると、組成物に難燃性を付与することができる。難燃剤の例としては有機リンをベースとする難燃剤、有機窒素を含有するリン化合物、窒素化合物、シリコーンをベースとする難燃剤、および金属水酸化物が挙げられる。有機リンをベースとする難燃剤はフェナントレン型リン化合物、たとえばSANKO CO., LTD.から入手可能なHCA、HCA-HQ、およびHCA-NQ、リンを含有するベンゾキサジン化合物、たとえばShowa High Polymer Co., Ltd.から入手可能なHFB-2006M、リン酸エステル化合物、たとえばAjinomoto Fine-Techno Co., Inc.から入手可能なREOFOS 30、50、65、90、110、TPP、RPD、BAPP、CPD、TCP、TXP、TBP、TOP、KP140、およびTIBP、HOKKO CHEMICAL INDUSTRY CO., LTD.から入手可能なTPPOおよびPPQ、Clariant Ltd.から入手可能なOP930、およびDAIHACHI CHEMICAL INDUSTRY CO., LTD.から入手可能なPX200、リンを含有するエポキシ樹脂、たとえばTohto Kasei Co., Ltd.から入手可能なFX289、FX305、およびTX0712、リンを含有するフェノキシ樹脂、たとえばTohto Kasei Co., Ltd.から入手可能なERFOOI、ならびにリンを含有するエポキシ樹脂、たとえばJapan Epoxy Resin Co., Ltd.から入手可能なYL7613でよい。有機窒素を含有するリン化合物はリン酸エステルアミド化合物、たとえばShikoku Chemicals Corporationから入手可能なSP670およびSP703、ならびにホスファゼン化合物、たとえばOtsuka Chemical Co., Ltd.から入手可能なSPB100およびSPEI00、およびFUSHIMI Pharmaceutical Co., Ltd.から入手可能なFP-シリーズでよい。金属水酸化物は水酸化マグネシウム、たとえばUbe Material Industries, Ltd.から入手可能なUD65、UD650、およびUD653、ならびに水酸化アルミニウム、たとえばTomoe Engineering Co., Ltd.から入手可能なB-30、B-325、B-315、B-308、B-303、およびUFH-20でよい。
【0120】
難燃剤の含量は樹脂組成物中の不揮発性成分の100質量%に対して好ましくは0.5~10質量%、より好ましくは1~5質量%である。
【0121】
接着膜
本発明の接着膜は、当業者に公知の方法により、たとえば、樹脂組成物を有機溶媒に溶解させた樹脂ワニスを製造し、その樹脂ワニスをダイコーターなどで支持体に塗布し、さらに加熱したり、熱風を吹き付けたり、などにより有機溶媒を乾燥することにより、樹脂組成物層を形成することによって製造することができる。
【0122】
有機溶媒の例としてはケトン、たとえばアセトン、メチルエチルケトンおよびシクロヘキサノン;酢酸エステル、たとえば酢酸エチル、酢酸ブチル、酢酸セロソルブ、プロピレングリコールモノメチルエーテルアセテート、およびカルビトールアセテート;カルビトール、たとえばセロソルブおよびブチルカルビトール;芳香族炭化水素、たとえばトルエンおよびキシレン;ならびにアミドをベースとする溶媒、たとえばジメチルホルムアミド、ジメチルアセトアミド、およびN-メチルピロリドンが挙げられる。有機溶媒はこれらの2種類以上の組合せで使用してもよい。
【0123】
乾燥条件は特に限定されないが、樹脂組成物層中の有機溶媒の含量が10質量%以下、好ましくは5質量%以下となるように行なわれる。乾燥条件はワニス中の有機溶媒の含量および有機溶媒の沸点に応じて変化する。たとえば、樹脂組成物層は30~60質量%の有機溶媒を含有するワニスを50~1500℃で約3~10分乾燥することによって形成することができる。
【0124】
接着膜において、形成される樹脂組成物層の厚さは好ましくは導電層の厚さ以上である。回路基板中の導電層の厚さは一般に5~70マイクロメートルの範囲内であるので、樹脂組成物層は好ましくは10~100マイクロメートルの厚さを有する。
【0125】
支持体の例としては、ポリエチレン、ポリプロピレンおよびポリ塩化ビニルのようなポリオレフィンのフィルム、ポリエチレンテレフタレート(以下「PET」と省略することがある)およびポリエチレンナフタレートのようなポリエステルのフィルム、ポリカーボネートフィルム、ならびにポリイミドフィルムを始めとする様々なプラスチックフィルムが挙げられる。さらに、剥離紙、銅箔およびアルミニウム箔のような金属箔、などを使用することができる。支持体および後に記載される保護フィルムは艶消し処理およびコロナ処理のような表面処理にかけてもよい。あるいは、支持体および保護フィルムはシリコーン樹脂をベースとする剥離剤、アルキド樹脂をベースとする剥離剤、およびフッ素樹脂をベースとする剥離剤のような剥離剤による剥離処理に付してもよい。
【0126】
支持体の厚さは特に限定されないが、好ましくは10~150マイクロメートル、より好ましくは25~50マイクロメートルである。
【0127】
支持体と接触しない樹脂組成物層の表面上に、支持体に対応する保護フィルムをさらに積層することができる。保護フィルムの厚さは特に限定されず、たとえば1~40マイクロメートルである。保護フィルムを積層すると、ほこりなどの付着または樹脂組成物層の表面の引掻き傷の生成を防ぐことができる。接着膜はロール形態に巻き上げ、保存することができる。
【0128】
接着膜を使用する多層プリント配線板
次に、このように製造された接着膜を使用して多層プリント配線板を製造する方法の一例を記載する。
【0129】
最初に、真空ラミネーターを用いて接着膜を回路基板の一方の表面または両方の表面上に積層する。回路基板に使用される基板の例としてはガラスエポキシ基板、金属基板、ポリエステル基板、ポリイミド基板、BT樹脂基板、および熱硬化性ポリフェニレンエーテル基板が挙げられる。本発明で使用される回路基板とは、その1つの表面または両方の表面上に形成されたパターン化された導電層(回路)を有する基板をいう。さらに、交互に層状化された導電および絶縁層を有し、その最外層の1つの表面または両方の表面上にパターン化された導電層(回路)を有する多層プリント配線板も本発明で使用される回路基板に含まれる。導電層の表面は前もって黒化処理および銅エッチングのような粗面化処理に付されていてもよい。積層する際、接着膜が保護フィルムを有しているとき、まず保護フィルムを除去し、次いで所望により接着膜および回路基板を予熱し、接着膜を圧縮し加熱しつつ回路基板に圧着する。本発明の接着膜において、真空積層法により減圧下で接着膜を回路基板に積層する方法を採用するのが適切である。積層条件は特に限定されないが、たとえば、次の条件下で積層をするのが好ましい:好ましくは70~140℃の圧着温度(積層温度);好ましくは1~11kgf/cm2(9.8×I04~107.9×104N/m2)の圧着圧力;および空気圧に対して20mmHg(26.7hPa)以下の減圧下。積層方法はロールを用いるバッチ式または連続式の方法でよい。真空積層は市販の真空ラミネーターを用いて行なうことができる。市販の真空ラミネーターの例としてはNichigo-Morton Co., Ltd.製の真空アプリケーター、Meiki Co., Ltd.製の真空圧力ラミネーター、Hitachi Industries Co., Ltd.製のロール型ドライコーター、およびHitachi AIC Inc.製の真空ラミネーターが挙げられる。
【0130】
減圧下で加熱および圧縮を行なう積層工程は汎用の真空ホットプレス機を用いて行なうことができる。たとえば、積層工程は加熱SUSプレートのような金属プレートを支持体層側から圧縮することによって実施することができる。圧縮条件に関して、減圧の程度は通常1×10-2MPa以下、好ましくは1×10-3MPa以下である。加熱および圧縮は1つの段階で行なうことができるが、樹脂の流出を制御する観点から、加熱および圧縮を2以上の段階で別々に行なうのが好ましい。たとえば、第1段階の圧縮を70~150℃の温度、1~15kgf/cm2の圧力で行ない、第2段階の圧縮を150~200℃の温度、1~40kgf/cm2の圧力で行なうのが好ましい。圧縮は各々の段階で30~120分の期間行なうのが好ましい。市販の真空ホットプレス機の例としてはMNPC-V-750-5-200(Meiki Co., Ltd.製)およびVHI-1603(KITAGAWA SEIKI CO., LTD.製)が挙げられる。
【0131】
絶縁層は、接着膜を回路基板上に積層し、積層体をほぼ室温に冷却し、支持体を剥離する場合には支持体を剥離し、次いで樹脂組成物層を熱硬化させることによって回路基板上に形成することができる。熱硬化の条件は樹脂組成物中の各樹脂成分の種類および含量に応じて適当に選択できる。熱硬化の条件は好ましくは150℃~220℃で20分~180分の範囲、より好ましくは160℃~210℃で30~120分の範囲から選択される。
【0132】
絶縁層を形成した後、支持体が硬化前に剥離されてなかった場合この時点で支持体を剥離する。その後、回路基板上に形成された絶縁層に必要に応じて穴を開けてビアホールまたはスルーホールを形成する。穴開けは、たとえば、ドリル、レーザー、プラズマ、などを用いる公知の方法により行なうことができるか、または必要ならばこれらの方法の組合せによって行なうことができる。炭酸ガスレーザーおよびNd:YAGレーザーのようなレーザーを用いる穴開けが最も一般的な方法である。
【0133】
その後、乾式メッキまたは湿式メッキにより絶縁層上に導電層を形成する。乾式メッキとして、蒸着、スパッタリング、およびイオンメッキのような公知の方法を使用することができる。湿式メッキにおいては、絶縁層の表面を、膨潤溶液による膨潤処理、酸化剤による粗面化処理、および中和溶液による中和処理に、この順に供して凹凸アンカーを形成する。膨潤溶液による膨潤処理は絶縁層を膨潤溶液中に50~80℃で5~20分浸漬することにより行なうことができる。膨潤溶液の例としてはアルカリ溶液および界面活性剤溶液が挙げられる。アルカリ溶液が好ましい。アルカリ溶液の例としては水酸化ナトリウム溶液および水酸化カリウム溶液が挙げられる。市販の膨潤溶液の例としてはAtotechから入手可能なSwelling Dip Securiganth PおよびSwelling Dip Securiganth SBUが挙げられる。酸化剤による粗面化処理は絶縁層を酸化剤溶液中に60℃~80℃で10分~30分浸漬することにより行なうことができる。酸化剤の例としては、過マンガン酸カリウムまたは過マンガン酸ナトリウムが水酸化ナトリウム、二クロム酸塩、オゾン、過酸化水素/硫酸、および硝酸の水溶液に溶解しているアルカリ性の過マンガン酸塩溶液が挙げられる。アルカリ性過マンガン酸塩溶液中の過マンガン酸塩の濃度は好ましくは5~10質量%である。市販の酸化剤の例としてはAtotechから入手可能なConcentrate Compact CPおよびDosing Solution Securiganth Pのようなアルカリ性過マンガン酸塩溶液が挙げられる。中和溶液による中和処理は絶縁層を中和溶液中に30~50℃で3~10分浸漬することにより行なうことができる。中和溶液は好ましくは酸性の水溶液である。市販の中和溶液の例としてはAtotechから入手可能なReduction Solution Securiganth Pが挙げられる。
【0134】
その後、無電解メッキおよび電解メッキの組合せにより形成する。導電層はまた、導電層の反転パターンを有するメッキレジストを形成し、無電解メッキのみを行なうことにより形成することもできる。その後のパターニング法として、当業者に公知のサブトラクティブ法またはセミアディティブ法を使用することができる。
【0135】
プリプレグ
本発明のプリプレグは、ホットメルト法または溶媒法を用いて本発明の樹脂組成物を繊維製のシート形状強化用基材に含侵させた後得られたものを加熱することにより半硬化させることによって製造することができる。すなわち、プリプレグは、本発明の樹脂組成物が繊維から作成されたシート形状の強化用基材に含侵するように形成することができる。繊維で作成されたシート形状の強化用基材として、たとえば、ガラス繊維布およびアラミド繊維のようなプリプレグとして一般的に使用される繊維製のものを使用することができる。
【0136】
ホットメルト法は、樹脂に対して良好な剥離特性を有するコート紙に、樹脂を有機溶媒に溶解させることなく一旦樹脂を塗布し、それをシート形状の強化用基材上に積層することにより、または樹脂を有機溶媒に溶解させることなくダイコーターを用いて樹脂を直接シート形状の強化用基材に塗布することによりプリプレグを製造する方法である。溶媒法は、接着膜を製造する場合と同様に樹脂を有機溶媒に溶解させて樹脂ワニスを製造し、このワニスにシート形状の強化用基材を浸漬することにより樹脂ワニスをシート形状の強化用基材に含侵させ、次いで得られたものを乾燥する方法である。
【0137】
プリプレグを用いた多層プリント配線板
次に、そのようにして製造されたプリプレグを用いて多層プリント配線板を製造する方法の一例を記載する。本発明のプリプレグの一枚のシートまたは任意に複数のシートを回路基板上に積み重ね、剥離フィルムを介して金属プレートによりサンドイッチ状に挟み、続いて圧縮加熱条件下で真空プレス積層する。圧縮加熱条件は好ましくは5~40kgf/cm2(49×104~392×104N/m2)の圧力、120~200℃の温度で、20~100分の期間である。また、真空積層法によりプリプレグを回路基板上に積層し、次いで接着膜を使用する場合と同様に熱硬化を実行することも可能である。その後、多層プリント配線板は、硬化したプリプレグの表面を粗面化した後上記と同じようにしてメッキすることにより導電層を形成することによって製造することができる。
【0138】
半導体素子
本発明の多層プリント配線板を用いて半導体素子を製造することができる。半導体素子は本発明の多層プリント配線板の導電性部品上に半導体チップを取り付けることにより製造することができる。「導電性部分」とは、「多層プリント配線板の電気信号を伝導する部分」を意味し、これは多層プリント配線板の表面上に配置されていてもよいし、または配線板中に埋め込まれた部分であってもよい。半導体チップは、チップが半導体材料からできた電気回路素子である限り特に限定されない。
【0139】
本発明の半導体素子を製造する際半導体チップを取り付ける方法は、半導体チップが有効に機能する限り特に限定されない。その具体的な例としてはワイヤボンディング実装法、フリップチップ実装法、バンプレスビルドアップ層(BBUL)を用いる実装法、異方性導電フィルム(ACF)を用いる実装法、および非導電性フィルム(NCF)を用いる実装法が挙げられる。
【0140】
「バンプレスビルドアップ層(BBUL)を用いる実装法」とは、「半導体チップを多層プリント配線板の凹部に直接埋め込み、続いて半導体チップをプリント配線板上の配線に接続する実装方法」を意味する。さらに、この実装方法は大雑把に次のBBUL法1)およびBBUL法2)に分類される。
BBUL法1):半導体チップをアンダーフィル剤により多層プリント配線板の凹部に実装する方法
BBUL法2):半導体チップを接着膜またはプリプレグにより多層プリント配線板の凹部に実装する方法
【0141】
BBUL法1)は具体的に以下の工程を含む:
工程1)多層プリント配線板の両面から導電層を除去し、レーザーまたは機械式ドリルにより多層プリント配線板にスルーホールを形成する。
工程2)粘着テープを多層プリント配線板の片側に付け、半導体チップの底部をスルーホール内に配置して、半導体チップを粘着テープ上に固定する。その時、半導体チップはスルーホールの高さより低い位置に配置するのが好ましい。
工程3)アンダーフィル剤をスルーホールと半導体チップの間の空間に注入装填して半導体チップをスルーホールに固定する。
工程4)その後、粘着テープを剥ぎ取って、半導体チップの底部を露出させる。
工程5)半導体チップの底側に本発明の接着膜またはプリプレグを積層して半導体チップを覆う。
工程6)接着膜またはプリプレグを硬化させた後レーザーにより穴を開けて半導体チップの底部のボンディングパッドを露出させ、続いて上記のように粗面化処理、無電解メッキおよび電解メッキを行なって配線を接続する。必要ならば、接着膜またはプリプレグをさらに積層してもよい。
【0142】
BBUL法2)は具体的に以下の工程を含む:
工程1)多層プリント配線板の両面の導電層上にフォトレジスト膜を形成し、フォトレジスト膜の片側のみにフォトリソグラフィー法により開口部を形成する。
工程2)開口部内に露出した導電層を、エッチング溶液を用いて除去して絶縁層を露出させた後、両面上のレジスト膜を除去する。
工程3)露出させた絶縁層のすべてを除去し、レーザーまたはドリルにより穴開けを行なって凹部を形成する。銅のレーザー吸収が減少し、絶縁層のレーザー吸収が増大するようにレーザーエネルギーを調節することができるレーザーを使用するのが好ましく、炭酸ガスレーザーを使用するのがより好ましい。かかるレーザーの使用により、導電層の開口部の反対側の導電層を貫通することなく絶縁層のみを除去することが可能になる。
工程4)半導体チップを凹部に配置して、半導体チップの底部が開口部側に面するようにし、本発明の接着膜またはプリプレグを開口部側から積層して半導体チップを覆い、半導体チップと凹部の間の空間に埋め込む。半導体チップは凹部の高さより低い位置に配置するのが好ましい。
工程5)接着膜またはプリプレグを硬化させた後、レーザーにより穴を開けて半導体チップの底部上のボンディングパッドを露出させる。
工程6)上記のように粗面化処理、非電解メッキ、および電解メッキを行なって配線を接続し、必要ならば、接着膜またはプリプレグをさらに積層してもよい。
【0143】
半導体チップを実装する方法のうち、半導体素子の小型化および伝送損失の低減の観点から、またははんだを使用しないため半導体チップに対する熱履歴の影響がなく、将来樹脂とはんだとの間に歪みが生じないという観点から、バンプレスビルドアップ層(BBUL)を用いる実装方法が好ましく、BBUL法1)および2)がより好ましく、BBUL法2)がさらにより一層好ましい。
【0144】
本発明の他の特徴は、本発明の実例として挙げられ、限定する意図はない代表的な実施形態の以下の記載から明らかとなろう。
【0145】
すべてのパーセント、ppmまたは同等な値は他に示す場合を除いてそれぞれの組成物の総質量に対する質量に関する。すべての引用した文献は参照により本明細書に組み込まれる。
【0146】
以下の実施例は、本発明の範囲を限定することなく本発明をさらに説明する。
【実施例】
【0147】
誘電率および損失正接の測定および評価
40mmの直径と20-100μmの範囲の厚さを有するフィルムサンプルを測定に使用した。フィルムの厚さはマイクロメートルゲージ(Mitutoyo、Japanの製品、0.001-5mm)で測定した。誘電率測定はスプリットポスト誘電体共振器(SPDR)(QWED、Polandの製品)を用いて10GHz、ベクトルネットワークアナライザーE5071C(keysight Technologiesの製品)で行なった。
【0148】
SPDRを、フィルムサンプルの方位方向に電場成分を制限するTE01δモードで作動させた(F.Chen ら, Journal of Electromagnetic Analysis and Applications 4 (2012)、 358~361ページ)。共鳴モードはフィルムサンプルに対して垂直な空隙に反応しない。
【0149】
誘電率Dk(誘電定数といわれることも多い)は、サンプル挿入に起因する共鳴周波数シフトから決定した。供試サンプルの厚さは±0.7%以上の精度で測定されるので誘電率の典型的な不確定性は±1%より良好である。
【0150】
損失正接Dfは、空の空洞とサンプルを入れた空洞のそれぞれのQ値から式tanδ=1/Qによって決定することができる。典型的な損失正接分解能は2・10-5であった。
【0151】
使用した材料:
樹脂
DER332(DOWから入手可能):
【化41】
Nippon Kayakuから入手可能なNC7000L
Nippon Kayakuから入手可能なXD 1000
Nippon Kayakuから入手可能なGTR 1800
Nippon Kayakuから入手可能なNC3000L
DIC Corporationから入手可能なEPICOLON HP4700
BASFから入手可能なMPPG:
【化42】
SN485:ナフタレンベースのフェノール樹脂、Nippon Steel Chemical
LA7054:フェノールベースのノボラック樹脂、DIC。
【0152】
促進剤
BASFから入手可能なLupragen(商標) N700:
【化43】
BASFから商品名Basionics(商標) VS 3で入手可能なEMIM-DCA:
【化44】
Aldrichから入手可能なEMIM-ラクテート。
【0153】
無機充填材
Admatechsから入手可能なシリカSE203G SXJ
【0154】
溶媒
メチルエチルケトン(MEK)。
【0155】
一般製造手順(GPP):
トルエン(1000ml)、ヒドロキシ化合物(1molのヒドロキシル基)および1-メチルイミダゾール(1mol)の混合物を丸底フラスコに入れた。均一な溶液が得られるまで混合物を室温で撹拌した。その後溶液を40℃に加熱し、クロロトリメチルシラン(1mol)をゆっくり加えた。添加完了後混合物を100℃に6時間加熱し、室温で一晩放置した。液体をろ過によって沈殿した物質から分離した。その後残留する溶媒を真空蒸留により除去した。得られた生成物はそのまま使用した。
【0156】
A.ポリマー性のシロキサン型硬化剤
GPH-65、Nippon Kayaku Co., Ltd
シロキサン変性ビフェニルフェノールノボラック樹脂(SBN)
【化45】
上記GPPに従って1.0molの樹脂GPH-65(=1molのヒドロキシル基500g)を2molのクロロトリメチルシラン(217g)および2molの1-メチルイミダゾール(164g)と反応させてSBNを得た。
【0157】
[実施例A.1-A.6および比較例A.C7]
エポキシ樹脂と硬化剤の混合物を使い捨て式の金属ビーカーに入れた。混合物を加熱し、対応する温度で1分間2000rpmにおいて混合した。その後促進剤を対応する温度で混合物に直接加え、再び2000rpmで1分間混合した。硬化剤対エポキシ樹脂の比は化学量論1:1と計算された。材料を寸法36・24・0.5cmのステンレス鋼モールドに注型した。ニートのエポキシ組成物を180℃で90分間硬化させた。金属モールドを室温に冷却し、開き、得られたエポキシ板をそのままさらなる分析および性能試験に使用した。
【0158】
使用した化合物および結果を表1に示す。
【0159】
【0160】
[実施例A.8~A.13ならびに比較例A.C14およびA.C15]
エポキシ樹脂、シロキサン変性硬化剤、シリカ充填材、溶媒および触媒を含むエポキシ樹脂組成物を、2000rpmの撹拌機(Speed Mixer)内各工程10分間で段階的に成分を混合することで製造した。均一なエポキシ組成物を基板のPETフィルム上にブレード塗工により100μmの薄いフィルムとして付着させた。次いで、エポキシの薄いフィルムを140℃で2時間硬化させた。硬化したフィルムをさらなる分析および性能試験に使用した。
【0161】
使用した化合物および結果を表2に示す。
【0162】
【0163】
B.モノマー性シロキサン型硬化剤
BPA-Si:
【化46】
【0164】
1.0molのビスフェノールA(=1molのヒドロキシル基228g)、2molのクロロトリメチルシラン(217g)および2molの1-メチルイミダゾール(164g)を反応させてPBA-Siを得た。
【0165】
【0166】
1.0molの2,7-ジヒドロキシナフタレン(=2molのヒドロキシル基160g)、2molのクロロトリメチルシラン(217g)および2molの1-メチルイミダゾール(164g)を反応させて2,7-Naph-Siを得た。
【0167】
【0168】
1.0molの1,5-ジヒドロキシナフタレン(=2molのヒドロキシル基160g)、2molのクロロトリメチルシラン(217g)および2molの1-メチルイミダゾール(164g)を反応させて1,5-Naph-Siを得た。
【0169】
【0170】
0.6molのビスフェノールA(=0.6molのヒドロキシル基136.8g)、0.8molのジメトキシジメチルシラン(96.2g)を触媒としての2.5gのメタンスルホン酸と共に110℃で2.5時間、125℃で5時間加熱し、その間溶媒を連続的に除去した。次いで残留する溶媒を160℃、10mbarで除去してPoly-PBA-Siを得た。
【0171】
BPA=ビスフェノールA(従来技術):
【化50】
【0172】
BPADA=ビスフェノールAジアセテート(従来技術米国特許出願公開第2011/120761号):
【化51】
【0173】
一般重合手順(GPP)
樹脂(a)と硬化剤(b)の混合物を使い捨て式の金属ビーカーに入れた。混合物を加熱し、対応する温度で1分間2000rpmで混合した。その後促進剤を対応する温度で直接混合物に加え、再び2000rpmで1分間混合した。硬化剤対樹脂の比は1:1であった。材料を寸法36・24・0.5cmのステンレス鋼モールドに注型した。充填したモールドをオーブンに入れ、180℃で90分間硬化させた。硬化後モールドを室温に冷却し、開き、得られたエポキシ板を取り出した。この薄い板はそのまま使用した。
【0174】
[実施例B.1]:
GPPに従って、100部の樹脂(a)DER 332、107.5部の硬化剤BPA-Si(b)および1部の促進剤(c)EMIM-DCAを室温で混合し、室温のモールドに注型し、硬化させた。
【0175】
[実施例B2]:
GPPに従って、100部の樹脂DER 332、107.5部の硬化剤BPA-Siおよび1部の促進剤Lupragen N700を室温で混合し、室温のモールドに注型し、硬化させた。
【0176】
[比較例B3]:
GPPに従って、100部の樹脂DER 332、65.9部の硬化剤ビスフェノールAおよび1部の促進剤EMIM-DCAを175℃で混合し、>150℃でモールドに注型し、硬化させた。
【0177】
[比較例B4]:
GPPに従って、100部の樹脂DER 332、90.2部の硬化剤ビスフェノールAジアセテートおよび1部の促進剤EMIM-DCAを175℃で混合し、>150℃のモールドに注型し、硬化させた。
【0178】
[実施例B5]:
GPPに従って、100部の樹脂DER 332、107.5部の硬化剤BPA-Siおよび1部の促進剤EMIM-DCAを室温で混合し、室温のモールドに注型し、硬化させた。
【0179】
[実施例B6]:
GPPに従って、100部の樹脂MPPG、117.7部の硬化剤BPA-Siおよび1部の促進剤EMIM-DCAを室温で混合し、室温のモールドに注型し、硬化させた。
【0180】
[実施例B7]:
GPPに従って、100部の樹脂DER332、87.9部の硬化剤2,7-Naph-Siおよび1部の促進剤EMIM-DCAを100℃で混合し、100℃のモールドに注型し、硬化させた。
【0181】
[実施例B8]:
GPPに従って、100部の樹脂DER332、87.9部の硬化剤1,5-Naph-Siおよび1部の促進剤EMIM-DCAを100℃で混合し、100℃のモールドに注型し、硬化させた。
【0182】
[実施例B9]:
GPPに従って、100部の樹脂DEN438、103.9部の硬化剤BPA-Siおよび1部の促進剤EMIM-DCAを130℃で混合し、130℃のモールドに注型し、硬化させた。
【0183】